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ABSTRACT 

Using stable isotopes of carbon (δ13C) and nitrogen 
(δ15N) and mixing models, we investigated the tro-
phic levels and carbon sources of invertebrates and 
fishes of a large tidal marsh in the San Francisco 
Estuary. Our goal was to better understand an estua-
rine food web comprised of native and alien species. 
We found the following: (1) the food web was based 
largely on carbon from phytoplankton and emergent-
aquatic and terrestrial vegetation, but carbon from 
submerged aquatic vegetation and phytobenthos was 
also used; (2) alien species increased the complexity 
of the food web by altering carbon-flow pathways 
and by occupying trophic positions different from 
native species; and (3) most consumers were dietary 
generalists.
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INTRODUCTION

The aquatic ecosystem in the San Francisco Estuary 
(estuary) before European colonization contained a 
relatively small number of species and a presum-
ably simple food web (Cohen and Carlton 1998; Orsi 
and Ohtsuka 1999; Kimmerer 2004). Since then, the 
estuary has undergone major physical and ecological 
transformation over the last two centuries (Conomos 
1979; Nichols et al. 1986; Cohen and Carlton 1998). 
A substantial part of this transformation has been 
species introductions, earning the San Francisco 
Estuary the onerous honor of being the most invaded 
estuary in the world, at a rate that has been acceler-
ating since the mid-1800s (Cohen and Carlton 1998), 
and with a new species being established about every 
14 weeks during the 1990s. Cohen and Carlton (1998) 
determined that over 234 species were alien to the 
estuary, and an additional 125 species were cryp-
togenic (i.e., place of origin uncertain). New species 
continue to invade and persist in the system (Emmett 
et al. 2002; Schroeter and Moyle 2006). 

Some of these alien invasions have resulted in sig-
nificant community and food-web alterations. For 
example, the overbite clam (Potamocorbula amu-
rensis) has reduced pelagic productivity by feeding 
heavily on both phytoplankton and small zooplank-
ters (Nichols et al. 1990; Alpine and Cloern 1992; 
Kimmerer et al. 1994; Kimmerer and Orsi 1996). 
Fishes such as juvenile striped bass (Morone saxatilis) 
that once subsisted primarily on native invertebrates 
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now have diets dominated by alien species (Feyrer et 
al. 2003; Bryant and Arnold 2007). The proportion of 
the inshore fish assemblage comprising alien fishes 
in the freshwater portion of the estuary has increased 
substantially from the early 1980s (Brown and 
Michniuk 2007). Similarly, alien species have become 
more dominant in both benthic–invertebrate and zoo-
plankton assemblages in many parts of the estuary 
(Peterson and Vayssieres 2010; Winder and Jassby 
2011). The full effect of alien species on native fauna, 
however, remains largely unknown because of igno-
rance of the basic ecology of both types of species 
(Kimmerer 2004; Sommer et al. 2007). 

Despite the copious introductions, extinctions of 
native species in the estuary have been rare (Orsi 
and Ohtsuka 1999; Moyle 2002). Consequently, the 
aquatic ecosystem in the estuary is becoming more 
complex, with an increasingly novel faunal assem-
blage (Orsi and Ohtsuka 1999; Kimmerer 2004). To 
develop effective flow and vegetation management 
for native species, especially in the context of con-
tinuing change (Hobbs et al. 2006; Seastedt et al. 
2008; Moyle 2013), this new ecosystem requires bet-
ter understanding of the relationships among species.

A few studies in the last decade have shed some light 
on the trophic structure and function of this new 
ecosystem. Grimaldo et al. (2009) used both stable 
isotopes and gut-content analyses to delineate the 
food web of flooded agricultural islands in the fresh-
water portion of the estuary. They found that some 
fishes, primarily pelagic species, depended heavily 
on pelagic food sources, but the majority of species 
mostly ate food supported by submerged aquatic 
vegetation (SAV) and associated periphyton. Notably, 
alien and native species both ate each other, forming 
one integrated food web. Howe and Simenstad (2011) 
examined aquatic food webs of wetlands along the 
estuary’s salinity gradient using sulfur, carbon, and 
nitrogen stable isotopes. In contrast to Grimaldo 
et al. (2009), most of the organisms in Howe and 
Simenstad’s study ultimately derived their food from 
wetland-produced vegetation, reflecting differences in 
the dominant vegetation types present. To extend the 
geographic scope of food-web knowledge of the estu-
ary, we performed a study in Suisun Marsh, a region 

of the estuary slated for large-scale tidal restoration 
for the benefit of native fishes.

Suisun Marsh, a mosaic of sloughs, tidal wetlands, 
and managed wetlands in the geographical center of 
the estuary, is vital habitat for at-risk native species 
and a major target for future restoration (Moyle et 
al. 2014). However, the communities of this brackish 
marsh are similar to the communities found in other 
areas of the estuary, with alien species accounting 
for the largest portion of the invertebrate and fish 
catch (Matern et al. 2002; Schroeter 2008; O’Rear and 
Moyle 2010). Alien species are not only numerically 
dominant in Suisun Marsh but are also very diverse, 
having at least one abundant representative in nearly 
all taxonomic groups and being the sole members 
of the classes Hydrozoa and Cirripedia. The trophic 
ecology of many of these species within the marsh, 
including six common macroinvertebrate crusta-
ceans [the amphipods Eogammarus confervicolus and 
Gammarus daiberi, the isopod Synidotea laticauda, 
the mysid Hyperacanthomysis longirostris, and the 
shrimps Siberian prawn (Exopalaemon modestus) and 
oriental shrimp (Palaemon macrodactylus)] and three 
locally abundant clams [Asian clam (Corbicula flu-
minea), overbite clam (Potamocorbula amurensis), and 
Macoma petalum], is largely unknown. 

