
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Leveraging Mobility to Enhance IoT Applications

Permalink

https://escholarship.org/uc/item/3w97t90v

Author

Liu, Fangqi

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3w97t90v
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Leveraging Mobility to Enhance IoT Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Fangqi Liu

Dissertation Committee:
Professor Nalini Venkatasubramanian, Chair

Professor Marco Levorato
Professor Sang-Woo Jun

2023

© 2023 Fangqi Liu

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 IoT Applications and Techniques: An Overview 1
1.2 Challenges and Concerns in IoT Deployment 5
1.3 Using Mobility to Enhance IoT Applications 8
1.4 Thesis Contributions and Organization . 9

2 Related Work 13
2.1 Characteristics of IoT Applications . 13
2.2 Mobility of Humans and Animals . 15

2.2.1 Enhancing IoT Sensing with Human and Animal Mobility 16
2.2.2 Enhanced Networking with Human or Animal Mobility 18

2.3 Mobility of Ground Vehicles . 19
2.3.1 Mobility-Enhanced IoT Sensing with Ground Vehicles 19
2.3.2 Ground Vehicles and IoT Networking 20

2.4 Mobility of Aerial Vehicles (UAV/Drones) 21
2.4.1 Mobility-Enhanced IoT Sensing with UAV and Drones 22
2.4.2 Aerial Vehicles in Data Transmission 23

2.5 Guiding Mobile Entities: Insights from Various Research Fields 24

3 Approach Overview 27
3.1 Time-Sensitive Community IoT Applications 27
3.2 Opportunistic vs. Planned Mobility . 29
3.3 Leveraging Planned Mobility to Enhance IoT 31

3.3.1 Scenario 1: Mobility for Cost-Effective Network Coverage 33
3.3.2 Scenario 2: Utilizing Mobility to Enhance Sensing Coverage 34

ii

3.3.3 Scenario 3: Mobility for Enhanced Networking and Sensing 36

4 Cost-Effective Data Transmission with Public Transportation Fleets 39
4.1 Chapter Overview . 40
4.2 Sample Scenario and Problem Statements 42
4.3 Problem Formulation . 45

4.3.1 Symbols and Notations . 45
4.3.2 Formulation . 49

4.4 Solution Approach and Algorithms . 50
4.4.1 Upload Point Placement Algorithms 51
4.4.2 Upload Path Planning Algorithms . 54

4.5 Experimental Evaluation of our Approach 56
4.5.1 Scenarios . 57
4.5.2 Comparison Results . 58

4.6 Summary and Discussion . 64

5 DragonFly: Drone-Assisted High-Rise Monitoring for Fire Safety 66
5.1 Chapter Overview . 67
5.2 Tackling the High-Rise Fire Scene . 70
5.3 The DragonFly Framework . 72
5.4 Multi-Drone Coordination for High-Rise Fires 75

5.4.1 Monitoring Tasks . 75
5.4.2 Candidate Waypoints . 76
5.4.3 Accuracy of Monitoring Tasks . 77
5.4.4 Formulation of the Multi-Drone Waypoint Scheduling Problem (MWSP) 79

5.5 Proposed Algorithms for MWSP . 83
5.5.1 Allocation of Monitoring Tasks: AMT 84
5.5.2 Dynamic Waypoint Scheduling: DWS 88

5.6 Evaluations . 90
5.6.1 Simulator Implementations and Setup 90
5.6.2 Simulation Results . 93

5.7 DragonFly Implementation . 101
5.7.1 System Architecture . 102
5.7.2 Prototype Implementation and Experiments 103

5.8 Summary and Discussion . 106

6 DOME: Drone-assisted Monitoring of Emergent Events For Wildland Fire
Resilience 109
6.1 Chapter Overview . 110
6.2 Problem Definition and Approach . 112
6.3 Physics-inspired Task Generator . 118
6.4 Multi-drone Flight Planning . 123

6.4.1 Symbols and Notations . 123
6.4.2 Spatial-temporal Factors for Task Execution 127
6.4.3 Formulating MFP . 128

iii

6.5 Proposed Algorithms for MFP . 129
6.5.1 Step 1: Allocating Tasks to Drones 129
6.5.2 Step 2: Single Drone Flight Planning 133

6.6 Experimental Evaluation . 138
6.6.1 Simulation setup . 138
6.6.2 Experimental Results . 141

6.7 System Implementation . 146
6.8 Summary and Discussion . 150

7 Conclusion 151
7.1 Summary of Thesis Contributions . 151
7.2 Key Observations and Insights . 154
7.3 Future Work . 158

Bibliography 163

iv

LIST OF FIGURES

Page

3.1 Categories of Mobility . 31
3.2 IoT System Architecture with Selected Components 32
3.3 Challenges and Solutions for IoT Applications in Three Explored Scenarios . 38

4.1 Sensor data collection with scheduled fleets. 42
4.2 Our approach with two collaborating algorithms. 50
4.3 Orange country bus routes and stops . 55
4.4 Comparisons the performance between the FC and DM algorithms with GA

and UPS algorithms under different cost limitations (a) data delivery ratio,
(b) late delivery ratio, and (c) data transfer time. 59

4.5 Performance of the four upload point placement algorithms under different
cost limitations: (a) penalty value, (b) data transfer time, (c) late delivery
ratio, and (d) data delivery ratio. 61

4.6 Installation cost and running time of the four upload point placement algo-
rithms under different cost limitations: (a) total cost, (b) number of UPs and
(c) running time. 62

4.7 The performance gains of UPS comparing with the other algorithms on: (a)
penalty value, (b) data transfer time, (c) late delivery ratio, and (d) data
delivery ratio under different cost limitations in the scenario with 40 RPs. . . 63

5.1 Overview of DragonFly framework. 73
5.2 Sample IAk(t) with ηk = 0.2 and gk = 0. 79
5.3 Workflow of our proposed algorithms. 84
5.4 The building used in our simulations. 91
5.5 Performance of DragonFly throughout a sample simulation on: (a) accumula-

tive missing events, (b) minimum weighted AUC, (c) weighted accuracy, and
(d) weighted reliability. 94

5.6 Performance of DragonFly across 25 runs on: (a) accumulative missing events,
(b) minimum weighted AUC, (c) weighted accuracy, and (d) weighted reliability. 95

5.7 Impact of task allocation strategy on: (a) accumulative missing events, (b)
minimum weighted AUC, (c) weighted accuracy, and (d) weighted reliability. 97

5.8 Performance of DragonFly (integrated AMT-DWSF algorithm) under: (a),
(b) 177 tasks with 3 to 9 drones, (c), (d) 7 drones with 96 to 314 tasks. (a),
(c) give normalized accumulated missing events, and (b), (d) give normalized
minimum weighted AUC. 98

v

5.9 Impact of task allocation strategy under diverse problem sizes: (a), (b) 177
tasks with 3 to 9 drones, (c), (d) 7 drones with 96 to 324 tasks.(a), (c) give
normalized accumulated missing events, and (b), (c) give normalized minimum
weighted AUC. 100

5.10 Total running time of the LU and scheduling algorithms under different num-
bers of (a) drones and (b) tasks. Sample results from simulations with (a) 177
tasks and (b) 7 drones. 101

5.11 System Structure of DragonFly System. 102
5.12 Mock-up Building Facade with Fires . 104
5.13 Dashboard of DragonFly System . 105
5.14 Real implementation with one fire source: (a) Expected and real fly time (b)

Real trajectory with different algorithm . 106
5.15 Performance of our DWSF Algorithm in Real Implementation on (a) Weighted

Accuracy, (b) Weighted Reliability, and (c) Minimum Weighted AUC. 107

6.1 Our Previous Rx Burns. 113
6.2 Overview of DOME Framework. 114
6.3 Workflow of Task Generator. 119
6.4 Task Generation Rules . 121
6.5 Rules for event-driven task update . 122
6.6 Illustration of three burn sites and fire ignition strategy. 139
6.7 Subtask number in burn sites 1○ (a), 2○ (b) under diverse wind speeds 142
6.8 Performance of our UTA-DFP algorithm at Burn sites 2○, (a) gives total

reward and (b) gives total missing subtasks. 142
6.9 Performance of our UTA-DFP at Burn sites 3○. (a) gives the total reward,

and (b) the total missing subtasks. 143
6.10 Performance of (a), (b) task allocation and (c), (d) flight planning algorithms.

(a), (c) give the total reward, (b), (d) give the missing subtasks. 144
6.11 Performance of (a), (b) UTA and (c), (d) FDP algorithms. (a), (c) give the

total reward, (b), (d) give the missing subtasks. 145
6.12 Running time of UTA-DFP at burn sites 1○ (a) and 2○ (b) 146
6.13 System Architecture of DOME . 147
6.14 Sensors, Testbed and Dashboard in DOME 148
6.15 Drone-based Mobile Sensing in DOME System 148

vi

LIST OF TABLES

Page

4.1 Considered Algorithms . 57
4.2 Simulation Parameters . 58

5.1 Initial Perception . 74
5.2 Perception at time 10:05 . 74
5.3 Task Table . 74
5.4 Considered Algorithmic Combinations . 91
5.5 Observation Accuracy . 91
5.6 Task Types . 92
5.7 Simulation Parameters . 92

6.1 Data quality score under diverse PPMs . 125
6.2 Simulation Parameters . 140

vii

ACKNOWLEDGMENTS

As I stand on the threshold of completing my Ph.D. journey, I am deeply moved to express my
appreciation to those remarkable individuals who have been pivotal in shaping my academic
path.

First and foremost, I am deeply thankful to my advisor, Professor Nalini Venkatasubrama-
nian. Her unwavering support, guidance, and encouragement have been the cornerstone of
my Ph.D. experience. Professor Venkatasubramanian’s mentorship has not only shaped my
research but has also helped me persist in the pursuit of knowledge. I am truly fortunate to
have had the opportunity to learn from her.

I am indebted to Professor Cheng-Hsin Hsu at National Tsing Hua University (NTHU). His
guidance and friendship have been invaluable in shaping my research path and enriching my
understanding of the field.

To my coauthors on the referred publications and the peers with whom I closely collaborated
during the early stage of my Ph.D. journey – Qiuxi Zhu, Professor Md Yusuf Sarwar Uddin,
Qing Han, Guoxi Wang, Hang Nguyen, Nailah Saleh Alhassoun, and Praveen Venkateswaran
– your collective efforts and shared knowledge have profoundly enriched my research expe-
rience. Your friendship and companionship were indispensable during my days at UCI and
have been integral to my personal growth. I also would like to thank my current labmates –
Tung-Chun Chang, Andrew Chio, Rahul Atul Bhope, Ryan Hildebrant, Rummana Rahman,
Modeste Mefenya Kenne, and Yuqiao Li. Our friendship and the lasting memories we’ve
created are truly remarkable to me.

I extend my gratitude to all the professors I have had the privilege of knowing at UCI. Pro-
fessor Sharad Mehrotra, thank you for your continuous guidance and valuable suggestions.
I also appreciate the enjoyable moments of hosting parties with Nalini. Professor Marco
Levorato, thank you for your guidance in the realm of wireless communication and drone
experiments. Professor Tirtha Banerjee, I am thankful for your guidance in conducting
experiments in the forest, which was a unique experience. I extend my appreciation to my
committee members, Professor Amelia Regan and Professor Sang-Woo Jun, for your valuable
suggestions and guidance throughout my Ph.D. journey. During my internship at SRI, I am
grateful to my mentors Minyoung Kim and Carolyn Talcott for their kindness and guidance.
I also want to thank everyone in the Information Systems Group (ISG) at the University of
California, Irvine, for their significant contributions and valuable feedback.

To my friends I’ve met since coming to UCI – Yiming Lin, Zhongyue Luan, Xinwen Zhang,
Yuan Tao, Qiushi Bai, Koti Allu, Janine Ann Baijnath-Rodino, Shu Li, Joy Fan, and all
those with whom I collaborated with and met in my previous life – I deeply appreciate your
presence in my life and the enriching experiences we’ve shared.

To my family, your continuous support has been the bedrock of my journey to this point.

My Ph.D. research is supported in part by the National Institute of Standards and Tech-

viii

nology (NIST) under award No. 70NANB17H285, the University of California Office of
the President (UCOP) under award No. LFR-20-653572, the United States Air Force and
DARPA under awards No. FA8750-16-2-0021 and No. FA8750-16-C-0011, the United States
Navy and DARPA under awards No. N66001-15-C-4065, No. N66001-15-C-4067 and No.
N66001-15-C-4070, the National Science Foundation (NSF) under award No. 2008993, and
the Donald Bren School of Information and Computer Sciences (ICS) at the University of
California, Irvine (UCI).

ix

VITA

Fangqi Liu

EDUCATION

Doctor of Philosophy in Networked Systems 2023
University of California, Irvine Irvine, California

Master of Software Engineering 2017
Jilin University Jilin, China

Bachelor of Software Engineering 2014
Jilin University Jilin, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2019–2022
University of California, Irvine Irvine, California

Graduate Reader 2017–2019
University of California, Irvine Irvine, California

WORK EXPERIENCE

Research Intern Summer 2021
SRI International, Computer Science Lab Menlo Park, California

AWARDS

CSP Rising Star May 2023
CPS Rising Stars 2023 Workshop Charlottesville, VA

x

REFEREED CONFERENCE PUBLICATIONS

Cost-Effective Sensor Data Collection from Internet-of-
Things Zones Using Existing Transportation Fleets

June 2019

IEEE International Conference on Smart Computing (SMARTCOMP)

DragonFly: Drone-Assisted High-Rise Monitoring for
Fire Safety

July 2021

International Symposium on Reliable Distributed Systems (SRDS)

WinSet: The First Multi-Modal Window Dataset for
Heterogeneous Window States

Nov. 2021

ACM International Conference on Systems for Energy-Efficient Built Environments
(BuildSys) (Short Paper)

Enhancing Situational Awareness with Adaptive Fire-
fighting Drones: Leveraging Diverse Media Types and
Classifiers

Oct. 2022

ACM Multimedia Systems Conference (MMSys)

DOME: Drone-assisted Monitoring of Emergent Events
for Wildland Fire Resili-ence

May 2023

14th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS)

Demo Abstract: DOME – IoT-Based Monitoring Emer-
gent Events for Wildland Fire Resilience

May 2023

ACM/IEEE International Conference on Internet of Things Design and Implementation
(IoTDI) (Demo)

REFEREED JOURNAL PUBLICATIONS

Distance-Driven Consensus Quantification August 2017
IEEE Transactions on Intelligent Transportation Systems

ADMB: Application-driven multi-hop broadcast for ve-
hicular networks

Dec. 2017

International Journal of Communication System

xi

ABSTRACT OF THE DISSERTATION

Leveraging Mobility to Enhance IoT Applications

By

Fangqi Liu

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2023

Professor Nalini Venkatasubramanian, Chair

The Internet of Things (IoT) has revolutionized the world, finding widespread utilization

across diverse fields, industries, healthcare, and city management. Despite its success, the

exponential growth of the IoT market has presented challenges for traditional IoT systems

that demand attention. In urban scenarios, the significant influx of data from media-rich

sensors poses a strain on local networks with limited resources, impacting their efficiency and

effectiveness. Additionally, the impracticality and high cost of deploying sensors and network

infrastructures in remote areas creates obstacles to IoT deployment. This thesis aims to

explore the utilization of mobile entities as a solution to address these challenges. Specifically,

we emphasize the usage of planned entities with predictable or controllable movements to

enhance the sensing and networking capabilities of IoT systems, particularly in time-sensitive

community IoT applications. Time-sensitive scenarios demand data collection and analysis

within specific time frames to preserve data value. To comprehensively investigate the usage

of mobility, this thesis explores strategies for integrating mobile entities in diverse scenarios

across urban and remote areas, each presenting unique time-sensitivity requirements and

design challenges.

In the first scenario, we investigate the utilization of public transit fleets in network-constrained

smart city applications. Our proposal involves using these fleets and network infrastructures

xii

along their routes to establish a cost-effective backbone network for long-range sensor data

transmission, effectively addressing the limitations of local network resources. To achieve

this, we develop approaches for optimal deployment of network infrastructure along with

planning data collection from public transit fleets, considering the heterogeneity of delay tol-

erance and priority of sensor data, as well as the trade-off between data delivery delay/loss

and network infrastructure installation cost. This thesis evaluates the proposed approaches

using real-world bus networks in Orange County, CA and compares them with several other

methods.

As a second use case, we investigate the use of drones to enhance sensing coverage in mission-

critical IoT applications, specifically high-rise fire monitoring, where in-situ sensors are un-

available due to extreme conditions. We design and implement a drone-based IoT platform

for real-time data collection in fire settings. The platform provides a dashboard for fire-

fighters to visualize monitoring areas, user interfaces for commanding tasks to drones, and

automatic flight planning for multiple drones to fulfill specified monitoring tasks. We pro-

pose multiple-drone flight planning approaches, optimizing data collection processes while

considering the heterogeneity of monitoring tasks in terms of periods and priorities, as well

as the trade-off between sensing coverage and data quality. The proposed algorithms are

evaluated in a simulated high-rise fire scenario with real building structures at UCI. Addi-

tionally, we assess the applicability of the proposed system by implementing it in a lab-based

testbed with mockup high-rise fires.

In the third scenario, we focus on utilizing drones to assist mobile sensing and sensor data

transmission of IoT-based monitoring systems in remote areas with limited in-situ sensors

and poor network conditions, particularly for wildland fire monitoring. We automate the

drone-based monitoring system by enabling real-time perception of the physical world based

on sensor data, automatic task generation for mobile entities, and dynamic planning and

control of their movements to continuously monitor dynamic environments. We propose

xiii

a rule-based task generation procedure for spatial-temporal monitoring requirements based

on fire status and prediction. Additionally, we investigate approaches for multiple-drone

flight planning, considering data collection timeliness, the trade-off between sensing coverage

and data quality, and network disconnection during flights. The proposed flight planning

algorithms are evaluated using simulated wildland fire burns at the Blodgett Forest Research

Station, and the system’s applicability is assessed through lab-based testbed implementation.

Overall, this thesis offers valuable insights into using mobile entities to address challenges

in traditional IoT systems and enhance time-sensitive IoT applications. The exploration of

different scenarios, from leveraging public transit fleets as a cost-effective backbone network

to employing drones for high-rise fire monitoring and remote area sensing, demonstrates the

versatility and practicality of mobile solutions in advancing IoT technologies.

xiv

Chapter 1

Introduction

In today’s interconnected world, the Internet of Things (IoT) has emerged as a technological

phenomenon that has captured significant attention from researchers and businesses, leading

to a wave of innovation across industries. The rapid advancements in IoT have transformed

how we interact with our environment and have opened up new possibilities by redefining

the boundaries of connectivity and profoundly reshaping our daily lives. In this section,

we provide an overview of community-based IoT applications, which are the focus of this

thesis. We discuss their primary techniques and examine the challenges they encounter.

Building upon this foundation, the main contributions of this thesis involve exploring the

role of mobility in enhancing IoT applications, with a particular focus on data transmission

and mobile sensing aspects. Through the lens of three driving use cases, we delve into the

potential of leveraging mobility to optimize IoT functionality and address key challenges in

IoT deployment and implementations.

1.1 IoT Applications and Techniques: An Overview

1

The Internet of Things (IoT) can be described as a network of physical devices (e.g., ve-

hicle, street lights, and buildings) embedded with sensors, software, and other technologies

that enable data collection and exchange over a variety of communication channels [130].

Since its initial introduction in 1999, Internet of Things (IoT) [109] has transformed the

process of data collection by enabling automated data gathering through interconnected

devices. Today, IoT applications have experienced widespread adoption across various sec-

tors such as industry, healthcare, and community services, establishing their popularity and

ubiquity [178]. This thesis centers on community-based IoT applications [186], which re-

fer to interconnected smart technologies designed for specific neighborhood and community

needs. These applications address local challenges and offer customized services to residents,

applicable across diverse sectors from urban to remote areas.

In urban scenarios, IoT-driven smart cities [236] enhance the quality of life through efficient

monitoring of environmental factors like air quality, noise level, traffic, waste, and energy

consumption, which are facilitated by automated control systems. The influence of IoT ex-

tends to smart homes [49], where connected devices create intelligent and energy-efficient

living spaces. Home automation has grown to allow remote control of lighting, heating,

security systems, and entertainment. In the healthcare domain [76], IoT enables connected

medical devices, wearable sensors, and remote monitoring systems, which revolutionize pa-

tient care with continuous health tracking, personalized plans, and preventive care. In rural

areas, IoT enables applications such as smart agriculture [144] which helps farmers optimize

irrigation, fertilizer application, and harvests for increased productivity. Additionally, IoT

supports wildlife and vegetation monitoring [95], which contributes to conservation efforts.

The integration of IoT in smart grids has modernized energy management and helped foster

sustainability and development in remote communities. In disaster response [56], the IoT has

enabled surveillance capabilities to aid emergency responders in making informed decisions

and deploying resources efficiently.

2

The rapid development of IoT over the past 20 years can be attributed to several key tech-

niques, which have also served as the primary inspiration for this thesis. Next, we will outline

the fundamental techniques driving the evolution of IoT.

• Miniaturization of hardware. The proliferation of the IoT has been greatly facili-

tated by the development and advancement of compact and energy-efficient hardware

platforms such as Arduino [86] and Raspberry Pi [215] since 2013. The trend to-

wards smaller and cheaper compute components, sensors, and microcontrollers have

contributed to the feasibility of embedding these technologies into diverse objects and

devices. This miniaturization has resulted in the widespread adoption of IoT devices

across various domains, from small wearable devices to industrial sensors.

• Improvement of connectivity. Advancements in communication technologies have

also been instrumental in shaping the evolution of the IoT. The earlier stages of IoT

relied on Radio Frequency Identification (RFID) technology for applications like au-

tomatic identification of goods and location tracking [96]. As the number of devices

grew and the IoT became increasingly pervasive in society, concerns about exhausting

the IPv4 address space were raised. The adoption of IPv6 by major Internet service

providers in 2012 marked a significant milestone and ensured the availability of a sub-

stantial IP address space to enable the connection of numerous IoT devices, making

the future of IoT a reality [190]. Following this, the advancement of wireless networks,

low-power protocols (e.g., blacktooth, Zigbee), and cellular connectivity (e.g., 4G, 5G)

have provided reliable and scalable connectivity options for seamless data exchange

between devices and systems [128]. Furthermore, the exploration of vehicular ad-hoc

networks and delay-tolerant networks [9] has presented new opportunities for extend-

ing the range of IoT communication to support flexible and adaptable connectivity

among mobile devices. This expands the reach of IoT to new applications in diverse

environments.

3

• Cloud computing and big data analysis. Cloud computing has become a natural

solution to handle the growing volume of IoT data by providing a scalable and efficient

way for processing, storage and analysis [84]. By integrating cloud computing with

IoT, organizations can offload compute and storage requirements from IoT devices to

the cloud, which helps relieve the burden on the devices themselves. Additionally,

cloud platforms offer scalability, allowing businesses to expand their IoT deployments

effectively. Simultaneously, big data analysis has also emerged as a powerful tool to

process the ever-increasing volume, velocity, and variety of data generated by IoT de-

vices. Various techniques support big data analysis, including distributed processing

frameworks like Apache Hadoop [15] and Apache Spark [235]. These frameworks rely

on parallel computing, distributed data storage, and load balancing across clusters,

thereby accelerating data processing procedures. Furthermore, a multitude of ma-

tured data mining, stream processing, and machine-learning-based algorithms work to

extract insights from IoT data.

• Availability of unmanned vehicles. Unmanned vehicles, specifically UAVs and

drones, have emerged as a pivotal component of the IoT ecosystem by facilitating data

acquisition and extending the reach of IoT applications to new heights. Since the

mid-2010s, consumer-grade drones started gaining popularity due to improved drone

technology, miniaturized sensors, and improvement of connectivity [224]. With the

rise of companies like DJI and Parrot, consumer-oriented drone manufacturers began

producing affordable, ready-to-fly drones with basic camera capabilities. Subsequently,

the utilization of drones in IoT gained significant attention. Nowadays, the utilization

of drones has broadened into areas such as infrastructure inspection, disaster response,

environmental monitoring, and public safety. Drones equipped with advanced sensors,

cameras, and connectivity capabilities provide real-time data and insights for better

decision-making, remote monitoring, and improved operational efficiency.

4

• Integrating control into IoT. In Industrial Internet of Things (IIoT) applications,

precise control is crucial to facilitate the automated management of diverse processes

and systems. This has been achieved through the integration of Cyber-Physical Sys-

tems (CPS) control loops into IoT systems [151]. CPS employs closed-loop control,

bridging physical systems with computational and communication technologies [130].

This integration unlocks new automation, optimization, and intelligent decision-making

possibilities for organizations. IoT establishes the foundation for seamless data collec-

tion and real-time monitoring, enabling CPS to proactively track device conditions

and ensure efficient control. This combination also fosters autonomous and adaptive

systems, where IoT sensors supply real-time data, empowering CPS to autonomously

respond, adapt, and optimize physical processes using predefined rules or machine

learning algorithms. This autonomy results in improved efficiency, reduced human

intervention, and dynamic responses to changing conditions.

1.2 Challenges and Concerns in IoT Deployment

The increasing demand for community-based IoT applications, along with the advancements

in IoT techniques, has given rise to both new opportunities and significant challenges. Next,

we provide an outline of current challenges, with a focus on concerns related to the design

and implementation of IoT systems. These challenges will serve as the primary focus of our

research work, and we will address them in detail throughout this thesis.

(C1) Big data volume vs. network resource limitation. The availability of sufficient

network resources for long-range data transmission is a significant challenge in implementing

IoT in urban scenarios. The rapid increase in the number of IoT devices equipped with

media-rich sensors (e.g., microphones, cameras, Radar/Lidar sensors, etc.) generates massive

volumes of sensor data. By 2025, the total number of IoT devices will reach 22 billion [24],

5

which will generate an exponential amount of data, based on growing trends of 0.1 zettabytes

in 2013 and 79.4 zettabytes by 2025 [209, 163]. This large amount of data obtained from IoT

devices needs to be fused, analyzed, and interpreted, which often requires high-bandwidth

networks to transmit the data from devices to big data processing backends for comprehensive

analysis. However, such solutions can be costly and challenging to implement since access

networks usually have limited bandwidth, leading to network congestion. Additionally, while

cellular networks and emerging technologies like 5G can potentially complement existing

network infrastructure, they may not be cost-effective. Network deployments, especially in

remote or rural areas, can be expensive and may pose challenges in achieving comprehensive

IoT connectivity.

(C2) Availability of IoT devices in challenged areas. Another challenge in IoT deploy-

ments is the lack of network and sensor availability, particularly in remote or hard-to-reach

areas. Deploying and maintaining IoT devices in such locations can be difficult and costly,

often due to the absence of necessary network infrastructure, such as the unavailability of

cellular networks in forested areas. The rapid deployment of IoT devices in emergency

surveillance scenarios immediately following a disaster also presents significant challenges.

Furthermore, in extreme conditions like wildfires, deploying sensors becomes impractical due

to the inaccessibility of certain locations for humans and the potential risk of sensor damage.

Together, these issues make it challenging to gather real-time information about situations

and impede the implementation of IoT solutions.

(C3) Scalability and adaptability. Given the pervasive nature of IoT applications and

the rapidly evolving landscape, IoT devices and systems may need to be deployed, relo-

cated, or adapted to operate in different locations under changing circumstances, depending

on a specific application’s requirements. For example, in a smart city environment, the

deployment of IoT sensors and devices may need to be adjusted to address changing traf-

fic patterns, urban development, or environmental factors. Moreover, IoT applications for

6

monitoring dynamic environments like wildland fires require careful deployment of IoT de-

vices to ensure coverage of the constantly changing landscape. Here, the challenge lies in

ensuring the scalability of IoT systems to accommodate the growing number of devices and

data, as well as the adaptability to quickly respond to updates in the monitoring area and

diverse monitoring objectives. Overcoming these challenges enables efficient and effective

monitoring, empowering timely decision-making and resource allocation.

(C4) Time sensitivity. One key challenge in IoT applications is the timing of data collec-

tion and transmission, typically involving various levels of delay tolerance that vary across

different applications. In some IoT applications, real-time data collection and transmission

are critical. Mission-critical scenarios, such as emergency response systems or real-time mon-

itoring of industrial processes, demand immediate and continuous data updates to ensure

timely decision-making and rapid response. Ensuring the availability of real-time data in

such applications requires careful consideration of deployment strategies and network in-

frastructure design. Conversely, there are scenarios where certain data types have a higher

tolerance for delays. For instance, in applications involving the long-term analysis of phe-

nomena like air quality or building energy consumption, data is periodically collected and

can withstand delays of days or even up to a week. Optimizing the deployment of IoT devices

and network resources to meet the specific timing requirements of different data types in a

cost-effective manner becomes a significant concern.

(C5) Action planning and coordination of mobile devices. The introduction of un-

manned vehicles such as drones and rovers has enhanced the capabilities of the IoT but has

also brought forth challenges regarding the effective and efficient plan and control of mo-

bile devices to fulfill specific data collection tasks. When scheduling the trajectory of these

devices, multiple factors must be considered, including the timing and method of data col-

lection, the location of data capture, and the unique characteristics of the devices themselves

(i.e., movement speed, activity range, sensor capabilities, etc.). Coordinating the movements

7

of multiple mobile devices and allocating specific tasks to them requires efficient planning

and resource management. The challenge lies in developing strategies and algorithms to

assign tasks, optimize their movement patterns, and ensure effective collaboration among

these mobile devices.

This thesis acknowledges several unaddressed challenges in IoT deployment. Specifically, it

does not cover security and privacy concerns in IoT deployment, nor does it address the

aspects of energy consumption and maintenance of IoT devices.

1.3 Using Mobility to Enhance IoT Applications

This thesis aims to investigate the role of mobility in community-based IoT applications

to address the aforementioned challenges. By leveraging the advantages of mobility, such

as pervasive coverage, increased flexibility, and fast movement, the goal is to enhance the

efficiency, effectiveness, and overall performance of IoT systems in diverse applications.

Firstly, incorporating mobile devices can reduce IoT infrastructure deployment costs by lever-

aging their extensive coverage range. In urban scenarios, for example, mobile objects such as

vehicles and crowds can create delay-tolerant or vehicular ad hoc networks. This eliminates

the need for in-situ network infrastructures for long-range and massive data transmission.

Additionally, the effective sensing range can be significantly extended by employing sensors

carried by humans or mounted on vehicles, eliminating the necessity for widespread sensor

deployment.

Secondly, mobile devices greatly enhance the scalability and adaptability of IoT, particularly

in challenging areas where network connectivity and sensing devices are limited. In disaster

scenarios, aerial vehicles carrying sensors can provide a top-down perspective of monitoring

areas that are inaccessible to ground-based sensors. This flexibility in movement offered by

8

mobile devices allows for comprehensive and efficient monitoring.

Furthermore, mobile devices are easy to deploy and can provide timely responses in emer-

gency scenarios where the deployment of sensors and network infrastructures is infeasible.

For example, in fire settings, firefighters can promptly fly drones to the fire source to track

the fire status and detect trapped people. The agility and responsiveness of mobile devices

enable quick action and situational awareness in critical situations.

1.4 Thesis Contributions and Organization

Considering the advantages of exploring mobile devices in IoT systems, this thesis aims

to explore the usage of mobility in IoT applications to enhance sensing and networking

capabilities. To explore the various functionalities of mobility, we have designed approaches

to plan the actions of mobile entities in three main scenarios, each with unique application

contexts and challenges to be addressed. Firstly, we leverage mobility to assist in long-

range sensor data transmission in urban settings. Secondly, we investigate the usage of

flexible aerial mobile devices to extend sensor coverage during emergency monitoring in urban

scenarios. Lastly, we persist in utilizing mobile aerial devices to expand sensing capabilities

and facilitate real-time data transmission in applications focused on monitoring emergent

events in remote areas where the network conditions are challenging. In the following, we

will illustrate the organization of this thesis and highlight its main contributions in each

chapter.

