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Abstract 

Frequency of reward and average reward value are two types 
of reward information we utilize when making decisions 
between two alternative options. Often, these two pieces of 
information coincide with the highest value option, however, 
when a slightly less valuable option is presented more 
frequently, standard reinforcement learning models such as the 
Delta model can make incorrect predictions. This paper 
explores the discrepancy in these predictions by way of 
simulating relevant behavioral tasks with the Delta model, the 
Decay model, and a novel Bayesian model based on the 
Dirichlet distribution.  We then compare model predictions to 
behavioral data from some of the same tasks that were 
simulated. The Delta model provides a poor fit to the data for 
each of the three presented tasks when compared to the Decay 
model and the two Bayesian learning models, because it 
predicts a bias toward options with higher average reward, 
while the Decay and Bayesian models predict a bias toward 
reward frequency. The Decay and Bayesian models show a 
distinct similarity in prediction and fits to the data for most of 
the tasks.  This is because both models predict a bias toward 
reward frequency rather than average reward magnitude, 
despite different computational formalisms. However, we also 
note some interesting discrepancies between the Decay and 
Bayesian models which will show that in some cases, the 
frequency of reward may be more important than the reward 
value. 

Keywords: Frequency Effect; Reinforcement Learning; 
Bayesian Learning 

Introduction 

A wide variety of decisions we make on a day-to-day basis 

are repetitive in the sense that we may choose one option over 

another fairly consistently. Whether these decisions are about 

choosing name-brand over store-brand items, restaurant A or 

B, or taking the freeway versus the side roads to work, it’s 

possible that all of these decisions are computed by common 

algorithmic mechanisms. These decisions could be based on 

the average outcome of each option, for example, taking the 

freeway to work is nearly always faster than taking the side 

roads. However, supposing that a new bypass opens that is 

predicted to greatly reduce travel time, a person may still be 

inclined to choose the freeway since they have had many 

more experiences with the freeway being adequate enough. 

Learning rules in formal models of cognition allow us to 

make sense of human decision-making processes and get a 

glimpse as to why people make the decisions they do in 

situations such as the examples above. In this paper, we 

compare the choice predictions of four learning models: the 

Delta rule, the Decay rule, and two Dirichlet distribution-

based models, on a set of decision-making tasks.  

The Delta rule, in particular, is a widely used learning rule 

across many domains of cognition. This model predicts that 

people will have a preference for options that have the 

greatest expected value, based on representations of the  

average reward for each option, amongst alternative options 

(e.g. Busemeyer & Stout, 2002; Daw et al., 2006; Gluck & 

Bower, 1988; Jacobs, 1988; Rescorla & Wagner, 1972; 

Rumelhart & McClelland, 1986; Sutton & Barto, 1981; 1998; 

Widrow & Hoff, 1960; Williams, 1992).  

In contrast to the Delta rule’s average value 

representations, the Decay rule learns to represent the 

cumulative value of each option based on the frequency with 

which it has been rewarded.  Psychologically, the Decay 

model assumes that that decision outcomes are stored in 

working memory and decay over time. The Decay model 

utilizes a decay parameter which diminishes the expected 

value of each option at each timepoint. Therefore, the option 

with the greatest expected value in this model would be the 

option which is most frequently rewarded; in most cases 

(Erev & Roth, 1998; Yechiam & Busemeyer, 2005; Yechiam 

& Ert, 2007). 

In a departure from these two standard learning models, 

this paper presents a Bayesian model which simply learns 

how many times each option has a positive outcome rather 

than learning expected values. The Dirichlet Probability 

Distribution (DPD) model holds in memory a representation 

of how many times each option has produced a reward, 

regardless of value. Each of these values are used as the 

concentration parameter values in the distribution which 

allocates more probability mass to the options which have 

been rewarded most frequently. Thus, when attempting to 

choose between options, the option more frequently rewarded 

will have a higher probability of being chosen.  