To address this knowledge gap, we used stable isotope 
ratios of carbon (δ13C) and nitrogen (δ15N) to identify 
the trophic positions and carbon sources of abundant 
alien and native organisms. Isotope ratios provide 
time- and space-integrated information about feed-
ing relationships and energy flow through food webs; 
they can be particularly helpful when diet studies are 
difficult both because of the small size of species and 
prey maceration by invertebrates. δ15N values are 
indicators of trophic levels and have been used suc-
cessfully in fresh, brackish, and marine environments 
(Peterson and Fry 1987; Fry 1991; Hansson et al. 
1997; Kwak and Zedler 1997). δ13C values are useful 
in identifying food sources for consumers and thus 
the energy bases for food webs (Gearing 1991). The 
combination of δ13C and δ15N yields information on 
the structure and types of food webs in aquatic com-
munities (e.g., Kwak and Zedler 1997). 
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We therefore used stable isotopes to answer these 
questions: What is the structure of the Suisun Marsh 
food web? Do native and alien species play different 
roles in the food web? 

MATERIALS AND METHODS
Study Area  

Suisun Marsh is a large brackish marsh (approxi-
mately 340 km2; Figure 1); approximately one-third 

of the marsh is tidal, and the remainder consists 
primarily of diked wetlands managed for waterfowl 
(Moyle et al. 2014). Suisun Marsh occupies a cen-
tral position in the estuary, being upstream of the 
saltwater San Francisco Bay and being immediately 
downstream of the tidal freshwater Delta, the latter of 
which is Suisun Marsh’s major source of fresh water. 
Environmental conditions within the marsh—includ-
ing salinity, temperature, water clarity, and dissolved 
oxygen—vary by season, location, and the amount of 
inflowing fresh water. Freshwater inflow is usually 
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highest from February to March and declines towards 
June, with the lowest inflow occurring between July 
and November. As freshwater inflow decreases in 
late spring and early summer, saltier water intrudes 
and salinity increases, reaching its highest levels in 
fall before declining after winter rains begin and 
freshwater inflows from the watershed subsequently 
increase. These factors strongly influence the diver-
sity of the aquatic community and the abundance of 
species (Meng and Matern 2001; Matern et al. 2002; 
Schroeter 2008). Suisun Marsh is generally recog-
nized as being an important low-salinity nursery area 
for numerous fishes and macroinvertebrates (Meng et 
al. 1994; Meng and Matern 2001; Matern et al. 2002; 
Feyrer et al. 2003; Moyle et al. 2014). 

Sample Collection

We sampled biota from Suisun Marsh for stable 
isotope analyses on September 28 and October 26, 
2011. We recorded salinity, temperature, dissolved 
oxygen (DO), and Secchi depth on each sample date 
at each trawl site (Figure 1), measuring the first three 
parameters with a Yellow Springs Instruments (YSI) 
85 device. Sampling locations were in the south-
west region of Suisun Marsh and included the lower 
reaches of Suisun, Cordelia, and Goodyear sloughs 
(Figure 1). We selected this area in autumn because 
of the high taxonomic diversity of fishes and inverte-
brates that typically reside there (Matern et al. 2002). 
We intentionally chose a limited area within Suisun 
Marsh to minimize the variability often encountered 
with stable isotope analyses along a spatial gradient 
(e.g., Fry 1999). We specifically targeted abundant 
species (Table 1) and opportunistically included other 
species, but the small scope of the study precluded 
evaluating all organisms captured for isotopes. Taxa 
from different sites were pooled together because of 
very similar water-quality conditions among sites 
(O’Rear, unpublished data). 

We collected phytobenthos (benthic algae) samples 
at low tide when mud flats were fully exposed. To 
separate phytobenthos from detritus and sediment, 
we first removed from the mud flat an area of bottom 
substrate measuring approximately 20 cm × 20 cm 
and 5-cm deep. We then removed a thin slice of the 

surface film (≤1 mm thick). We obtained material for 
sediment samples from the same bottom substrate but 
at depths greater than 2 mm to avoid mixing with 
phytobenthos. We also collected terrestrial and aquat-
ic vegetation. The aquatic plants sampled included 
three species of SAV: Brazilian waterweed (Egeria 
densa), Eurasian milfoil (Myriophyllum spicatum), 
and sago pondweed (Stukenia pectinatus), which 
we either raked from slough channels or took from 
otter trawls. We also sampled four species of emer-
gent aquatic vegetation: common reed (Phragmites 
australis), common cattail (Typha latifolia), pickle-
weed (Salicornia virginica), and California bulrush 
(Schoenoplectus californicus). We clipped samples 
from four taxa of terrestrial plants along the slough 
edges: California rose (Rosa californica), Eucalyptus 
sp., perennial pepperweed (Lepidium latifolium), and 
an unknown species of grass.

We sampled benthic invertebrates using a petite 
ponar dredge that measured 15 cm × 15 cm with a 
sampling area of 0.023 m2. We field-rinsed samples 
using a 500-µm sieve bucket and further sorted the 
remaining material in trays. Dip nets were used to 
sample invertebrates in patches of SAV and emergent 
aquatic vegetation. Dredging and dip-netting con-
tinued until we captured at least 5 individuals of the 
target species (Table 1).