• Chapter 2 surveys the related work about the usage of mobility in IoT applications.

• Chapter 3 presents an overview of our approach, providing details on the main chal-

lenges in the three explored scenarios and the strategies for leveraging mobility to

enhance IoT capabilities accordingly.

9

• Chapter 4 details our contribution in exploring the usage of the mobility of public

transit fleets, sensors, and network infrastructures to create a cost-effective backbone

network in urban scenarios facilitating sensor data collection and transmission in IoT

applications. To support this design, we propose algorithms for network infrastruc-

ture deployment and data collection planning to optimize data transmission. Here, we

consider the time sensitivity of different types of sensor data and the cost of network

infrastructure installation. Our approaches are evaluated using a real-world bus net-

work in Orange County, CA, and the efficiency of the proposed method is compared to

several other heuristic approaches. The results demonstrate the superior performance

of our algorithm. For instance, in a specific scenario, our approach operates with a

worst case of ∼21 seconds (a 15× improvement) in data transfer time, a 3.2% of pack-

ages delivered beyond the delay tolerance (12× reduction), and 96% data delivery ratio

(∼50% improvement).

• Chapter 5 delves into our design and implementation of a drone-based IoT platform,

which utilizes drone mobility to support real-time sensor data collection in mission-

critical IoT applications in urban scenarios, using high-rise fire as a driving use case. We

design an end-to-end platform, DragonFly, to facilitate the visualization of situational

events based on data analysis results, provide user interfaces for humans to determine

monitoring needs, and support drone-based data collection for continuous event moni-

toring. To support this system, we introduce multiple-drone flight planning strategies

aimed at guiding drones in collecting sensor data to address diverse monitoring ob-

jectives. This encompasses the gathering of information to enhance sensor coverage

(event identification) and data accuracy (obtain fine-grained data for improved event

detection). We plan the flights of multiple drones through two primary steps: 1) allo-

cating monitoring tasks to individual drones, and 2) dynamically scheduling waypoints

to determine optimal drone routes. To evaluate the proposed approaches, we conduct a

performance evaluation employing a simulated high-rise fire scenario that incorporates

10

a realistic fire spread model. We then compare the performance of our proposed algo-

rithms with baseline techniques. Simulation results emphasize the superiority of the

proposed algorithms. In particular, DragonFly algorithms achieve a 33% reduction in

the number of undetected events and a 39× enhancement in data accuracy compared

to the baseline algorithms. Moreover, we implemented the proposed system and con-

ducted experiments using real drones in a lab-based testbed to evaluate the system’s

applicability and the performance of the proposed algorithms.

• Chapter 6 explores the usage of drones to improve the sensing and network capabil-

ities of IoT systems, focusing on wildland fire monitoring as a driving use case. We

introduce the DOME system, tailored for drone-based monitoring endeavors. DOME

encompasses a data analysis component for real-world perception, an automated task

generation procedure, and a multi-drone flight planning module to manage task com-

pletion. To support the DOME system, we design a rule-based task generation proce-

dure based on formal logic to establish spatial-temporal monitoring requirements for

drones, leveraging real-time fire status perception and physics-based fire spread mod-

els. Furthermore, we investigate multiple drone flight planning strategies, integrating

algorithms for task allocation (mapping tasks to drones) and individual drone flight

path planning. These strategies aim to schedule the drone sensing process to meet

various time-sensitive demands for monitoring dynamic features while also ensuring a

balance between sensing coverage and data quality. Simultaneously, these approaches

enable drones to store and upload data, effectively addressing network disconnectivity

during flights. We evaluate the DOME system using simulated prescribed fires based

on planned burns at Blodgett Forest Research Station. We then compare our proposed

algorithms with various baseline methods. Our experiments show the effectiveness of

DOME’s integrated mechanisms with respect to data quality (measured by total re-

ward) and task completion (reduction in missing subtasks) when compared to baseline

algorithms. Specifically, our proposed algorithm achieves a 1.7× increase in total re-

11

ward and a 99% reduction in missing subtasks compared to the baseline algorithms.

Furthermore, we implement the proposed system in a lab-based testbed with mockup

wildland fires to rigorously evaluate its applicability and effectiveness.

• Chapter 7 concludes this thesis by presenting the valuable lessons we have learned

throughout our research journey. We offer a holistic view of our proposed approaches

to support mobility-enhanced IoT systems and suggest future work to further enhance

the utilization of mobility in IoT applications.

12

Chapter 2

Related Work

This chapter seeks to gather valuable insights into the utilization of mobility to enhance

Internet of Things (IoT) applications across various entities. We will explore the mobility of

humans, animals, ground vehicles, unmanned robots, and aerial vehicles (UAVs and drones).

Specifically, we will discuss how these diverse entities’ mobility supports a wide range of IoT

applications from networking and sensing perspectives and discuss the opportunities and

challenges of integrating them into IoT applications.

2.1 Characteristics of IoT Applications

In this section, we explore community-based IoT applications [186] that involve the de-

ployment of IoT technologies within localized neighborhoods, aiming to improve community

safety, sustainability, and quality of life of its residents. These applications utilize IoT devices

for data collection and analysis, enabling informed decisions through data-driven solutions

to optimize community services. In order to better abstract the characteristics of diverse

IoT applications, we categorize them based on two key factors: spatial locations and data

13

collection time sensitivity.

Urban vs. Remote Areas

In urban scenarios characterized by high population density and extensive development, IoT

devices and network infrastructures are readily available and pervasive. Additionally, the

integration of mobile entities, such as crowds, vehicles, and transportation fleets, further

augments data collection and transmission capabilities in this context. This setting offers

numerous opportunities for diverse IoT applications. Smart cities [236, 206] use IoT to mon-

itor conditions, optimize traffic, manage waste, track energy consumption [79, 208, 197], and

control street lighting. Smart homes [49, 140, 204] enhance residents’ quality of life through

automated control of appliances, lighting, heating, and security systems. Environment mon-

itoring IoT applications [217, 146, 139] collect data on air quality, noise levels, temperature,

and pollution, aiding urban planning and sustainability efforts. Additionally, IoT systems

in emergency response [12, 171] enable real-time alerts and swift responses for incidents like

fires, ensuring safety for residents and efficient emergency services.

Conversely, in remote areas, IoT applications are characterized by limited network infras-

tructure and in-situ IoT devices. Examples of these applications include smart farming and

agriculture [144, 98], where IoT is used to optimize crop management and resource utiliza-

tion in remote farming areas. Wildlife monitoring and forest monitoring [95, 187, 136] are

also essential applications, leveraging IoT devices to track and protect wildlife and assess

ecological conditions in distant and challenging terrains. Additionally, IoT plays a crucial

role in disaster scenarios, such as wildfire and flood monitoring [56, 242, 78], where real-time

data collection aids in rapid alerts and effective disaster management in remote regions.

Mission-Critical vs. Delay-Tolerant Scenarios

Mission-critical applications are those that require real-time data collection, analysis, and

response due to their time-critical nature. Examples of these applications include emergency

14

response scenarios, such as monitoring and responding to fire incidents, conducting human

rescues, and managing disaster situations [135, 78]. In the healthcare sector, mission-critical

IoT applications like remote patient monitoring and medical alert systems rely on real-time

data to detect and respond promptly to critical health events or emergencies [76, 182], pro-

viding timely medical assistance and intervention. Additionally, transportation management

systems [237, 20] utilize real-time data collection and analysis to monitor traffic flow, detect

accidents, and coordinate emergency response for road incidents, contributing to safer and

more efficient traffic control.

Delay-tolerant applications, on the other hand, indicate applications where data collection

and analysis are relatively tolerant of delays. Examples of such applications include environ-

mental monitoring, where IoT deployments collect data on air quality, weather patterns, and

pollution levels [37, 73, 196]. Additionally, IoT systems for public transportation tracking

can be designed to tolerate delays, providing updates on bus or train schedules that account

for delays lasting minutes to hours. This enables commuters to plan their journeys effec-

tively [43, 17]. In the field of weather forecasting, IoT-enabled weather stations may also

operate on delay-tolerant systems, offering data updates at regular intervals.

In the following sections, we will discuss how diverse mobile entities serve the above appli-

cations based on their unique characteristics.

2.2 Mobility of Humans and Animals

We first examine the mobility of humans and animals in the context of IoT applications,

investigating how it enhances IoT capabilities in sensing and network perspectives.

15

2.2.1 Enhancing IoT Sensing with Human and Animal Mobility

In urban scenarios, the mobility of humans, when coupled with mobile devices equipped

with various sensors, actively contributes to sensor data collection over a wider activity

range. This has given rise to a powerful approach known as Crowdsensing [39, 232], which

finds extensive use in monitoring various factors for diverse applications. One exemplary

platform is Atmos [160], which leverages a Crowdsensing network of mobile devices to collect

weather-related sensor data. By combining this data with human input, Atmos assists in

human localization and weather prediction. Another urban monitoring system [37] takes

advantage of mobile phones’ cellular network connectivity status and the position of buses

and taxis to provide real-time evaluation of urban dynamics to understand the movement

of people and vehicles. Project NoiseTube [138] is another notable example that utilizes

mobile phones as noise sensors. The system encourages users to share their geo-localized

noise measurements and provide additional personal annotations. Similarly, authors in [175]

have designed and implemented Ear-Phone, an urban noise mapping system. This system

leverages crowdsourcing to collect noise samples from mobile users and utilizes compressive

sensing techniques to reconstruct the noise map based on the gathered data.

Moreover, humans themselves can serve as ”sensors” by providing valuable social media data,

which can be harnessed for multiple purposes across various IoT applications. For instance,

Crooks et al. [53] conducted an analysis of spatial-temporal characteristics of Twitter feed

activity in response to an earthquake in the United States to identify and localize the im-

pact area of the event. Here, they regard Twitter as an effective distributed sensor system

for event detection and impact assessment. Similarly, Takeshi et al. [185] leveraged utilized

real-time interactions on Twitter to detect events, such as earthquakes, and proposed an

approach to localize the event’s center. Longueville et al. [59] explored the usage of Twitter

data to support emergency planning and risk/damage assessment during a major forest fire

event in the South of France. Bengtsson et al. [27] introduced an innovative approach that

16

leverages position data of mobile phone SIM cards to estimate the magnitude and trends

of population movements following the Haiti 2010 earthquake and cholera outbreak. Fur-

thermore, Ballesteros et al. [22] utilized spatial-temporal indexed crime datasets to predict

future crime and safety index values of specific locations based on past crime events. They

further incorporated mobile devices and geo-social networks to record user trajectory traces,

enabling personalized, context-aware safety recommendations.

The mobility of animals presents intriguing opportunities for IoT applications in remote

areas. By attaching specialized sensor devices to animals, data can be collected from other-

wise inaccessible areas for multiple applications such as wildlife conservation and ecological

research. This approach, known as “animal-borne sensing,” [174] empowers researchers and

conservationists to gain valuable insights into environmental conditions and animal behav-

iors by collecting data directly from the animals themselves. In this context, there are two

notable platforms for animal monitoring that collect sensor data by leveraging animals to

carry sensors for monitoring diverse features. The first platform is the ”e-Pasto Platform” [2],

which offers an application for monitoring cattle grazing on mountains. The second platform

is ”Digitanimal” [1], which provides a range of GPS-based devices for tracking various animal

species, including cattle, goats, sheep, and dogs. Moreover, Arshad et al. [16] introduced a

smart dairy-monitoring system, equipping farm cows with temperature sensors, stethoscopes

for heart rate tracking, and GPS modules to monitor environmental conditions and animal

status. The system also enables automatic control of farm functions, such as a water-filling

unit for drinking water. Similarly, Chaudhry et al. [42] presented an IoT-based real-time

system for livestock health monitoring. The system involves mounting custom-designed

multi-sensor boards on livestock to record physiological parameters and incorporates a cam-

era for behavioral pattern identification. The system effectively monitors parameters such

as skin temperature, heart rate, and rumination. Furthermore, Mitra et al. [145]) has un-

dertaken an effort in wildlife monitoring by equipping animals with advanced sensors. The

deployed sensors include cameras to capture images of animals and GPS sensors to track

17

their precise locations. Subsequently, drones are deployed to collect data from these sensors

using wireless network techniques. Antonio Ferreira Cardoso et al. conducted the SheepIT

project [41], which aims to detect unwanted behaviors and enable sheep to graze in vineyards

without human supervision. To achieve this, each sheep is equipped with an electronic collar

containing sensors that retrieve posture, activity, and localization data. This technology en-

sures the safety of both the vines and grapes. Additionally, these collar sensors also assist in

monitoring the sheep’s health status and identifying abnormal situations, such as potential

predator attacks.

2.2.2 Enhanced Networking with Human or Animal Mobility

The mobility of humans and animals has also been utilized to address intermittent con-

nectivity challenges in IoT applications by creating Delay-Tolerant Networks (DTNs) or

assisting data delivery. Recent research [28] has highlighted the important role of human

mobility in augmenting the capabilities of DTNs, enabling seamless data transmission and

exchange between IoT devices. The examples include [82] proposed architecture that lever-

ages opportunistic communication among humans to enhance information forwarding and

dissemination within IoT communities. In [225], the authors designed interfaces that enable

opportunistic communications and interactions among mobile users and smart objects, aim-

ing to enhance connectivity in IoT systems. The utilization of animal mobility has also been

explored to create DTN for assisting data transmission in IoT. For example, in the ZebraNet

project [95], wild zebras were equipped with special GPS collars capable of continuously re-

laying their data to encountered neighbors. The data was forwarded until reaching the base

station, where it was utilized for wildlife monitoring purposes. Ayele et al. [18] proposed an

opportunistic dual radio network architecture that utilizes animals mounted with sensors for

wildlife tracking and data collection. In this approach, mobile animals serve as data relayers,

facilitating the transmission of data from sensors to remote gateways via LoRa technology.

18

2.3 Mobility of Ground Vehicles

In this section, we will explore how the mobility of ground vehicles in urban scenarios,

including cars, bicycles, and public transit such as buses, trains, and railways, has been

utilized in IoT applications for efficient sensor data collection and transmissions.

2.3.1 Mobility-Enhanced IoT Sensing with Ground Vehicles

Vehicles are commonly utilized as sensor carriers in IoT to collect data in urban scenarios

due to their wide activity range. Their ability to traverse various locations within dynamic

and densely populated urban environments enables them to capture diverse and valuable

data points, making them an ideal choice for monitoring and data collection. Numerous

related works leverage these entities in IoT applications. For example, in [43], GPS data

from taxis is used to track human mobility in cities, facilitating the planning of night-bus

routes. Additionally, buses are employed as sensor carriers in the Mosaic system [73], aiming

to monitor PM2.5 in urban environments. Similarly, Kang et al. [101] developed an IoT

platform named M-ESB, utilizing buses to carry sensors for monitoring urban environments,

including parameters such as air quality and road conditions. Caminha et al. [55] proposed

SensingBus, a system employing buses to carry sensors for data collection in urban scenarios,

primarily for environmental monitoring purposes. Buses transport the collected data to fog

nodes, supporting long-range data transmission to the cloud. Moreover, Jorge Lanza et

al. [124] explored strategies for utilizing public transportation fleets, taxis, and vehicles

to support mobile sensing in urban scenarios. They investigated the network deployment

required to facilitate this distributed data-gathering process and developed a testbed in the

city of Santander to validate their approach.

19

Unmanned Ground Vehicles (UGVs) have emerged as valuable tools for enhancing mobile

sensing capabilities in IoT applications, providing a diverse array of innovative solutions and

applications across various domains. For instance, Marek et al. [169] explored the usage

of UGVs equipped with a number of sensors, including Velodyne VLP-16 LiDAR, a stereo

camera, an IMU, and a GPS, to capture data for 3D mapping in forests. Similarly, Tomasz et

al. [34] implemented an IoT system using a mobile robotic vehicle equipped with a sensing

system consisting of a LIDAR and an IMU to achieve 3D mapping of isolated Industrial

Terrain. Tao et al. [159] utilized UGVs to achieve accurate localization and real-time road

information perception using sensors such as global navigation satellite systems, LiDAR, and

IMU. Their work proposes a method for road profile estimation using LiDAR and vehicles

with an active suspension system, as well as a control method for vehicle navigation on the

roads. Zhu et al. [247] introduced autonomy into agricultural vehicles by equipping them with

multiple sensors, such as LIDAR, IMU, and encoders for attitude prediction. Building on this

setup, their work explores future attitude prediction and designs a control approach to guide

the motion of UGVs in order to prevent rollover and maintain safe operations on unstructured

terrains. Moreover, the usage of UGVs with diverse sensors in agricultural environments also

includes detection of animal fecal matter, surveys of crop growth, detection of crop damage,

and identification of pests or molds [31]. Navigation of these UGVs is typically accomplished

using vision-based cameras and GPS units. This combination of sensors allows for precise

data collection and analysis, enabling farmers to make informed decisions regarding crop

management and pest control, leading to increased efficiency and improved yields.

2.3.2 Ground Vehicles and IoT Networking

The mobility of ground vehicles has also been extensively employed to complement tradi-

tional network infrastructures in IoT systems, leading to improved reliability, flexibility, and

network coverage. For instance, Zarafshanarak et al. [238] proposed TrainNet, a vehicular

20

network that utilizes trains to transport nonreal-time data. In this network, railway stations

and trains are equipped with storage devices, enabling the efficient transfer of bandwidth-

intensive digital data, such as music, video, and movies, among nearby communities. Buses

have also been employed to enhance data transmission in the KioskNet [83] project, where

they are dispatched to collect data from edge servers (PCs) deployed in kiosks in rural scenar-

ios. The collected data is then transported to remote gateways, enabling cost-effective com-

munication. Zhu et al. have introduced the SCALECycle [248] IoT platform, which employs

bicycles to support mobile sensing and data collection in community-based IoT applications

with intermittent and varying sensing/communication coverage. The BikeNet project [63]

utilizes sensors installed on a cyclist’s bicycle to collect quantitative ride data, with data

collection occurring through opportunistic wireless access points, facilitating delay-tolerant

transmission. Additionally, real-time communication and transmission of sensor data rely

on the cyclist’s mobile phone’s cellular data channel. Another example is CarTel [90], a mo-

bile sensor computing system designed to collect, process, deliver, and visualize data from

sensors located on mobile units such as automobiles. Furthermore, Zguira et al. [239] have

introduced the ”Internet of Bikes” IoB-DTN protocol which applies the Delay/Disruption

Tolerant Network paradigm to support Internet of Things (IoT) applications running on

urban bike sharing system-based sensor network. We have provided additional detailed dis-

cussion regarding research efforts involving the use of ground vehicles and buses for data

collection and transmission assistance in Section 4.2.

2.4 Mobility of Aerial Vehicles (UAV/Drones)

In addition to ground vehicles, aerial vehicles such as UAVs/drones bring new possibilities

for IoT applications. In the following examples, we explore how they have been utilized to

improve both the sensing and networking capabilities of IoT.

21

2.4.1 Mobility-Enhanced IoT Sensing with UAV and Drones

UAVs/drones, with their flexible and fast mobility, can carry sensors to provide valuable

real-time aerial perspectives, offering unique data insights from above. Moreover, they have

the capability to reach extreme conditions and locations that are otherwise challenging or

inaccessible for traditional ground-based approaches, making them indispensable assets in

diverse IoT applications. Example usage of them includes building inspection [80, 177]

where drones mounted with sensors such as a ladder, RGB, or infrared cameras provide a

cost-effective and safe way for 3D-reconstruction or thermal profiling of buildings.

Drones have also been used to assist in environment monitoring. For example, authors in [64]

explored the approaches for motion planning of drones for capturing aerial imagery and

image processing techniques for post-disaster assessment and monitoring of infrastructure

development. UAVs have also found extensive applications in real-time traffic monitoring

and management [102]. They contribute to data collection for monitoring traffic congestion

and roadway conditions, as well as detecting car accidents. Kim et al. [112] conducted an

investigation on a framework that utilizes diverse small UAVs, along with public transit

fleets, to facilitate time-sensitive monitoring of smart cities. Additionally, they explored

the application of UAVs in monitoring ocean areas. Motlagh et al. [148] developed a UAV-

based IoT platform for crowd surveillance, employing UAVs to collect aerial videos. They

further explored the utilization of onboard or mobile edge computing for video processing,

particularly for tasks such as face recognition.

Drone-based approaches have been extensively explored for enabling real-time disaster moni-

toring [58]. For instance, in an application for building fire localization [166], drones equipped

with infrared sensors are dispatched to fly around building facades, scanning the walls to

detect fire spots. Jimenez-Jimenez et al. [94] employed drones equipped with high-resolution

cameras and image processing methods for objective detection, aiding real-time flood damage

22

assessment. Additionally, Schaefer et al. [191] presented a low-cost and rapid workflow for

quantifying geomorphological changes in the aftermath of a natural disaster. In this work,

UAVs were used to collect aerial imagery from hurricane-affected key sites in Dominica. In

the context of wildfires, drones are utilized to capture RGB and thermal images for tracking

the fire perimeter [77] and monitor fire intensity deviation [168] in real-time. Furthermore,

a UAV-based tracking system [11] has been developed to create safe maps through disaster-

stricken zones. Drones are intelligently planned to scan the disaster area, and aerial imagery

is analyzed for localizing and tracking pedestrians in need of assistance. Additional in-depth

discussions on the technical aspects of drones in disaster scenario monitoring can be found

in Sections 5.2 and 6.2.

2.4.2 Aerial Vehicles in Data Transmission

Additionally, the mobility of aerial vehicles has also become instrumental in complementing

data transmission between sensors and remote data centers. Equipped with sensors and

communication technologies, drones efficiently collect data from IoT devices and facilitate

its delivery to data analysis centers through wireless techniques such as WiFi, LTE, and 5G

[12]. Authors in [149] investigated the deployment of multiple UAVs for data collection from

ground IoT devices. They devised an approach to cluster IoT devices efficiently and opti-

mized the motion of the UAVs to minimize power consumption for both data transmission

and drone operations. Alsamhi et al. [13] explored the collaboration between drones and IoT

devices for safety purposes, particularly to enhance recovery services after disasters in smart

cities. They demonstrated how drones can be leveraged to provide timely wireless communi-

cation for improving network capacities in critical situations. Koulali et al. [119] conducted

a study on cooperating with a group of drones to expand wireless communication coverage

on demand. Their research focused on optimizing the beaconing period of each drone using

game theory tools to minimize overall energy consumption. Drones were employed as data

23

mules in work [216] to gather data from ground sensors and deliver it to remote base stations,

aiming to offer a cost-effective solution to enhance wireless communication. The authors of

the study focused on optimizing the task allocation and path planning of drones to efficiently

fulfill periodic data-gathering objectives.

2.5 Guiding Mobile Entities: Insights from Various

Research Fields

The topic of planning and controlling the actions of mobile entities has been addressed in sev-

eral research fields, including operations research (OR) [142], artificial intelligence (AI) [211],

and robotics [50]. This interdisciplinary approach enables a comprehensive strategy to ad-

dress the challenges of guiding and managing these entities.

The area of Operations Research employs mathematical models and optimization techniques

to tackle intricate decision-making challenges, offering high-level strategic planning to guide

mobile entities while accounting for complex application demands. OR research has de-

veloped techniques for route planning, task scheduling, and resource allocation of multiple

mobile entities. These efforts often involve the utilization of techniques such as linear pro-

gramming and (mixed) integer programming [115, 26, 121]. Additionally, a diverse array

of heuristic strategies [125, 210] and advanced metaheuristic approaches, including tabu

search [10, 32, 213] and evolutionary algorithms [161, 170], can be effectively employed.

These techniques are aptly suited for resolving challenges like vehicle routing and multi-

agent task assignment [142, 14].

AI also plays a significant role in decision-making processes and action planning for mobile

entities in pursuit of application-specific objectives, facilitating adaptability in dynamic set-

tings. Notable techniques encompass the utilization of the Planning Domain Description

24

Language (PDDL) with solvers like Distoplan [211, 212], Markov decision processes [152,

233], heuristic search methods [87, 205], and Monte-Carlo tree search [150, 179, 110] for

multi-entity action planning. Additionally, machine learning methodologies [228, 103] en-

compassing reinforcement learning [229, 246, 44], and supervised and unsupervised learn-

ing [97, 89] come into play, enabling the development of algorithms enabling mobile entities

to assimilate experience, perceive their surroundings, and execute informed decisions. In

comparison to OR approaches, AI techniques exhibit enhanced adaptability to fluctuating

environments, adeptness in data-driven decision-making, and real-time responsiveness, even

within intricate and uncertain scenarios. However, it’s important to note that AI’s efficacy

relies on accessible data, and certain techniques may lack transparency in decision-making

processes.

Robotics provides the practical embodiment of plans, incorporates sensor data for context-

awareness, and enables physical interaction and movement of mobile entities [244, 207]. Tech-

niques from control theory [153, 60, 198], localization [71, 189, 74], mapping [62, 183, 72], and

navigation [105, 192] play a crucial role in ensuring that mobile entities can move accurately

and safely. Robotics primarily focuses on lower-level motion control, mainly addressing the

physical execution of actions. However, when it comes to higher-level planning, robotics en-

counters challenges in effectively managing complex application requirements and optimizing

long-term plans.

This thesis is dedicated to the enhancement of community IoT applications through the

optimization of mobile entities, thereby improving sensing and networking capabilities. We

specifically target time-sensitive aspects and devise novel planning and scheduling strate-

gies tailored to various types of mobile devices, taking into account the distinct challenges

and tradeoffs in diverse scenarios. To achieve these goals, we need to design middleware

that aligns with the application’s requirements and make decisions to guide mobile entities

to fulfill these objectives. This process involves both higher-level planning and lower-level

25

control of mobile entities, incorporating approaches from the three research fields mentioned

above, each of which presents unique challenges and considerations. For data collection and

transmission, we must specify timing requirements, including data transmission delay tol-

erance, data collection frequencies and deadlines, and define spatial requirements, such as

monitoring targets, areas, sensor needs, and data quality requirements for specific objectives.

When planning and scheduling the actions of mobile entities, we incorporate methodologies

from operations research and AI fields, enhancing them with novel considerations regarding

spatial and temporal data collection requirements. This becomes especially critical in dy-

namic settings where repeated data collection is a necessity. Furthermore, we must carefully

manage the trade-offs between sensor coverage and the quality of captured data, all while ac-

counting for the possibility of network disconnectivity during data transmission. On a lower

control level, we manage actions and movements using robotics-based techniques. In this

thesis, we develop precise path-planning algorithms to ensure adequate data coverage and

3D obstacle avoidance. This thesis undertakes the challenge of addressing all the aforemen-

tioned complexities and interdisciplinary considerations, offering a comprehensive approach

to enhancing IoT systems using mobility.

26

Chapter 3

Approach Overview

This chapter provides an overview of our proposed solution, which leverages planned mobil-

ity to enhance the sensing and network capabilities of community-based IoT applications,

where time sensitivity is a crucial concern during data collection and analysis. In the fol-

lowing sections, we first describe the range of community IoT applications and the specific

characteristics of time-sensitive IoT applications. Next, we highlight the reasons why utiliz-

ing planned mobility is well-suited for serving in these applications. Subsequently, we present

an overview of our proposed approaches to integrate mobility into IoT systems in three main

scenarios, catering to diverse time-sensitive IoT applications in urban and remote areas and

addressing various challenges and tradeoffs.

3.1 Time-Sensitive Community IoT Applications

This thesis delves into the utilization of mobility to enhance time-sensitive community-based

Internet of Things (IoT) applications. Time-sensitive IoT applications [118] demand timely

completion of data collection and analysis to maintain data value and relevance. The term

27

”time-sensitive” underscores the significance of data freshness and accuracy, as any delay

in data processing may result in a decay of its value. The time duration for data pro-

cessing varies depending on the application’s requirements. Some applications necessitate

real-time or near-real-time data collection and processing. For example, in emergency re-

sponse systems for fire incidents [135], first responders rely on real-time information to track

the dynamic status of the fire situation and promptly execute human rescuing or firefighting

tasks. Healthcare monitoring applications also necessitate real-time reporting of patients’

statuses to promptly notify the hospital. Another instance involves traffic management,

where real-time data from sensors and cameras is used to monitor traffic flow and detect ac-

cidents. This immediate information enables the transportation department to adjust traffic

signals correspondingly.

Conversely, certain time-sensitive IoT applications can tolerate longer delays but still require

data processing within specific time durations based on their application requirements. For

instance, in environmental monitoring applications, sensor data is collected for long-term

trend analysis, such as noise assessment and air quality monitoring, allowing for relatively

longer delays extending to hours or even days. Similarly, some applications aim to monitor

traffic flow to analyze passengers’ daily planning, with data collection occurring daily or

even over extended periods. In smart agriculture, data collection, analysis, and control can

happen periodically, with intervals of a few hours, facilitating efficient crop monitoring and

irrigation control for farmers. In these cases, while real-time data processing may not be

critical, adhering to the specific time durations and delay tolerance remains essential to

derive valuable insights and support decision-making processes.

28

3.2 Opportunistic vs. Planned Mobility

This thesis aims to explore the integration of mobility into three time-sensitive IoT appli-

cations, each dedicated to solving specific challenges. In this context, ’mobility’ refers to

the movement of physical entities such as humans, vehicles, and drones, which introduces

new opportunities for IoT. These opportunities include achieving pervasive sensing coverage

and implementing a cost-effective approach for data collection and transmission while also

enhancing the flexibility and scalability of the IoT ecosystem. To investigate the approach

to utilizing mobility, we begin by categorizing it into two distinct types: opportunistic and

planned mobility, based on the extent to which the movement of these entities can be pre-

dicted or controlled.

Opportunistic Mobility

The opportunistic mobility category encompasses mobile devices within the IoT that ex-

hibit unplanned and unpredictable movement based on users’ personal activity goals, such

as crowds with smartphones, private cars, and animals. In this context, data collection or

communication is triggered opportunistically whenever a mobile device comes into proximity

with relevant phenomena or data sources. The related work in Section 2 highlights a wide

array of IoT applications that make effective use of this particular mobility type. Examples

include Crowdsensing-based applications [232] that rely on human mobility, as well as appli-

cations that leverage the mobility of personal cars [43] or bicycles [63]. In these applications,

mobile entities opportunistically collect or transmit data.

It is important to note that opportunistic mobility is best suited for IoT scenarios that

do not require time-critical data collection, control procedures, or stable and reliable data

transmission. However, for time-sensitive applications, where data collection and analysis

must be accomplished within specific timeframes, opportunistic mobility may not be suitable

due to its unpredictable and uncontrollable nature.

29

Planned Mobility: Predefined and On-demand Mobility

Next, we explore the mobility category that contrasts with opportunistic mobility, known

as planned mobility. Under this pattern, the movement of mobile entities is predictable,

providing a high level of certainty when assisting data collection and transmission tasks in IoT

applications. Within this category, we go deeper to identify two types of mobility patterns:

predefined mobility and on-demand mobility. The first type contains mobile devices

that operate according to predefined schedules and trajectories. This includes public transit

systems such as buses, city fleets, and railways. While these devices have constraints on

their activity, they bring certainty and predictability to their mobility patterns. Leveraging

this mobility can provide more reliable and stable sensing procedures and data transmission

in IoT applications. However, utilizing this mobility type for sensing and data transmission

requires considering its constrained activity range. Events monitored by these mobile entities

must occur near their trajectories, and data source and network access points must be located

along their route. An illustrative example of an application that leverages this mobility is

smart transportation systems [73]. In such systems, mobile devices like buses or city fleets are

equipped with sensors to monitor transportation information and environmental conditions

along the bus routes. Additionally, trains are utilized in other applications [238] to provide

periodic data delivery, collecting media-rich data from local data sources and transmitting

it to remote data processing centers along the railway routes.