The sole use of the Dirichlet distribution as the base for this 

model may seem atypical considering it is more often used in 

Bayesian data analysis for determining the clustering, or 

categorization, of data (e.g. Griffiths, Sanborn, Canini, & 

Navarro, 2008), or in Dirichlet Process or Mixture models 

(Navarro, Griffiths, Steyvers & Lee, 2006; Gershman & Blei, 

2012; Sims, Neth, Jacobs, & Gray, 2013), or as the prior for 
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another Bayesian model. However, choice outcomes and 

options map nicely onto the Dirichlet distribution 

concentration parameter and categories respectively. Simply, 

the categories are effectively predetermined by the number of 

choices and the probability mass for each category is 

distributed as a function of the number of rewarding 

observations.  

As an attempt to design a Bayesian analog to the Decay 

model, the DPD model was extended to include a decay 

parameter. The Dirichlet Probability Distribution Decay 

(DPD-Decay) model decays the memory representations of 

the total number of rewarded outcomes at each timepoint. 

Critically, this means that additional uncertainty is introduced 

into the probability distribution. As the memory of rewarded 

outcomes for each option tends towards 0, all options would 

have an equiprobable chance of being selected.  

While Bayesian models have been criticized in prior 

research for being simple vote-counting models (Jones & 

Love, 2011), it’s possible that, if each rewarding event is 

considered a vote, the DPD model will predict similar 

behavior as the Decay model.  This could allow the DPD 

model to predict a bias toward frequency of reward rather 

than average reward magnitude, and recent work suggests 

that reward frequency exerts a larger effect on behavior than 

average reward magnitude (Worthy, Otto, Cornwall, Don & 

Davis, 2018). Thus, DPD models with sparse priors may 

represent a cognitive process of predicting the probability of 

a rewarding event, based solely on reward frequency.  Our 

goal in the present work is to verify these predictions and 

examine the degree to which they are consistent with human 

behavior.  

Difference Between Models 

The key difference between the Delta model and the reward 

frequency models (Decay and Dirichlet) is in how each type 

of model utilizes reward information to make predictions 

about future choices. The Delta model uses average reward 

information whereas the Decay and Dirichlet models utilize 

the frequency of rewards to formulate a cumulative 

representation of reward. This is important as, per Estes 

(1976), probability judgements about the choices are heavily 

influenced by the frequency that each option produces a 

reward, rather than the average reward value. As such, it 

would be expected that the when rewarding options are 

shown in disproportionate frequencies, the predictions of the 

Delta model and the Decay and Dirichlet models will diverge. 

It would be expected that tasks which consist of rewards of 

varying frequency and value would show differences in each 

models’ predictions.  

To ascertain the general predictions of each model, and 

determine the differences therein, three tasks which have 

previously examined the effect of reward frequency and 

value were selected to be simulated using each model.  To 

verify the predictions made by each model and task 

combination, each of the models were fit to human data 

collected from each of the three tasks.   

Experimental Tasks 

Iowa Gambling Task. The Iowa Gambling Task (IGT; 

Bechara, Damasio, Damasio, & Anderson, 1994) allows four 

options to be chosen from, each with their own reward 

schedule over the course of 100 total trials. The reward 

schedule for the IGT can be found in Table 1 below. 

Traditionally, the task consists of two options which result in 

a net loss of points, and two options which results in a net 

gain. Options A and B offer participants larger rewards on 

gain trials, but also larger losses on loss trials resulting in an 

overall net loss for both options. In contrast, Options C and 

D give smaller rewards and losses resulting in an overall net 

gain for these two options. Within each 10-choice block for 

each option, the frequency of gains differs between options. 

Options A and C show infrequent gains relative to Options B 

and D which are more consistent. Strictly looking at the net 

positive options, Options C and D should be the favored 

decks. However, as Bechara et al. observed, there is a 

preference for choosing Options A and B which have a higher 

frequency of larger rewards, but results in a net loss of points.  

  
 A B C D 

Trial IGT SGT IGT SGT IGT SGT IGT SGT 

1 100 200 100 100 50 -200 50 -100 

2 100 200 100 100 50 -200 50 -100 

3 -50 200 100 100 0 -200 50 -100 

4 100 200 100 100 50 -200 50 -100 

5 -200 -1050 100 -650 0 1050 50 650 

6 100 200 100 100 50 -200 50 -100 

7 -100 200 100 100 0 -200 50 -100 

8 100 200 100 100 50 -200 50 -100 

9 -150 200 -1250 100 0 -200 50 -100 

10 -250 -1050 100 -650 0 1050 -250 650 

Net -250 -500 -350 -500 250 500 200 500 

Table 1: Reward schedules for both the IGT and SGT by 

Option Letter. This reward schedule is repeated over the total 

100 trials. 