We collected mysids and copepods with 300-µm and 
154-µm mesh conical plankton nets, respectively. 
Both nets were attached to a weighted bar, lowered 
into the water column, and then towed twice for 
approximately 5 minutes at various depths, which 
yielded the requisite sample sizes for mysids. Water 
for phytoplankton samples was collected by pump 
with an inlet positioned approximately 0.75 m below 
the water surface. The pumped water was pre-filtered 
through a 100-µm mesh net to remove zooplank-
ton and then further filtered using a low-pressure 
vacuum pump that pulled the water through an ashed 
Whatman glass microfiber filter (46-mm diameter) 
and retained the phytoplankton samples.

Fish, decapod shrimps, and medusae of Black Sea 
jellyfish (Maeotias marginata) were sampled using a 
four-seam otter trawl 1.5-m high, 4.3-m wide, and 
5.3-m long. The trawl was towed at approximately 
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Table 1  Suisun Marsh taxa analyzed for stable isotope ratios. For animals, the letter superscripts following the animal scientific 
name indicates the statistical result of the Mann–Whitney rank sum test; unique letters among species in a particular group indicate 
a significant difference at the α = 0.05 significance level (* = too few samples for statistical comparisons; + = targeted animals for 
study). δ13C values presented for consumers are the lipid-corrected values.

Group Scientific name Common name Code Native/Alien? n
δ13C (‰)  

(mean  ±  SD)
δ15N (‰)  

(mean  ±  SD)
Phytobenthos N/A N/A phytobenth N/A 6 - 22.7 (±  1.5) 7.0 (± 0.4)

Phytoplankton N/A N/A phytoplank N/A 10 - 27.6 (± 0.6) 3.9 (± 1.5)

Terrestrial vegetation

Eucalyptus globulus blue-gum eucalyptus euc alien 5 - 28.8 (± 0.2) 2.0 (± 0.4)

Poaceae grass grass N/A 5 - 27.8 (± 0.2) 4.6 (± 0.5)

Lepidium latifolium pepperweed pep. weed alien 5 - 29.3 (± 0.1) 4.9 (± 0.1)

Rosa californica wild rose rose native 5 - 25.6 (± 0.1) 2.0 (± 0.2)

Terrestrial vegetation (all taxa) N/A N/A terrestrial both 20 - 27.9 (± 1.5) 3.4 (± 1.4)

Emergent aquatic vegetation

Phragmites australis common reed reed alien 5 - 26.8 (± 0.1) 8.0 (± 0.2)

Schoenoplectus californicus bulrush rush native 5 - 27.4 (± 0.0) 8.8 (± 0.2)

Typha latifolia cattail cattai native 5 - 29.1 (± 0.1) 6.0 (± 0.2)

Sarcocornia pacifica pickleweed pickle native 5 - 28.8 (± 0.1) 5.8 (± 0.3)

Emergent aquatic vegetation  
(all species) N/A N/A EAV both 20 - 28.0 (± 1.0) 7.2 (± 1.4)

Submerged aquatic vegetation

Egeria densa Brazilian waterweed Egeria alien 5 - 21.8 (± 0.1) 9.5 (± 0.3)

Myriophyllum spicatum Eurasian milfoil milfoil alien 5 - 19.2 (± 0.1) 4.7 (± 0.3)

Stuckenia pectinatus sago pondweed sago alien 5 - 17.1 (± 0.0) 12.5 (± 0.1)

Submerged aquatic vegetation  
(all species) N/A N/A SAV alien 15 - 19.4 (± 2.0) 8.9 (± 3.4)

Bryozoa Bryozoa + moss animal bry N/A 5 - 25.6 (± 0.3) 10.5 (± 0.8)

Annelida Oligochaeta + worms oligo N/A 5 - 27.9 (± 0.4) 9.8 (± 1.0)

Insecta Chironomidae nonbiting midge midge N/A 3 - 27.8 (± 2.0) 10.2 (± 1.6)

Polychaeta

Laonome sp. a, + pileworm Lao alien 5 - 29.1 (± 0.9) 7.5 (± 0.5)

Neanthes limnicola* pileworm Neanth native 1 - 26.5 11.6

Marenzellaria viridis b, + pileworm Maren native 20 - 26.3 (± 0.6) 11.6 (± 0.9)

Bivalvia

Cobicula fluminea a, + Asian clam Corbic alien 15 - 28.4 ± (1.4) 10.3 (± 0.8)

Potamocorbula amurensis a, + overbite clam overbite alien 21 - 27.6 (± 1.2) 10.2 (± 0.5)

Macoma petalumb N/A macoma alien 4 - 25.1 (± 0.7) 13.2 (± 2.0)

Copepods Copepoda + N/A cope N/A 21 - 29.8 (± 1.2) 11.0 (± 1.1)

Mysida
Hyperacanthomysis longirostris a, + opossum shrimp H. long alien 23 - 28.1 (± 2.0) 11.6 (± 1.0)

Neomysis kadiakensis a, + opossum shrimp N. kad native 8 - 27.8 (± 1.3) 10.8 (± 0.9)

Amphipoda
Gammarus daiberi a, + scud G. dai alien 17 - 19.4 (± 4.8) 12.1 (± 1.3)

Americorophium spinicorne b, + tube-dwelling scud A. spin native 19 - 26.0 (± 4.2) 10.3 (± 1.4)

Isopoda Synidotea laticauda pillbug S. lat alien 9 - 22.4 (± 2.3) 11.7 (± 0.9)

Decapoda

Crangon franciscorum a, + grass shrimp b. shrimp native 28 - 22.3 (± 2.1) 14.6 (± 0.6)