The category of on-demand mobility revolves around the utilization of mobile devices in IoT

applications that promptly respond to specific tasks initiated by users and are dispatched to

locations where events of interest occur for monitoring or assisting with data transmission.

This category encompasses devices such as drones, robots, or unmanned vehicles, whose

movement can be flexibly controlled by users. Examples of applications in this category

include drone-based surveillance applications [64, 135], where drones equipped with sensors

fly to disaster settings to provide real-time sensor data for monitoring dynamic environ-

30

ments. Additionally, in other applications [248], bicycles are dispatched to support mobile

sensing and data collection in community-based IoT applications for environmental moni-

toring. Overall, on-demand mobility offers more flexibility and scalability to IoT systems

compared with predefined mobility, with fewer limitations on device movement. However,

the effective utilization of mobile entities requires careful consideration of their deployment,

motion planning, and scheduling for sensing and networking assistance.

Figure 3.1 illustrates the characteristics and exemplary mobile entities under opportunistic

mobility and the two types of planned mobility.

Figure 3.1: Categories of Mobility

Based on the above description, it is evident that utilizing planned mobility in mobile sensing

or data transmission provides the ability to plan and control the actions and movement of

these entities for efficient data collection and transmission while considering the specific delay

tolerance requirements of the application.

3.3 Leveraging Planned Mobility to Enhance IoT

This thesis aims to integrate mobile entities with planned mobility patterns into IoT sys-

tems, enhancing their sensing and networking capabilities in time-sensitive applications. To

31

achieve this, we first characterize the data flow within an IoT system with mobile devices

in three layers: the physical world, middleware layer, and application layer (as shown in

Figure 3.2). In this system, in-situ sensors and mobile devices equipped with sensors and

network communication tools continuously monitor the physical world, collecting sensor

data and transmitting it to the middleware layer, which may be a local server or a remote

cloud platform, through various networks. Mobile devices also can play a critical role in

IoT systems by serving as data carriers (mules) to complement network infrastructures and

contribute to cost-effective and seamless data transmission in IoT ecosystems.

Figure 3.2: IoT System Architecture with Selected Components

Within the middleware layer, the main focus of this thesis, various computing components

process and analyze data, extracting meaningful “events” for different application purposes.

These events are then reported to the application layer, where users can utilize them for spe-

cific business, city management, or industrial control needs. Additionally, certain decision-

making components in the middleware layer are dedicated to planning and controlling the

deployment of mobile entities and network infrastructures. Their goal is to execute tasks

related to sensing and data transmission based on user-specific instructions and preliminary

32

information.

This thesis explores strategies for planning mobile devices to enhance sensing and network ca-

pabilities in three diverse scenarios. These scenarios cover a wide range of community-based

IoT applications, from urban to remote areas, each presenting unique time-sensitivity re-

quirements and design challenges. Next, we will describe the three driving-use case scenarios

and summarize our designed IoT system and proposed novel approaches in the middleware

layer for each scenario. As we progress from one scenario to another, the level of system’s

autonomy increases, resulting in a more automatic and efficient deployment and operation.

3.3.1 Scenario 1: Mobility for Cost-Effective Network Coverage

We first look into IoT applications in urban scenarios characterized by high population den-

sity and extensive sensor deployment for monitoring various conditions. A challenge faced in

these scenarios is the limitation of local network resources to handle long-range data trans-

mission. The increasing number of IoT devices equipped with media-rich sensors, such as

cameras, generates massive volumes of data, placing considerable strain on existing network

infrastructure. While long-range data transmission techniques such as cellular networks and

5G can provide sufficient bandwidth, they often come with high installation and mainte-

nance costs. On the other hand, cost-effective alternatives like LoRa [88] and Sigfox [126]

may not be well-suited to handle the large data volumes associated with media-rich sensors.

Therefore, it becomes crucial to explore innovative solutions that support effective data trans-

mission and network usage, ensuring a cost-effective and sustainable IoT implementation in

urban scenarios.

In this context, we focus on applications with relatively delay-tolerant time sensitivity for

sensor data collection and transmission. The data collected by sensors in such scenarios

is typically not immediately critical, allowing for periodic data collection and transmission

33

at predefined intervals. For instance, environmental sensors may measure air quality levels

every hour, making data aggregation and periodic transmission sufficient for their purposes.

Notably, the time sensitivity requirements can vary across different IoT applications. For

instance, healthcare monitoring applications may demand low-latency data transmission to

provide timely and critical updates to healthcare providers. On the other hand, other IoT

applications in urban environments, such as those related to urban planning and resource

management, can handle delays of minutes, hours, or even longer without compromising

their effectiveness. Above all, in this scenario, the critical challenge is to design an effective

and cost-efficient solution for timely data transmission from pervasive sensors, considering

their diverse delay tolerances, all while minimizing the strain on local networks.

To address these challenges, we propose utilizing predefined mobility, specifically public tran-

sit fleets, to assist in data transmission and complement the constrained network resources.

The wide coverage and predictability of the mobility pattern of public transit fleets make

them suitable for this purpose. In planning the utilization of predefined mobility, we plan to

install network infrastructure along the routes of the public transit fleets and devise a data

collection and upload process for these mobile devices. Key considerations in this design

include the heterogeneous nature of delay-tolerant sensing data and the cost-effectiveness of

the overall solution.

3.3.2 Scenario 2: Utilizing Mobility to Enhance Sensing Coverage

In the second scenario, our primary focus is on utilizing IoT applications for emergency

response in urban areas. In these scenarios, the IoT system is designed to continuously

monitor the dynamic conditions of disaster situations, which are also regarded as emergent

events due to their unpredictable and critical nature. These IoT applications aim to greatly

enhance situational awareness for first responders during disaster scenarios, enabling them

34

to make rapid and accurate decisions. As a specific use case, we delve into high-rise fire

monitoring. In this scenario, firefighters require real-time sensing data, including RGB and

thermal images, to continuously monitor various aspects of the fire situation, such as the

spread of the fire, the locations of individuals, and the status of building ventilation.

One of the significant challenges in deploying IoT in emergency situations like high-rise

fires is the extreme conditions that can impede sensing and networking capabilities. For

example, in high-rise fire settings, the height of the buildings and the extent of fire damage

can result in limited sensor coverage. Some areas may become inaccessible to humans,

making it difficult to deploy sensors effectively and gather critical data from those regions.

Additionally, the severity of the fire can cause damage to sensors and network infrastructures

located in the buildings, rendering them non-functional. Furthermore, monitoring dynamic

and unpredictable emergent events requires first responders to have instant access to the

evolving environment and continuously track its evolution. This necessitates real-time (or

near real-time) sensor data collection and continuous (or periodic) monitoring. Additionally,

in this scenario, first responders always need to track multiple objectives, including humans,

fire, smoke, and building conditions. Each objective has unique monitoring requirements

based on its dynamics, urgency, and importance. During the data sensor data collection

process monitoring, it is crucial to consider the varying priority needs of these objectives to

enable better resource allocation, ensuring the appropriate direction of resources toward the

most critical objectives.

With the above concerns, we propose to integrate event-driven mobility, specifically drones,

into the IoT system in this scenario, considering their fast and flexible mobility in the sky.

Drones can navigate complex building structures, capture data from different perspectives,

and provide real-time data transmission. We design an IoT platform that serves as an in-

terface for firefighters to input monitoring tasks for drones, a dashboard to represent the

dynamic fire situation and coordination mechanisms for multiple drones to fulfill monitoring

35

tasks. There are several concerns related to drone flight planning in this scenario. These

include task allocation among multiple drones, coordination of drone movements, and ob-

stacle avoidance during flight. The design of the IoT system needs to address the scheduling

and planning of drone motions to monitor specific areas in a periodic manner, taking into

account the heterogeneity of monitoring periods and priorities. Moreover, during the moni-

toring process, we strategically position drones at diverse distances from the building facade

to achieve varied sensor coverage and data quality of captured data, such as image spatial

resolution. Closer proximity to the monitoring objective results in higher data quality, but it

may limit sensor coverage. When planning drone flight, we carefully consider this trade-off

between maximizing sensing coverage and improving data quality.

3.3.3 Scenario 3: Mobility for Enhanced Networking and Sensing

In the third scenario, we delve into monitoring emergent events in remote areas, where

additional challenges arise due to the absence of network infrastructures and poor network

conditions. Using wildland fire monitoring as a driving use case, the primary objective is to

achieve continuous monitoring of dynamic fire settings in forest areas where there is a lack of

cellular network infrastructures. Even the deployed local wireless networks face poor network

conditions due to signal attenuation caused by blocking trees or other obstacles. In addition,

the sporadic and unpredictable nature of wildland fires or other events in large areas makes

it impractical and cost-effective to deploy sensors before such events occur. Moreover, these

fires can cause damage to in-situ sensors, rendering them unavailable for monitoring. As a

result, the lack of available sensors and network infrastructures in these scenarios poses a

critical challenge for IoT deployment to support continuous monitoring and real-time data

collection. Furthermore, in large-scale and long-term monitoring processes, it is crucial to

consider automation for monitoring operations when designing IoT systems. Minimizing

human involvement and automating the monitoring system also become vital aspects in this

36

scenario.

In this context, event-driven mobility remains crucial for real-time data collection and trans-

mission during the monitoring of emergent events, given the lack of network infrastructure.

We leverage the flexibility and adaptability of event-driven mobility to facilitate sensor data

collection and transmission. To meet diverse application requirements, drones equipped with

various sensors, such as RGB and thermal cameras, are utilized for multiple monitoring pur-

poses, including fire tracking, fire intensity inspections, and human detection. Automation

of the monitoring process is achieved through a Cyber-Physical Systems (CPS) control loop.

To implement this control loop, we employed data analysis approaches and designed se-

mantics to represent the physical world. Additionally, we developed an automatic task

generation procedure for generating tasks for drones and designed a multi-drone flight plan-

ning approach to guide drones in fulfilling these generated tasks. During task generation, we

used a physical model to predict fire evolution, enabling prioritization of monitoring areas.

This optimization allows us to make the most of drone resources and improve monitoring ef-

ficiency during emergencies. For example, tasks can focus on areas where the fire is expected

to spread rapidly, while fireproof areas may not require fire detection tasks. Additionally,

in the design of multiple-drone flight planning approach, we take into account the hetero-

geneity of drones and sensor configurations, the trade-off between sensor coverage and data

quality, and the time-sensitivity of monitoring diverse objectives, which have varying moni-

toring periods and priorities. Furthermore, we address the potential network disconnection

during the flight planning procedure. Specifically, we enable drones to store data onboard

when disconnected from the ground edge server and upload it once the network connection is

reestablished. This approach facilitates drone-assisted data ferrying and enhances the overall

data transmission process in such situations.

Figure 3.3 summarizes the challenges of IoT applications in these three scenarios and provides

an overview of the corresponding solutions.

37

Figure 3.3: Challenges and Solutions for IoT Applications in Three Explored Scenarios

38

Chapter 4

Cost-Effective Data Transmission

with Public Transportation Fleets

This chapter addresses the utilization of predefined mobility to tackle network coverage chal-

lenges in IoT systems within urban areas. We use smart cities as the driving use case, where

tremendous media-rich sensors are deployed pervasively; this poses significant challenges to

local access networks that often have limited bandwidth. To address this, we investigate how

to leverage public transit fleets (i.e., city buses) as a cost-effective solution for long-range

data transmission to complement limited local networks. Here, we introduce the concept

of “IoT zones” to capture geographically correlated clusters of local IoT devices with well-

connected wireless networks that may have limited access to the Internet. We then develop

techniques to create a cost-effective data collection network using existing transportation

fleets with predefined schedules to collect sensor data from IoT zones and upload them at

locations with better network connectivity. Such techniques will address tradeoffs between

collection quality, timing needs (QoS), and network infrastructure installation costs.

39

4.1 Chapter Overview

Internet-of-things (IoT) deployments are giving rise to smart cities and communities world-

wide. The next generation of urban planning is moving towards the design of smart in-

strumented spaces beneficial to citizens. For example, the City of Barcelona introduced

the concept of superblocks to limit transportation within cityblocks [181]. A large number

of interesting urban smart greenspaces efforts are being initiated in cities throughout the

US [165], the goal is to support increased environmental sustainability and improved quality

of life for citizens. Studies [180] also point out that the market for short-range IoT wireless

technologies (Wi-Fi, BlueTooth, Zigbee) have overtaken those for long-range connectivity

(LoRa, Sigfox), which can probably be attributed to the lower hardware and spectrum costs

associated with the short-range networks. In the future, we envision that such innovative

designs will give rise to localized IoT zones, where geographically-correlated clusters IoT

devices are interconnected via various wireless networks (short and long-range).

Modern IoT devices are often equipped with media-rich sensors, such as microphones, cam-

eras, and Radar/Lidar sensors, which generate tremendous volumes of sensor data. Data

obtained from these devices must be fused, analyzed, and interpreted – solutions that require

onboard storage, computation, and communication for complex analytics in every device are

prohibitively expensive. The ability to create local collection points is plausible within a zone

using M2M technologies and simple analytics can be executed at these network edges. En-

abling high bandwidth networks to backhaul data at the device level to big data processing

backends for more comprehensive analysis is both expensive and difficult. Communications

of large IoT sensor data, such as surveillance camera footage (for further analysis or archival)

or real-time social media sharing, is challenging since access networks usually have limited

bandwidth and are vulnerable to network congestion. This work deals with the problem of

getting data from local edges to the backend in a cost-effective manner.

40

Our proposed solution is to create a hierarchy where end-devices communicate to a local node

that we refer to as a Rendezvous Point (RP). Creation of such local edge components or

RPs is becoming increasingly possible, e.g., through smart streetlights, smart transit stops,

etc. Data make their way from the local RP to a larger processing backend through interme-

diate Upload Points (UPs) located at suitable places where better network connectivity

and bandwidths are available. Two key questions need to be answered: (a) Where should

Upload Points (UPs) be located (upload point placement problem) and (b) How do “data to

be uploaded” get from local RPs to UPs (upload path planning problem)?

Our key intuition is to exploit existing transport possibilities to implement this hierarchy,

i.e., by leveraging city transit infrastructures that currently transport people to transport

data from devices to a big data processing backend. Such traffic fleets with predefined

schedules (routes and times) are common in urban communities today, which include buses,

mail vehicles, and garbage trucks with regular schedules and stops. We plan to leverage fixed

city transit infrastructures, in particular, bus stops (or traffic lights), as potential RPs and

UPs in our hierarchy. Since existing transportation fleets (e.g., city buses) have predefined

schedules and paths, we will design solutions where data gathering (from RPs), transport

(to UPs), and upload (from UPs to backend) can be made to occur along these paths. A

rational solution is to colocate RPs and UPs with transit stops because vehicles are typically

required to stop at these points, providing the needed time for reliable wireless transmission

of data to/from vehicles.

The following are key contributions of this work.

• We develop an integrated approach to address the problems of upload point placement

and upload path planning (Sec. 4.2).

• We develop a modeling framework and formulate the upload point placement problem,

which is NP-hard (Sec. 4.3).

41

• We propose four upload point placement algorithms for optimized upload point deploy-

ment considering the trades of the spatial coverage, upload deadlines, and deployment

feasibility for the target IoT zones under an installation cost limit. (Sec. 4.4).

• We develop two upload path planning algorithms in which Delay Minimization (DM)

algorithm utilizes the upload point placement map generated in the previous step for

minimizing delay, given an IoT deployment with data generation patterns, communi-

cation needs, and vehicle schedules (Sec. 4.4).

• We validate our approaches and compare them using real-world transportation networks–

i.e. road map and transit schedules for Orange County, CA (Sec. 4.5).

4.2 Sample Scenario and Problem Statements

RP

IoT Zones

UPC

UPC/UP

Data

Processing

Center

Figure 4.1: Sensor data collection with scheduled fleets.

Fig. 4.1 is a simplified usage scenario with two IoT zones (park, business district) each

with devices that are well connected, and communicate sensor data to local RPs. RPs

possess sufficient storage to buffer incoming sensor data until a scheduled pickup vehicle on

a trip arrives. Sensor data items are associated with a delay tolerance, i.e. a tolerable time

42

difference between arriving at RPs and at a data processing center. Each vehicle contains a

computing device with storage; vehicles in transit pick up data buffered at RPs and transport

them to an Upload Point (UP) from where sensor data is delivered to the data processing

center. Differently from RPs, whose locations are given, UPs can be set up at various

locations, such as bus stops, road intersections, street lamps, and roadside buildings. We

refer to the possible locations for setting up UPs as Upload Point Candidates (UPCs). Every

UPC has its own installation cost, which depends on practical factors, such as type of access

network technologies, distance to Internet access points, and availability of power supply.

We address two core research problems in this setting:

• Upload point placement. Selection of a subset of UPs from all possible UPCs to ensure

spatial coverage and satisfy delay tolerance, under a budget of UP installation cost.

• Upload path planning. Plan for each vehicle and RP that schedules for pick-up and

drop-off of data gathered at RPs, given the transportation fleet schedules.

In Fig. 4.1, among the three potential UPCs, the center candidate maximizes the number

of RPs served with lower delays and are hence selected as an upload point. In practice,

the choice of an upload point will take into consideration the installation costs of individual

UPCs and transit vehicle paths and schedules. Several usage scenarios of this infrastruc-

ture can be envisioned. Consider public parks instrumented with surveillance cameras and

environmental sensors that communicate data to a local collection point; data are trans-

ported to suitable upload points for further analysis to provide live situational awareness

of public spaces (e.g., occupancy), detect public safety threats (e.g., fires, protests) or to

promote community recreational events. Similarly, residents in assisted living facilities can

send personal health and community activity-related information to data processing centers

via mail/carrier trucks.

Existing Efforts in Predefined Mobility for Data Transmission: We next supple-

43

ment the related work discussed in Section 2.3 by providing a more in-depth examination

of research efforts for using ground vehicles to support delay-tolerant networking (DTN),

wireless mesh networks, vehicular networks, and community-scale data collection. Clus-

tering formations and energy-efficient resource allocation methods for wireless IoT devices

have been explored in [214, 133]; DTNs and data mules have exploited mobility for data

transfer [30, 243, 245]; these approaches often assume very limited access to communication

infrastructure and aim to meet data transfer deadlines using multi-hop networks [111]. Tech-

niques for proactive and adaptive data transmission in this setting have been designed with

crowdsensing applications and energy efficiency [123, 230, 137, 173, 167]. Similar work in

the context of WSN makes use of mobile sinks [117, 108, 120] for improved communication.

Techniques to exploit public bus transportation for DTN-based data dissemination include

utilizing bus line patterns [195], accounting for encounter frequency of bus routes [131] and

using bus stops as communication relays.

Planning and deployment are often network-specific; techniques for AP and gateway place-

ment in wireless mesh networks [227, 226] are useful for community-scale networking. Mod-

eling using set cover based formulation [33], and techniques for network deployment [51]

and performance [162] have been explored. Facility placement mechanisms for data upload

in delay-tolerant crowdsensing and content distribution have been formulated and stud-

ied [201, 25]. Combining facility placement with transport logistics [176] for integrated

provisioning is an approach similar to ours, albeit for goods transport. Related literature

from the vehicular networking community includes work on the deployment and operation of

vehicular networks [231], their graph properties [172], and methods for more realistic model-

ing of mobility [38, 107, 106]. More recent efforts have explored the use of public transport

to collect IoT data in cities [99, 92]. Other related efforts include approaches to utilize

Wi-Fi-enabled buses for non-urgent communications [6] and geocast-based mechanisms to

improve delivery reliability and timing [240, 241] and monitor the urban environment [100].

44

Much of the earlier literature uses statistical estimates of traffic flow and encounter probabil-

ities. In contrast, we leverage the knowledge of exact routes and transit schedules (especially

in urban settings) to generate data routing plans and handle the heterogeneity of IoT traffic

while satisfying communication QoS needs.

4.3 Problem Formulation

In this section, we formulate our upload point placement and upload path planning into one

combined formulation.

4.3.1 Symbols and Notations

The transportation/transit fleet is described by a set of trips, V with |V| = V , where each

trip v denotes a bus/vehicle moving through a sequence of stop points (i.e., bus stops). When

a vehicle reaches its terminal stop and starts again, it is considered as a different trip. Let

N, with |N| = N , be the set of all the N stops that any of these trips go by. We assume

all data gets accumulated in these stop points and also gets uploaded via them. Thus set

N is the superset of all RPs and UPCs as well. We, in fact, can eliminate those stops from

N that are neither RPs nor UPCs because their presences do not affect our placement and

planning. In that, N becomes the set of all RPs and UPCs. For each stop point n, let Rn

and Dn denote the data arrival rate and the data delay tolerance at n. Let Cn be the cost

for installing a UP at n, respectively (Rn > 0 and Dn > 0 if n is an RP, or both equal to 0,

and Cn =∞ if n is not a UPC).

We assume that the schedules of all trips are known apriori. Hence, we denote An,v as the

arrival time of trip v at stop point n (An,v = −1 if trip v does not go by n). The schedule

matrix, A = [An,v] contains the complete schedule of all trips. The schedule holds for a

45

certain duration (e.g., for a day) and then perhaps repeats itself. We assume that IoT data

collection happens sometime within this interval and let Ts and Te be the start and end time

of this data collection interval.

For the upload point placement problem, we define a binary array Y = {y1, y2, . . . , yN} to

denote UP placement. In particular, stop point m ∈ N is chosen as a UP iff ym = 1. For

the upload path planning problem, we define a three-dimensional auxiliary matrix X of size

N × (V + 1)×N , where xn,v,m = 1 iff trip v ∈ V is used to carry data from stop point (RP)

n to another stop point (UP) m; and xn,v,m = 0 otherwise. Moreover, we use index v = 0 to

capture the corner cases where an RP/UPC is selected as a UP. In that case, the sensor data

are directly uploaded by the UP whenever they reach the RP. Concretely, we let xn,0,m = 1

iff n = m and ym = 1; xn,0,m = 0 otherwise. In the following, if not otherwise stated, we use

n to denote an RP stop point, v for a trip, and m for a UPC stop point.

We note that m ∈ N should be selected as a UP in Y, if at least one vehicle trip decides

to dump sensor data at m in X. This is, ym = 1 if and only if there exists at least one

xn,v,m = 1 for some n and v. Moreover, each vehicle trip that picks up data at n uploads the

data at a single UP. That is,
∑

m xn,v,m ∈ {0, 1} for each n and v.

Data Transfer Time: As data chunks are moved from an RP to a UP via a trip, the chunk

experiences some delay. For each xn,v,m = 1, there is an associated data transfer time, dn,v,m,

that denotes the amount of time it takes to transfer data from RP n to UP m via trip v.

The transfer time is a function of X and it has two parts: wait time (waiting for the bus

to arrive at the RP) and travel time (the time to reach the planned UP). The wait time

depends on when was the last time data was carried by any trip passing by this stop point

(since then, the RP is waiting for a bus to show up). Let Bn,v(X) be the last pick up time

46

preceding trip v. This is:

Bn,v(X) = max{An,v′

∑
m

xn,v′,m|An,v′ < An,v}. (4.1)

If no preceding trip exists, Bn,v is set to Ts. So, the wait time becomes An,v − Bn,v(X).

Once loaded into bus trip v, the travel time to each UP m is given by: Am,v −An,v. Adding

the above two terms and canceling the common term, we obtained the data transfer time as

follows:

dn,v,m(X) = Am,v −Bn,v(X). (4.2)

Data volume: The volume of data carried by each vehicle trip affects the decisions, in the

sense that the on-time delivery of a vehicle trip carrying more data should be more critical.

We let Sn,v(X) be the data volume carried by vehicle trip v from stop point n, which can be

written as:

Sn,v(X) = Rn[min(Te,max(An,v, Ts))−min(Te, Bn,v(X))]
∑
m

xn,v,m.

Here, min(Te,max(An,v, Ts)) and min(Te, Bn,v(X)) represent the arrival time of the last and

first sensor data bits that are buffered at RP n, which will be picked up by vehicle trip v.

The right-most summation is a binary value indicating if trip v picks up sensor data at stop

point n or not.

Penalty function: The overall objective of data collection and transfer is to upload as

much data as possible with lower transfer delay. Hence, we introduce the notion of a penalty

function that accounts for both the volume of data as well as the delay the transfer expe-

riences. That is, the data chunks transferred with larger delays incur more penalty than

the ones that are transferred with smaller delays. There is also a penalty for data being not

47

uploaded at all at the end of the operation (after Te). Therefore, the overall penalty, denoted

as P̂ (X), measures how good a certain upload plan X is and thereby quantifies the service

quality of sensor data collection. The penalty function is the sum of the following two terms:

Penalty due to transfer delay: This part measures the total accumulated transfer delay

weighted by the respective volume of data, which is defined as:

Pl(X) =
1

V

∑
n,v,m

fn(dn,v,m(X)) · Sn,v(X) · xn,v,m, (4.3)

where V = (Te − Ts)
∑

n Rn is the total volume of data generated and fn(d) is used to

normalize delay within [0, 1], which is defined as fn(d) = 1− exp
(

−d
Dn

)3

with fn(0) = 0 and

fn(∞)→ 1.

Penalty due to data not being uploaded: This part accounts for sensor data being left on RPs

beyond the end of each schedule (say, overnight). Let Ln be the last time (within Te) when

data is carried from stop point n by any trip. That is, Ln(X) = max{An,v

∑
m xn,v,m}. We

have:

Pu(X) =
1

V

∑
n

Rn · (Te − Ln(X)) · (1− xn,0,n). (4.4)

The term (1− xn,0,n) takes care of the corner cases where an RP is also chosen as a UP.

48

4.3.2 Formulation

We write the upload point placement and upload path planning problem (finding Y and X

simultaneously) as follows:

min P̂ (X) = Pl(X) + Pu(X) (4.5a)

s.t. xn,v,m ≤ ym,∀n ∈ N, v ∈ V ∪ {0},m ∈ N; (4.5b)

An,vxn,v,m ≥ 0,∀n,m ∈ N, v ∈ V; (4.5c)

Am,vxn,v,m ≥ 0,∀n,m ∈ N, v ∈ V; (4.5d)

(Am,v − An,v)xn,v,m ≥ 0,∀n,m ∈ N, v ∈ V; (4.5e)∑
m∈N

xn,v,m ≤ 1, ∀n ∈ N, v ∈ V; (4.5f)∑
m∈N

ymCm ≤ Θ; (4.5g)

xn,v,m and yn ∈ {0, 1}, ∀n ∈ N, v ∈ V ∪ {0},m ∈ N. (4.5h)

The objective function in Eq. (4.5a) is to minimize the penalty function value. The con-

straints in Eq. (4.5b) connect Y with X, so that ym = 1 if at least a vehicle trip v ∈ V∪{0} is

determined to pick up sensor data at n, i.e., xn,v,m = 1; ym = 0 otherwise. The constraints in

Eqs. (4.5c) and (4.5d) prevent any vehicle trip v that doesn’t pass stop point n (An,v = −1)

from retrieving sensor data from n. The constraints in Eq. (4.5e) guarantee that vehicle trip

v always picks up sensor data before dropping them off. Eq. (4.5f) makes sure that if RP n

sends data to vehicle trip v, v only drops off the data at a single UP. Eq. (4.5g) caps the UP

installation cost at Θ, which is an input.

Our problem is NP-hard, which can be shown through a polynomial-time reduction from

the knapsack problem [104] to it. The knapsack problem aims to pick items, each with an

associated profit and a weight, to get the maximal total profit subjects to the total weight

49

limitation. We can map weight limitation to our cost limitation Θ, items to our UPCs, and

total profit to the negative of our penalty value, although our problem is more comprehensive,

e.g., the benefit of choosing a UPC as UP is not just a fixed profit, which is impacted by

the trip assignments denoted by X and even other chosen UPCs. Details of the proof are

omitted due to the space limitation.

...

..
.

3

1

Upload Point

Placement

Algorithm

Upload Path

Planning

Algorithm

Start from
Empty
Up Set

Return Best
UP Set if

 Exceeding
 Cost Limit

Save the
Best UP
on Obj.

Func. Values

Potential UP Set

Best Path Plan for
 Potential UP Set 2

Figure 4.2: Our approach with two collaborating algorithms.

4.4 Solution Approach and Algorithms

We propose to iteratively solve the problems using two alternative algorithms:

• Upload point placement algorithm, which produces the upload point placement Y based

on multiple invocations of the next algorithm.

• Upload path planning algorithm, which is invoked by the above algorithm to compute

the upload path plan X for a given UP set Y.

Fig. 4.2 illustrates the interactions between these two algorithms. The algorithm systemati-

cally tries different potential UP sets, which do not exceed the cost limitation. It only sees

the high-level picture (set Y), and relies on the upload path planning algorithm to compute

50

Algorithm 1: Upload Point Selection Algorithm

Input: UPC set N, schedule A, rate R, cost C, delay D, Cost limit Θ
RP set {n | n ∈ N, Rn > 0}
Output: UP placement Y and upload path plan X

1 Y ← {0}N ; X← {0}N×(V+1)×N

2 N′ = {n | yn = 0, Cn +
∑

i∈N Ciyi ≤ Θ, n ∈ N}
3 while

∑
i∈N Ciyi < Θ and N′ ̸= ∅ do

4 for n ∈ N′ do
5 Y′(n)← Y; let y′n ← 1
6 X′(n)← Assign(A,Y′(n))

7 Calculate the cost-effectiveness for n: E(n) = P̂ (X)−P̂ (X′(n))
Cn

.

8 if max(E(n) for n ∈ N′) == 0 then
9 break

10 i← arg max
n∈N′

E(n)

11 Y ← Y′(i)
12 X← X′(i)
13 N′ = {n | yn = 0, Cn +

∑
i∈N Ciyi ≤ Θ, n ∈ N}

14 return Y and X

the low-level details (plan X). In particular, for each iteration, the upload point placement

algorithm generates multiple potential UP sets and invokes the upload path planning al-

gorithm multiple times (step 1○). The upload path planning algorithm computes the best

plan for each potential set (step 2○). Toward the end of each iteration, the upload point

placement algorithm selects the best UP set based on the objective function values (step

3○). If the cost limit is exceeded (Eq. (4.5g)), the algorithms stop; otherwise, the upload

point placement algorithm moves to the next iteration.

4.4.1 Upload Point Placement Algorithms

We propose four upload point placement algorithms below. Intuitively, selecting UPCs with

more passing trips from RPs will increase the chance of data uploads which in turn can

decrease data loss and data transfer time. Based on this observation, we propose coverage

maximization (COV) algorithm, in which we greedily select UPCs based on their coverage

51

of RPs. UP m is said to cover RP n if there are at least one trip v passing by n and arrives

at m later, i.e., arrival time An,v < Am,v and An,v ̸= −1. According to the transit schedule

A, we get RP cover set Covm for each UPC m. We then greedily choose the UPCs in the

decreasing order of their |Covm|
Cm

until the cost exceeds the cost limit Θ.

Volume-maximization (VOL) algorithm adopts the same heuristic method but uses the sum

of the data rates of all those RPs instead of using only the count. The method then chooses

UPCs in the decreasing order of volume to installation cost ratio until the cost hits the limit.

We also propose a genetic algorithm (GA) based solution where we create the initial popula-

tions using the solutions of COV and VOL. For each individual (a subset of UPC), we get its

corresponding trip assignment using our Assign Algorithm and calculate the penalty value

according to Eq. (4.3) and (4.4). We use the negative of penalty value as the fitness score

to rank all populations. Then, we use three basic rules to create the next generation: (i)

selection rules select a subset of individuals with highest fitness value as parents for the next

generation, (ii) crossover rules combine two parents to form children, and (iii) mutation rules

apply random changes to individual parents to form children. We also set the constraint of

GA as the total cost of individuals shouldn’t exceed the cost limit. In our work, we set the

population size as 50 and the maximum number of iterations as 200.