 

Soochow Gambling Task. The Soochow Gambling Task 

(SGT; Chiu et al., 2008) is a task similar in procedure to the 

IGT aside from a change in the reward schedule of each 

option. The reward schedule for each option in the SGT can 

be found in Table 1 below. Similar to the IGT, over the course 

of 100 trials, participants are able to select one of four 

options. Options C and D are still the options with an overall 

net reward gain, and likewise with Options A and B having a 

net reward loss. Both Options A and B offer participants 

consistent gains of 200 or 100 points, respectively, followed 

by a large loss which results in a net loss for both options. 

Inversely, Options C and D show consistent losses followed 

by a large gain resulting in a net gain. The gains and losses 

shown in Options A and B are exactly opposite in terms of 

sign. Where A and B show consistent rewards followed by a 

large loss. Importantly, the best options according to overall 

gain are also the options with the most consistent losses. 
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Similar to the IGT, there is a large preference for Options A 

and B indicating that frequency of rewards, despite losses, is 

a good predictor of choice preference(Byrne & Worthy, 

2016). 

 

Binary Choice Task. This task, as presented by Worthy et 

al. (2018), assesses the effect of reward frequency in a 

different manner. The task consists of four options, A, B, C, 

and D, where each have a respective probability of giving a 

reward of .65, .35, .75, .25. The possible rewards for this task 

were binary in that the reward totals were either 1 or 0. The 

task pairs Options A and B, and Options C and D, together 

and presents them randomly interspersed during training. 

Importantly, there are 100 AB trials and 50 CD trials which 

creates a situation where frequency of reward and average 

reward are in opposition if it is learned that Option A and C 

are the most rewarding within the respective pairs. The task 

then consists of 25 transfer trials for each of the remaining 

pairs of A, B, C, and D and bars further reward feedback. 

Worthy et al. observed that human participants were more 

likely to prefer Option A over C on AC pairing trials 

indicating that despite having a smaller average reward, 

option A is preferred over option C because of more frequent, 

and therefore higher cumulative reward.  

Method  

Model Formalisms 

The Delta and Decay rule used in this paper are identical to 

those described in Worthy et al. (2018). Reward (r) and the 

expected value (EV) is calculated for each j option on each t 

trial. The Delta rule is described in Equation 1 as: 

𝐸𝑉𝑗,𝑡+1 = 𝐸𝑉𝑗,𝑡 + 𝛼 ∙ (𝑟𝑡 − 𝐸𝑉𝑗,𝑡) ∙ 𝐼𝑗                 (1) 

Where Ij is a variable which indicates option choice via a 

value of 1 if j option is chosen on trial t, and 0 otherwise. This 

formulation ensures that only the expected value for the 

chosen option is updated, and the other options, whether seen 

or not, are not updated. Alpha (𝛼) is denoted as a learning rate 

parameter where 𝛼 ∈ (0,1). For the Delta model in particular, 

𝛼 modifies the (𝑟𝑡 − 𝐸𝑉𝑗,𝑡) prediction error by giving greater 

weight to more recent outcomes with higher 𝛼 values, and 

lower 𝛼 values giving less weight to recent outcomes and 

producing little change in the expected value on each trial. 

Similarly, the Decay model tracks changes in expected 

value, but instead of updating the expected value by way of a 

prediction error the raw reward value is used. However, this 

does not mean that expected value consistently increases for 

each chosen option. On each trial, each j option will be 

modified by a decay parameter (A; A ∈ (0,1)) regardless of 

whether the j option was seen or chosen. Critically, this 

means that the expected value for each option will decay over 

time and only increase when a reward for that option is 

received. Thus, the more frequent the reward, the greater the 

expected value. The formula for computing the change in 

expected is described below in Equation 2: 

𝐸𝑉𝑗,𝑡+1 = 𝐸𝑉𝑗,𝑡 ∙ 𝐴 + 𝑟𝑡 ∙ 𝐼𝑗                       (2) 

As mentioned above, the DPD model focuses solely on the 

number of times each j option is rewarded (r) and uses that 

information to update a Dirichlet probability distribution. 