Exopalaemon modestus b, + ghost shrimp S. prawn alien 19 - 22.2 (± 2.4) 13.4 (± 0.9)

Palaemon macrodactylus c, + ghost shrimp or. shrimp alien 15 - 23.4 (± 2.0) 15.2 (± 0.8)

Hydrozoa Maeotias marginata + Black Sea jellyfish jelly alien 20 - 26.0 (± 0.4) 14.5 (± 0.4)

Fish

Cottus asper prickly sculpin SCP native 2 - 24.6 (± 2.6) 13.1 (± 0.8)

Morone saxatilis + striped bass SB alien 18 - 24.5 (± 1.1) 15.9 (± 0.7)

Acanthogobius flavimanus yellowfin goby YFG alien 1 - 25.0 14.6

http://dx.doi.org/10.15447/sfews.2015v13iss3art6
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4 km hr-1 at three spatially fixed sampling locations 
(SU3, SU4, and GY3; Figure 1) that are part of a 
monthly monitoring survey of fish and invertebrates 
in Suisun Marsh that the University of California, 
Davis, conducts (Matern et al. 2002; Schroeter 2008); 
a total of six trawls were pulled, three in each month, 
one per site per month. The trawl mesh was 35-mm 
fully stretched with a 17-mm rough opening, and the 
cod-end was lined with a 6-mm fully stretched and 
3-mm rough-opening mesh.

Sample Preparation

Fish, vegetation, phytobenthos, phytoplankton, and 
sediment samples were all frozen on dry ice in the 
field. Invertebrates were divided by species and were 
placed live into individual holding containers with 
marsh water (filtered through 54-µm mesh) for a 
minimum of 24 hours to allow for gut clearance. 
We further sorted mall invertebrates in the labora-
tory using a dissecting microscope to ensure proper 
species identification. Fish were filleted, and we 
removed muscle tissue from the left side of the body 
to the rear of the gut through the caudal peduncle. 
Clams were taken from their shells prior to drying. 
We rinsed all animal and plant tissue with de-ionized 
water before drying it at 60°C. We then used a mor-
tar and pestle  to grind all samples into a homoge-
neous powder, with the exception of small inverte-
brates weighing between 0.5 and 4 mg and the phyto-
plankton samples, both of which we analyzed whole. 
Because of their small sizes, all species of copepods 
were combined and analyzed together. The omni-
vores Acartiella sinensis and Acanthocyclops vernalis 
(Andreadis and Gere 1992; Kimmerer 2004) together 
comprised 100% and 91.4% of the September and 
October catches, respectively; Limnoithona tetraspina 
and Pseudodiaptomus forbesi comprised the remain-
der of the October catch.

Carbon and Nitrogen Stable Isotope Analyses

We analyzed total of 350 samples from Suisun Marsh 
for stable isotopes (Table 1), including phytobenthos 
(6), phytoplankton (10), bryozoans (5), hydrozoans 
(20), clams (40), various invertebrates (193), fish (21), 
and aquatic and terrestrial plants (55). Twenty-two 

species of aquatic animals, seven native and 15 alien, 
were represented (Table 1). 

We weighed samples on a microbalance and placed 
them in tin capsules for isotope processing. All 
samples were analyzed for δ13C and δ15N at the 
University of California, Davis, Stable Isotope Facility 
using a PDZ Europa ANCA-GSL elemental analyzer 
interfaced to a PDZ Europa 20-20 isotope ratio 
mass spectrometer (IRMS; Sercon Ltd., Cheshire, 
UK). Samples were combusted at 1,000°C in a reac-
tor packed with chromium oxide and copper oxide. 
After combustion, oxides were removed in a reduc-
tion reactor (reduced copper at 650°C) and the helium 
carrier then passed through a water trap (magnesium 
perchlorate). N2 and CO2 were separated on a carbo-
sieve gas chromatography (GC) column (65°C, 65 ml 
min-1) before entering the IRMS.

During analysis, samples were interspersed with sev-
eral replicates of four different laboratory standards: 
nylon, bovine liver, peach leaves, and glutamic acid. 
These laboratory standards were previously cali-
brated against National Institute of Standards and 
Technology (NIST) Standard Reference Materials 
(International Atomic Energy Agency [IAEA]-N1, 
IAEA-N2, IAEA-N3, and U.S. Geological Survey 
[USGS]-40, and USGS-41). The sample’s preliminary 
isotope ratio was measured relative to reference gases 
analyzed with each sample. These preliminary val-
ues were then finalized by correcting the values for 
the entire batch based on the known values of the 
included laboratory standards. The long-term stan-
dard deviation for analyses is 0.2 per mil (‰) for 
δ13C and and 0.3‰ for δ15N. The final isotope val-
ues are expressed relative to international standards 
Vienna PeeDee Belemnite (V-PDB) and air for carbon 
and nitrogen, respectively (Sharp 2005). 