The upload point selection (UPS) algorithm, as outlined in Algorithm 14, greedily finds UPs

according to their reduction in penalty per unit of cost. More specifically, in each iteration,

the algorithm computes the predicted upload path plan X′(n) after adding each candidate n

into the current UP set by using the subroutine Assign(A,Y′(n)) (line 6). It then calculates

the cost-effectiveness of this assignment (line 7), which is the ratio between the decrease of

the total setting penalty after adding n and the cost of n. We add the UPC that maximizes

the cost-effectiveness to the UP set and go to the next iteration if the cost limit has not been

reached.

52

Algorithm 2: Assign(A, Y) — DM algorithm

Input: Schedule A, UP placement Y, data rate R
Output: Upload Path Plan X.
/* Step 1: Adding all available trips */

1 X← {0}N×(V+1)×N

2 for UP m ∈ {m | ym = 1} do
3 for RP n ∈ {n | n ∈ N, Rn > 0} do
4 if n == m then
5 set xn,0,n ← 1
6 else
7 for v ∈ {v | v ∈ V, Am,v ̸= −1} do
8 if An,v ̸= −1 and An,v < Am,v then
9 Set xn,v,m ← 1

/* Step 2: Trimming */
10 for RP n ∈ {n | n ∈ N, Rn > 0} do
11 if xn,0,n == 1 then
12 set xn,v,m ← 0 ∀ v ̸= 0

13 if
∑

m∈N xn,v,m > 1 then
14 for m ∈ {m | m ∈ N, xn,v,m = 1} do
15 if m = arg min

m∈N
Am,v then

16 xn,v,m ← 1

17 else
18 xn,v,m ← 0

/* Step 3: Removing trips. */
19 for RP n ∈ {n | n ∈ N, Rn > 0} do
20 Get all trips passing n: Vn = {vn,v,m |

∑
m xn,v,m = 1}

21 Sort Vn = [vn[1], vn[2], ...] by arrival time An,v

22 for each trip in Vn: vn[i] do
23 Get travel time tn[i] = Am,v − An,v

24 Get arrival time an[i] = An,v

25 updated← True
26 while updated do
27 updated← False
28 for i = 1 to len(Vn)− 1 do
29 if tn[i] > 2× (an[i + 1]− an[i]) + tn[i + 1] then
30 Remove trip vn[i]: xn,v,m ← 0
31 updated← True

32 return X

53

4.4.2 Upload Path Planning Algorithms

We propose two upload path planning algorithms: (i) First Contact (FC): every RP sends

buffered data through all passing-by vehicles that then drop the data to the first UPs they

encounter, and (ii) Delay Minimization (DM) algorithm, which performs the local search for

optimal upload path plans. The algorithm works as follows (shown in Algorithm 2). For

each RP, the algorithm produces the subset of trips that should carry data and upload them

to the nearest UP they encounter. One can argue that an RP can send data through all

passing trips and transfer a little chunk of data at each encounter. But it turns out that

choosing all trips may not be the best, rather skipping some trips can generate better results

(produce lower total transfer time/delay). Particularly, the trips that take a long travel time

to reach their nearest UPs can be skipped. The following lemma establishes the condition.

Lemma 1 (Removing Trips). Let RP n see two successive trips vi and vi+1 with the cor-

responding wait times as wi and wi+1 and travel times to their respective nearest UPs as ti

and ti+1. If ti > 2 × wi+1 + ti+1, then trip vi can be skipped which will decrease the overall

penalty of transfer delay.

Proof. According to Eq.(4.3) we can infer that the penalty of transfer delay is positively

correlated to the weighted data transfer delay, and whether RP n chooses trip vi to send

data only impacts the transfer delay of the data arriving at RP n during wait time wi and

wi+1. If RP n chooses to send data through both trips vi and vi+1, the former trip transfers

wiRn volume of data with transfer delay wi + ti and the latter trip carries wi+1Rn amount

of data with delay wi+1 + ti+1. So, the total weighted transfer delay of data arriving during

wi and wi+1 is wiRn× (wi + ti) +wi+1Rn× (wi+1 + ti+1). If the first trip is skipped then the

sum becomes (wi + wi+1) × Rn × (wi + wi+1 + ti+1), which will be smaller than the former

one if ti > 2wi+1 + ti+1 (the condition to remove vi).

Algorithm 2 shows the subroutine Assign(A,Y), which is our DM algorithm. This algorithm

54

includes three phases: (i) adding all available assignments: find all trips going from RPs to

UPs in the current UP set; (ii) assignment trimming: remove all useless trip assignments

which map to the trips passing stops contain both RP and UP, and the trips of multiple

uploading choices for data from one specific RP; and (iii) reducing lateness: remove all

trip assignments that have long travel time to minimize the total penalty of transfer delay

according to Eq. (4.3) per Lemma 1.

According to the definition above, we can deduce that the running time of DM algorithm

depends on the number of UPCs and trips with time complexity O(N2V). The running time

of UPS algorithm depends on the cost limitation and the number of UPCs and trips. In the

worst case, when cost limitation is extremely high, the time complexity of UPS algorithm

with subroutine DM is O(N4V). It is acceptable due to upload points placement and upload

path planning are one-time and offline tasks which are time-rich.

Figure 4.3: Orange country bus routes and stops

55

4.5 Experimental Evaluation of our Approach

We perform simulations to evaluate our proposed algorithms. Our simulation setup con-

sists of four components: (i) data preprocessor, (ii) upload point placement algorithms,

(iii) upload path planning algorithms, and (iv) the ONE simulator. The data preprocessor

(in Python) converts open transportation datasets into proper formats. We have imple-

mented four upload point placement algorithms: COV, VOL, GA, and UPS algorithms and

two upload path planning algorithms, FC and DM algorithms (in Python). All considered

algorithms are summarized in Table 4.1. Once the algorithms produce the upload point

placement and upload path planning solutions, we put them into Opportunistic Network

Environment (ONE) simulator [107]. We modify the ONE simulator to route the sensor

data following the solutions from our algorithms and keep track of statistics. We consider

the following performance metrics:

• Penalty value: The measurement of overall timelinesss.

• Data delivery ratio: The ratio between the sensor data volumes delivered at UPs and

sent by RPs.

• Late delivery ratio: The fraction of sensor data that exceeds their delay tolerances.

• Data transfer time: The time difference between sensor data arriving at an RP and a

UP.

• Total cost: The total UP installation cost.

• Number of UPs: The number of placed UPs.

• Running time: The running time of algorithms.

56

Table 4.1: Considered Algorithms

Upload Point Placement
Upload Path Planning COV VOL GA UPS
First Contact (FC) COVF VOLF GAF UPSF

Delay Minimization (DM) COVD VOLD GAD UPSD

4.5.1 Scenarios

We employ the public transit dataset made public by the Orange County government [141].

The dataset contains bus stop locations, trip schedules, and routes. We focus on the seven

bus routes around the UCI campus (shown in Fig 4.3). In particular, our data preprocessor

extracts the schedules and bus stop locations for our simulations. The resulting schedule

spans a weekday from 6:09 a.m. to 9:09 a.m., which consists of 99 vehicle trips and 551

bus stops in total. The average vehicle trip duration is 64 minutes, while the minimum

(maximum) duration is 18 (109) minutes. On average, each vehicle trip traverses through

20.38 stops, and each stop has 35.01 vehicle trips passing by.

We take all the bus stops as our UPCs. The dataset, however, does not contain RPs, nor

their data arrival rate, installation cost, and delay tolerance. For each simulation run, we

randomly select RPs from all bus stops. We then overlap the dataset with OpenStreetMap

to systematically determine the parameters associated with each RP. In particular, for a

given RP, we set its data arrival rate to be positively related to the density of surrounding

public facilities, which equals Rn = len/(Î × e−facn/5) where facn is the number of facilities

within 300 meters of RP n, len is the length of data packet and Î is the maximal data arrival

interval. Considering the power supply, we set the installation cost of UPCs depending on

their distances to the closest public facilities as Cn = Ĉ × (1 − e−dtfn/500), where dtfn is

the distance between UPC n and its closest public facility and Ĉ is the maximal cost. We

prioritize the sensing data by setting the delay tolerance to be positively correlated to the

57

distances from RPs to their closest critical infrastructure (e.g., police station and hospital)

following Dn = D̂× (1− e−dtcn/1000) where dtcn is the shortest distance from RP n to critical

infrastructures and D̂ is the maximal delay tolerance. We vary the cost limitation between 10

and 640. We consider a small scenario with 20 RPs and a large one with 40 RPs. Simulations

with the same inputs and parameters are done with all compared algorithms. Each data

point in the figures represents the average of 5 repetitions. In addition, we plot the 1st/3rd

quartiles as error bars whenever possible. Table 4.2 lists the detailed simulation parameters.

Table 4.2: Simulation Parameters

Parameter Value
Simulation time 3 hours

N Number of UPC 551
V Number of trips 99

Number of RP 20 & 40

Î Maximal data arrival interval 10 s

Ĉ Maximal installation cost 10
Θ Cost limitation 10 to 640

D̂ Maximal delay tolerance 60 min
len The length of data packet 1 MB

Data transmit rate 1000 MB/s
Data transmit range 20 m

Buffer size of vehicles and RPs 2000 MB

4.5.2 Comparison Results

Our DM algorithm leads to better performance than the FC algorithm with the

same upload point placement algorithms. We compare the two upload path planning

algorithms with GA and UPS upload point placement algorithms under cost limitation be-

tween 10 and 640. We skip COV and VOL algorithms here because they have the similar

results with GA and UPS algorithms. Sample results from 20 RPs are reported; while results

58

10 20 40 80 160 320 640
Cost Limit

0

20

40

60

80

100

Da
ta
 D
el
iv
er
y
Ra

tio
 (%

)

GAF
GAD
UPSF
UPSD

(a)

10 20 40 80 160 320 640
Cost Limit

0

20

40

60

80

100

La
te
 D
el
iv
er
y
Ra

tio
 (%

)

GAF
GAD

UPSF
UPSD

(b)

10 20 40 80 160 320 640
Cost Limit

0
250
500
750

1000
1250
1500
1750

Da
ta
 T
ra
ns

fe
r T

im
e
(s
)

GAF
GAD

UPSF
UPSD

(c)

Figure 4.4: Comparisons the performance between the FC and DM algorithms with GA
and UPS algorithms under different cost limitations (a) data delivery ratio, (b) late delivery
ratio, and (c) data transfer time.

59

with more RPs are similar. We plot the results in Fig. 4.4. We notice that the penalty value

is an output of the upload point placement algorithms, which is common with either up-

load path planning algorithm. Hence we do not report the penalty value (objective function

value) in the figure. We make a few observations on this figure. First, Fig. 4.4a gives the

data delivery ratio, which show that our DM algorithm always delivers more data: more

than 20% increases are observed. Next, we check if the delivered data are late by looking

into the late delivery ratio in Fig. 4.4b. It can be seen that our DM algorithm constantly

results in the lower late delivery ratio: 25+% average reduction is possible.

Last, the data transfer time of delivered data is given in Fig. 4.4c. This figure depict that the

FC algorithm may lead to shorter data transfer time than the DM algorithm. This is because

the FC algorithm makes greedy decisions without proper planning, which may occasionally

lead to shorter data transfer time. Nonetheless, such difference doesn’t change the fact that

our DM algorithm delivers: (i) more data and (ii) less late data than the FC algorithm, as

shown above. Thus, we no longer consider the FC algorithm in the rest of this work.

Our UPS algorithm outperforms other upload point placement algorithms under

different cost limitations. We plot sample results from the four upload point placement

algorithms with 20 RPs in Fig. 4.5. In Fig. 4.5a, we observe our proposed UPS algorithm

significantly outperforms other algorithms in terms of the objective function value: as high as

20% gap, compared to the GA algorithm is observed. Moreover, as the cost limit increases,

UPS algorithm’s penalty value descends at a much higher rate than other algorithms, includ-

ing the GA algorithm. We then check other performance results from the simulators: data

transfer time in Fig. 4.5b, late delivery ratio in Fig. 4.5c, and data delivery ratio in Fig. 4.5d.

In all these figures, our UPS algorithm outperforms other algorithms, and the performance

gap becomes nontrivial even with a moderate cost limitation. For example, with a cost limit

of 160, compared to other algorithms, our UPS algorithm achieves sub-21 sec data transfer

time (15+ times improvement), sub 3.2% late delivery ratio (about 12 times improvement),

60

10 20 40 80 160 320 640
Cost limit

0.0

0.2

0.4

0.6

0.8

Pe
na

lty
 V
al
ue

COVD
VOLD

GAD
UPSD

(a)

10 20 40 80 160 320 640
Cost Limit

0

200

400

600

800

1000

1200

Da
ta
 T
ra
ns

fe
r T

im
e
(s
)

COVD
VOLD

GAD
UPSD

(b)

10 20 40 80 160 320 640
Cost Limit

0

20

40

60

80

La
te
 D
el
iv
er
y
Ra

tio
 (%

)

COVD
VOLD

GAD
UPSD

(c)

10 20 40 80 160 320 640
Cost Limit

20

40

60

80

100

Da
ta
 D
el
iv
er
y
Ra

tio
 (%

)

COVD
VOLD

GAD
UPSD

(d)

Figure 4.5: Performance of the four upload point placement algorithms under different cost
limitations: (a) penalty value, (b) data transfer time, (c) late delivery ratio, and (d) data
delivery ratio.

61

and above 96% data delivery ratio (about 50% improvement).

10 20 40 80 160 320 640
Cost Limit

0
100
200
300
400
500
600

To
ta
l C

os
t

COVD
VOLD

GAD
UPSD

(a)

10 20 40 80 160 320 640
Cost limit

0

20

40

60

80

100

120

Nu
m
be

r o
f U

Ps

COVD
VOLD
GAD
UPSD

(b)

10 20 40 80 160 320 640
Cost Limit

0

200

400

600

800

Ru
nn

in
g
Ti
m
e
(m

in
)

COVD
VOLD
GAD
UPSD

(c)

Figure 4.6: Installation cost and running time of the four upload point placement algorithms
under different cost limitations: (a) total cost, (b) number of UPs and (c) running time.

Our UPS algorithm results in cost-effective upload point placement. We observe

above that our UPS algorithm achieves better performance with a rather small increase in

cost limitation. We next dig a bit deeper and plot the total cost of the four algorithms from

20 RPs in Fig. 4.6a. This figure shows that our UPS algorithm only consumes a total cost

of about 180, even when the cost limitation is beyond that. Fig. 4.6b also demonstrates

that the UP placement decisions are almost frozen beyond the cost limitation of 160. These

two figures demonstrate that our UPS algorithm makes cost-effective placement decisions;

62

on top of its superior performance. In contrast, three other algorithms continue to use up all

the cost limitation yet deliver inferior performance. Our UPS algorithm has relatively

10 20 40 80 160 320 640
Cost Limit

101

102

103

104

105

Pe
na

lty
 V
al
ue

 G
ai
n
(%

)

COVD
VOLD
GAD

(a)

10 20 40 80 160 320 640
Cost Limit

102

103

104

105

Da
ta
 T
ra
ns
fe
r T

im
e
Ga

in
 (%

) COVD
VOLD

GAD

(b)

10 20 40 80 160 320 640
Cost Limit

101

102

103

104

La
te
 D
el
iv
er
y
Ra

tio
 G
ai
n
(%

) COVD
VOLD

GAD

(c)

10 20 40 80 160 320 640
Cost Limit

10

20

30

40

50
Da

ta
 D
el
iv
er
y
Ra

tio
 G
ai
n
(%

)

COVD
VOLD

GAD

(d)

Figure 4.7: The performance gains of UPS comparing with the other algorithms on: (a)
penalty value, (b) data transfer time, (c) late delivery ratio, and (d) data delivery ratio
under different cost limitations in the scenario with 40 RPs.

shorter running time compared with GA and better performance We next compare

the running time of four upload point placement algorithms with 20 RPs in Fig. 4.6c. It is

shown that the convergence time of GA is about twice the running time of our UPS algorithm

when cost limitation greater than 40, which fluctuates between 200 to 600 minutes while the

running time of UPS is steady at about 100 minutes.

Our UPS algorithm delivers prominent performance gains over other algorithms

63

in larger/heavier scenarios. We next report performance gain of our UPS algorithm

over other algorithms, which is defined as the performance improvement normalized to UPS’

value. Notice that, our UPS algorithm may achieve zero late delivery ratio. In that case, we

put 0.01% in the denominator to be conservative. Fig. 4.7 shows the sample performance

gains from the larger scenario. This figure confirms our above observations on the smaller

scenario are also applicable to larger scenario. Even through with more RPs (i.e., heavier

traffic), the performance gains remain significant across the considered cost limitations. For

example, at the cost limitation of 160, our UPS algorithm gets at least 478% gain in penalty

value, 100% gain in data transfer time, 100% gain in late delivery ratio, and 32% gain in data

delivery ratio. Hence, we recommend the combination of UPS and DM algorithms

for solving the upload point placement and upload path planning problems.

4.6 Summary and Discussion

In this chapter, we studied the use of scheduled transportation fleets to enable cost-effective,

reliable, and timely data collection in urban IoT settings with limited backhaul connectivity.

We illustrated the value of a hierarchical approach that includes (a) the creation of locally

connected “IoT zones.” with planned collection points (RPs), (b) careful positioning of lim-

ited upload points from which data is uploaded to backend data processing centers, and (c)

intelligent planning of data movement from RPs to UPs using already scheduled transporta-

tion fleets. In the upcoming chapter, our aim is to expand our focus to encompass urban

scenarios that include extreme conditions like fires and earthquakes. These events hold the

potential to disrupt the sensing, communication, and transportation infrastructure within

smart communities. Moreover, we will delve into the feasibility of implementing alterna-

tive data transfer methods, including drones. We aim to explore the feasibility of deploying

alternative data transfer methods, such as drones, to facilitate aerial data collection and

64

transmission. This approach aims to enhance real-time data delivery and situational aware-

ness during extreme conditions. Our goal is to design and implement IoT platforms that

support drone-based data collection processes. These platforms will also offer user inter-

faces for controlling drone movements, providing a comprehensive solution for effective data

gathering and analysis during challenging urban scenarios.

65

Chapter 5

DragonFly: Drone-Assisted High-Rise

Monitoring for Fire Safety

This chapter explores the utilization of on-demand drone mobility to enhance the sens-

ing capabilities of IoT applications. We introduce DragonFly, a drone-based mobile sensing

framework specifically designed to improve real-time situational awareness in high-rise build-

ings, with a primary focus on monitoring fire scenarios. The goal of our proposed solution

is to use multiple drones with visual sensors to collect reliable and timely data for monitor-

ing the exterior of a high-rise building. Drones are especially useful in obtaining data from

hard-to-access regions in high-rise fires that are used to monitor fire/smoke that might have

propagated to higher floors, detect the presence of humans requiring assistance near win-

dows, and determine window open/close states which can have a significant impact on the

speed and direction of fire spread. Given a dynamically evolving set of events and multiple

drones, the core challenge addressed is to develop a plan for multiple drones to gather a

set of observations that can improve both the coverage (identify more events) and accuracy

(obtain fine-grained for improved event detection).

66

5.1 Chapter Overview

The urban landscape of the future is expected to house over half the world’s population;

this is incentivizing the growth of mega-cities with high-rise buildings and dense population

clusters. Ensuring the safety of humans and other assets in such ”vertical” cities, especially

during natural/man-made disasters, is challenging – reliable and timely information is re-

quired to provide situational awareness in extreme scenarios such as high-rise fires. Today,

advances in sensing, mobility, and compute capabilities have made it feasible to create low-

cost aerial sensing technologies [69] - drones, UAVs. By serving as ”eyes in the sky”, data

obtained from a carefully coordinated set of drones equipped with sensors have the potential

to enable continuous monitoring of mission-critical events. Urban emergencies such as high-

rise fires are characterized by dynamic and fast-changing scenarios, where we need to balance

rapid identification of emerging events while ensuring the data accuracy is paramount.

In this chapter, we address the issue of how to effectively coordinate aerial sensing devices

to obtain reliable and timely situational information – we utilize high-rise fires as a driving

use-case scenario to study the problem of multi-drone coordination. High-rise buildings have

unique properties that make the control of disasters such as fires particularly demanding

[143]. Normal response tactics and strategies become significantly less effective with factors

such as limited firefighter access, fire spread potential due to dynamic internal air flows,

restricted water supplies, wind impact, minimal occupant egress pathways, and special con-

ditions, such as the stack effect. Creating accurate and timely situational awareness is critical

for firefighting forces at all levels. Understanding the dynamic hazards and knowing their

time-varying states in high-rise buildings are important to both line firefighters and incident

commanders because situations can change rapidly and dramatically. Real-time information

is therefore crucial.

The use of drones for aerial surveillance and data gathering has great promise as a key tool

67

for urban emergency responses [188]. Modern drones can be equipped with heterogeneous

sensors (e.g., optical and hyper-spectral cameras) that are useful for tasks such as scoping

the region of the event, heat source detection, and victim localization [154]. In the con-

text of high-rise fires, drones can bring additional values by enabling rapid detection (and

mitigation, when possible) of emerging events such as: (i) detecting sudden changes in the

fresh air feeding fires such as with a window loss during wind-driven fires, and (ii) tracking

fires involving external building facades or combustible exterior wall assemblies. Wind-driven

high-rise fire is a special concern to today’s fire service. Among the most classic examples

of this situation is the 1998 New York City “Vandalia Ave” high-rise fire that resulted in

the deaths of three veteran FDNY firefighters trapped in a 10th-floor hallway [155]. Partic-

ularly, sudden loss of windows or similar building envelope components are known to create

unsurvivable situations [65]. Significant research confirmed the intensity of these fires due

to window loss: literally, changing the temperature by thousands of degrees (F) in tens of

seconds from floor to ceiling. Such conditions greatly exceed the limit of today’s firefighter

PPE (Personal Protective Equipment), leading to internal conditions that are not surviv-

able to firefighters. Another major concern for firefighters is the combustible exterior wall

assemblies. In parts of the world with significant high-rise constructions in recent years,

there is a realization that these buildings are at risk of serious high-rise fire, where the fires

may rapidly spread along the exterior surface [222]. There have been multiple such high-rise

building fires, e.g., the 2017 Grenfell Tower fire in London with 72 fatalities [147].

In this work, we take a systematic approach to utilize drones to create rapid and accurate

situational awareness. The fundamental methodology of deploying drones has a distinct value

in extreme events because of its ability to scale resources and provide flexibility with real-time

adjustments. When the fire service is notified of high-rise building fires, the resources arrive

over time as the efforts are scaled up. Going forward, this will include deploying drones

for fire fighting surveillance and providing live images or videos to fire fighting forces for

real-time situational awareness [156]. From a scalability standpoint, the drones are movable

68

units that can canvass the building surfaces over extended time frames to provide real-time

surveillance. As drones are added, these resources can be dedicated to specific areas of

building facades, or scheduled to provide more frequent updates at the fire scene.

In particular, we propose a multi-drone coordination system, called DragonFly which auto-

matically manages drone-based sensing and monitoring at high-rise fire scenes. DragonFly

is activated upon the firefighters arrive at fire scenes. It then continuously guides drones

to collect sensor data for improving the situational awareness of firefighters. In DragonFly,

monitoring tasks are generated and updated by a task generator based on the fire report and

the acquired information by drones. A monitoring task specifies the event to be detected,

along with some monitoring requirements (e.g., location, significance, and desired monitor-

ing frequency). Together with fire agency partners, we have identified a set of critical events

to drive monitoring tasks [218]. DragonFly effectively allocates drones to specific tasks and

determines waypoint sequences for drones on-the-fly (within a short decision-making time)

to accomplish those tasks. This work makes the following contributions:

• DragonFly system design for high-rise fire monitoring (Sec. 5.3).

• Formulation of the Multi-Drone Waypoint Scheduling Problem (MWSP) with consid-

erations of the tradeoff between the observation accuracy and monitoring area coverage

under heterogeneous tasks (Sec. 5.4).

• Development of a two-step approach to solve the MWSP (Sec. 5.5).

• Evaluations of our solution using simulations (Sec. 5.6).

69

5.2 Tackling the High-Rise Fire Scene

Fire service, especially for structural fires, is inherently a human-in-the-loop activity coor-

dinated by an Incident Commander (IC) at the fire scene, where an Incident Command

Site (ICS) is established. The IC and a team of analysts digest live data from cameras,

environments, and other sensors to extract the states of the fire scene and coordinate re-

sponses. Given the added challenges of dynamicity in high-rise fires with the possibility of

rapid changes due to wind-driven fires and exterior combustibility, and reduced ability in (or

lack of) manual observations, the added visual monitoring results from aerial sensing will

help drive and navigate the search, rescue, and mitigation missions of the fire service.

Existing work. We supplement the related work discussed in Section 2.4 by providing a

more detailed technical discussion concerning the use of drones to improve mobile sensing.

Drones have frequently been utilized for aerial sensing and surveillance during both non-

disaster and disaster times – e.g., building surveillance [177] and post-disaster environment

assessment [64]. Drones carrying specific payloads (e.g., fire retardants and extinguishing

balls) have been used in wildland fire scenarios [91], where target monitoring areas are se-

lected by fire fighting forces. Recent efforts have also studied the possibility of early localiza-

tion of building fires using drones [166]. Other related literature has focused on multi-agent

waypoint scheduling in a variety of settings, where long-term monitoring with different tar-

get perspectives is required [47]. These waypoint scheduling problems are typically cast into

combinatorial optimization problems–also referred to as patrolling problems, that seek to

minimize the time between two visits of the same waypoint. The literature also includes

work on planning for persistent monitoring in 2-D grids under uncertainty [220] and pa-

trolling multiple regions with changing features at different rates [200]. Region partitioning

techniques in conjunction with inter-region wypoint scheduling [194] aim to balance visiting

workloads across multiple regions. The cooperative approach of waypoint scheduling among

multiple drones has been formalized and shown to be NP-hard [219]. A range of heuris-

70

tic approaches using Mixed Integer Linear Programming (MILP), Markov Decision Process

(MDP), and game theory have illustrated the complexity of the problem [142]. The driving

use cases for these settings are military command-and-control missions, where drones must

move to target areas in the presence of dynamic threats [23] and hostile environments [114].

For example, the techniques for drones to rendezvous at unspecified locations [134] or capture

geo-dispersed targets in no-fly zones [127] have both been studied in this setting.

Challenges in high-rise fires. In contrast to the above efforts, the 3-D high-rise fire setting

studied in this work introduces new levels of complexity as follows. First, the environment

is dynamic due to the fire spread, human movements, and changes in the ventilation state

(open/broken windows). Drones should continuously monitor the whole fire scene to track

time-varying states. Because of the vision obstacles and the limited sensor ranges, the

number of drones might not be sufficient to cover all high-rise building facades at a time.

Thus, we need to guide multiple drones to maximize the coverage and minimize the data

collection delay. Second, we should also consider the diversity in the monitoring events at the

fire scene when planning drone surveillance. The events, e.g., the presence of fire or human,

have their particular properties, w.r.t. dynamics, and information significance. Accordingly,

the monitoring requirements for them should be differentiated. For example, monitoring the

victims near fire sources must be prioritized for emergency rescue, and regions close to fires

must be monitored more frequently to detect fire spread.

Finally, the locations of drones and their distances from the buildings affect the monitoring

performance and detecting coverage. Recent studies [122, 45, 199] indicate that object de-

tection accuracy levels with diverse sensors are significantly affected by the distance between

the camera and the observation target. With this concern, we consider both coarse- and

fine-grained observations, where drones capture sensor data (images) at different distances.

Specifically, a drone gets a coarse-grained observation when it takes images at a relatively

far distance from the building facade, which results in a larger coverage but a lower accuracy

71

level. In contrast, a fine-grained observation is taken at a closer distance, which leads to a

smaller image coverage but more accurate event detection.

Because of the above concerns, we formulate a unique Multi-Drone Waypoint Scheduling

Problem (MWSP) for guiding multiple drones to perform monitoring tasks considering the

fire-scene dynamics and the heterogeneous emergent events. In this problem, we carefully

dictate coarse- and fine-grained observations to exercise the best tradeoff between accuracy

and coverage. We solve this problem in two steps: Allocation of Monitoring Tasks (AMT)

and Dynamic Waypoint Scheduling (DWS). Different from earlier 2-D task allocation prob-

lems [220, 200, 194], our AMT solution strives to balance the workload of drones while

taking into account the event properties (frequency, significance) in 3-D space. For the DWS

solution, we define the notion of information accuracy (with decay) to drive the schedul-

ing of drones for coarse- and fine-grained observations when capturing task dynamics. We

note that prior studies on motion planning or drone patrolling do not consider such diverse

observations and their impacts on the overall situational awareness.

5.3 The DragonFly Framework

We next provide an overview of the DragonFly framework, which is shown in Fig. 5.1.

Data receiver and analyzer. Drones with cameras and other sensors are deployed outside

a high-rise building to continuously collect data under coarse- and fine-grained observations

by adjusting the observation distances to the building facades. More specifically, each drone

maintains three data links for sensor data, telemetry (states, such as locations and battery

levels), and control commands. All these data are transmitted to ICS, where sensor data are

analyzed for detecting events to reveal the states of fires, humans, and building ventilation.

Sample events include the presence/absence of fire, the existence of humans and the open

72

Figure 5.1: Overview of DragonFly framework.

windows or doors. Besides, the events can also be the changes of the fire intensity (tem-

perature and flame size) and the human movement (change of locations or postures). All

detected events are stored in a perception table with their locations and observation time.

This table is initialized with the fire reports (see Table 5.1 for an example) and automatically

updated to record new detections (see Table 5.2 for an example).

Task generator. Task generator creates monitoring tasks stored in a task table (see Ta-

ble 5.3 for an example) for guiding drones to collect sensor data. Each monitoring task is

associated with a task generation time, a target event, e.g., the presence of a fire or human,

a monitoring area, e.g., the area contains Room 601’s windows, a significance level for fire-

fighting forces, and a desired frequency for observations. The significance levels depend on

the event to be detected and the distance to the fire. For example, detecting humans near

the fire source is more critical. The desired frequency depends on the dynamics of events.

For example, monitoring fire intensity should be done more frequently than monitoring win-

dow states because fire intensity rapidly changes. Task generator initially generates tasks

73

according to the fire reports, and it may update tasks with the arrival of newly detected

events. For example, if a fire is detected, the task generator should assign a higher signifi-

cance level to that fire detection task. Such updates are done according to the firefighting

domain knowledge [218]. Table 5.3 gives the examples of the generated tasks, where Win.

in R601 and Win. on F6 denote the windows in Room 601 and all windows on the 6th floor,

and the unit of frequency is times per minute.

Table 5.1: Initial Perception

Event Location Time
Fire R601 10:00

Table 5.2: Perception at time
10:05

Event Location Time
Fire R601 10:03
Fire R602 10:04

Humans R605 10:02
Open

R706 10:05
Window

Table 5.3: Task Table

Time Event Area Sig. Fre.

10:00 Fire
Win. on F6

3 0Win. on F7
Win. on F8

10:00 Human
Win. on F6

2 0
Win. on F7

10:03
Human

Win. in R605 3 2
Movement

10:03
Open

Win. in R601
2 0.2Win. in R602

Window Win. in R603

10:04
Fire Win. in R601

3 2
Intensity Win. in R602

Drone coordinator. Drone coordinator consists of two main components. The state tracker

records the dynamic drone state, e.g., the location and the power state. Such information

allows the DragonFly to track the states of each drones, estimate the observation time of

every monitoring area, and predict the corresponding observation accuracy. Multi-drone way-

point scheduling block takes states and user-specified parameters to compute the waypoint

sequence for each drone. Here, the waypoints specify the locations and camera orientations

of drones for observing the potential events in coarse- or fine-grained ways. To cope with

the system dynamics and unpredictability, we solve the waypoint scheduling problem (called

MWSP in this thesis) multiple times, each for a fixed time period called plan duration.

More concretely, a new waypoint sequence would be generated for each drone when the state

tracker reports the previous sequence is completed, the monitoring tasks are updated, or

drones are added/removed.