Simply, a Dirichlet distribution takes k, the total number of j 

options, and their respective number of rewarded trials (𝛾𝑗) 

and produces a probability density (xj) for each j option 

where 𝑥𝑗 ∈ (0,1) 𝑎𝑛𝑑 ∑ 𝑥𝑗 = 1𝑘
𝑗=1 . In other words, the 

updating of the distribution occurs in two steps as described 

in Equations 3 and 4: 

𝛾𝑗,𝑡+1 = 𝛾𝑗,𝑡 + 𝑟𝑡 ∙ 𝐼𝑗                            (3) 

𝑓(𝑥1,𝑡+1. . . 𝑥𝑘,𝑡+1|𝛾1,𝑡+1. . . 𝛾𝑘,𝑡+1) =
1

𝐵(𝛾)
∏ 𝑥𝑗,𝑡

𝛾𝑗,𝑡−1𝑘
𝑗=1    (4) 

where 𝐵(𝛾) =
∏ 𝛤(𝛾𝑗)𝑘

𝑗=1

𝛤(∑ 𝛾𝑗
𝑘
𝑗=1 )

 

On each t trial, the reward value for one option is added to 

the chosen option which will distribute slightly more 

probability density to the chosen option. To determine choice 

with this model, a random sample is taken from the Dirichlet 

distribution which results in a simplex, or a vector of 

probabilities which sum to 1. Critically, this implies that as 

one option is rewarded more frequently, the probability value 

sampled from the distribution will tend to be of greater value, 

and thus the option is more likely to be chosen. Taking a 

single sample, rather than integrating over the posterior, was 

a decision made with the assumption that this would better 

reflect human performance as the beliefs surrounding each 

option is uncertain. As more information is learned about an 

individual option, the belief about the positive outcomes of 

that option will become more certain, and thus the probability 

of choosing that outcome will be more consistent. 

An extension of the DPD model presented above, the DPD-

Decay model includes the decay parameter (A) which decays 

the total number of rewarded trials (𝛾𝑗) for each option on 

each trial similar to how the Decay model functions. By 

decaying the rewarded trial values, the model increases the 

amount of uncertainty and allows a greater range of possible 

values to be randomly sampled. This also implies that the 

more frequently an option is seen the more likely it is to 

overcome the consistent decay, such that it is granted more 

probability density over time. Expressly, the decay parameter 

in this equation will weigh the model for or against more 

recent outcomes. In Equation 5, 𝛾𝑗,𝑡+1 is computed for every 

j option and are subsequently inserted into Equation 4. 

𝛾𝑗,𝑡+1 = 𝛾𝑗,𝑡 ∙ 𝐴 + 𝑟𝑡 ∙ 𝐼𝑗                          (5) 

For the Delta and Decay models, the predicted probability 

that any given option j is chosen C on a particular trial t, 

P(Cj,t), is calculated by way of a Softmax choice function 

shown in Equation 6 below: 

𝑃|𝐶𝑗,𝑡| =
𝑒

𝛽∙𝐸𝑉𝑗,𝑡

∑ 𝑒
𝛽∙𝐸𝑉𝑗,𝑡𝑁(𝑗)

1

                            (6) 

Like the Yechiam & Ert (2007) Softmax application used 

in Worthy et al. (2018), 𝛽 = 3𝑐 − 1; 𝑐 ∈ (0,5),  where c is an 

inverse temperature parameter which dictates how often the 

option with the higher expected value is chosen. When c 

approaches 0, choices are more random. Inversely, choices 

are weighted more heavily towards the options with the 
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highest expected value as c approaches 1. Simply, this choice 

function determines the probability of choice by computing 

the proportion of the scaled chosen option divided by the sum 

of the scaled choice and alternative choices.  

Simulation and Behavioral Methods 

For each task, 10000 simulated participant datasets were 

created with randomized model parameters of 𝛼, A, and c, for 

applicable models, for each participant. Each of these 

parameters were drawn from a uniform distribution: U(0,1) 

for learning and decay rates, and U(0,5) for the inverse 

temperature parameter. These parameters were kept 

consistent across models within each simulation, but each 

model ran independently in regard to the choices made and 

corresponding output. The output for each of these 

simulations was the probability of choosing each outcome, 

the expected value of each option, and the choices made on 

each trial.  