Data Analyses

We used MixSIAR 2.1.2 (Stock and Semmens 2013) 
to determine probabilities of carbon sources to con-
sumers. We used the equation provided in Post et 
al. (2007) to correct δ13C values for lipid content 
for animals; no corrections were applied to primary 
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producers because of the non-significant relation-
ship between the C:N ratio and the change in δ13C 
from lipid content (Post et al. 2007). To reduce 
under-determined model solutions (Fry 2013), we 
grouped primary producers by ecological type: 
emergent aquatic vegetation, SAV, terrestrial plants, 
phytoplankton, and phytobenthos. Phytoplankton 
and terrestrial plants were subsequently grouped 
together because of their similar isotope values 
(Figure 2). We modeled consumer taxa as random 
effects and included both process and residual error 
in the models. We chose the run length “long” for 
the number of Monte Carlo Markov Chain simula-
tions for all models, which comprised three chains 
of 300,000 simulations each, with a burn-in of 
200,000. To assess robustness of the models, we used 
several sources to assign different discrimination 
factors to consumers: values from Vander Zanden 
and Rasmussen (2001, values from McCutchan et al. 
(2003), and taxonomically grouped values derived 
from both studies (Appendix A). We ran several mod-
els on a subset of consumers with all three types of 
discrimination factors; results were similar among 
models (see Appendix A). For example, means and 
credible intervals of carbon sources with either very 
high or very low probability (e.g., emergent aquatic 
vegetation for striped bass and Asian clam, and 
phytoplankton/ terrestrial vegetation for all three 
animals; see Appendix A) remained either high or 
low regardless of the discrimination factors used. 
The means of probabilities that were moderate for 
three carbon sources of California bay shrimp varied 
notably among the models, although the phytoplank-
ton/terrestrial-vegetation group’s probabilities were 
always lowest (see Appendix A). The models using 
taxonomically grouped values generally performed 
best, having the lowest deviation information criteria 
(DIC) scores (see Appendix A), and so the remainder 
of consumers was modeled using those discrimination 
values. 

We determined other features of the food-web struc-
ture by analyzing a biplot of mean δ15N and δ13C 
values for all consumers and primary producers. 
Numerous studies have found a δ15N enrichment 
from 2.4 to 4.0‰ equivalent to a one-step increase 
in trophic level (Hansson et al. 1997; Kwak and 

Zedler 1997; Peterson 1999; Vander Zanden and 
Rasmussen 2001; McCutchan et al. 2003), which we 
used to guide interpretation of the plot and because 
they encompassed the ranges used in the MixSIAR 
models. Gut contents of striped bass contained 
amphipods, mysids, and Siberian prawn, so we were 
able to constrain possible prey to G. daiberi, A. spin-
icorne, Siberian prawn, and mysids for analysis in 
MixSIAR. Both mysid species were combined and run 
as one prey source of striped bass because isotope 
values between Neomysis kadiakensis and H. longi-
rostris overlapped considerably (Figure 2, Table 1). 
To explore trophic-level differences between similar 
native and alien species, we analyzed interspecific 
differences in δ15N for taxonomic groups that con-
tained both alien and native species and with suf-
ficient sample sizes using the non-parametric Mann–
Whitney rank sum test in SigmaPlot 12.3 (Systat 
Software, Inc., San Jose, California, USA) given non-
normal distributions and unequal variances. 

RESULTS
Abiotic Conditions

Water-quality parameters (mean ± SD) on each sam-
pling date (September 28 and October 26, 2011) 
were similar for salinity (4.8 ± 0.0 and 5.1 ± 0.5 ppt), 
temperature (20.4 ± 0.2 and 17.8 ± 0.4°C), dissolved 
oxygen (7.0 ± 0.4 and 7.0 ± 0.0 mg L-1 O2), and Secchi 
depth (30 ± 8 and 29 ± 12 cm). 

Primary Producer Isotopic Values

Primary producer groups in Suisun Marsh had large 
within-group and among-group variation in δ values 
for both isotopes, although overlap was low among 
groups except for terrestrial vegetation and phyto-
plankton (Table 1, Figure 2). Terrestrial vegetation 
was depleted in both δ13C (mean ± SD = -28.1 ± 1.3‰) 
and δ15N (3.9 ± 1.6‰); emergent aquatic vegeta-
tion was also depleted in δ13C (-27.8 ± 1.0‰) but 
more enriched in δ15N (7.6 ± 1.2‰); SAV was much 
more enriched in δ13C (- 19.4 ± 2‰) and, except for 
Eurasian milfoil, more enriched in δ15N (8.9 ± 3.4‰). 
The δ13C and δ15N values for phytoplankton 
(- 27.6 ± 0.6‰; 3.9 ± 1.5‰) were most similar to 
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terrestrial vegetation; the values for phytobenthos 
(- 22.7 ± 1.5‰; 7.0 ± 0.4‰) were more similar to 
SAV. Variation within species was much lower than 
that for the primary producer groups (Table 1). In 
sum, there were two broad groups of primary produc-
ers along the carbon isotope axis: a δ13C-depleted 
group comprised of phytoplankton, terrestrial vegeta-
tion, and emergent aquatic vegetation; and a δ13C-
enriched group comprised of phytobenthos and SAV. 
This isotopic arrangement of carbon sources corre-
sponded well with results of Grimaldo et al. (2009) 
and with the results of the fresher regions of Cloern 

et al. (2002) and Howe and Simenstad (2011). That 
the Suisun Marsh primary producer isotope values 
matched up with the fresher regions of both Cloern et 
al. (2002) and Howe and Simenstad (2011) was prob-
ably because 2011 was a wet year, which resulted in 
lower-than-average salinities in Suisun Marsh for all 
months of 2011 except December (O’Rear and Moyle 
2014).