74

In this work, we assume fire fighting forces have access to the high-rise building structure

information, such as the floorplans, locations of windows, and mapping between windows

and rooms. We believe such assumptions are not too strong, as firefighting forces are part of

local governments, while open-data paradigm [157] is getting increasingly popular. We also

assume the commands, images, and states exchange between the ICS and drones are over

reliable communication networks, such as LTE, 5G, or WiFi [234]. This is also reasonable

given the rapid increase in the penetration rate of mobile networks and reliable drone APIs

such as DJI Mobile SDK [61]. Last, we assume the design of image analysis algorithms are

orthogonal to this work, any image (or sensor) data analysis algorithms can be adopted by

DragonFly, and their accuracy levels are given.

5.4 Multi-Drone Coordination for High-Rise Fires

This works focus on the implementation of the drone coordinator to tackle the multi-drone

waypoint scheduling problem (MWSP). The MWSP entails planning the motions of multiple

drones to complete assigned tasks generated by a task generator within a specified plan dura-

tion. To address this challenge, we define essential notations for mathematical representation

and proceed to formulate this problem into an NP-hard optimization problem.

5.4.1 Monitoring Tasks

We define a monitoring task k as a tuple (gk, ek, ok, σk, ηk), where gk is the task generation

time, ek is the target event, and ok is the monitoring area, which is a bounding box containing

one or multiple windows, doors, or balconies on a building facade. We choose ek from E,

which is the set of all events with |E| = E. Each monitoring task has its own significance

σk, and desired frequency ηk. We use K to denote the set of monitoring tasks in the task

75

table at ICS, with k ∈ K and |K| = K. We let M = {m1, ...mM} indicate the set of

all possible monitoring areas at our fire scene. Each monitoring area is defined as mi =

({vi1, vi2, vi3, vi4}, n⃗i), i = 1, ..,M , where vi1 to vi4 are the four vertices of the monitoring area

and n⃗i is its normal vector. Because the monitoring areas are defined on the building

facades, we use the local 2-D coordinate systems of individual building facades to represent

the monitoring areas. The conversion between the local 2-D and global 3-D coordinates is

straightforward and thus omitted.

We generate a waypoint sequence for each drone to follow and accomplish the monitoring

tasks. Each waypoint w is represented as a tuple (v′w, w⃗
′
i), where v′w is the 3-D coordinates and

w⃗′
i is the orientation vector of the camera (or another sensor). Upon reaching a waypoint, a

drone makes an observation of the monitoring areas. Here, an observation refers to capturing

the sensor data, such as images. By selecting the distance between a waypoint to the building,

drones may make coarse- or fine-grained observations to exercise the tradeoff between the

accuracy and coverage.

5.4.2 Candidate Waypoints

The number of candidate waypoints for the drones to select for performing the monitoring

tasks is infinite in theory. To be practical, we discretize the waypoints using a user-specified

distance set D between the waypoints to the corresponding building facades. It is not hard

to see that a longer distance d ∈ D results in a larger coverage area (fW
d , fH

d) of the drone’s

camera on the building facades, where fW
d and fH

d are the width and height of the rectangular

area covered in the image captured by a drone hovering at distance d.

Given all monitoring areas M and possible distances D, our problem is to build a set of

promising waypoints W = {w1, ...wW}, where each w ∈W covers one or more monitoring

areas. Here, we say a waypoint w covers an area mi = ({vi1, vi2, vi3, vi4}, n⃗i) iff all the four

76

vertices of mi are within the coverage area of the drone’s camera when the drone is at w.

In addition to W, we define a coverage matrix C = {C(w,m)}W×M to map waypoints to

monitoring areas, where C(w,m) = 1 if the drone at w can cover m, and C(w,m) = 0

otherwise.

We build W as follows. Without loss of generality, we assume (fW
d , fH

d) can cover at least

an area m entirely; otherwise, we skip the d and m. For each d ∈ D and m ∈M, there are

too many waypoints whose coverages (fW
d , fH

d) contain m. For each m, we consider four1

waypoints, where the coverage of each waypoint shares a corner with the monitoring area

m. Next, for each considered waypoint w, we determine a subset of monitoring areas that

fall in the coverage (fW
d , fH

d). If the subset of monitoring areas w is identical to any known

w′ ∈W, w is no longer considered. Otherwise, we add w to W and update C accordingly.

We check this to avoid having too many redundant waypoints that offer the same coverage of

monitoring areas. We return W and C after checking all monitoring areas M and distances

D. Last, we use d(⟨wi, wj⟩) to denote the 3-D path length between waypoints wi, wj ∈W

considering the buildings as obstacles, which can be readily computed using 2-D visibility

graph path planning method [35] with elevation difference.

5.4.3 Accuracy of Monitoring Tasks

Observation accuracy. Given image (data) analysis algorithms and camera configurations,

we deduce the accuracy of the analysis for detecting events on images captured by drones

at different distances to building facades. Particularly, we define the accuracy of monitoring

task k at distance d – A(d, ek), with k ∈ K and d ∈ D, to represent the accuracy for

detecting event ek using images collected at distance d.

We use dwi
∈ D to denote the distance from waypoint wi to the building facade, and

1Denser waypoints can be considered at the cost of higher computational complexity.

77

write the accuracy of task k at wi as A(dwi
, ek). Suppose drones arrive at waypoints along

a time sequence Tar = [t1, t2, ...] at waypoints [w(t1), w(t2), ...] during monitoring, where

∀ti, tj ∈ T ar: ti ̸= tj if i ̸= j. We let OAk(t) be the observation accuracy of monitoring task

k at time t, which equals the accuracy of data captured by drones at t for detecting event

ek. It is calculated by:

OAk(t) =

A(dw(t), ek)× C(w(t), ok), t ∈ T ar

0, otherwise.

(5.1)

From Eq. (5.1), we can infer that OAk(t) = 0 if drones do not arrive at any waypoint at t or

waypoint w(t) doesn’t cover k’s monitoring area ok; otherwise, OAk(t) = A(dwi
, ek).

Effective observation and information accuracy. Due to the limited number of drones,

monitoring areas are not observed continuously. Therefore, whenever an event state of task

k ∈ K is queried at t, ICS returns the result of a recent observation of k which is referred to

as the last effective observation. To measure the accuracy of the queried results, we define

the information accuracy of task k ∈ K at time t as IAk(t), which equals to the estimated

probability that the analysis result of the k’s last effective observation is the same as the

practical current state of k at t.

We set IAk(gk) = 0, and assume the degrading of IAk(t) follows a geometric distribution

with a parameter ηk, unless ICS gets an effective observation of task k. We consider an

observation of task k at t is an effective observation iff OAk(t) > IAk(T le
k (t))(1− ηk)(t−T le

k (t)),

where T le
k (t) denotes the time of the last effective observation of task k at time t, with

T le
k (gk) = gk.

For simplicity, we rule that whenever ICS receives an observation, it updates its perception

table following the new observation if it is an effective observation and ignores it otherwise.

The information accuracy IAk(t) is defined as follows, whose sample dynamics is shown in

78

Time (Minute)

Figure 5.2: Sample IAk(t) with ηk = 0.2 and gk = 0.

Fig. 5.2:

IAk(t) =

0, t = gk;

max{IAk(T le
k (t))(1− ηk)(t−T le

k (t)),OAk(t)}, t > gk.

(5.2)

We define the Area Under Curve (AUC) of monitoring task k at time t′ as:
∫ t′

t=gk
IAk(t)dt to

quantify the overall information accuracy of k during time [gk, t
′].

5.4.4 Formulation of the Multi-Drone Waypoint Scheduling Prob-

lem (MWSP)

We next formulate the Multi-Drone Waypoint Scheduling Problem (MWSP) for scheduling

N drones to fulfill monitoring tasks K by visiting a set of waypoints W during time [t0, t0+T],

where t0 is the current scheduling time and T is the plan duration. The drones depart from

their initial waypoints [win(1), . . . , win(N)] at time t0 and are required to return to a depot w0

79

by t0 + T .

We define a boolean matrix X = [xn,s
i,j], where wi, wj ∈ W, n ∈ [1, N] and s ∈ [1, S], to

represent the waypoint sequences of all drones. In particular, xn,s
i,j = 1 indicates that drone

n flies from waypoint wi to its s-th waypoint wj, and xn,s
i,j = 0 otherwise. Here, S represents

the maximal length of waypoint sequences of all drones.

Given X, we write the arrival times of drone n at waypoints as Tar
n (X) = [T ar

n (1), ...T ar
n (S)],

where T ar
n (s) denotes the arrival time of drone n at its s-th waypoint, with s ∈ [1, S] and

T ar
n (s) ∈ [t0, t0 + T]. It is computed by:

T ar
n (s) = t0 +

s∑
s′=1

∑
wi,wj∈W

(
d(⟨wi, wj⟩)

Rfly

+ Tloi)x
n,s′

i,j , (5.3)

In this equation, Rfly is the drones’ flying speed, and Tloi is the loiter time at each waypoint.

Then, we can derive OAn
k(T ar

n (s),X), which indicates the observation accuracy of task k

when drone n arrives at each waypoint by:

OAn
k(T ar

n (s),X) =
∑

wi,wj∈W

C(wj, ok)A(dwj
, ek)xn,s

i,j . (5.4)

We also let OAn
k(t,X) = 0, ∀t /∈ Tar

n (X). Thus, we can redefine OAk(t) of Eq. (5.1) by consid-

ering the possibility that multiple drones cover a area simultaneously. The new observation

arraucy is:

OAk(t,X) = max
n∈[1,N]

{OAn
k(t,X)} (5.5)

Given X, the information accuracy of each task k ∈ K during t ∈ [t0, t0 + T] can be written

80

as:

IAk(t,X) =

IAk(T le

k (t0))(1− ηk)(t0−T le
k (t0)), t = t0;

maxn∈[1,N]{IAk(T le
k (t))(1− ηk)(t−T le

k (t)),OAn
k(t,X)}, t > t0.

(5.6)

Considering that tasks K may be generated or fulfilled before the scheduling time t0, MWSP

aims to schedule multiple drones during [t0, t0 + T] to improve the AUC of all tasks within

t ∈ [gk, t0 + T]. This can be written as:

∫ t0+T

t=gk

IAk(t,X)dt =

∫ T le
k (t0)

t=gk

IAk(t)dt +

∫ t0+T

t=T le
k (t0)

IAk(t,X)dt. (5.7)

Here, we assume the state tracker in the drone coordinator who is continuously tracking the

monitoring history provides
∫ T le

k (t0)

t=gk
IAk(t)dt, T le

k (t0), and Rk(T le
k (t0)) of all monitoring task

K at each scheduling time t0. In this way, MWSP takes the various completion status of

tasks at t0 into account when performing waypoint scheduling.

81

With above notations, we formulate the MWSP as follows:

max min
k∈K
{ 1

σk

∫ t0+T

t=gk

IAk(t,X)dt
1

t0 + T − gk
} (5.8a)

s.t.
S∑

s=1

(
d(⟨wi, wj⟩)

Rfly

+ Tloi)
∑
wi∈W

∑
wj∈W

xn,s
i,j ≤ T ; (5.8b)

∑
wi∈W

xn,s
i,h ×

∑
wi∈W

xn′,s′

i,h ̸= 1,

∀wh ∈W \ {w0}, T ar
n (s) = T ar

n′ (s′), n ̸= n′; (5.8c)∑
wi∈W

∑
wj∈W

xn,s
i,j = 1; (5.8d)

∑
wj∈W

xn,1
in(n),j =

∑
wi∈W

xn,S
i,0 = 1; (5.8e)

∑
wi∈W

xn,s
i,0 ≤ xn,s+1

0,0 ; (5.8f)

∑
wi∈W

xn,s′′

i,j =
∑

wz∈W

xn,s′′+1
j,z , ∀s′′ ∈ [1, S − 1]; (5.8g)

xn,s
i,j ∈ {0, 1}; (5.8h)

∀wi, wj ∈W, s, s′ ∈ [1, S], n, n′ ∈ [1, N].

The objective function in Eq. (5.8a) maximizes the minimal weighted information accu-

racy across all monitoring tasks, where 1
t0+T−gk

is a normalization factor. The intuition of

introducing weight 1
σk

here is to provide higher information accuracy to more significant

tasks. The constraint in Eq. (5.8b) ensures that the total time spent by each drone is within

the plan duration T . Eq. (5.8c) guarantees that at most one drone reaches a waypoint at

a specific time, which avoids collisions and interference among drones. A drone visits one

waypoint in each step, which is captured by the constraint in Eq. (5.8d). The constraints

in Eqs. (5.8e) and (5.8f) set the initial and final waypoints for all drones. Eq. (5.8g) ensures

the connectivity of the generated waypoint sequences. Last, Eq. (5.8h) specifies that xn,s
i,j is

a boolean value. MWSP is NP-hard, which can be proven through reducing the Traveling

82

Salesman Problem (TSP) [75] to a special case of MWSP, which has a single drone, only one

kind of task with ηk = 0, a constant observation distance with accuracy 1, t0 = gk for all

tasks and plan duration T =∞.

The max-min objective function in Eq. (5.8a) strives for fairness, as additional resources are

always allocated to the task with the lowest information accuracy. Nonetheless, alternative

objective functions are possible, such as

max
∑
k∈K

∫ t0+T

t=gk

σkIAk(t,X)dt
1

t0 + T − gk
, (5.9)

if the average information accuracy is more important than the max-min fairness. If not

otherwise specified, we adopt the max-min objective function throughout the work because

the worst-case scenario carries much higher weight in high-rise fires.

5.5 Proposed Algorithms for MWSP

Given the real-time nature of the MWSP problem and associated complexity (NP-hard),

we propose to solve this problem by two steps, in each of which a sub-problem is solved

heuristically. The first step solves the Allocation of Monitoring Tasks (AMT) problem,

which allocates a set of monitoring tasks to each drone. The second step solves the Dynamic

Waypoint Scheduling (DWS) problem, which determines a waypoint sequence for each drone

to visit. Fig. 5.3 illustrates the workflow of our MWSP solution, which is detailed in the

following.

83

LU
Algorithm

Return
Task

allocation

Initial tasks or
updates

Initial tasks

Task
allocation

Updates

Step 1: Get initial
allocation

Step 2: Allocation
improvement

AMT Algorithm

…

Allocation of
Monitoring Tasks

(AMT)

Start

Wait for the input of
tasks, or updates of tasks

or number of drones

Waypoint sequence
for drone 2

Task allocation

Dynamic Waypoint
Scheduling (DWS)

Waypoint sequence
for drone 1

Dynamic Waypoint
Scheduling (DWS)

Return

Step 1:Waypoint
selection

Step 2: Waypoint
scheduling

DWSF Algorithm

Waypoint sequence
for next plan duration

Figure 5.3: Workflow of our proposed algorithms.

5.5.1 Allocation of Monitoring Tasks: AMT

Given monitoring tasks K, we first derive the set of monitoring areas: MK where MK ⊆M

and ok ∈ MK ∀k ∈ K. The AMT problem spatially allocates MK into N disjoint subsets

M′ = {M′
1, ...,M

′
N}, with MK =

⋃N
n=1M

′
n. Given M′, we allocate all monitoring tasks

K into N disjoint subsets represented by K′ = {K′
1, ...K

′
N} with K =

⋃N
n=1K

′
n. Here

K′
n is the set of tasks assigned to drone n which are within the monitoring area M′

n, i.e.,

K′
n = {k | k ∈ K, ok ∈M′

n}.

We employ the graph structure to represent the spatial correlations among monitoring areas.

More specifically, we define a complete graph G = (MK,E), where the nodes indicate the

monitoring areas MK, and edges E = {⟨mi,mj⟩ | mi,mj ∈ MK} are the pairwise links

between any two monitoring areas. We use the center of area m ∈ MK to represent each

node location, and d(⟨mi.mj⟩) to denote the edge length which equals to the 3-D path length

84

between two areas considering building as obstacles2.

Based on MWSP’s objective function in Eq. (5.8a), we come up with two intuitions. First,

the optimal task allocation minimizes the overall (maximum) time consumption of drones

for traveling among areas to accomplish all their allocated tasks. Second, it offers more

observation opportunities to the areas with monitoring tasks having higher significance or

frequency. With the above intuitions, we define the desired number of observations of area

mi ∈ MK throughout plan duration T as B(mi), which is a function of task significance

and frequency. More precisely, we write it as:

B(mi) =

1, maxk∈K,ok=mi

{ηk} = 0,∃k ∈ K : ok = mi;

⌈T ×maxk∈K,ok=mi
{σk × ηk}⌉, otherwise.

(5.10)

Then, we define the expected time consumption for monitoring set M′
n ∈ M′ as the time

drone n spends for observing all monitoring tasks for desired numbers of times as:

ET (M′
n) =

∑
mi∈M′

n

B(mi)(
2× d(⟨mi, m̂n)⟩

Rfly

+ Tloi), (5.11)

where 2×d(⟨mi,m̂n)⟩
Rfly

is the round trip time between m̂n and mi, Tloi is the loitering time of

drones at each monitoring area, and m̂n is the center node of M′
n with

m̂n = arg minmi∈M′
n
{

∑
mj∈M′

n

B(mj)d(⟨mj,mi⟩)}.

With the above notations, we write the objective of the AMT problem as:

min max
M′

n∈M′
{ET (M′

n)}}. (5.12)

2Distance d(⟨mi.mj⟩) between two areas is calculated in the same way as that between two waypoints
defined in Sec. 5.4.1.

85

The AMT problem is also NP-hard, which can be proven by reducing a load balancing

problem [116] to it by setting d(⟨mi,mj⟩) for all mi,mj ∈MK to the same value. Hence, we

propose a heuristic AMT algorithm as follows.

First, AMT algorithm solves the k-medoids clustering problem [193] for an initial alloca-

tion. Here, we modify the objective function of the traditional k-medoids problem into the

desired observation times, i.e., min
∑N

n=1

∑
mi∈M′

n
B(mi)d(⟨mi, m̂n⟩). We then augment the

Voronoi iteration method [164] to solve the k-medoids clustering problem. That is, instead

of randomly selecting initial medoids, we choose the first medoid m̂1 from the nodes with the

highest B(mi), and iteratively select the next medoid by letting m̂i+1 = arg maxmi∈MK\{m̂}

B(mi)d(⟨mi, m̂i⟩). Second, we perform a local search to adjust the initial allocation for re-

ducing the AMT objective value through multiple iterations. In each iteration, we generate

Ne neighbors of the current allocation in one of the two ways: (i) transfer, in which we move

one area from a subset to another, and (ii) swap, in which we exchange two areas originally

allocated to two subsets. In either transfer or swap, we identify the best neighbor which

can minimize the AMT objective function and use it as the allocation for the next iteration.

We randomly select the augmentation ways in each iteration and stop whenever we exceed a

user-specified maximal running time Mu, or no neighbor can improve the current allocation.

The pseudo code of our AMT algorithm is given in Algorithm 3.

We note that it may not be worth to rerun the AMT algorithm from scratch every single

time. For example, when the fire spreads, the ICS may add additional monitoring tasks. An

efficient Local Update (LU) algorithm which greedily allocates the new tasks to the drone

that leads to the minimal increase of the AMT’s objective value. The LU algorithm can

also be applied when changing the number of the drones. When drones are out of power,

we reassign their tasks to the remaining drones also using the same LU algorithm. When

additional drones are added, we run the AMT algorithm using the current allocation as the

initial allocation.

86

Algorithm 3: Allocation of Monitoring Task (AMT)

Input: MK, K, number of drones N . The number of neighbors Ne in each
iteration, running time limit Mu

Output: Allocation of areas M′ = {M′
1, ...,M

′
N}, and task allocation:

K′ = {K′
1, ...,K

′
N}.

/* Step 1: Get the initial allocation. */
1 Greedily select the initial medoids {m̂1, ..., m̂N}.
2 Get the initial clustering: M′ = {M′

1, ...,M
′
N} using Voronoi Iteration [164].

3 Get B(mi) for all mi ∈MK by Eq. (5.10).
4 Min← maxM′

i∈M′{ET (M′
i)}; Sum←

∑
M′

i∈M′{ET (M′
i)}.

/* Step 2: Allocation improvement. */
5 while RunTime ≤Mu do
6 num← 0; Shuffle list M′ in random order.
7 if Random() < 0.5 then
8 for pair (M′

i,M
′
j) ∈M′ and m′

a ∈M′
i do

9 Get M′′ by transferring ma to M′
j; num + +.

10 Min ′ ← maxM′
i∈M′′{ET (M′

i)}
11 Sum′ ←

∑
M′

i∈M′′ ET (M′
i).

12 if Min ′ < Min or (Min′ = Min and Sum ′ < Sum then
13 BestNeigh ←M′

new; Min←Min′; Sum← Sum′.
14 if num = Ne then break

15 else
16 for pair (M′

i,M
′
j) ∈M′ and ma ∈M′

i and mb ∈M′
j do

17 Get M′′ by swapping ma with mb; num + +.
18 Get BestNeigh by running lines 10–14.

19 if BestNeigh ̸= None then M′ ← BestNeigh. else break

20 Get K′ based on M′; Return M′ and K′.

The complexity of AMT algorithm is dominated by the local search method. The computa-

tional complexity for getting and evaluating a neighbor is O(|MK|2) and thus the complexity

of the whole AMT algorithm is O(ImaxNe|MK|2), where Ne is the number of neighbors in

each iteration, and Imax is the number of iterations (within Mu). Suppose there are Na ad-

ditional monitoring areas to be added, the complexity of the LU algorithm is O(Na|MK|2).

87

5.5.2 Dynamic Waypoint Scheduling: DWS

Upon getting task allocation K′ = {K′
1, ...,K

′
N} from the task allocation step, the waypoint

sequences of individual drones are computed in parallel for upcoming duration between t0

and t0+T . The DWS problem generates the waypoint sequence for each drone n to maximize

the weighted AUC of tasks in K′
n. Its objective function can be written as:

max min
k∈K′

n

{ 1

σk

∫ t0+T

t=gk

IAk(t,Y)dt
1

t0 + T − gk
}. (5.13)

We note that the DWS problem is essentially the MWSP problem with a single drone (N =

1). Therefore, its NP-hardness can be proved similarly. Hence, we propose a heuristic DWS

algorithm which has two main steps.

In the first step, DWS algorithm adopts a classic greedy algorithm of the set cover problem

[40] to select the waypoints. More precisely, we select the next waypoint that can cover

the most new areas until all assigned monitoring areas are covered. Once the waypoints are

chosen, we go to the Step 2, which greedily schedules the waypoints to maximize the weighted

minimum AUC of all tasks from gk to t0 + T using Eq. (5.6). In particular, we iteratively

append the waypoint that maximizes the ratio of the improvement of the minimum waypoint

AUC and the flying time. To break ties on the minimum weighted AUCs, we append the

waypoint that maximizes the ratio between the number of tied tasks and the flying time.

Upon appending one more waypoint, we update the AUCs of individual tasks before getting

into the next iteration. The pseudocode of our DWS algorithm is shown in Algorithm 4.

Besides, we propose a DWS variant algorithm for faster coverage. The idea is to visit the

monitoring tasks with 0 AUCs first before considering other tasks. More concretely, each

drone flies to the waypoint that maximizes the ratio between the covered tasks and the flying

time. Once no monitoring task has 0 AUC, we run DWS algorithm to complete the waypoint

sequence. We refer to this algorithm as DWSF.

88

Algorithm 4: Dynamic Waypoint Scheduling (DWS)

Input: Task K′
n, monitoring areas M′

n, observation accuracy AD×E, waypoint set
W, observation distance dw for w ∈W, coverage matrix C, observation
distances D.

Output: Waypoint sequence P for drone n within [t0, t0 + T].
1 P← [win(n)]; t← t0, w

′ ← win(n), W
′ = ∅

/* Step 1: Select waypoints to cover all areas. */
2 for d ∈ D do
3 M′′

n ←M′
n; Wd ← {wi|wi ∈W, dwi

= d}.
4 while M′′

n ̸= ∅ do
5 Get wi = arg maxwa∈Wd

{|{m|m ∈M′′
n, C(wa,m) = 1}|}.

6 W′.add(wi); M
′′
n ←M′′

n \ {m|m ∈M′′
n, C(wi,m) = 1}.

/* Step 2: Waypoint scheduling. */
7 while t + d(⟨w′, w0⟩)/Rfly < t0 + T do
8 Min ← mink∈K′

n
{ 1
σk
AUC(k)}.

9 M̂← {ok|k ∈ K′
n, AUC(k)

σk
= Min}; Count ← |M̂|.

/* Predict the AUC if drone visits a waypoint. */

10 for wi ∈ {w|w ∈W′, t + d(⟨w′,w⟩)+d(⟨w,w0⟩)
Rfly

+ Tloi ≤ t0 + T} do
11 Update AUC ′(k) with k ∈ {k′|k′ ∈ K′

n, C(wi, ok′) = 1} if drone n visit wi

next by Eq. (5.6).
12 Min[i]← mink∈K′

n
{ 1
σk
AUC ′(k)}.

13 M̂[i]← {ok|k ∈ K′
n, AUC ′(k)/σk = Min[i]}.

14 Count [i]← |M̂[i]|.
/* Select the next waypoint. */

15 if minwi∈W{Min[i]} < Min then

16 ρ← arg maxwi∈W′
Min−Min[i]

d(⟨w′,wi⟩)/Rfly+Tloi
.

17 else ρ← arg maxwi∈W′
Count−Count [i]

d(⟨w′,wi⟩)/Rfly+Tloi
.

/* Update t, w′, P and the AUC of tasks. */
18 t← t + d(⟨w′, ρ⟩)/Rfly + Tloi; w

′ ← ρ; P.add(ρ).
19 for k ∈ {k′|k′ ∈ K′

n, C(ρ, ok′) = 1} do
20 Update lk(t), Rk(lk(t)) and AUC(k) by Eq. (5.6).

21 return P

89

The computational complexity of the waypoint selection step of DWS is O(Nc |W|2), where

Nc is the maximum number of areas a waypoint can cover. The complexity of the waypoint

scheduling step of DWS is O(T |W′| |K|), where W′ is the number of selected waypoints.

The time complexity of the DWS and DWSF algorithms is O(Nc |W|2 + T |W′| |K|).

5.6 Evaluations

In this section, we evaluate the performance of our proposed algorithms for solving the

Allocation of Monitoring Tasks (AMT) and Dynamic Waypoint Scheduling (DWS) problems.

We refer to these two problem as allocation and scheduling problems in our discussion for

brevity.

5.6.1 Simulator Implementations and Setup

We have implemented a detailed simulator in Python, which is modularized and can work

with different allocation and scheduling algorithms. Because Multi-agent Traveling Salesman

Problem (MTSP) is a special case of our MWSP, we choose representative near-real-time

MTSP techniques as our baseline algorithms for comparison. More specifically, we have

implemented the K-Medoids (KM) algorithm [193] to compare with our AMT algorithm

for solving the task allocation problem. The KM algorithm clusters monitoring areas using

Euclidean distance. For the waypoint scheduling problem, in addition to our proposed DWS

and DWSF algorithms, we also have implemented: (i) the Minimum Improvement (MI)

algorithm, which greedily selects the waypoint that improves the task with the lowest AUC

in each iteration, (ii) the Nearest Neighboring (NN) algorithm, which generates a recurring

TSP tour using a nearest-neighboring approximation [70], and (iii) the Minimum Spanning

Tree (MST) algorithm, which also generates a recurring TSP tour using a minimum spanning

90

tree approximation [85]. We consider all pairs of the allocation and scheduling algorithms,

as illustrated in Table 4.1.

Table 5.4: Considered Algorithmic Combinations

Allocation
Scheduling

DWS DWSF MI NN MST

AMT AMT-DWS AMT-DWSF AMT-MI AMT-NN AMT-MST
KM KM-DWS KM-DWSF KM-MI KM-NN KM-MST

We estimate the observation accuracy levels of several concerned events using the experiment

results in the literature [122, 45]. Table 5.5 gives the estimated observation accuracy of five

representative events. For realistic simulations, we consider a building with 12 floors and 384

windows, as illustrated in Fig. 5.4. For each simulation, several rooms are randomly chosen

as the fire sources. Each room has a 10% probability to have humans, and each window has

a 5% probability to be open. We simulate the fire dynamics using the fire spread model with

recommended parameters [46]. Moreover, humans may be trapped in a room that is close to

a fire scene. Otherwise, humans randomly leave rooms with random states. If not otherwise

specified, we generate random states using normal distributions.

Figure 5.4: The building used in our sim-
ulations.

Table 5.5: Observation Accu-
racy

Event Acc. Acc.
(ek) A(15, ek) A(5, ek)
Fire 0.70 0.99
Fire

0.38 0.89
Intensity
Human 0.69 0.98
Human

0.37 0.90
Activity

Open
0.32 0.80

Window

91

Table 5.6: Task Types

Type Event (ek)
Sig. Fre.
(σk) (ηk)

1 Fire 1 0.2
2 Fire 3 0.5

3
Fire

2
0.5Intensity

4 Human 1 0.25
5 Human 3 0.5

6
Human

2
1Movement

7 Open Window 1 0.2
8 Open Window 3 0.5

Table 5.7: Simulation Parameters

Para. Value Para. Value
Rfly 3 m/s Tloi 5 s
D 5 m, 15 m Ne 100
fH
5 3.26 m Ts 30 s

fW
5 2.18 m fW

15 9.79 m
fH
15 6.54 m Mu 40 s

According to the practical monitoring requirements [218], we split the whole drones surveil-

lance process into two phases: discovery and monitoring phases. During the discovery phase,

the ICS strives to get an overview of the high-rise fire scene by detecting fires, humans, and

open windows in the building. Next, we enter the monitoring phase, except for the above

tasks, ICS also monitors the changes of the fire intensity and tracks the human movements.

We set following rules to generate monitoring tasks, based on the task types in Table 5.6.

(a) During discovery phase, the types 1, 4, 7 tasks are added at all windows in the building.

(b) If a fire source is reported, types 2, 5, and 8 tasks are added for all windows on that

floor and the floor above.

(c) If fire is reported in a room, type 3 tasks are added at the room’s windows; if humans

are detected in a place, types 6 tasks are added for covering windows there.

(d) If human is no longer observed in a room, types 4, 5 or 6 tasks in that room are removed;

if open window is detected, types 7 and 8 tasks are removed.

We run each simulation for 30 minutes, with each plan duration is T = 5 minutes. During

the simulation, we record all events in the perception table and check its state every 1 minute

to generate new tasks for the new perceptions. The recorded events include the presence

of fires, humans, open windows in the discovery phase. In addition, the changes of fire

92

intensity and human movements are also recorded in the monitoring phase. For the overall

performance per simulation run, we adopt a sampling rate of Ts. The performance metrics

in our simulation are:

• Missing events: The number of undetected events based on the perception table at each

time instance.

• Minimum weighted AUC: MWSP’s objective function.

• Weighted accuracy: We compute the minimum accuracy among the tasks in each signifi-

cance level. We then compute the weighted accuracy across all significance levels.

• Weighted reliability: We consider a task is reliable if its accuracy exceeds a threshold

Θd. We then calculate the ratio of reliable tasks in each significance level. We define

weighted reliability as weighted ratio across all significance levels.

• Running time: Computation time of the algorithms.

Table 5.7 summarizes the key parameters adopted in our simulations. We also vary several

parameters in our simulations, including the number of tasks between 96 and 314, and the

number of drones between 3 and 12 to study the scalability of our solution. Our simulation

parameters are empirically chosen for the high-rise fire situation at hand. For example, we

stop increasing the number at 12 drones since the resulting missing events are very few. For

statistically meaningful results, we repeat each experiment 25 times and report the average

results with 95% confidence intervals if applicable.