 For each task, human behavioral data was collected from 

an undergraduate population with sample sizes of ~50 for 

each task. Each participant completed the experiment in a 

Psychtoolbox 2.54 environment on a Windows computer 

running Matlab. The general procedures used in the 

simulations were identical to the computerized version of the 

tasks that participants completed, however graphical and 

counterbalancing considerations were needed for real 

participants that are detailed below for each experiment. 

  In both the IGT and SGT, the options were displayed 

onscreen as a deck of cards, each with their own random 

color. The onscreen location of each individual deck was 

displayed from left to right in a random arrangement of 

Options A-D for each participant. Upon selecting a deck, the 

participant would be shown the card being overturned and the 

amount of reward. Additionally, participants were given a set 

amount of points in an onscreen bank that would increase or 

decrease depending on the outcome.  

For the Binary Choice Task, each of the four options were 

randomly assigned a fractal image randomly drawn from a 

pool of 12 images. Like the IGT and SGT, the order of the 4 

selected images were randomly arranged on screen from left 

to right. However, Options AB and CD were always together 

as a pair, but the order of each pair varied for each participant. 

As an example, some potential orderings of the option could 

include: ABCD, CDAB, BACD, etc. Each selection of an 

option showed the option turning over to reveal the outcome 

of that trial. Importantly, and consistent with the simulations, 

reward feedback only occurred during the initial 150-trial 

training phase, but the transfer phase, participants were only 

shown a gray outline around the option they chose instead of 

the point value they would have seen on the training trials.  

Results 

Simulation Output 

For the IGT and SGT, the simulation metric that will be 

reported is the overall performance on the task as computed 

by subtracting the sum of the net loss options from the sum 

of the net gain options: (A+B)-(C+D). For both the IGT and 

SGT, the performance of each model, and the actual 

participant data for comparison, is plotted over all 100 trials 

in Figures 1 and 2. In the IGT the Delta model was more 

likely to choose the net gain options over the more frequently 

rewarding net loss options. The Decay model also showed a 

preference for the net gain options overall. Both the DPD and 

DPD-Decay models showed no preference for either the net 

gain or loss options, but this behavior also seems to be 

reflected, albeit slightly, by the actual participant data which 

rapidly varies in preference for either the net gain or loss 

options over time.  

 
Figure 1: Average performance on the IGT by model and 

actual participant data. 

 

 In the SGT, the Delta model again showed a preference for 

the net gain options, but the Decay model now shows 

behavior that greatly reflects the behavior shown by actual 

participants. Both the human and simulated Decay model 

datasets showed an initial preference for the net loss options, 

but over time began to tend towards the net gain options 

which is consistent with prior research as previously 

discussed. The DPD and DPD-Decay model again showed 

similar results, but in the SGT, they show a large preference 

for the more frequently rewarding net loss options.  

 
Figure 2: Average performance on the SGT by model and 

actual participant data. 

 

For the Binary Choice Task, as shown in Figure 3A-B, each 

model was able to learn that there is a more rewarding option 

in each option pair. However, the rate at which the most 

rewarding, or best, option was identified and overall 
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preference for the best option differed between models. The 

Delta model showed the greatest preference for the best 

options out of the four models, followed by the DPD, Decay, 

and DPD-Decay. When solely learning which option has the 

largest average reward, it is no surprise that the Delta model 

outperforms the other three models. However, when looking 

at the choice predictions for the remaining option pairs, as 

shown in Figure 3C, a difference between the models emerge. 

The Delta model predicts more C choices, whereas the 

Decay, DPD, and DPD-Decay models all predict more A 

choices. The remaining option pairs showed relatively similar 

predictions since there was not as big of a discrepancy 

between an options’ expected value and number of 

observations. The large peaks in the DPD model are 

indicative of the frequency of outcome observations for each 

pair. The more outcomes observed, the more likely the model 

will choose the same option.  

 

 
Figure 3: A and B show the probability of choosing the best 

option, either Option A or C respectively, over the course of 

150 trials. C shows the predicted probability of choosing the 

best options if the simulated participant were to see the 

remaining pairings of options. 