Figure 2  Biplot of mean δ15N and δ13C values for organisms captured in Suisun Marsh during autumn 2011 (note that δ13C values for 
animals are the lipid-corrected values). Symbols: round = plants/algae, rectangle = annelids, diamonds = clams, triangles = crusta-
ceans, squares = fishes; other symbols denote unique organisms. Colors correspond to animals assigned the same discrimination 
factors in MixSIAR. Symbols with capitalized labels represent means for primary producer ecological group; error bars are standard 
deviations. Sample sizes and organism codes are given in Table 1.
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Consumer Carbon Sources, Isotopic Values, and 
Trophic Levels

MixSIAR models suggested that no one carbon source 
dominated most consumer diets (Figure 3, Table 2). 
An exception was emergent aquatic vegetation, 
which appeared to be the greatest source of carbon 
to midges, Asian clam, copepods, mysids, and—to 
a lesser extent—two polychaete species and striped 
bass (Figure 3). Phytobenthos mean probabilities 
were relatively high for three crustaceans: Siberian 
prawn, S. laticauda, and G. daiberi. High mean prob-
abilities for phytoplankton and/or terrestrial vegeta-
tion occurred only for two taxa: the worms Laonome 
sp. and oligochaetes. Submerged aquatic vegetation 
did not dominate the diets of any consumers but 
was a substantial mean proportion of the diets of 
the two amphipods, the clam M. petalum, oriental 
and California bay shrimp, and striped bass. Striped 
bass were modeled as feeding predominantly on 
mysids and Siberian prawn and less so on amphipods 
(Figure 4). 

Precision of posterior probabilities among animals 
was highly variable. Standard deviations, which were 
highly correlated to a width of 95% credible inter-
vals (n = 89, credible-interval width = -5.0213(SD)2 +  
4.7278(SD) - 0.0406, r2 = 0.98), were especially high 
for G. daiberi, prickly sculpin, and yellowfin goby 
(Table 2), the latter two of which had very small 
sample sizes (two and one fish, respectively; Table 1). 
Precision was quite good for a range of species and 
carbon sources, although means associated with high 
precision tended to be very low (Table 2), suggesting 
that, in general, the MixSIAR models better identified 
negligible carbon sources than distinguishing among 
the more important sources. 

The trophic arrangement of fauna in Suisun Marsh, 
based upon mean δ15N values, revealed roughly 
three consumer trophic levels (Figure 2; Table 1). 
The lowest-level consumer group contained only 
one species, the polychaete Laonome sp., which had 
by far the lowest mean δ15N value of any consumer 
(7.5‰). Centered around a δ15N value of 10.9‰ 
(3.4‰ above Laonome sp.’s mean δ15N value) was 

Figure 3  Mean posterior probabilities for four carbon sources of Suisun Marsh animals; codes as in Table 1

http://dx.doi.org/10.15447/sfews.2015v13iss3art6
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a second consumer group comprised of most of the 
invertebrate species except for the decapod shrimps. 
Notably, G. daiberi and S. laticauda were substan-
tially more enriched in δ13C than other consumers 
with similar δ15N values (Figure 2). The taxa with the 
highest δ15N values, which tended to have intermedi-
ate δ13C values, were also the largest animals sam-
pled (Figure 2): the fishes, the decapod shrimps, Black 
Sea jellyfish medusae, and M. petalum, the latter of 
which was generally larger bodied than the other 
two clam species (Schroeter, unpublished data). The 
mean δ15N value for this third group (14.3‰) was 
about 3.4‰ higher than the mean for the mid-level 
consumers. These differences in mean δ15N values 
among consumer groups corresponded well to enrich-
ment values per trophic level found in the literature 
(e.g., Vander Zanden and Rasmussen 2001), although 

variability was considerable within the groups com-
prised of many species. 

Alien and Native Species Taxonomic Comparisons

In general, δ15N values between native and alien spe-
cies differed among taxonomic groups but showed 
no overall pattern. The three polychaete species 
exhibited significant differences (Mann–Whitney rank 
test) in trophic level (Table 1). The alien M. viridis 
and the native N. limnicola had δ15N values 4.1‰ 
above those of the alien Laonome sp. (Figure 2). The 
mysids H. longirostris (alien) and N. kadiakensis 
(native) were both similar trophically, (Figure 2) with 
no significant differences between their δ15N values 
(Table 1). For the amphipods, the alien G. daiberi was 
significantly more enriched in δ15N than the native 

Table 2  Means and standard deviations for posterior probabilities for Suisun Marsh consumers; codes as in Table 1 except for “terr/
plankton,” which is the combination of the phytoplankton and terrestrial-plant groups.