5.6.2 Simulation Results

Scheduling algorithms. Figs. 5.5 and 5.6 compare our proposed DWSF with other base-

line algorithms when using the AMT algorithm for task allocation. We give sample results

93

(a)

0 5 10 15 20 25 30
Time (minute)

0.00

0.05

0.10

0.15

0.20

0.25

M
in
im

um
 W

ei
gh

te
d
AU

C

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(b)

0 5 10 15 20 25 30
Time (minute)

0

2

4

6

8

10

W
ei
gh

te
d
Ac
cu
ra
cy

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(c)

0 5 10 15 20 25 30
Time (minute)

0

2

4

6

8

10

12

14

W
ei

gh
te

d
Re

lia
bi

lit
y

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(d)

Figure 5.5: Performance of DragonFly throughout a sample simulation on: (a) accumulative
missing events, (b) minimum weighted AUC, (c) weighted accuracy, and (d) weighted relia-
bility.

94

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

100

200

300

400

500

600

Ac
cu
m
ul
at
iv
e
M
iss

in
g
Ev

en
ts

(a)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0.00

0.02

0.04

0.06

0.08

M
in
im

um
 W

ei
gh

te
d
AU

C

(b)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

1

2

3

4

5

6

W
ei
gh

te
d
Ac

cu
ra
cy

(c)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

1

2

3

4

W
ei
gh

te
d
Re

lia
bi
lit
y

(d)

Figure 5.6: Performance of DragonFly across 25 runs on: (a) accumulative missing events,
(b) minimum weighted AUC, (c) weighted accuracy, and (d) weighted reliability.

95

from simulations with 5 drones and 177 tasks. Figs 5.5 reveal that our AMT-DWSF al-

gorithm always outperforms the baseline scheduling algorithms in all aspects throughout

a sample simulation run. Figs 5.6 report the overall performance from diverse scheduling

algorithms across 25 runs. These figures depict that, on average, the AMT-DWSF algorithm

achieves 33% fewer missing events, 39 times gain on weighted minimum AUC, 1.2 times gain

on weighted accuracy, and 2.8 times gain on the weighted reliability, compared with the

AMT-MST algorithm. Fig. 5.5 reveals that scheduling algorithms solely based on Euclidean

distance (NN and MST) cannot handle heterogeneous tasks at fire scenes. It is more evi-

dent in the monitoring phase (after about 10 minutes) when monitoring tasks have higher

heterogeneity. In contrast, the DWSF algorithm better accommodates the task heterogeneity

and exercises the trade-off between the coverage and accuracy for better performance. An-

other interesting observation on Fig. 5.5(a) is that the slope of accumulative missing events

is steeper when the simulation just starts. This is because the perception table is empty

initially; once fires, humans, and open windows are detected after the drones visited all

monitoring areas at least once, the missing events only occur when fire scene states change.

Fig. 5.5(b) also shows that the minimum weighted AUC is 0 during the first 8 minutes,

which indicates that not all tasks have been performed until the 8-th minute. Overall, our

proposed AMT algorithm performs well in both discovery and monitoring phases.

Allocation algorithms. Fig. 5.7 compares the performance of the two allocation algorithms

(AMT and KM) with two representative scheduling algorithms (DWSF and DWF). We

report sample results from simulations with 5 drones and 177 tasks. We omit the other

three scheduling algorithms since they give similar results. Figs. 5.7(a)–(d) present the

average performance results across the 25 simulations. Compared to KM, our AMT algorithm

always delivers fewer missing events, higher minimum weighted AUC (20% improvement on

average), higher weighted accuracy (16% increase on average), and higher weighted reliability

(46% boost on average) when working with DWS and DWSF algorithms. Fig. 5.7 reveals

the superior performance of our proposed AMT algorithms, compared to the baseline ones.

96

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

50

100

150

200

250

300

350

400
Ac
cu
m
ul
at
iv
e
M
iss

in
g
Ev

en
ts

(a)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0.00

0.02

0.04

0.06

0.08

M
in
im

um
 W

ei
gh

te
d
AU

C

(b)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

1

2

3

4

5

6

W
ei
gh

te
d
Ac

cu
ra
cy

(c)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

1

2

3

4

W
ei
gh

te
d
Re

lia
bi
lit
y

(d)

Figure 5.7: Impact of task allocation strategy on: (a) accumulative missing events, (b)
minimum weighted AUC, (c) weighted accuracy, and (d) weighted reliability.

Scalability of our proposed algorithm. We next consider larger MWSP problems with

different number of drones (between 3 and 9) and different number of tasks (between 96 to

314). First, we employ the AMT algorithm for the allocation problem and compare the per-

formance of scheduling algorithms in Fig. 5.8. Figs. 5.8(a) and (b) present the performance

of different scheduling algorithms under different number of drones. Both the figures reveal

that as the number of drones increases, our AMT-DWSF algorithm has fewer accumulative

missing events (by up to 42%), and higher minimum weighted AUC (by up to 110 times),

compared to the AMT-MST algorithm. Figs. 5.8(c) and (d) depict the statistics of the

various scheduling algorithms under different number of tasks. Our AMT-DWSF algorithm

97

3 5 7 9
Number of Drones

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac
cu
m
ul
at
iv
e
M
iss

in
g
Ev
en

ts

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(a)

3 5 7 9
Number of Drones

0

50

100

150

200

250

No
rm

al
ize

d
M

in
im

um
 W

ei
gh

te
d

AU
C AMT-DWSF

AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(b)

96 177 250 314
Number of Tasks

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac

cu
m

ul
at

iv
e

M
iss

in
g

Ev
en

ts

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(c)

96 177 250 314
Number of Tasks

0

50

100

150

200

250

No
rm
al
ize
d
M
in
im
um
 W
ei
gh
te
d
AU
C AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(d)

Figure 5.8: Performance of DragonFly (integrated AMT-DWSF algorithm) under: (a), (b)
177 tasks with 3 to 9 drones, (c), (d) 7 drones with 96 to 314 tasks. (a), (c) give normalized
accumulated missing events, and (b), (d) give normalized minimum weighted AUC.

98

always results in the lowest number of accumulative missing events (by up to 40%), and the

highest minimum weighted AUC (by up to 110 times) compared with those of the AMT-

MST algorithm. From Fig. 5.8, we validate that our proposed AMT-DWSF outperforms

other scheduling algorithms under diverse number of drones and tasks.

Next, we explore the performance of the AMT algorithm in different scenarios and report

the results in Fig. 5.9. Figs. 5.9(a) and 5.9(b) show the normalized value of the accumulative

missing events and the minimum weighted AUC by that of KM-DWS algorithms. These fig-

ures show that as the number of drones increases, the AMT algorithm always leads to fewer

missing events (by up to 15%), higher minimum weighted AUC (by up to 87%), compared

to those of the KM algorithm using the same scheduling algorithm. It also delivers higher

weighted accuracy (by up to 20%), higher weighted reliability (by up to 92%), compared with

the KM-DWS algorithm (figures not shown for brevity). Figs. 5.9(c) and 5.9(d) compare

the AMT and KM algorithms with 7 drones under the different number of tasks normal-

ized to the KM-DWS algorithm. These figures show that the AMT algorithm constantly

outperforms the KM algorithm when the number of tasks increases. For example, with 177

tasks, the accumulative missing events achieved by AMT-DWSF is only about 87% of the

KM-DWSF algorithm. AMT-DWSF also results in higher weighted minimum AUC (about

1.3 times) than theKM-DWSF, achieves higher weighted accuracy (about 1.2 times), and

higher weighted reliability (about 1.9 times) than KM-DWSF. Fig. 5.9 demonstrates that our

proposed AMT algorithm offers superior performance under different (larger) problem size.

We also observe that the performance gain of the AMT algorithm shrinks as the number of

tasks increases. This is partially due to the limited running time for the local search.

Last, we investigate the running time of our proposed algorithms. Here, we focus on the LU

algorithm, because the full-fledged AMT is only invoked once in each simulation, which can

be done offline in about 40 seconds. Fig. 5.10 reports the running time of the LU algorithm

plus the waypoint scheduling algorithms under diverse scenarios. The running times are

99

3 5 7 9
Number of Drones

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d
Ac

cu
m

ul
at

iv
e

M
iss

in
g

Ev
en

ts

AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(a)

3 5 7 9
Number of Drones

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

No
rm

al
ize

d
M
in
im

um
 W

ei
gh

te
d
AU

C AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(b)

96 177 250 314
Number of Tasks

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d
Ac

cu
m

ul
at

iv
e

M
iss

in
g

Ev
en

ts

AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(c)

96 177 250 314
Number of Tasks

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

No
rm

al
ize

d
M
in
im

um
 W

ei
gh

te
d
AU

C AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(d)

Figure 5.9: Impact of task allocation strategy under diverse problem sizes: (a), (b) 177 tasks
with 3 to 9 drones, (c), (d) 7 drones with 96 to 324 tasks.(a), (c) give normalized accumulated
missing events, and (b), (c) give normalized minimum weighted AUC.

100

3 5 7 9
Number of Drones

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ru

nn
in
g
Ti
m
e
(s
)

LU+DWSF
LU+DWS
LU+MI

LU+NN
LU+MST

(a)

100 150 200 250 300
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ru
nn
in
g
Ti
m
e
(s
)

LU+DWSF
LU+DWS
LU+MI

LU+NN
LU+MST

(b)

Figure 5.10: Total running time of the LU and scheduling algorithms under different numbers
of (a) drones and (b) tasks. Sample results from simulations with (a) 177 tasks and (b) 7
drones.

collected from an Intel i7 workstation. This figure clearly shows that our LU and DWSF

algorithms terminate within 0.6 second, which is negligible compared to the plan duration

that lasts for minutes. Moreover, from Fig. 5.10b, we also observe that the running time of

our LU and DWSF algorithms increases linearly to the number of tasks. Hence, Fig. 5.10

depicts that our LU and DWSF algorithms react fast even with larger problem size.

5.7 DragonFly Implementation

In this section, we present the implementation of our DragonFly system. We begin by

describing the system’s structure in detail and then proceed to explain the implementation

of each component. Furthermore, we conduct tests of our proposed waypoint scheduling

algorithms in a lab-based testbed using a real drone. We compare the results with baseline

algorithms to demonstrate the superior performance of our proposed approach.

101

5.7.1 System Architecture

The DragonFly system, as shown in Fig. 5.11, utilized drones equipped with RGB cameras

to fly over high-rise fire settings, collecting data, which is then transmitted to the Incident

Command Site (ICS) server. The ICS server tasks charge of data analysis, flight planning,

and offers a dashboard for visualizing fire status and task assignment. The data manager

Data Analyzer

Fire Sim.

WP Seq.

Drone

Status

& Data

ICS Server

Drone

Clients

Event

Database

Drone Status WP Seq.

Fire Sim.

Data

Manager

Task WP Seq.

Task

Event

Drone
Status
& Data

Data

Event &
Drone

Status &
Fire Sim.

Event

Data Event

Drone Coordinator

Fire Simulator

Dashboard & User Interface

Event Detector

Task

WP Seq.

Event
Sensor Data

Drone Status

Topic

Multi-drone

Waypoint Scheduling

Figure 5.11: System Structure of DragonFly System.

continuously processes this data to reflect the current situations through the dashboard. The

dashboard provides a user interface, enabling firefighters to specify monitoring tasks for the

drones. Together with the building structure, these monitoring tasks are sent to the drone

coordinator. The drone coordinator employs the AMT and DWSF algorithms to generate

precise waypoint schedules for each drone. These waypoint sequences are then transmitted

back to the data manager, which in turn sends them to the drone client. The drone client

is responsible for commanding the flight of the drones. Each drone periodically reports

the drone status, including GPS location and battery levels, along with images captured

at each waypoint. The data manager efficiently receives this data and then forwards the

drone status data to the Dashboard, providing real-time updates on the drone’s activities

and current state. Additionally, the captured images are transmitted to the data analyzer.

102

This system leverages the power of ZeroMQ, a robust pub/sub module, to facilitate data

communication. This allows drone clients to publish drone status and sensor data, while the

data manager efficiently subscribes to this valuable information. The data analyzer works

for analyzing the received images and promptly reports any detected events such as detected

fires or humans. This vital information is then rapidly updated on the dashboard, ensuring

that firefighters have access to the latest status of the high-rise fire scenario.

5.7.2 Prototype Implementation and Experiments

Lab-based testbed. Due to the inability to participate in real high-rise fire settings, we

created a lab-based testbed (see Fig. 5.12) and system prototype to evaluate the implementa-

tion and development challenges in DragonFly. We developed a mockup high-rise fire setting,

comprising a scaled building facade measuring 4 × 5 meters, featuring 8 windows. Two of

these windows were equipped with simulated fires, while some of the others were adorned

with curtains. We employ a DJI Tello drone, equipped with an RGB camera, to capture

images within our testbed. The drone’s motion is controlled by a laptop drone controller,

which receives waypoint sequences from an edge server and utilizes DJI SDK commands for

navigation. All captured data is transmitted to the edge server via a WiFi network.

We have implemented the ICS server on a Windows 10 laptop, hosting all components.

Additionally, we have set up a MongoDB-based database for long-term data storage in

a separate server on Ubuntu 20.04. To ensure efficient data transmission, we utilize the

ZeroMQ publish/subscribe model in the drone client to publish pictures captured by drones.

On the receiving end, the data manager subscribes to receive the data and forwards it to the

database and data analyzer. The data analyzer module integrates multiple image processing

approaches to detect various critical events in high-rise fires, including human presence, and

open window status using approaches in [67].

103

Drone with a camera

Building facades with 8 windows

Figure 5.12: Mock-up Building Facade with Fires

DragonFly dashboard. Moreover, we have developed the DragonFly dashboard using

dash 2.5.1, enabling users to track the dynamic status of high-rise fires, monitor the drone’s

position, and input tasks for mobile sensing. The dashboard includes three main pages as

shown in Fig. 5.13. The Current Status page displays real-time fire scene state on the window

box and the drone’s position around the building. The Add Tasks page enables users to add,

modify, and remove tasks by directly selecting the window box, providing the task attributes,

and clicking the button. The Prediction page provides users with the ability to view the

current fire status and future fire predictions generated from the Fire simulator, which is

based on the last fire events. Our testing environment includes Python 3.9, djitellopy 2.4.0,

paho-mqtt 1.6.1, pyzmq 22.3.0, MongoDB 5.0.9, and Mosquitto 1.6.9.

Real Drone Testbed Experiments. We performed a series of experiments in our testbed,

utilizing real drones, to evaluate the effectiveness of our proposed flight planning algorithm.

We simulated multiple high-rise fires in our mockup fire setting. To create a realistic scenario,

each window had a 20% chance of being opened and occupied. Additionally, we randomly

simulate fires in these windows and generate tasks using the rules described in Section 6.6.1.

Then, we planned the drone’s flight to fulfill those tasks using our DWSF algorithm and

104

(a) Screenshots of the dashboard, which provide show the current status of
high-rise building

(b) Screenshots of the dashboard, which provide UI to add/delete tasks.

(c) Screenshots of the dashboard, which show the future prediction of the high-
rise fire

Figure 5.13: Dashboard of DragonFly System

several baseline methods, namely NN, MI, and MST, which were introduced in Section 5.6,

to compare their performance

During the experiments, we set the speed of the drone as a constant value of 10 cm/s and

conducted a comparison between the actual flight time and that of the simulated drone.

The results, along with the real drone’s trajectory, are depicted in Fig. 5.14. Our findings

reveal that there are indeed some differences within 2 seconds in the speed of real drones and

our simulated drone, especially when the flight distance is short and the speed is high. To

105

1 2 3 4 5 6 7 8 9 10
Waypoint sequence

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ac
cu

m
ul

at
ed

 fl
ig

ht
 ti

m
e(

s)

Expexted flying time
Actual flying time

(a) (b)

Figure 5.14: Real implementation with one fire source: (a) Expected and real fly time (b)
Real trajectory with different algorithm

evaluate our real-world implementation of the DWSF flight planning algorithm, we compare

its performance with other baseline algorithms using several metrics, including Minimum

weighted AUC, Weighted accuracy, and Weighted reliability, as proposed in Section 5.6.

Additionally, we present the simulated results, assuming the drone follows a constant speed

during flight. The results, illustrated in Fig. 5.15 demonstrate the the superior performance of

our DWSF algorithm across the three metrics when compared to other algorithms. Notably,

we observe minimal errors in both real-world flights and expected outcomes. These promising

results serve as strong validation of the efficacy of our approach and highlight its potential

for practical application in high-rise fire monitoring scenarios.

5.8 Summary and Discussion

In this chapter, we designed Dragonfly, a framework for guiding drones to monitor dynamic

fire scenes. We formulated and developed techniques for solving the Multi-drone Waypoint

Scheduling Problem (MWSP) to have multiple drones continuously monitor high-rise fires

with both coarse- and fine-grained observations for optimal overall accuracy. The MWSP

106

DWSF DWS MI NN MST
0.0

0.1

0.2

0.3

0.4

W
ei
gh

te
d
Ac

cu
ra
cy

Expected
Real

(a)

DWSF DWS MI NN MST
0.0

0.1

0.2

0.3

0.4

0.5

W
ei
gh

te
d
Re

lia
bi
lit
y

Expected
Real

(b)

DWSF DWS MI NN MST
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
in

im
um

 W
ei

gh
te

d
AU

C

Expected
Real

(c)

Figure 5.15: Performance of our DWSF Algorithm in Real Implementation on (a) Weighted
Accuracy, (b) Weighted Reliability, and (c) Minimum Weighted AUC.

107

problem is NP-hard, and we proposed a two-step solution that first allocated tasks/regions

among drones, and then scheduled the assigned waypoints of each drone. Our extensive

evaluations demonstrated the superior performance of our solution under heterogeneous tasks

at a dynamic fire scene. In the upcoming chapter, our goal is to minimize human intervention

in drone-based monitoring procedures by enhancing system automation. To achieve this, we

intend to establish a control loop within the IoT system by integrating vision processing

techniques. This integration will enable the system to perceive the dynamic status of the

physical environment in real time. We plan to utilize formal logic to design rules that

represent high-level human monitoring requirements. Additionally, we will develop a multi-

drone flight planning procedure to guide drones in capturing data for monitoring large-scale

extreme conditions, even in areas with poor network conditions like wildfire monitoring.

Our strategy involves empowering drones to store data onboard when they lose network

connectivity and upload it when the network connection is reestablished, particularly in such

scenarios. Our ultimate aim is to optimize the flight planning of drones, thereby improving

both the quality of captured data and sensor coverage.

108

Chapter 6

DOME: Drone-assisted Monitoring of

Emergent Events For Wildland Fire

Resilience

This chapter further explores the integration of on-demand drone mobility into IoT systems

for monitoring emergent events, aiming to improve both sensing and network capabilities.

We introduces DOME, a drone-assisted monitoring system specifically designed to gather

real-time data for monitoring emergent and evolving events, with the goal of enhancing situ-

ational awareness. Our driving use case is the prescribed burn event (Rx fire), which involves

man-made wildland fires used to reduce hazardous fuels in forests. DOME coordinates the

use of multiple heterogeneous drone platforms to support the observation of emergent physi-

cal phenomena (e.g., fire spread) by leveraging domain expert input and physics-based mod-

eling/simulation methods. We propose an executable rule-based system for drone task gen-

eration; here, a high-level mission specification utilizes physics-based models for fire spread

prediction and automatically generates monitoring instructions with locations, periods, and

frequency for drones. DOME integrates algorithms for task allocation (mapping tasks to

109

drones) and flight path planning while considering trade-offs between sensing coverage and

accuracy. In addition, DOME will guide in-flight drones to store and upload data under

challenged communication settings (out of transmission range, external signal blocking by

trees).

6.1 Chapter Overview

This chapter examines techniques to monitor dynamic and emergent events for community

safety. In general, an emergent event is a planned or unplanned scenario with evolving

activities occurring in a space over a timespan - often involving humans, nature, and infras-

tructure. Examples include large sporting events, military activities, or regions impacted by

emergencies such as earthquakes, fires, or floods. In mission-critical scenarios, monitoring

ongoing events and understanding their evolution is critical to ensure human safety, mitigate

property loss and reduce ecosystem impacts.

Wildland fires are an ongoing threat to those living in rural areas and at the wildland-urban

interface, where homes, communities, and wildland vegetation meet or intermingle [202].

From 2012 to 2021, the US had an average of 61,289 wildfires, impacting ∼7.4 million acres

annually. In addition, reports from the USDA Forest Services indicate rapid growth within

the wildland-urban interface (WUI) in the last decade, with an increase in 33% more land

area occupied, 97% of which constitute new homes. Multidisciplinary efforts are made to

prevent or reduce the impact of WUI fires, including meteorological reports, drought moni-

toring, vegetation status monitoring, fire suppression actions, and post-fire recovery strate-

gies [8]. Thus, reliable and timely access to information is required to take action under

extreme conditions. However, gaining situational awareness is challenging in rural or re-

mote wildlands and WUI communities with limited infrastructure. Existing technologies for

monitoring wildland fires and ambient conditions include remote sensing/satellite imagery

110

and in-situ wireless sensor networks [48]. While helpful, these approaches have practical

limitations, such as delays, coarse data resolution and maintenance difficulties due to fire

damage [202]. Today, advances in sensing, mobility, and computing capabilities have made

low-cost aerial sensing technologies such as unmanned aerial vehicles (UAVs) or drones feasi-

ble and suitable in gathering data for Wildland fires [69, 158] By serving as “eyes in the sky,”

data obtained from carefully coordinated drones equipped with sensors have the potential

to enable continuous monitoring of mission-critical events.

In this work, we utilize a driving use case from the wildfire resilience domain to address

issues of effective drone-based monitoring for emergent events. We focus on prescribed (Rx)

fires, an important tool used by forest services to manage wildland fires today. Rx fires are

controlled burns that experts execute under specific weather conditions to reduce hazardous

fuels that can cause future wildfires. In addition, Rx burns are beneficial in restoring healthy

ecosystems by removing species that threaten the ecosystem, thus promoting the growth of

trees, wildflowers, and other plants [21]. However, inherent risks associated with Rx fires

include their potential escape from their planned region, which can turn them into wildfires.

For example, the 2012 Lower North Fork Escape fire in Schell Creek Range [223] resulted

in multiple civilian casualties, destroyed 27 residences, and caused $11.3 million in property

damages. Needless to say, fine-grained, real-time monitoring of Rx fires is critical to its safe

execution and consequent adoption at scale in WUI communities. With these concerns, we

propose a novel system, called DOME, for supporting drone-assisted Rx fire monitoring,

in which multiple diverse drones with sensors (e.g., visual and thermal cameras) effectively

collect data above the burn sites to monitor user-specified targets. The DOME system

utilizes a physics-based model (for fire prediction), user-specified rules, and perceived fire

status to automatically develop detailed drone instructions by generating a series of tasks

to specify the monitoring locations, time, and targets. Then, DOME plans the flights of

multiple drones by developing waypoint sequences to guide them to fulfill tasks. The flight

planning aims to address the trade-off between data quality and coverage by maximizing

111

task accomplishment and improving the acquisition data resolution. DOME can also handle

network interruptions between drones and the ground controller (GC) by allowing drones to

transmit data in a store-and-upload manner.

Specific contributions of this chapter are: i) the design of DOME, a drone-based monitoring

system (§6.2), ii) design of an automatic and flexible task generation procedure to generate

drone monitoring instructions based on given physics-based models and user-defined rules

(§6.3), iii) formulation of the multi-drone flight planning (MFP) problem; and a two-step

approach to solve it effectively (§6.4,§6.5), iv) implementation of the DOME prototype and

thorough evaluation of our proposed algorithms in Rx burn use cases (§6.6).

6.2 Problem Definition and Approach

We begin by providing the context for Rx fire use case. An Rx fire is coordinated by a

burn boss who serves as an incident commander and makes decisions during the burn. Burn

bosses develop burn plans that pinpoint burn sites, time of burn, and ignition strategy;

they assess the potential of an escaped fire and strategies to respond in a timely manner.

Situational awareness is assimilated from a number of factors - status of wind, fire spread,

spot fires, ember transport, and firefighter mobility to low-level observation parameters,

such as vegetation status, fire flame length, and fire intensity. Planning drone usage for fire

monitoring in a Rx fire is complex; it requires a systematic approach to guide fire parameter

observation, drone placement, and task scheduling.

Opportunities and challenges in Rx fires. In the past year, we conducted multiple drone

surveys during Rx burns within the Blodgett Forest Research Station as shown in Fig 6.1. We

highlight some observations about executing Rx fires that present unique opportunities and

challenges for drone usage. First, Rx fires are human-induced and planned; these planned

and controlled nature of these burns enables us to access burn site information, which can

112

Figure 6.1: Our Previous Rx Burns.

be used to predict fire behavior using physics-based models to guide real-time monitoring.

Second, multiple features must be monitored during Rx fires, including fire rate of spread,

flame length, and location of firefighters and ground personnel. These monitoring targets

place different demands on sensors, data quality, and observation frequency. In our Rx burn,

we used multiple drones (DJI Matrice 300 RTK and DJI Mini 3) with diverse payloads for

capturing a variety of information. For example, RGB images are used to localize fires and

humans; the multispectral sensor provides information on vegetation health, and the thermal

sensor captures data on fire intensity within the firefront. Furthermore, data quality needs

also vary - data used for determining fire intensity require higher-resolution thermal imagery

compared to that used for fire detection [129]. Similarly, improving RGB image resolution

allows us to improve object detection results with more granular object recognition outcomes

[3], In practice, there are coverage/accuracy tradeoffs since the drone’s coverage will be

reduced with a lower altitude flight but with higher spatial resolutions. This tradeoff between

higher spatial resolution and a larger field of view is of concern during data collection. Diverse

monitoring requirements point to the need for heterogeneous drones that have varying flying

speeds and are equipped with different sensors and networking capabilities. In addition,

drones may connect to their ground controller (GC) through wireless techniques such as

WiFi, proprietary technologies such as DJI’s Lightbridge, or cellular networks [234]. These

113

communication technologies vary in data transmission range from 200 to 3000 meters [202].

An associated challenge in wildland scenarios is the lack of cellular network infrastructures in

forest regions; vegetation/trees influence signal attenuation and blocking characteristics even

when partially available. Drones typically have limited data transmission range [132] and

hence lose communication with the GC during flight. All the above challenges demonstrate

the need for a novel multi-drone flight planning approach, which aims to plan the motion of

diverse drones to continuously monitor multiple features in an emergent event (Rx fire).

Task Generator

Rules Fire Model Fire Status

Data Receiver
and Analyzer

Multi-Drone Flight Planner

Task Allocation Flight Planning

Drones

Data

Waypoint

Sequences

Tasks

Events

User
Ground Controller

Missions

Figure 6.2: Overview of DOME Framework.

Existing work and limitations. Next, we expand upon the related work in Section 2.4,

offering a more detailed examination of drone-based mobile sensing from a technical perspec-

tive. We assess related efforts in multi-drone planning and drone-based monitoring, which

have been explored in many fields, including operations research (OR) [142] artificial intel-

ligence (AI) [211], and robotics [50]. We discuss their suitability and limitations for the Rx

Fire monitoring scenario.

In OR literature, multi-drone flight planning problems have historically been generalized to

NP-hard vehicle routing problems (VRPs), where vehicles are coordinated to visit a set of

locations [142]. Here, popular methods such as branch-and-cut and dynamic programming

have been utilized by CPLEX [52] to obtain optimal solutions, but they are computation-

114

ally expensive and intractable. This has led to a rise in heuristic-based methods, such as

tabu search [10], genetic algorithms [66], evolutionary algorithms [161], and two-phase meth-

ods [125], which solve VRPs fast, but with suboptimal solutions. To add to the complexity,

domain-specific monitoring requirements and other constraints in RxFires are challenging to

model, which may lead to diminished situational awareness.

The multi-drone flight planning problem has been generalized to the cooperative multi-agent

planning problem (MAP) in the AI community; this approach involves multiple agents that

work together towards a specific goal [211]. The state-of-the-art solutions involve model-

ing MAP instances using Planning Domain Description Language PDDL or Multi-agent

PDDL [7], and applying PDDL solvers such as ADP [54] to obtain actions for agents. How-

ever, such solvers cannot adequately address potential anomalies during emergent events.

This has led to new heuristic-based methods for new domains, from the Rapidly-exploring

Random Tree approach for path planning [60] to horizon optimization and model predictive

control for cinematography [153]. Other efforts have leveraged auction-based task alloca-

tions [221], Markov decision processes [152], and Monte-Carlo tree search [150] for dispatch-

ing emergency responders to disaster zones. All of these solutions focus on specific use cases,

such as collision-avoidance path planning and dispatching agents to specific destinations. In

contrast to Rx fire scenarios, where repetitive monitoring, disconnected network, and data

quality issues dominate, such solutions are not directly applicable.

Related literature in robotics focuses on area coverage as a key objective in drone-based

monitoring. This is typically cast as the UAV coverage path planning problem (CPP), which

directs multiple UAVs to cover a specific area [36]. Subproblems considered in this regard

involve the efficient decomposition of non-uniform areas [184], heuristic algorithms [113]

for area partition among multiple UAVs, and waypoint generation and path planning for

coverage [19]. Although efficient area coverage is critical in path planning, other requirements

such as monitoring frequency, priority, and data quality, must be considered to support

115

monitoring for emergent events.

Drone-centric approaches have been explored in many applications showing strong potential

in enabling real-time disaster monitoring applications, such as building fire monitoring [135],

military missions [23] and environmental monitoring [177]. These settings often require

drones to monitor target areas with dynamic threats, and hostile environments [127]. In the

context of wildfires, the goals of such monitoring include tracking the fire perimeter [77] and

fire intensity deviation [168]. In contrast, automating drone-assisted monitoring in Rx fires

requires schemes to monitor multiple features with diverse data quality requirements and deal

with the diversity of drone configurations and sporadic network conditions. Furthermore, the

availability of the pre-existing burn plan can help guide operation better than a unplanned

wildfire scenario.

Our DOME Approach This work proposes DOME, a system to support multi-drone flight

planning for monitoring Rx burns, as shown in Fig. 6.2. DOME considers multiple drones

equipped with RGB and/or thermal cameras that continuously fly above the burn site to

collect and transmit data to a ground controller (GC) using wireless techniques such as WiFi

and DJI’s Lightbridge. To launch the DOME system, users (e.g., burn boss) need to provide

their monitoring requirements, consisting of a series of missions. A mission is defined by

the following: (i) mission type, which describes the type of information we should obtain

from sensing data; (ii) period, which provides a desired frequency to capture data for the use;

and (iii) significance, which enables the prioritization of missions. In this work, we consider

four types of missions which are: i) Burn site resource monitoring (BM): localizing

firefighters and checking the state of equipment at the burn site; ii) Fire detection (FD):

detecting fires; iii) Fire tracking (FT): tracking fire spread near the fire front; and iv)

Fire intensity inspection (FI): checking the intensity and the flame length of burning

fires. This, combined with period and significance details, enables users to specify complex

requirements in monitoring, e.g., check fire intensity (FI) every 3 minutes or prioritize fire

116

tracking (FT) to prevent escaped fires.

However, missions only provide coarse monitoring specifications; they do not give detailed

information about where (target locations) and when to monitor. To address this issue,

DOME leverages a task generator component (in Fig. 6.2) to automatically create a series

of tasks that are defined by a monitoring area (location) and duration (start/end time) for

an associated mission. Tasks are based on the currently observed fire status, user-defined

rules, and a fire prediction model. The generated tasks are given to the multi-drone flight

planner component (in Fig. 6.2), which schedules drone flight paths to fulfill the given

tasks in two steps: task allocation and flight planning. The task allocation maps all tasks

to drones, considering their heterogeneity in mobility, sensing, and networking capabilities.

Then, the flight planning step generates a waypoint sequence for each drone, which contains

a series of waypoints (3D coordinates) to visit. In this step, DOME additionally considers

potential network disconnections, during which drones must decide when to store/upload

data, and the tradeoff between data quality and coverage to improve task accomplishment

and acquisition data resolution. In this work, we assume that drones will be operating

under adverse networking conditions (i.e., disconnections), and thus will store collected data

until the connection can be established with a ground controller (GC), then transmit data.