Behavioral Fits and Comparisons 

Participants were independently recruited for one of the three 

tasks from an undergraduate sample. Each participant was 

reimbursed for their time with partial completion of course 

credit. For each task we recruited comparable sample sizes: 

52 participants for the IGT; 58 participants for the SGT; 50 

participants for the Binary Choice Task.  

Each of the models were directly fit to the behavioral data 

by maximizing the likelihood of each model via the ‘optim’ 

function with a ‘L-BFGS-B’ method in R. The decay and 

inverse temperature parameters were included as free 

parameters for the respective models. The Delta and Decay 

models utilized two free parameters while the DPD-Decay 

model used only the decay parameter. No free parameters 

were used in the DPD model for the IGT and SGT. When 

fitting the Binary Choice Task data alone however, the DPD 

and DPD-Decay model included an inverse temperature 

parameter. In this task, for both models, the probability 

simplex was drawn from the Dirichlet distribution, as 

previously discussed, but the values relevant to the two 

observed options were used in the softmax function to 

compute a choice probability for each option which summed 

to 1.  

 A Bayesian Information Criterion (BIC; Schwarz, 1978) 

value was computed for each individual participant within 

each model and used to calculate the average BIC and 

subsequent BIC differences between each model. BIC was 

calculated by calculating the deviance of the model and 

adding additional error based on the number of free 

parameters k and number of trials t: −2𝑙𝑛(𝐿) + (𝑘 ∙ 𝑙𝑛(𝑡)).  
Lower BIC values indicate a better fit to the behavioral data. 

As per Wagenmakers (2007), the BIC difference between the 

models can additionally be used to calculate a Bayes Factor 

which would show evidence for one model over another: 

BF10,Model1=exp((BICmodel2-BICmodel1)/2). 

Table 2 below details the BIC values of each model for 

each task along with the best fitting parameters for each 

model. For the IGT and Binary Choice Task, the Decay 

model shows an advantage over the other models. For the 

IGT, the next best fitting model was the DPD with a BIC of 

268.9 which is shown to be significantly different from the 

Decay model with a Bayes Factor (BF) of 3.33. BFs with 

values greater than 3, or less than 1/3, are believed to have 

adequate evidence to reject the null hypothesis that the 

models are equal. The Decay model in the SGT was the next 

best fitting model behind the DPD-Decay model with BIC 

values of 269.8 and 267.8 respectively. This difference, with 

a BF of 2.7416, shows that both models are similar in their 

fits of the SGT data. In the Binary Choice Task, the Decay 

model BIC (279.7) is closely followed by both the DPD and 

DPD-Decay models; 282.8 and 280.5 respectively. The 

difference between the Decay and DPD model is significant 

with a BF of 5.1984, but there is not enough evidence to say 

that the Decay and DPD-Decay models are different, BF = 

1.5115.  

 Table 2: Average Model Values 

  Best a or A Best c BIC 

IGT Delta .1009 .3756 278.0677 

 Decay .6857 .00538 266.4658 

 DPD N/A N/A 268.8740 

 DPD-D .0218 N/A 273.8372 

SGT Delta .4613 .3564 274.4863 

 Decay .5268 .0019 269.7714 

 DPD N/A N/A 282.9299 

 DPD-D .1454 N/A 267.7543 

Binary Delta 0.3821 1.5120 296.2498 

 Decay 0.1765 0.4978 279.7178 

 DPD N/A 1.3088 282.8315 

 DPD-D 0.8770 1.5673 280.5440 
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It was also of interest to determine the proportion of 

participants whose data were best fit by each model. To do 

this, each non-redundant combination of models for each task 

was examined to figure how many participants’ data were 

best fit by each model. Table 3 presents the proportion value 

for each model combination by task. The first model listed in 

the pair is the reference model. Values shown in bold 

represent that the reference model was the best fitting model 

of the pair.  

As expected from the data in Table 2 for the IGT, the Decay 

and DPD model best fit the largest proportions of 

participants, and the DPD model showed the best fit overall. 

For the SGT, despite showing a large average BIC value, the 

Delta model showed a better fit slightly more participants 

than the Decay model, but not the DPD-Decay model. 