Taxa Emergent aquatic vegetation Phytobenthos SAV Terr/Plankton

A. spin 0.355 ± 0.164 0.229 ± 0.172 0.305 ± 0.11 0.111 ± 0.087

b. shrmp 0.236 ± 0.094 0.501 ± 0.127 0.245 ± 0.065 0.018 ± 0.025

bry 0.22 ± 0.105 0.467 ± 0.174 0.12 ± 0.091 0.193 ± 0.097

cope 0.928 ± 0.054 0.014 ± 0.015 0.009 ± 0.01 0.048 ± 0.048

Corbic 0.965 ± 0.054 0.016 ± 0.038 0.008 ± 0.02 0.011 ± 0.028

G. dai 0.009 ± 0.024 0.633 ± 0.393 0.352 ± 0.389 0.006 ± 0.016

H. long 0.943 ± 0.063 0.028 ± 0.047 0.02 ± 0.034 0.009 ± 0.023

jelly 0.531 ± 0.064 0.251 ± 0.092 0.159 ± 0.054 0.059 ± 0.047

Laon 0.275 ± 0.198 0.01 ± 0.03 0.005 ± 0.013 0.71 ± 0.195

macoma 0.441 ± 0.133 0.068 ± 0.068 0.414 ± 0.096 0.076 ± 0.08

Maren 0.627 ± 0.076 0.146 ± 0.092 0.153 ± 0.06 0.075 ± 0.06

midge 0.968 ± 0.064 0.012 ± 0.04 0.009 ± 0.027 0.011 ± 0.038

N. kad 0.816 ± 0.162 0.069 ± 0.096 0.038 ± 0.059 0.077 ± 0.106

Neanth 0.604 ± 0.25 0.171 ± 0.208 0.105 ± 0.114 0.119 ± 0.135

oligo 0.461 ± 0.152 0.084 ± 0.077 0.053 ± 0.047 0.401 ± 0.127

or. shrmp 0.449 ± 0.124 0.182 ± 0.163 0.344 ± 0.088 0.025 ± 0.036

overbite 0.538 ± 0.07 0.129 ± 0.072 0.036 ± 0.029 0.297 ± 0.06

S. lat 0.073 ± 0.11 0.708 ± 0.255 0.196 ± 0.224 0.024 ± 0.049

S. prawn 0.074 ± 0.078 0.832 ± 0.146 0.053 ± 0.064 0.041 ± 0.06

SB 0.644 ± 0.064 0.048 ± 0.066 0.29 ± 0.052 0.018 ± 0.029

SCP 0.29 ± 0.289 0.427 ± 0.368 0.111 ± 0.135 0.171 ± 0.229

YFG 0.493 ± 0.33 0.279 ± 0.345 0.129 ± 0.149 0.098 ± 0.186
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A. spinicorne according to the Mann–Whitney rank 
sums test (Table 1). Finally, all three decapod shrimp 
differed significantly from each other in trophic level 
(Table 1). The alien oriental shrimp had the highest 
δ15N values, the native California bay shrimp had 
intermediate values, and the alien Siberian prawn had 
the lowest values (Figure 2). 

DISCUSSION
What Is the Structure of the Suisun Marsh Food 
Web? 

The MixSIAR models suggested that most consum-
ers gleaned substantial proportions of carbon from 
more than one primary producer group, although five 
taxa—midges, Asian clam, the copepods, and the two 
mysid species—appeared especially to derive their 
carbon from emergent aquatic vegetation (Figure 3). 
These findings are curious given the dependence of 
these animals on phytoplankton noted in the lit-
erature (e.g., Boltovsky et al. 1995; Kimmerer 2004; 
Howe and Simenstad 2011). There are three plau-
sible explanations for this discrepancy. First, phyto-
plankton may have been the true carbon source for 

these consumers, which would have required either 
(1) very small primary consumers, such as copepod 
nauplii, that were feeding on phytoplankton and 
then consumed by Asian clams, mysids, and cope-
pods but were too small to be sampled effectively 
by our nets; or (2) very little carnivory among these 
species coupled with abnormally high δ15N enrich-
ment values (~6‰). This latter explanation seems 
unlikely given the omnivory reported for both mysids 
and the dominant copepod species in the samples 
(e.g., Kimmerer 2004). Because of the inability to 
isotopically separate terrestrial vegetation from phy-
toplankton, the same reasoning could be applied to 
terrestrial vegetation as the carbon source, although 
little support exists for terrestrial vegetation fueling 
such consumers (e.g., Sobczak et al. 2005). Second, 
emergent aquatic vegetation may be the true carbon 
source, although it, too, would necessitate absence 
in our samples of a primary consumer (e.g., proto-
zoans; Sobczak et al. 2002) that processed emergent 
aquatic vegetation and that had relatively low δ15N 
enrichment values. Third, the consumers may have 
been generalist feeders, eating a range of lower-level, 

Figure 4  Mean posterior probabilities for four prey sources of striped bass; error bars are 95% credible intervals; codes as in Table 1 
except for “mysids,” which is the combination of H. longirostris and N. kadiakensis.
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unsampled consumers that, in turn, fed on a range of 
carbon sources. 

Based upon the δ13C values and MixSIAR results, 
three invertebrates—G. daiberi, S. laticauda, and 
Siberian prawn, and, to a lesser extent, California 
bay shrimp—gained most of their carbon from phy-
tobenthos and SAV (Figures 2 and 3). Although we 
did not perform gut-content analyses on the shrimps, 
and so had no reasonable criteria for constraining 
the number of prey sources for MixSIAR modeling, it 
seems sensible based on diet literature in the estuary 
(Sitts and Knight 1979; Siegfried 1982; Wahle 1985) 
that the shrimps frequently ate G. daiberi. Feeding 
of the shrimps on G. daiberi is likely the reason why 
SAV probabilities were relatively high for striped bass 
(Figure 3) even though MixSIAR identified Siberian 
prawn and mysids as dominant foods (Figure 4): 
striped bass were probably feeding indiscriminately 
on all three shrimp species, including oriental and 
California bay shrimp (Ganssle 1966), despite the 
presence of only Siberian prawn in the guts of our 
fish. Thus, G. daiberi is likely a major route through 
which δ13C-enriched carbon can be incorporated by 
higher-level consumers in Suisun Marsh, similar to 
the results of Grimaldo et al. (2009) and consistent 
with the diet study of Bryant and Arnold (2007). 
The high SAV probabilities for striped bass also may 
have resulted from their heavier feeding on G. daiberi 
before our sampling in conjunction with inclusion 
of the larger Siberian prawn in their diets as the fish 
grew. 