The GC, comprised of a data receiver and analyzer, collects and processes the data, which

discloses the information required for the diverse missions. This information is then cast as

an event, which specifies state information, location and time. All events will be reported

to a task generator, which utilizes them to generate tasks for drones based on user-specified

rules and physical models.

Considering the intermittent network connection and dynamics of the fire status, DOME

periodically plans drone flights for a predetermined duration, called an epoch. To avoid

incomplete tasks throughout epochs, we set the epoch length to be a common multiple of

the periods for 4 types of missions. At the beginning of each epoch, the task generator

117

generates tasks in this epoch, and our flight planner plans the flights of drones to fulfill these

tasks. We require that all drones connect with the GC to obtain new flight plans (or return

for charging) at the end of each epoch.

6.3 Physics-inspired Task Generator

In DOME, we introduce a physics-inspired rule-based framework for drone task generation.

The entire emergent event duration is divided into epochs, and at the beginning of each epoch,

the task generator generates tasks that drones should execute in this epoch. This procedure is

called time-driven mode task generation. Each generated task is characterized by a mission,

the observation area, and its start and end times. To illustrate the task generation component

in DOME, we use the Rx fire driving use case. Here, the task generation procedure creates

the spatial-temporal requirements for four missions in §6.2: Fire detection (FD), Burn site

resource monitoring (BM), Fire tracking (FT), and Fire intensity inspection (FI). Fig. 6.3

illustrates the workflow of the DOME task generator for Rx fires with three components: i) a

fire state tracker captures the current state and records the updates of burn site status (based

on events reported by the data analyzer), ii) a fire predictor that predicts the evolution of

the event using physics-based fire models (FARSITE [68]) and iii) a rule engine with user-

specified rules and a rule interpreter (PyKnow [4]) for generating tasks based on the current

state (fire status) and future state (prediction results). The rule engine specifies and executes

production rules with an ’If’ segment indicating an event occurrence with facts (e.g., a fire

is detected) and a ‘Then’ segment with the triggered actions (e.g., ‘add task’) or consequent

facts. Two segments are connected by ‘⇒,’ and all facts and actions are expressed by

predicates in first-order logic.

Fire status tracker. To represent the fire status, we partition the whole burn site G into

multiple non-overlapping square grids and track the state of each grid cell g ∈ G. The state

118

Tasks for Missions

Current

Fire ShapeGrid Cell State

Rule Engine

EFA of Cells

Fire Status
Tracker

Rules Events
Cell State

Physics-based
Fire Predictor

Figure 6.3: Workflow of Task Generator.

s of each g ∈ G is one of {UK,B,NB,BO}, where Unknown (UK) denotes no data has

been received for this cell, Burning (B) indicates fires are detected within it, Not burning

(NB) indicates that the fire hasn’t arrived in this cell and Burnt out (BO) implies that

fires within it have burnt out. Our fire status tracker records the state of each g ∈ G at

each timestamp using State(g, t) in our database. The state of a grid cell g’s is updated

as our data analyzer reports events related to the existence of fire or no fire at g. These

events are expressed using facts Fire(g, t) and NoFire(g, t) and state updates are denoted

using ShiftState(g, t, s), as shown in Fig. 6.4. Here, Rules RST-1 and RST-2 imply that

g’s changes from UK to B or NB, depending on whether fires are detected. Rules RST-3

and RST-4 express the state shift from NB to B and B to BO, resulting from the newly

detected fires and the fire burnout. Note that BO can only transfer from B as fire burnout

occurs only at cells that detected fire before.

Fire prediction. DOME’s task rule engine triggers a fire predictor, which executes fire

simulations. The predictor first issues a query to obtain the current fire status from our

database; the current fire state serves as input to FARSITE [68], a physics-based fire sim-

ulator incorporating multiple models for surface fire, crown fire, spotting, etc. The burn

site’s landscape, weather conditions (e.g., wind speed, moisture), and the shape of ignition

fires are also provided a priori to FARSITE since Rx fires are planned. Information on ig-

119

nition fires (polygons) is derived by extracting the contour of the grid cells in state B into

polygons. FARSITE simulates fire growth by producing the fire perimeters (polygons) at all

specified time intervals. This is mapped into our grid-based burn site to obtain an estimated

fire arrival time (EFA) of each grid cell. If s fire does not arrive at a grid cell within the

simulation time, we set its EFA as “INF”. In each simulation, we compute the EFA of all

cells where fire has not arrived (under state NB) for the grid cells where fires have already

passed, we set their EFA to the fire simulation time.

Rule-based task generation. Next, we illustrate the time-driven task generation rules.

Prior to the burn, we assume that the state of every grid cell is UK (unknown). To bootstrap

DOME, the mission FD is initiated to scan the whole burn site. Note that DOME can allow

for external input to DOME regarding fire status; in this case, the mission FD will execute

for cells where the fire status is unknown (i.e., in state UK). Once burn site scanning is

completed, DOME begins to monitor the dynamic status of the burn site. Specifically, three

types of monitoring missions are initiated, which are FI for checking the fire intensity, BM

for monitoring human/equipment status, and FT for detecting potential fires in the regions

where fires are expected to arrive within the epoch. All tasks are periodically executed

during the epoch; each mission has a customized period to indicate its user-defined execution

frequency. We next introduce some basic notation for DOME’s rule-based task generation

framework, i.e., facts, actions, and task generation rules in Fig. 6.4. State transition rules

RST-1 to RST-4 are applied over time, which updates the state of grid cells continuously,

and Rules RT-1 to RT-5 support time-driven task generation. Here, we define fact Epoch(t)

to check if the current time t is at the start of an epoch and maintain a boolean variable

Monitor , which is false initially and turns true when we can initiate monitoring. The action

Add(m, g, st, et) generates a task for mission m ∈ {BM,FD,FT,FI} at g from time st to

et. We use action ∀g(GetEFA(g, t)) to trigger fire simulation and set EFA(g) as the latest

computed EFA of g ∈ G.

120

Facts :
• State(g, t) = s: it is true if g’s state at time t is s ∈ {UK,B,NB,BO}.
• Fire(g, t): it is true if fires are detected at g at time t.
• NoFire(g, t): it is true if no fire is detected at g at time t.
• Epoch(t): it is true if current timetis at the beginning of an epoch.
• Monitor : it is true if we have entered the monitoring phase.
Actions :
• ShiftState(g, t, s): change g’s state to s ∈ {UK,B,NB,BO} at time t.
• ∀g(GetEFA(g, t)): run FARSITE to obtain EFA of all grid cells

based on fire status at time t .
• Add(m, g, st, et): add a task for mission m ∈ {BM,FD,FT,FI}

at g with st and et as its start and end times.
RST-1 : ∀g ((State(g, t) = UK) ∧ Fire(g, t)⇒ ShiftState(g, t+ 1,B))
RST-2 : ∀g (State(g, t) = UK ∧NoFire(g, t)⇒ ShiftState(g, t+ 1,NB))
RST-3 : ∀g ((State(g, t) = NB) ∧ Fire(g, t)⇒ ShiftState(g, t+ 1,B))
RST-4 : ∀g ((State(g, t) = B) ∧NoFire(g, t)⇒ ShiftState(g, t+ 1,BO))
RT-1:∀g(¬Monitor ∧ (State(g, t) = UK) ∧ Epoch(t)⇒ Add(FD, g, t,∼))
RT-2 : ¬Monitor ∧ ∀g(¬(State(g, t) = UK)) ∧ Epoch(t)⇒ Monitor
RT-3 : Monitor ∧ Epoch(t)⇒ ∀g(GetEFA(g, t))
RT-4 : ∀g

(
Monitor ∧ (State(g, t) = B) ∧ Epoch(t)⇒ Add(FI, g, t,∼)

)
RT-5 : ∀g

(
Monitor ∧ (State(g, t) = NB) ∧ Epoch(t)⇒ Add(BM, g, t,

max{t,EFA(g)− δft}) ∧Add(FT, g,max{t,EFA(g)− δft},∼)
)

Figure 6.4: Task Generation Rules

Rule RT-1 generates tasks for mission FD to cover all grid cells with state UK at the start

of an epoch. We use the symbol ‘∼’ to indicate the end time of this epoch. Rule RT-2

starts the monitoring phase after an initial fire detection (FD) by setting Monitor to true

after all grid cells are not under the state UK. Then, rule RT-3 triggers the fire predictor

at the start of the epoch to generate the EFA of all cells, given the current fire status. Rule

RT-4 adds tasks for mission FI at cells under state B, and Rule RT-5 generates a task

for mission BM at each cell under state NB before time EFA(g)-δft, after which mission

FT starts execution. The threshold δft forces tasks for FT to execute earlier than the cell’s

EFA, which addresses the uncertainty in prediction and flying time for drones. To order the

execution of rules that may be triggered simultaneously, we prioritize state transition rules

as follows (high to low): i) RST-1 to RST-4, ii) rule RT-3, and iii) rules RT-1, RT-2,

RT-4, and RT-5. This forces our task generator to update cell states first, then compute

121

their EFA, and finally generate tasks.

In our framework, we also propose an ’event-drive task update’ procedure, using rules RE-

1 to RE-5 in Fig.6.5, to support the dynamic update of ongoing tasks during the epoch;

meanwhile, drones can adjust their flights to accommodate these updates. The actions

Facts :
• Monitor : it is true if we have entered the monitoring phase.
• Anomaly(t): an abnormal fire spread is reported at time t .
Actions :
• ∀g(GetEFA(g, t)): run FARSITE to obtain EFA of all grid cells

based on fire status at time t .
• Add(m, g, st, et): add a task for mission m ∈ {BM,FD,FT,FI}

at g with st and et as its start and end times.
• Delete(m, g, t): remove the task for mission m at g at time t.
• Update(m, g, st, et): update the start and end times of task at g for

mission m ∈ {BM,FD,FT,FI} to st and et respectively .
Rules :
RE-1 : ∀g

(
¬Monitor ∧ (State(g, t) = UK) ∧ (Fire(g, t) ∨NoFire(g, t))⇒ Delete(FD, g, t)

)
RE-2 : ∀g

(
Monitor ∧ (State(g, t) = NB) ∧ Fire(g, t)⇒ Delete(FT, g, t) ∧Add(FI, g, t,∼)

)
RE-3 : ∀g

(
Monitor ∧ (State(g, t) = B) ∧NoFire(g, t)⇒ Delete(FI, g, t)

)
RE-4 : ∃g

(
Monitor ∧ (State(g, t) = NB) ∧ Fire(g, t) ∧ (t ≤ EFA(g)− δan)

)
⇒

∀g(GetEFA(g, t)) ∧Anomaly(t+ 1)
RE-5 : ∀g

(
Anomaly(t) ∧ (State(g, t) = NB)⇒ Update(BM, g, t,max{t,EFA(g)− δft})∧

Update(FT, g,max{t,EFA(g)− δft},∼)
)

Figure 6.5: Rules for event-driven task update

Delete(m, g, t) and Update(m, g, st, et) are used to remove and update the time duration of

tasks, respectively. Before the monitoring phase, rule RE-1 deletes tasks for FD at cells

whose state has been changed from UK as a result of newly detected events. Rules RE-2

and RE-3 designate how to add/delete tasks for FI and FT during monitoring when fires are

detected/dissipated. Since fires may deviate from expected propagation plans, we define an

Rx fire ‘anomaly’ when they reach a cell earlier than its predicted EFA, potentially denoting

escaped or spot fires. This indicates the need for a revised fire prediction and tasks to be

updated correspondingly. We use Anomaly(t) to represent an anomaly occurring at time

t. Rule RE-4 recognizes an anomaly if fire arrives at g at time t ahead of its EFA, i.e.,

t ≤ EFA(g) − δan, where δan is the anomaly threshold. This triggers the fire predictor to

122

rerun the simulation and report the anomaly. Then, rule RE-5 updates the time duration of

tasks for BM and FT based on the updated grid cells’ EFA. Rules for the event-driven mode

are given the lowest priority so that tasks are generated at the start of the epoch before

updates.

The successful implementation of the event-driven task update procedure requires uninter-

rupted communication between the Ground Control (GC) and the drones, as well as among

the drones themselves. This ensures constant updates of tasks during drone flights and facil-

itates task reallocation among drones as needed. However, due to the possibility of network

disconnection during the drones’ flights in our scenario, this study is restricted to exclusively

focusing on utilizing a time-driven task generation procedure. Tasks are provided to drones

at the start of each epoch when they return to connect with the GC, ensuring a reliable task

allocation process.

6.4 Multi-drone Flight Planning

Using the time-driven task generation, we next explore the flight planning procedure. At

the start of an epoch, the flight planner coordinates multiple drones to fulfill all generated

tasks within the epoch. In this section, we formulate the multi-drone flight planning problem

(MFP) as a combinatorial optimization problem.

6.4.1 Symbols and Notations

In DOME, drones are assigned missions/tasks detailing spatial-temporal sensing monitoring

requirements. To this end, waypoint candidates describing specific drone flight paths are

proposed.

123

Missions and tasks. We first formulate the missions and generated tasks specified in the

previous sections by letting j ∈ [1,M] denote a mission, which has a corresponding period

p(j) and significance σ(j).

We guide drones to capture valuable high-resolution data by evaluating and scoring data

quality for diverse missions using Pixel Per Meter (PPM) measurements. We compare the

resolution against threshold values proposed in empirical standards, including pixel density

requirements for detection, observation, and recognition in CCTV systems [3], and John-

son’s criteria [129] for thermal images’ PPM requirements for detecting, recognizing, and

identifying objects based on target dimensions (height × width) of human and fire (1×0.5m

and 1m× 1m respectively).

For guiding drones to capture valuable data of high resolution, we evaluate and score data

quality for diverse missions by comparing its resolution, measured by Pixel Per Meter (PPM)

measurements. We compare the resolution against threshold values proposed in empirical

standards, including RGB pixel density requirements for detection, observation, and recog-

nition in CCTV systems [3], and Johnson’s criteria [129] for thermal images’ PPM require-

ments for detecting, recognizing, and identifying objects based on target dimensions (height

× width) of human and fire (1 × 0.5m and 1m × 1m respectively). In particular, for each

mission j, the quality of the data captured by a sensor s is evaluated using a score SCj
s(pm),

which is a function of its PPM value pm. Intuitively, data of higher quality (i.e., resolution)

will receive higher scores. Table 6.1 shows a data quality scoring rubric. For example, the

cell located at the intersection of the Thermal and BM represents that if a thermal camera

captures data for BM with PPM value pm, then the data’s quality score is 0 if pm < 8.48,

0.6 if 8.48 ≤ pm < 10.6, 0.75 if 10.6 ≤ pm < 15.2 and 0.9 otherwise. As RGB images cannot

reveal fire intensity (temperature) information, we set ’N/A’ in the cell for RGB and FI.

To realize these missions, a series of tasks Ti ∈ T are generated. Each task Ti is defined

using the 4-tuple (mi, gi, ϕi, ei), which specifies a covering area (grid cell) gi ∈ G that a drone

124

Table 6.1: Data quality score under diverse PPMs

Sensor
Mission BM FD/FT FI

Thermal

PPM Score PPM Score PPM Score
8.48 0.6 6 0.6 12 0.6
10.6 0.75 7.5 0.8 15 0.8
15.2 0.9 10.74 1 21.4 1

RGB
25 0.6
62 0.85 262 1 N/A N/A
125 1

must observe during time duration (ϕi, ei) for its associated mission mi ∈ [1,M]. To track

the partial completion of periodic tasks, we further split each task Ti into multiple subtasks

based on its period p(mi) and use T k
i to indicate its kth subtasks, with k > 0. Then, we

define a subtask’s release time r(T k
i) = ϕi+(k−1)p(mi), and deadline d(T k

i) = r(T k
i)+p(mi),

which are used to represent when the subtask is released or expired, respectively.

Drones characteristics. Suppose that drone d ∈ [1, D] is defined by its maximum data

transmission range rngd, flying speed spdd, and is equipped with a set of visibility sensors

send. In this work, we assume the communication between drones and the GC is stable

as long as the ground controller is within the transmission range rngd of the drone. We

also assume that all sensors in send are fixed on the drone to point downwards and that

quantities such as sensor coverage range (CR) and captured image resolution (PPM) can

be computed for some height, given sensor configurations. We use Eqs. (6.1a) and (6.1b)

derived in [57] to find PPM and CR values captured by drone d’s sensor s ∈ send at height

h, where FHs and FVs (degree) indicate its horizontal and vertical field of view (FOV), and

PHs and PVs (pixels) represent its horizontal and vertical image resolution. In general,

these equations reveal that drones at lower heights can capture more detailed images (higher

125

PPM) but at the cost of a smaller coverage range.

PPMs(h) =PH s/(2h× tan(FHs/2)) (6.1a)

CRs(h) = 2h×min {tan (FHs/2) , tan (FVs/2)} (6.1b)

Waypoint candidate generation. Given the Rx fire site G, we find potential locations

above the burn site for each drone d ∈ [1, D], to ensure the required coverage of the burn

site and capture data for all executable missions. These locations, which we refer to as

drone d’s waypoint candidates (WPCs), are a set of 3D coordinates Wd = {wi : wi =

(x(wi), y(wi), z(wi))}, which are derived based on missions’ PPM requirements and drone

d’s sensing capability. Here we also bound drones’ flight height within [Hmin, Hmax] to keep

their distance from trees/fires and fly legally. To generate Wd, we construct a set of WPCs for

each drone d’s sensor s ∈ send, and each mission j ∈ [1,M]. For a mission j and a sensor s,

we let TH(j, s) denote the set of PPM threshold values for executing mission j using sensor s,

as shown in Table 6.1. Then, we deduce the set of potential heights at which sensor s should

capture data as HSet(j, s) = {min(h,Hmax) : PPM s(h) ∈ TH(j, s), h ≥ Hmin}. Next, we

generate WPCs to let sensor s cover the whole burn site at each height h ∈ HSet(j, s). To

do this, we first round its coverage range to the nearest multiple of a burn site’s grid size,

i.e., ⌊CRs(h)/size(g)⌋ × size(g) (to ensure fully capturing burn site’s grid cells). Then we

divide the burn site into squares equal to this rounded coverage range and get a set of WPCs

positioned at the center of each of these squares. We repeat this procedure for each sensor

s ∈ send and j ∈ [1,M] to produce Wd. Note that if HSet(j, s) is empty for all s ∈ send,

drone d cannot execute mission j.

In addition, we define Λd(wi) with wi ∈ Wd, to represent the network connectivity status

between drone d and the GC at wi. We set Λd(wi) = 1 if drone d at wi is connected

with the GC, i.e., rngd ≥ Dis(wi, g
′) with g′ is the location of the GC, and Λd(wi) = 0

126

otherwise. We compute drone d’s flying time between two waypoints by FLT d(wi, wj) =

(Dis(wi, wj)/spdd) + Tloi, where Dis(wi, wj) is the distance between them, and Tloi is the

loiter time the drone spend at a waypoint to capture and upload data as needed.

6.4.2 Spatial-temporal Factors for Task Execution

The data captured by drones for tasks intrinsically have spatial and temporal components.

In general, let Q = {Q1, . . .QD} denote waypoint sequences on which the D drones fly to

fulfill a set of tasks T during time duration [t0, t
∗]. Each waypoint sequence Qd for a drone

d is denoted by ⟨wqd
(0)
, wqd

(1)
, . . .⟩ with wqd

(n)
∈Wd.

Spatial factors. To assess how the data captured by drones can contribute to tasks, we

consider its captured spatial location. We define a data value function Vd(wj, Ti) in Eq. (6.2)

which evaluates the value of data that drone d captured at wj ∈ Qd for task Ti ∈ T.

Vd(wj, Ti) = σ(mi)× max
s∈send

(
SCmi

s (PPMs

(
z(wj)

)
× Cov s(wj, Ti)

)
, (6.2)

where σ(mi) is the mi’s significance value. PPMs(z(wj)) computes the PPM value of data

drone d captured at wj. SC
mi
s (PPMs(z(wj)) gives its data quality score for executing mission

mi. We also set the coverage correlation Cov s(wj, Ti) to 1 if task Ti (at gi) is within the

coverage range of drone d’s sensor s at wj, and 0 otherwise.

Temporal factors. Data captured at a WPC for a subtask is only useful if its collection and

upload time are within the subtask’s release time and deadline. Thus, we define Θ(Qd, T k
i)

to represent indices in Qd indicating the waypoints at which drone d collects valuable data

for subtask T k
i by

Θ(Qd, T k
i) = {n : n ∈ [1, |Qd|], Vd(wqd

(n)
, Ti) > 0,

AT d(Q
d, n),UT d(Q

d, n) ∈ (r(T k
i), d(T k

i)]}

127

where AT d(Q
d, n) and UT d(Q

d, n) denotes the drone’s arrival time and upload time

at the nth waypoint wqd
(n)

, in Qd, respectively. We compute these by AT d(Q
d, n) =∑

i∈[0,n−1] FLT d(wqd
(i)
, wqd

(i+1)
) and UT d(Q

d, n) = min{AT d(Q
d, i) : i ∈ [n, |Qd|],Λd(wqd

(i)
) =

1}. Note that UT d(Q
d, n) is the drone d’s arrival time at the first waypoint, whose index

is no less than n, after the drone connects to the GC.

6.4.3 Formulating MFP

We cast our multi-drone flight planning problem (MFP) as a combinatorial optimization

problem for generating waypoint sequences Q for D heterogeneous drones to cooperatively

fulfill all tasks T during [t0, t
∗]. Each drone starts at a waypoint wd

0 and needs to return back

to depot wdpt in the end. We start by defining the reward for each subtask T k
i to evaluate

the performance of multiple drones executing each subtask given their waypoint sequence Q

by

R(Q, T k
i) =

−β, if

∑
d∈[1,D]

|Θ(Qd, T k
i)| = 0,

max
d∈[1,D]

(
max

n∈Θ(Qd,Tk
i)
Vd(wqd

(n)
, Ti)

)
, else.

(6.3)

The reward of a subtask is negative if it is missed, i.e.,
∑

d∈[1,D] (|Θ(Qd, T k
i)| = 0. In this

case, we get a reward −β < 0 which is a user-specified penalty value for missing a subtask.

In this work, we let the value of β be larger than the maximum mission significance value

to prioritize task accomplishment over data value improvement. Note that the subtask’s

reward is set to the maximum data value obtained across all data collected by D drones;

this is the best value we can obtain from analyzing data under the given time constraints.

We then formulate our MFP problem as follows:

128

max
Q

∑
Tk
i :t0<d(Tk

i)≤t∗;Ti∈T

R(Q, T k
i) (6.4a)

s.t. AT (Qd, |Qd|) ≤ t∗, ∀d ∈ [1, D], (6.4b)

wqd
(0)

= wd
0, wqd

(|Qd|)
= wdpt, ∀d ∈ [1, D]. (6.4c)

Our objective function (Eq. (6.4a)) maximizes the sum of the rewards for all subtasks. We

use {T k
i : k > 0, Ti ∈ T, t0 < d(T k

i) ≤ t∗} to represent the set of Ti’s subtasks during epoch

[t0, t
∗], which contains all subtasks with deadlines between time t0 and t∗. Constraint (6.4b)

requires that each drone’s flying time does not exceed the end time of the epoch, while

constraint (6.4c) ensures the validity of the waypoint sequence. Note that if we require

drones to connect with the GC instead of returning to the depot at the end of the epoch,

Eq. (6.4c) can be replaced with Λd(wqd
(|Qd|)

) = 1. In general, MFP is an NP-hard problem,

which can be proven by reducing the Orienteering problem [81] to a special case of our

problem, where there is only one mission with a single PPM requirement and a single drone.

6.5 Proposed Algorithms for MFP

We solve the MFP problem in two steps and design heuristics as follows: i) task alloca-

tion (§6.5.1), which assigns every generated task to a specific drone; and ii) flight planning

(§6.5.2), where each drone computes its waypoint sequence to fulfill its given tasks.

6.5.1 Step 1: Allocating Tasks to Drones

Our task allocation problem aims to allocate all generated tasks, represented by a set T, to

D drones that have diverse mobility, sensing, and networking capabilities. Here each task

Ti ∈ T is represented by a 4-tuple (mi, gi, ϕi, ei), which specifies a grid cell gi ∈ G that a

drone must observe during time duration (ϕi, ei) for its associated mission mi. To optimize

129

the task allocation, an exhaustive search of D|T| possible task allocations to estimate the

drones’ obtained reward (using Eq. (6.4a)) is infeasible given time constraints. Thus, we

propose a heuristic to reduce the time taken by all drones to complete all tasks, assuming

drones operate concurrently. Assume a set of tasks T′ are assigned to drone d, we define a

time utilization function Ud(T
′) to measure the its time usage for fulfilling T′ by

Ud(T
′) =

∑M

j=1
ETd({Ti : Ti ∈ T′,mi = j})

/
p(j) (6.5)

where {Ti : Ti ∈ T′,mi = j} denotes the subset of tasks in T′ for a mission j with

period p(j), and ETd ({Ti : Ti ∈ T′,mi = j}) indicates the task execution time for drone d

to complete these tasks once. Additionally, we group all tasks based on their missions since

different missions may have different periods. The Ud(T
′) is the sum of the ratios between

the execution time of multiple groups of tasks and their periods. It is easy to see that,

the lower Ud(T
′) (<1) yields a higher probability that drones finish their assigned tasks.

Thus, the objective of our task allocation approach is to split all tasks T into D disjoint

subsets {T1, . . .TD} with
⋃

i∈[1,D] Ti = T, and assign a set of tasks Td to drone d, such

that the maximal time utilization across all drones, i.e., maxd∈[1,D] Ud(Td) is minimized. We

propose a utilization-based task allocation (UTA) approach, as shown in Alg. 5, to estimate

each drone’s time utilization given its assigned tasks and allocate tasks considering the

heterogeneous sensing and networking capabilities of drones.

Spatial task clustering. Before assigning tasks to drones, we propose to cluster tasks based

on their spatial (location) similarity. With this effort, we can speed up the task allocation

procedure by assigning a group of tasks (a task cluster) to a drone at each iteration (described

later). In particular, we divide the entire burn site into multiple squares of size Γ (a multiple

of burn site grid size) and generate multiple task clusters {C1,C2, ...}, disjointed sets of

tasks with Ci ⊆ T and
⋃

i Ci = T, where each task cluster contains tasks within the same

square and for the same mission.

130

Iterative allocation of task clusters. We heuristically assign a initial task cluster to each

drone based on its sensing and networking capabilities. More specifically, to each drone, we

assign a task cluster with its executable mission; with the assignment closer to the GC if

this drone has shorted data transmission range. We also heuristically select clusters far from

those already assigned, aiming to distribute drones over the burn site sparsely. After this,

we start iteratively allocate task clusters to drones. In each iteration, all drones estimate

their time utilization after receiving each unallocated cluster; subsequently, we assign the

cluster to the drone whose time utilization after obtaining the cluster is the lowest.

Next, we illustrate how a drone d computes its time utilization given its assigned tasks T′

in each iteration, as shown in Alg. 6. We find ETd({Ti : Ti ∈ T′,mi = j}) by computing the

total time that the drone: (i) flies from its start point to the first waypoint; (ii) traverses a

set of waypoints for executing tasks ({Ti : Ti ∈ T′,mi = j}), and (iii) returns for uploading

data. Here we only allow drone d to fly at the same height h, where it can fulfill mission j

and get the maximum coverage using one of its sensors. Then we select the set of waypoints

at height h from its WPCs Wd to cover all these tasks with mission j. We estimate the task

execution time by considering that the drone follows the Nearest Neighbor approach [70], a

2-approximation algorithm for solving traveling salesman problem, which rules that drones

will always fly to the next closest waypoint. In this way, we get ETd({Ti : Ti ∈ T′,mi = j})

for each j ∈ [1,M], and then compute Ud(T
′) following its definition above.

The complexity of the time utilization estimation procedure is O(|Wc|2) where |Wc| is the

maximum size of the group of generated WPCs at the same height for covering a mission.

The complexity of the UTA algorithm is O(|T|2D|Wc|2).

131

Algorithm 5: Utilization-based task allocation (UTA)

Input: Tasks T, Drones D, Burn site area, square size for task clustering Γ

Output: Task allocation of T∗ = {T1,T2, . . .TD}

1 C← ∅; Td ← ∅ for all d = [1, D];

// Task clustering: get the set of task clusters C

2 for square, j ← SplitByAreaAndMission(burnsite,Γ) do

3 Csquare,j ← T.filter(square, j) // Tasks in square for mission j.

4 C← C ∪Csquare,j

// Assign each drone an initial cluster

5 for Di ← D.groupby(“sensor′′) do

6 Ctmp ← ∅; Cexec ← ChooseExecutableTaskCluster(Di,C)

7 for n ∈ [1, |Di|] do // Get |Di| clusters far from each other

8 C∗ ← argmaxC′∈Cexec

∑
C′′∈Ctmp

Distance(C ′, C ′′).

9 C← C \ {C∗}; Ctmp .add(C
∗)

// Map one cluster to one drone by distance to GC and rngd

10 Sort Di and Ctmp by rngd and distance to GC; Add Ctmp [n] to TDi[n]

11 while (C) ̸= ∅ do // Iteratively allocate task cluster

12 for d ∈ [1, D] do // Compute minimum Ud by adding one cluster

13 Mind ← min{Ud(Td ∪ C ′) : C ′ ∈ C} C∗
d ← argminC′∈CUd(Td ∪ C ′)

14 d← argmind∈[1,D]Mind // Get the drone of minimum Ud

15 Td ← Td ∪ {C∗
d}, C← C \ {C∗

d} // Allocate a cluster to a drone

16 return {T1,T2, . . .TD}

132

Algorithm 6: Compute time utilization Ud(T
′)

Input: Drone d and a set of tasks T′, WPCs Wd

Output: Drone utilization Ud(T
′)

1 for Ti ∈ T′ do // Determination WPCs to cover all assigned tasks

2 if Drone d cannot execute Ti’s mission mi then return +∞;

// Get the WPC drone d can execute Ti and has maximum coverage.

3 Get s′ ← argmaxs∈send
CRs(H(s)) with

H(s) = max{h : PPMs(h) ≥ min(TH(mi, s)), h ∈ AllHeights(Wd)}

4 Get WPCd (Ti), a WPC in Wd at height H(s′) can cover Ti

5 for k ∈ [1,M] do // Compute Ud(T
′)

6 Get tasks for mission k: T′
k ← {Ti : Ti ∈ T′,mi = k}

7 Get WPCs for executing all tasks T′
k: WPC← {WPCd (Ti) : Ti ∈ T′

k}

8 ETd (T
′
k)← 0; w′ ← wd

0

9 while WPC ̸= ∅ do // Get traversing time for all selected WPCs by Nearest

Neighbor appraoch

10 Choose the WPC closest to w′: w ← argminw∈WPC FLTd(w
′, w)

11 ETd (T
′
k)← ETd (T

′
k) + min{FLTd(w

′, w) : w ∈WPC}

12 WPC←WPC \ {w}; w′ ← w

// Add time for uploading data

13 ETd (T
′
k)← ETd (T

′
k) +

max(0,Dis(w′,g0)−rngd)
spdd

+ Tloi

14 return
∑M

k=1 ETd (T
′
k)/p(k)

6.5.2 Step 2: Single Drone Flight Planning

After task allocation, each drone plans its flight to fulfill its assigned tasks. In particular,

tasks Td assigned to drone d at time t0 at wd
0 are used in our single drone flight planning

problem to generate a waypoint sequence using WPCs in Wd in epoch [t0, t
∗] to maximize

the total reward. As a special case of our MFP problem with a single drone, this problem

133

is NP-hard. Here, each a series of waypoints are selected based on the drone’s status and

task completion condition. A Markov decision process (MDP) is used to model this discrete

decision-making process while tracking the above information.