Additionally, the Decay model, rather than the DPD-Decay 

model, was the best fitting model for most participants. In the 

Binary Choice Task, the DPD models better fit more 

participants than the Decay model which showed the better 

fit on average. The DPD model showed the overall highest 

proportion best fit on this task as well.  

 

Table 3: Proportion Best Fit 

By Model IGT SGT Binary 

Delta<Decay .44 .54 .38 

Delta<DPD .06 .54 .30 

Delta<DPD-D .44 .48 .38 

Decay<DPD .33 .66 .40 

Decay<DPD-D .71 .62 .44 

DPD<DPD-D .83 .47 .70 

Overall IGT SGT Binary 

Delta .05 .24 .26 

Decay .24 .34 .16 

DPD .53 .22 .44 

DPD-D .07 .19 .14 

Discussion 

The simulations and experiment presented in this paper 

examined the influence of reward frequency and probability 

on choices made in a decision-making task. Four models 

were compared that made both convergent and divergent 

predictions about which option was more valuable in three 

tasks which examine the effect of reward frequency. As 

similarly described by Worthy et al. (2018), there were 

divergent simulation predictions between the Delta rule and 

the reward frequency models where the Delta rule more often 

chose the options with the higher value rewards, whereas the 

reward frequency models, the Decay, DPD, and DPD-Decay, 

tended to choose the options which resulted in the most 

frequent rewards. The data from the experimental tasks 

showed that human participants more often chose the more 

frequent options in most cases. This behavior is in support of 

the predictions of all three of the reward frequency models. 

This is shown in which models where the best fitting model 

on average. For all three tasks, the best fitting model was a 

model which attended more towards the frequency of reward 

rather than the average value of reward. However, there also 

seems to be some individual differences in people who attend 

more towards average reward value instead of the frequency 

of reward. This can best be seen when looking at the SGT and 

Binary Choice Task. For both of these tasks, there was a 

sizable subset of participants who were best fit by the Delta 

model than the other three models.  

There also exists some important differences in the reward 

frequency models despite their similarities. One of which is 

between the DPD and DPD-Decay models and the Decay 

model. When looking at Figure 1, the performance values for 

the DPD and DPD-Decay model are fairly constant about 0. 

This is most likely due to how the Dirichlet models compute 

reward. These models do not consider reward value, only the 

observation of a reward. Looking back to the reward 

schedules for the IGT, one net gain and one net loss option 

have fairly frequent rewards. With how the performance 

calculation considers the number of choices, and how the 

Dirichlet models determine choice by the number of observed 

rewards, you can begin to see how the number of net gain and 

loss choices would be about equal, and thus result in a 

performance of ~0. This can also be seen in the simulation of 

the SGT as well in Figure 2. The two Dirichlet models show 

an overwhelming preference for the net loss options. Again, 

looking at the reward schedule, the net loss options are the 

only options that have a frequent occurrence of reward as the 

net gain decks only give a reward every 5 successive picks. 

These two Dirichlet models may aid in making sense of the 

“Deck B” phenomenon in the SGT where people tend to 

choose the net loss options since the reward most frequently. 

However, the average fit for the DPD model was quite large. 

Which suggests that pure frequency of reward is not entirely 

predictive of choice on the SGT. With the DPD-Decay model 

showing the best average fit, this suggest that the frequency 

of reward is predictive, but that the overall representation of 

the total number of rewarded outcomes decays over time. 

For the DPD model in particular, another difference be 

seen in Figure3C with the large peaks in the option pair 

predictions relative to the other models. Like detailed for the 

IGT and SGT, these peaks can be explained by looking at the 

rate of reward and frequency of observing the option pair. For 

these option pairs the best option is the one that is either the 

most frequently seen and/or rewarded. Thus, the model 

would be more likely to choose these options. 

However, this also ties in to the major conclusion of this 

paper, that despite not utilizing any reward information, 

these Dirichlet models are able to fit human behavioral data 

on three tasks relatively well solely using a count of 

rewarding outcomes. Generally, choice selection may 

depend on reward value when all other factors are equal, but 

if rate of reward changes or if there is knowledge of number 

of previously rewarding outcomes, frequency of reward may 

take precedence over reward value. Though, like shown by 

the proportion of best fitting models, there may be a subset 

of people who focus on the overall reward value regardless 

of the frequency of the outcomes.  
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