δ15N values of Suisun Marsh organisms generally 
followed predictable patterns, with fish, the three 
decapod shrimp species, and Black Sea jellyfish at 
the apex of the food web (Stewart et al. 2004). Given 
their highly carnivorous diets and relatively large 
sizes, oriental shrimp and California bay shrimp were 
expectedly sited high on the biplot (Figure 2; Sitts 
and Knight 1979; Wahle 1985; González–Oretegón 
et al. 2010); placement of Siberian prawn lower than 
the other two shrimp species was also not surpris-
ing, based on this species’ greater omnivory reported 
in other systems (Shi et al. 1995; Jin et al. 1997; Xu 
et al. 2008). Macoma petalum was located relatively 
high in the food web but had a wide range of δ15N 
values, possibly because M. petalum was eating small 

benthic animals that, in turn, were subsisting par-
tially on detritus from δ15N-enriched SAV; the sub-
stantial contribution of SAV to M. petalum suggested 
by the MixSIAR models supports this interpretation. 
Conversely, M. petalum’s relatively high δ15N values 
may have been from their filter-feeding on zooplank-
ton, a predation similar to other clam species in other 
brackish regions of the estuary (Kimmerer et al. 1994; 
Greene et al. 2011), although this is a weaker expla-
nation since congenerics in other estuaries are mainly 
deposit feeders (Rossi et al. 2004). The mid-level 
consumers were a diverse group with considerable 
variation in δ15N. Generalized feeding of animals 
comprising the middle trophic level of the food web 
likely contributed to the large range of both isotopes, 
particularly for the two amphipod species (Table 1). 

Do Native and Alien Species Play Different Roles 
in the Food Web? 

Results of the Mann–Whitney rank sum test and 
MixSIAR models suggests that some alien species 
may be playing different roles than native species 
in certain times and places in Suisun Marsh by cre-
ating new food-web pathways and by assimilating 
carbon differently. Relatively new alien species such 
as G. daiberi (and possibly S. laticauda; Figure 3) are 
likely a major route through which carbon from alien 
SAV enters the food web to higher-level consum-
ers, as appeared to be the case in this study with the 
shrimps and, to a lesser extent, striped bass, in addi-
tion to these alien invertebrates being eaten directly 
by many native and alien fishes in other regions in 
the estuary (Feyrer et al. 2003; Bryant and Arnold 
2007; Grimaldo et al. 2009). Significant isotopic dif-
ferences between native and alien species in three 
taxonomic groups (e.g., polychaetes, decapod shrimp, 
and amphipods; Table 1) indicate that alien species 
often occupy slightly different niches, thereby elevat-
ing the food web’s complexity. However, the lack of 
isotopic disparity between the two mysids suggests 
that alien species may compete with native species 
for food; this could result in less carbon transfer to 
higher trophic levels since H. longirostris is com-
monly smaller than Neomysis spp. (Kimmerer 2004; 
Bryant and Arnold 2007). 
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Despite the changes wrought by alien species such 
as overbite clam on the Suisun Marsh food web 
(e.g., Feyrer et al. 2003), the function of many alien 
species appears to be similar to that of native spe-
cies. Although native corophiid amphipods were a 
major food of shrimps and small fishes in the estu-
ary before many of the human-caused changes to 
the system (Turner and Kelley 1966; Sitts and Knight 
1979; Wahle 1985), and still continue to be important 
to some extent currently (e.g., Whitley and Bollens 
2013), alien gammaroid amphipods have partially 
taken over that role today (Figure 3; Feyrer et al. 
2003; Grimaldo et al. 2009; O’Rear 2012). The alien 
mysid H. longirostris, in conjunction with G. daiberi, 
has also replaced the once-abundant N. mercedis in 
the diets of many fishes (Feyrer et al. 2003; Bryant 
and Arnold 2007), which is consistent with the 
MixSIAR model denoting the importance of mysids 
to striped bass in this study (Figure 4). Similarly, 
the recently introduced Siberian prawn has quickly 
become an important prey of striped bass (Figure 4; 
Nobriga and Feyrer 2008) like the native California 
bay shrimp was historically (Ganssle 1966). 

In conclusion, the food web of southwestern Suisun 
Marsh during this high-freshwater-inflow autumn 
was comprised of two broad groups of primary pro-
ducers, with most mid-level consumers dependent 
on δ13C-depleted carbon sources: phytoplankton and 
detritus from emergent-aquatic and terrestrial plants. 
Only two mid-level consumers, the alien amphipod 
G. daiberi and the alien isopod S. laticauda, relied 
on phytobenthos and SAV, the δ13C-enriched carbon 
sources. Nevertheless, both carbon sources appeared 
to be assimilated by higher-level consumers, given 
the moderate probabilities for more than one carbon 
source of the fishes and the shrimps, likely because 
these animals are relatively generalist feeders. Several 
alien species occupied different trophic positions than 
related native species, suggesting that species intro-
ductions have increased the complexity of the food 
web. More importantly, most of these alien species 
have become integrated into the food web, resulting 
in a completely novel ecosystem. 

A caveat to this study is that it occurred in a small 
area of Suisun Marsh during an autumn of high 
freshwater inflows; its scope also did not allow 

evaluation of all species of the aquatic community, 
with the fishes especially being under-represented 
(more than 20 fish species are commonly abundant in 
Suisun Marsh in most years; O’Rear and Moyle 2014). 
Consequently, trophic relationships in Suisun Marsh 
under different flow regimes, in other seasons, and 
in other areas could be markedly different from those 
revealed here, although we expect the basic pattern 
of increased food-web complexity from alien species 
is consistent through time and space. Nevertheless, 
this study provides the first use of stable isotopes 
to both (1) elucidate the aquatic food web structure 
of this very important part of the estuary for native 
fishes and (2) provide the first information on several 
species (e.g., the polychaetes) whose trophic ecology 
is virtually unknown. 
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