States. A state is defined by a tuple ⟨w, t, S(Td)⟩, where w ∈ Wd indicates the drone’s

current waypoint at time t ∈ [t0, t
∗]. We use S(Td) = {(Ti,DLi ,URi, SRi) : Ti ∈ Td} to

denote the state of all released tasks for drone d. Each task Ti has a deadline DLi for its

ongoing subtask. We use URi and SRi to indicate the maximum data value (defined in

Eq. (6.2)), for Ti’s ongoing subtask, of uploaded and stored data respectively. We set the

initial state to ⟨wd
0, t0,S0(Td)⟩ with S0(Td) = {(Ti,max(t0, ϕi) + p(mi), 0, 0) : Ti ∈ Td}.

Action. An action is used to indicate that the drone flies to a waypoint w′ ∈Wd.

Transitions. We use transition function TX(⟨w, t,S(Td)⟩, w′) = ⟨w′, t′,S′(Td)⟩ to represent

the state update after the drone flies to w′, where t′ is updated by flying time FLTd(w,w
′).

For each Ti ∈ Td, with ϕi ≤ t′, we check: (1) If t′ passes Ti’s subtask’s deadline, i.e.,

t′ > DLi , we reset its UR′
i = SR′

i = 0 and update DL′
i to the deadline of the newly

released subtask. (2) if drone d at w′ connects with the GC, i.e., Λd(w
′) = 1, we update

UR′
i = max(URi, Vd(w

′, Ti), SRi) and SRi = 0 to model the drone uploading stored and

captured data to the GC. Otherwise, we set SR′
i = max{Vd(w

′, Ti), SRi} to mimic the drone

capturing and storing data.

Action reward. We define action reward AR(⟨w, t,S(Td)⟩, w′) as the overall change of

rewards for subtasks (specified in Eq. (6.3)) caused by missing subtasks and uploaded data

following an action. Given its next state ⟨w′, t′,S′(Td)⟩, we compute the action reward by

(1) penalizing any expired subtasks during (t, t′) that did not get valuable data by K =

|{Ti : Ti ∈ Td, t < DLi < t′,URi = 0}|, by a factor of −β and (2) updating increases in

data value
∑

Ti∈Td
(UR′

i − URi), if the drone connects with the GC at w′. Alg. 8 presents

the pseudo-code for state transition and computing each action reward.

134

Each episode in our MDP starts with the initial state and ends when it reaches a state

with t ≥ t∗. Our MDP’s worst case state-space complexity is |Wd|(t
∗−t0)/Tloi where |Wd|

indicates the number of drone d’s waypoint candidates, and t∗−t0
Tloi

is the maximal waypoint

selection time in an epoch. Due to its exponential state space, we design the DOME flight

planning heuristic algorithm (DFP), i.e., the MDP policy to select waypoints at each state.

DFP’s novel aspects include its validity-checking procedure to ensure timely data upload in

a disconnected network and the heuristics for waypoint selection, considering improving task

accomplishment and data quality.

Validity checking. To enable the drone to quickly upload data from the waypoints that are

out of the data transmission range, we specify an uploading point UP(w) for each w ∈Wd.

If drone d at w disconnected with the GC, we set UP(w) to its closest WPC where the drone

is connected; otherwise, we set UP(w) to itself. Moreover, assuming a drone is at w at time

t, we define w′ as a valid WPC if, after flying to w′, the drone has sufficient time to upload

the stored data before their deadlines and return to the depot before t∗. In particular, we

first compute its earliest data uploading time, i.e., t′′ = t+FLT d(w,w
′)+FLT d(w

′,UP(w′)).

We say, at current state, w′ is valid if t′ is before the earliest deadline for its stored data,

i.e., t′′ ≤ min{DLi : Ti ∈ Td, SRi > 0} and early enough to return in time, i.e., t′′ +

FLT d(UP(w′), wdpt) ≤ t∗. The DFP approach filters out all invalid WPCs in each waypoint

selection.

Fast coverage and reward improvement. Next, we illustrate the workflow of our DFP

approach. Intuitively, we want to finish all released subtasks, then improve the data value as

time allows. Thus, we split our flight planning algorithm into two phases: fast coverage and

reward improvement. We aim to finish all subtasks before their deadlines in the first phase.

To do this, we maintain a queue of all released subtasks grouped by their deadlines Que,

sand update it whenever certain subtasks are released or expired. In the algorithm, we use a

flag STUpdate to track the tasks’ update; once its subtasks are newly released, the STUpdate

135

will be set to True during the state transition. We prioritize all groups in the queue by giving

higher priority to those with an earlier deadline and then let the drone execute these groups of

subtasks following their priorities (lines 1 to 9). To execute each subtask group in the queue

Que[i], we get the set of unfinished subtasks, by Tnot = {Ti, Ti ∈ Que[i],URi = SRi = 0},

and the associated a subset of WPCs that cover those unfinished subtasks; we greedily choose

the next valid waypoint that can maximize the the ratio between the number of unfinished

subtasks in Que[i] and the flying time FLT d(w,w
′) (line 7). We find the number of w′’s

covering unfinished subtasks by CovNum(w′) = |{Ti : Ti ∈ Tnot,Vd(w′, T) > 0}|. This is

repeated until no valid WPC remains or we reach the last group in the queue. Then, if the

drone’s storage is not empty, we will let the drone upload stored data by flying to the upload

point of its current waypoint and continue to cover unfinished subtasks from the first group

in the queue (lines 10, 15, and 16). Note that the minimum deadline for drone-stored data

impacts the validity of WPCs; after the drone uploads data, the WPCs’ validity may change,

allowing more valid WPCs to cover other unfinished subtasks.

If no stored data remained, we enter the reward improving phase (line 10) where we improve

the data value by having the drone fly lower. We continuously select a waypoint to maximize

the reward improvement, i.e., Reward(w′) =
∑

Ti∈Td
max(0, Vd(w

′, Ti) − max(URi, SRi)).

This phase ends when there are no valid WPCs, after which the drone will return to up-

load data or return to the depot if needed (lines 13 and 15). When subtasks are released

(STUpdate = True), we update the subtasks queue and restart the fast coverage phase (lines

9, 14, and 16). In our approach, these two phases alternate until the end of the epoch.

The computational complexity of our DFP algorithm is O(t
∗−t0
Tloi
|Wd||T|), where the t∗−t0

Tloi

indicates the times of waypoint selections when drone stays static. Algs. 7 and 8 shows

DFP’s detailed pseudo-code.

136

Algorithm 7: DOME Flight Planning (DFP)

Input: Initial state (w0, t0,S0(Td)), ending time t∗ and WPCs Wd

Output: Waypoint sequence Qd of drone d and total reward Rd.

1 STUpdate ← False; ⟨w, t,S(Td)⟩ ← State0, Rd ← 0;

2 Group all subtasks based on their deadlines, sort them from di smallest to largest:

Que = [{Ti : Ti ∈ Td,DLi = d1},{Ti : Ti ∈ Td,DLi = d2}...].

3 while t ≤ t∗ do

4 if STUpdate then Update Que for new released subtasks ;

5 Seq ← 0 // Enter Fast Coverage phase.

6 while Seq < |Que| and ¬ STUpdate and t ≤ t∗ do

7 Tnot ← {Ti : Ti ∈ Que[Seq],URi = SRi = 0}// Get Unfinished subtasks in this group

8 while |Tnot| > 0 and ¬ STUpdate and t ≤ t∗ do

9 W′ ← {w′ : w′ ∈Wd,CovNum(w′) > 0, Valid(w′)}

10 if |W′| = 0 then break; // If no valid WPC, next group.

11 w∗ ← argmaxw′∈W′

(
CovNum(w′)

/
FLTd(w,w

′)
)
// Maximize the number of covered

unfinished subtasks

12 ⟨w, t,S(Td)⟩,AR,STUpdate ← TRANS(⟨w, t,S(Td)⟩, w′);

13 Qd.add (w′); Rd ← Rd +AR

14 Seq ← Seq + 1 // Go to the next group.

15 if |{Ti : Ti ∈ Td,SRi > 0}| = 0 then // If no stored data.

16 while ¬ STUpdate and t ≤ t∗ do // Start Reward Improvement.

17 W′ ← {w′ : w′ ∈Wd, Valid(w′)} // Check validity.

18 if |W′| = 0 then break;

19 w∗ ← argmaxw′∈W′

(
Reward(w′)

/
FLT d(w,w

′)
)

// Get next state, action reward and the update flag

20 ⟨w, t,S(Td)⟩,AR,STUpdate ← TRANS(⟨w, t,S(Td)⟩, w′);

21 Qd.add (w′); Rd ← Rd +AR

22 if (not Valid(UP(w)) then w′ ← wd
0 ; // Return back

23 else w′ ← UP(w) // Upload data to the GC.

24 ⟨w, t,S(Td)⟩,AR,STUpdate ← TRANS(⟨w, t,S(Td)⟩, w′);

25 Qd.add (w′); Rd ← Rd +AR

26 return Qd, Rd.

137

Algorithm 8: State transition TRANS(⟨w, t,S(Td)⟩, w′)

Input: Current state ⟨w, t,S(Td)⟩ and next waypoint w′

Output: Next state ⟨w′, t′,S(Td)⟩, action reward AR, STUpdate

1 t′ ← t+ FLT d(w,w
′); AR ← 0; STUpdate ← False

2 for Ti ∈ Td with ϕi > t′ do // Update state of tasks

3 if t′ > DLi then // Pass subtasks’ deadline

4 k ← ⌊(t′ −DLi)/pi⌋; AR ← AR− kβ; STUpdate ← True

5 if URi = 0 then AR ← AR− β;

6 URi ← 0; SRi ← 0; DLi ← DLi + (k + 1)pi

// Drone connects with the GC, uploads data

7 if Λd(w
′) = 1 and max(Vd(w

′, Ti),SRi) > URi then

8 AR ← AR+max(Vd(w
′, Ti),SRi)−URi ;

9 URi ← max(Vd(w
′, Ti),SRi); SRi ← 0

// Drone disconnects with the GC, stores data

10 else if Λd(w
′) = 0 and Vd(w

′, Ti) > SRi then

11 SRi ← Vd(w
′, Ti)

12 return ⟨w′, t′,S(Td)⟩, AR, STUpdate

6.6 Experimental Evaluation

In this section, we evaluate our proposed algorithms by comparing them with several baseline

algorithms and exploring their scalability in different simulated Rx fire scenarios.

6.6.1 Simulation setup

We simulate the Rx burns using the burn plans developed for Blodgett Forest Research

Station; we evaluate DOME at three burn sites with different areas/shapes, as shown in

138

Figure 6.6: Illustration of three burn sites and fire ignition strategy.

Fig. 6.6. In our simulation, a sequence of fire stripes is added progressively, as shown in

two sub-figures in Fig. 6.6. We run each Rx burn simulation for 80 mins, with an epoch of

20 mins. At the beginning of each epoch, we input the simulated fire status into the task

generator to produce tasks for the BM, FI, and FT missions, using our proposed rules in

§6.3 under time-driven mode. We perform task allocation and single-drone flight planning

to schedule the flights of multiple drones in this epoch to fulfill these generated tasks. We

get the missions’ PPM requirements from Table 6.1. In our simulation, we utilize two

types of drones; the type 1 drone includes DJI Zenmuse XT2’s RGB and thermal cameras,

and the type 2 drone includes a DJI Air 2S’s RGB camera. We assume drones capture data

(RGB/thermal images) when they arrive at a waypoint in their flight path, upload data when

connected with the GC, and otherwise store the data onboard. We vary several simulation

parameters, including the wind speed (5−25 mph) and the number of drones (4−16 drones).

Table 6.2 lists more simulation parameters.

Our study records the following performance metrics: (i) Total Reward, as defined in the

MFP’s objective function in Eq. (6.4a); (ii) Total Missing subtasks, which is the number of

unfinished subtasks after an epoch; and (iii) Running time, which measures the computation

time of algorithms. We repeat each experiment 10 times and report the average results with

139

Table 6.2: Simulation Parameters

Parameter Value Parameter Value
Simulation time 80 min Penalty β 10

Epoch length 20 min Grid size 10× 10m
Wind direction 270◦ (±30◦) Flying speed 5 m/s

Wind speed 5-25 (±3)mph Loiter time 2 s
Ignition interval 10 (±3) min Drone number 4 – 16
Fire strip gap 10 (±3) m Data trans. range 300 or 500 m
Drone storage 32 GB Data trans. rate 24 Mbps

Burn site sizes 1○ 400× 500 m, 2○ 400× 330 m, and 3○ 500× 420
Mission (p, σ) BM(10 min, 2), FI(5 min, 1), FT(2.5 min, 3)

Drones DJI Zenmuse XT2 (XT2); DJI Air 2S (2S)
Sensor FOV XT2: thermal 45◦ × 37◦, RGB 57◦ × 42◦; 2S: 72◦ × 58◦

Sensor Res. XT2: thermal 640× 512, RGB 3840× 2160; 2S: 5472× 3078

95% confidence intervals.

We compared DOME techniques with state-of-the-art baseline approaches: lightweight heuris-

tics suitable for real-time planning. For the task allocation step, we compared DOME’s

UTA (Utilization-based Task Allocation) approach with the Voronoi decomposition algo-

rithm (VD) [113], a popular spatial-based area partition approach used in multi-agent task

allocation problems. UTA was also compared with the area-based heuristics task allocation

algorithm (ATA), where task execution time relies on the ratio between the total area of

tasks and the drone’s coverage area. For the flight planning step, we compared DOME’s al-

gorithms (DFP) with the Nearest-Neighbor approach (NN) [70], a classical greedy algorithm

for vehicle routing problems. We also compared it with an extended version of the Earliest-

Deadline-First baseline algorithm [203], a traditional heuristic approach for task scheduling

problems; in particular, we added a spatial component to create the Deadline-based Nearest

Neighbor (DNN) baseline. We also developed two additional heuristics, a Reward Maximiza-

tion algorithm (RM), which selects waypoints to maximize the task reward improvement,

and Deadline-based Reward Maximization (DRM) to improve the reward of tasks with the

140

earliest deadlines. For a fair comparison, we incorporated the validity checking procedure

(in §6.5.2) into all flight planning baseline algorithms to route the drone to update data in

time. We evaluate different combinations of task allocation and flight planning algorithms

to solve the MFP problem.

6.6.2 Experimental Results

Comparative Performance. Figs 6.8 and 6.9 compare the performance of the proposed

UTA-DFP algorithm with baseline algorithms in burn sites 2○ and 3○. We provide sample

results from simulations with six drones (three of each type) under 10 mph wind conditions

over four epochs, each lasting 20 mins. At the beginning of each epoch, we use the defined

rules in §6.3 to generate tasks based on the simulated fire spread status. The number

of generated tasks for diverse missions is shown in Fig. 6.7. We specifically illustrate the

comparisons with the combinations of VD and RM algorithms and omit the others as they are

the best-performance baseline algorithms for task allocation and flight planning, respectively.

Fig 6.8 shows that our UTA-DFP algorithm always leads to higher total reward and fewer

missing subtasks, compared with other baseline algorithms in diverse scenarios. In particular,

our UTA-DFP algorithm achieves 1.7 times gain on total reward, 99% fewer missing subtasks

compared with the VD-RM algorithm during 60-80 mins in burn site 2○.

We also can observe that UTA-DFP and UTA-RM algorithms can consistently provide a

relatively steady performance than using VD for task allocation, whose performance drops

as the number of tasks increases.

Task allocation algorithms. Next, we evaluate our approach for task allocation in

Fig. 6.11. Figs. 6.11a and 6.11b compare our proposed UTA algorithm against other baseline

algorithms, generally using the DFP algorithm for flight planning. The results show that our

proposed UTA-DFP algorithm consistently outperforms the other two baseline algorithms by

141

5 5 5 510
0-20 min

10
20-40 min

10
40-60 min

10
60-80 min

15 15 15 15
0

1000

2000

3000

4000

5000

N
u

m
b

e
r

o
f

S
u

b
ta

s
k
s

BM

FI

FT

Plan Duration:

Wind (mph):

(a)

5 5 5 510
0-20 min

10
20-40 min

10
40-60 min

10
60-80 min

15 15 15 15
0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

e
r

o
f

S
u

b
ta

s
k
s

BM

FI

FT

Plan Duration:

Wind (mph):

(b)

Figure 6.7: Subtask number in burn sites 1○ (a), 2○ (b) under diverse wind speeds

achieving 0.486% higher total reward, while missing 91% fewer subtasks, compared with the

ATA-DFP algorithm during the 60-80 min interval. Also, VD’s performance drops during

the 40-80 min interval, when more high-frequency tasks for FT and FI are generated. This

reveals that UTA can handle task heterogeneity better than distance-based approaches.

0-20 20-40 40-60 60-80

Plan Duration (Minute)

500

1000

1500

2000

2500

T
o
ta

l
R

e
w

a
rd

UTA-DFP

UTA-RM

VD-DFP

VD-RM

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0

50

100

150

200

T
o
ta

l
M

is
s
in

g
 S

u
b

ta
s
k
s

UTA-DFP

UTA-RM

VD-DFP

VD-RM

Figure 6.8: Performance of our UTA-DFP algorithm at Burn sites 2○, (a) gives total reward
and (b) gives total missing subtasks.

Flight planning algorithms. Next, we compare our proposed DFP algorithm with our

baseline algorithms when using the UTA algorithm for task allocation in Figs. 6.11c and

142

0-20 20-40 40-60 60-80

Plan Duration (Minute)

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000
T
o
ta

l
R

e
w

a
rd

UTA-DFP

UTA-RM

VD-DFP

VD-RM

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0

200

400

600

800

1000

1200

1400

T
o
ta

l
M

is
s
in

g
 S

u
b

ta
s
k
s

UTA-DFP

UTA-RM

VD-DFP

VD-RM

Figure 6.9: Performance of our UTA-DFP at Burn sites 3○. (a) gives the total reward, and
(b) the total missing subtasks.

6.11d. The results demonstrate our DFP flight planning algorithm always leads to higher

overall reward and fewer missing subtasks, which achieves 0.16 times gain and 99.5% fewer

compared with UTA-NN algorithm. In baseline algorithms, the distance-based baseline

algorithms (NN and DNN) always perform worse than the reward-based algorithms (RM

and DRM). The results show that DRM and DNN lead to fewer missing subtasks in the first

three duration. This observation reveals that considering the temporal factor–deadlines can

help improve task accomplishment, but this factor helps less when the number of tasks is

much more than drones can complete (e.g., during 60-80 min) Figs. 6.11c and 6.11d show

that our DFP algorithm can provide a higher total reward than DRM while they delivering

the same number of missing subtasks (in 0-40 min). This confirms that DFP can improve

both task accomplishment and data quality.

Scalability of our proposed algorithm. Next, we consider a larger MFP problem with

a different number of drones (from 8 to 16) and tasks (from 4000 to 6000). Figs. 6.10a and

6.10b present the performance of these algorithms in burn site 1 during 60-80 min under

10 mph wind under a diverse number of drones. In all cases, the number of type 1 equals

that of type 2 drones. Both figures reveal that our UTA-DFP algorithm always produces

143

8 10 12 14 16

Number of Drones

-3000

-2000

-1000

0

1000

2000

3000

4000

T
o
ta

l
R

e
w

a
rd

UTA-DFP

UTA-RM

VD-DFP

VD-RM

(a)

8 10 12 14 16
Number of Drones

0

100

200

300

400

500

600

700

To
ta
l M

is
si
ng

 S
ub

ta
sk
s

UTA-DFP
UTA-RM
VD-DFP
VD-RM

(b)

5 10 15 20 25

Wind Speed (mph)

-6000

-4000

-2000

0

2000

4000

T
o
ta

l
R

e
w

a
rd

UTA-DFP

UTA-RM

VD-DFP

VD-RM

(c)

5 10 15 20 25

Wind Speed (mph)

0

200

400

600

800

T
o
ta

l
M

is
s
in

g
 S

u
b

ta
s
k
s

UTA-DFP

UTA-RM

VD-DFP

VD-RM

(d)

Figure 6.10: Performance of (a), (b) task allocation and (c), (d) flight planning algorithms.
(a), (c) give the total reward, (b), (d) give the missing subtasks.

144

0-20 20-40 40-60 60-80

Plan Duration (Minute)

-6000

-4000

-2000

0

2000

4000

T
o
ta

l
R

e
w

a
rd

UTA-DFP

ATA-DFP

VD-DFP

(a)

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0

200

400

600

800

1000

T
o
ta

l
M

is
s
in

g
 S

u
b

ta
s
k
s

UTA-DFP

ATA-DFP

VD-DFP

(b)

0-20 20-40 40-60 60-80

Plan Duration (Minute)

-20000

-15000

-10000

-5000

0

T
o
ta

l
R

e
w

a
r
d

UTA-DFP

UTA-NN

UTA-RM

UTA-DNN

UTA-DRM

(c)

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0

500

1000

1500

2000

T
o
ta

l
M

is
s
in

g
 S

u
b

ta
s
k
s

UTA-DFP

UTA-NN

UTA-RM

UTA-DNN

UTA-DRM

(d)

Figure 6.11: Performance of (a), (b) UTA and (c), (d) FDP algorithms. (a), (c) give the
total reward, (b), (d) give the missing subtasks.

the highest total reward and fewer missing subtasks, which achieve 0.483 times gain on total

reward and 99.5% fewer missing subtasks compared with VD-RM when drones’ number

equals 16. Also, the performance of all algorithms becomes better as the number of drones

increases. Fig. 6.10c and 6.10d show our algorithms’ performance in scenarios with various

wind speeds. We give this sample results from simulations with 6 drones in burn site 1○

during 40-60 min. From the statistics in Fig.6.7a, we can see that stronger wind brings

out more tasks for FT and FI. As the wind becomes stronger, we can see the superior

performance of our UTA-DFP algorithm compared to the baseline ones, which delivers 0.9

145

times gain on the total reward and about 99% fewer missing events compared with the

VD-RM algorithm when wind speed is 5 mph.

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0

1

2

3

4

5

6

7

R
u

n
n

in
g

 T
im

e
 o

f
U

T
A

-D
F

P
 (

s
)

5 MPH wind

10 MPH wind

15 MPH wind

0-20 20-40 40-60 60-80

Plan Duration (Minute)

0.0

0.5

1.0

1.5

2.0

2.5

R
u

n
n

in
g

 T
im

e
 o

f
U

T
A

-D
F

P
 (

s
)

5 MPH wind

10 MPH wind

15 MPH wind

Figure 6.12: Running time of UTA-DFP at burn sites 1○ (a) and 2○ (b)

Fig. 6.12 show the running time of our UTA-DFP algorithm at burn sites 1○ and 2○ . The

results show that, in scenarios of about 6000 tasks (during 60-80 min at burn site 1○), it can

terminate in about 7 seconds, which is negligible to the epoch length, which is 20 min. It

depicts that our UTA-DFP algorithm reacts fast even with a large problem size.

6.7 System Implementation

We have implemented the DOME system, integrating in-situ sensor data to provide envi-

ronmental information related to wind conditions and air quality. These weather conditions

would be utilized for fire prediction and air pollution monitoring. Next, we will introduce

the detailed system architecture and illustrate our testbed.

Our DOME system, depicted in Figure 6.13, utilizes drones equipped with RGB cameras and

various in-situ sensors to collect real-time data for monitoring critical factors during wildland

fires, such as fire status, air quality, and wind conditions. All collected data is transmitted

146

via WiFi networks to an edge server, which is responsible for controlling the drone-based

sensing process and managing data integration, analysis, and storage. The DOME code and

detailed installation and implementation instructions are publicly available in [5]. Next, we

will illustrate the DOME system structure by describing its four primary functions.

Data Manager

 HTTP Request

Processor

Task Generator

Drone Status

Database

Event

Dashboard

Drone Location

Fire Status

Weather Condition

 Data processor

(ZeroMQ)

Sensor

Client

Sensor Data

(ZeroMQ)

Images & Drone

Status (ZeroMQ)

Waypoint Seq.

(HTTP

Req./Resp.)

All Info.

(HTTP

Req./Resp.)

Drone

Controller

Events

Images

Req.

Waypoint

Seq.

Tasks in

this epoch

Waypoint Seq.

Query

All Info.

Sensor Data

& Drone

Status

Edge Server

Grid StateSensor Data

Task Allocation

Drone Flight Planner

…
Flight

Planning
Flight

Planning

Fire Prediction

Rule Engine

Data Analyzer

Fire

Detection

Fire Status

Tracker

Grid Cell State

Query Grid Cell State

Figure 6.13: System Architecture of DOME

In-situ sensor data collection. As shown in Figure 6.14, the DOME system incorporates

in-situ sensors placed near the fire setting, which periodically collect and transmit sensing

data to the edge server. Our system employs three types of sensors for monitoring: wind

(speed and direction), weather (temperature and relative humidity), and PM (particulate

matter for smoke monitoring). To facilitate the data collection process, each sensor is con-

nected to a Raspberry Pi (RPi) through various hardware communication interfaces. The

weather sensor is connected to the RPi via GPIO, the wind sensor is connected through RJ11

cables, and the PM sensor communicates with the RPi through a USB interface. All RPis

are running Scale-Client [29], a modular software stack that collects raw data from sensors

and extracts sensing data by parsing them. These in-situ sensors capture data at 30-second

intervals, which is then transmitted and stored in our edge server, a laptop, through a local

WiFi network. le efficient communication, we utilize the Zero Message Queue (ZeroMQ), an

147

open-source publish and subscribe communication model, to send and receive various types

of sensing data in parallel. Within each RPi, a publisher is created for each sensor, and

it publishes data with a specific topic corresponding to its sensing type and ID following

a pre-defined period. On the edge server, a data manager component subscribes to all

sensing data and stores them in a MongoDB-based database.

DOME DashboardLive Images:

Fire Status: Drone

Location

Tracking:

In-situ Sensor Data:

Figure 6.14: Sensors, Testbed and Dashboard in DOME

Fire status

DOME Dashboard

Fire Prediction

Drone’s waypoints

Data Analyzer

Bounding boxesFire Localization Images

Event

Table
Image Table

Waypoint Seq.

FARSITE Rules

Task Generator

C
om

m
an

ds

Drone Controller

Im
ag

es
 &

 l
o
ca

ti
o
n

Drone Controll

W
i-

F
i
1W

aypoint Seq.
Im

ages &
 location

W
i-Fi 2

Lab-based Testbed

Ground Controller

Flight Planner

Figure 6.15: Drone-based Mobile Sensing in DOME System

Drone-based mobile sensing. For data collection and flight control, we utilize a DJI

Tello drone equipped with an RGB camera and the Tello SDK interface (see Fig. 6.15). A

148

laptop drone controller sends commands to direct the drone to fly above the fire setting

following a predefined waypoint sequence, capturing top-down view RGB images at each

waypoint. These images are time and location-stamped and transmitted to the edge server

by the drone controller using ZeroMQ via a WiFi network. The data manager receives the

images and passes them to a data analyzer, which employs image processing techniques

such as FireNet [93] to detect and locate fires. The fire setting is divided into grid cells to

represent the fire status, categorized as ’Fire’ or ’No fire.’ Each fire detection result, along

with the fire location (grid cell) and detection time, is treated as an event to update the

state of the grid cells. The rules governing state transitions are described in Section 6.3.

Drone flight planning. The DOME system schedules drone flights periodically for pre-

defined time periods called epochs, each lasting three minutes. At the beginning of each

epoch, each drone controller sends a waypoint query HTTP request to the data manager,

which handles the request using Flask. The data manager then triggers the task generator

to create tasks specifying the spatial and temporal requirements for drone data collection

based on the fire status, predicted fire evolution, and user-defined task generation rules (see

Section 6.3). The drone flight planner then assigns these tasks to specific drones and

generates waypoint sequences for each drone to accomplish its tasks using the algorithms

proposed in Section 6.5. The generated waypoint sequences are sent to the data manager,

which forwards them to the corresponding drone controllers. The whole drone data collection

and flight planning process are depicted in Fig. 6.15.

Visualizing fire setting status. DOME provides a comprehensive dashboard as shown

in Figure 6.14, that enables users to visualize critical aspects of wildland fires, including

current fire locations, predicted fire spread, drone positions, wind conditions, and air quality.

We developed an HTML-based website that retrieves this information from the edge server

through HTTP requests and updates the data periodically. The data manager responds

to these requests by querying data from the database and sending it to the dashboard for

149

display. During monitoring process, all received images and fire detection results will be

shown in our dashboard. The dashboard will display recently received photos with detected

bounded fires. Using the drone location and data capture time, we will create fire detection

events that provide the location of the fires with granular detail down to the grid cells. The

detected events will trigger updates of the fire status in the dashboard.

6.8 Summary and Discussion

In this chapter, we design a DOME system to support drone-based monitoring in emergent

events, with Rx fires as a driving use case. DOME includes a task generation procedure that

combines a physical model with a logic-based approach to generate detailed spatial-temporal

sensing requirements. We formulate and solve the multi-drone flight planning problem with

heterogeneous drones under disconnected networks, and address the data quality/coverage

tradeoff. Our evaluations show the superior performance of our proposed algorithms for

various scenarios. In future work, we will explore reinforcement learning and multi-network

integration to improve flight planning, onboard image processing and data transmission

issues for better timeliness and accuracy. DOME will also be extended for other mission-

critical scenarios, e.g., floods and earthquakes, by adjusting monitoring requirements and

redefining task generation rules. Integrated mobile sensing (land and aerial) platforms will

enable community resilience worldwide for years to come.

150

Chapter 7

Conclusion

This chapter summarizes the primary contributions of this thesis, which focus on the explo-

ration of integrating mobility into diverse time-sensitive IoT applications. Throughout this

research, we have delved into the challenges and opportunities presented by this integration,

aiming to enhance the sensing and networking capabilities of IoT systems. In the following

sections, we will elaborate on the valuable lessons gained from our work and outline the

potential directions for future research.

7.1 Summary of Thesis Contributions

This thesis explores the integration of mobile entities with planned mobility patterns into

time-sensitive IoT systems to enhance their sensing and networking capabilities. Planned

mobility includes both predefined mobility, where mobile entities, such as buses, follow fixed

trajectories, and on-demand mobility, where entities like drones or robots respond to specific

user-initiated tasks. In three diverse scenarios, we investigate the utilization of mobile devices

in IoT applications, ranging from urban to remote areas, each presenting unique challenges

151

and trade-offs during implementation.

The first scenario focuses on smart city applications in urban settings, utilizing pervasive

media-rich sensor networks with diverse data transmission delays and priority. To address

the limitation of local network resources for long-range data transmission, we propose using

the mobility of public transit fleets (buses) and network infrastructures on bus routes to

establish a backbone network for cost-effective sensor data transmission. We develop ap-

proaches for network infrastructure deployment and data collection planning, considering

the heterogeneity of delay tolerance and priority of sensor data, as well as the trade-off be-

tween data delivery delay/loss and network infrastructure installation cost. The proposed

approaches are evaluated using a real-world bus network in Orange County, CA, and their

applicability and efficiency are studied in comparison to several other approaches. Further-

more, the demonstrated data collection approach can be seamlessly extended to include other

entities like railways and city fleets by merely providing their trajectories and schedules.

In the second scenario, we explore the use of drones to enhance sensing coverage in mission-

critical IoT applications, particularly in high-rise fire monitoring. In this context, accessing

in-situ sensors is challenging due to factors such as power shortages, damage, and various

other obstacles. We design and implement a drone-based IoT platform for real-time data

collection in fire settings. The system includes visualization of monitoring areas based on

data analysis results, user interfaces that provide commands to drones for monitoring tasks,

and automatic flight planning for continuous monitoring. To optimize data collection, we

propose multiple-drone flight planning approaches, considering the heterogeneity of monitor-

ing tasks in terms of periods and priorities, as well as the trade-off between sensing coverage

and data quality. The proposed algorithms are evaluated using a simulated high-rise fire

scenario with real building structures in UCI. Additionally, we assess the applicability of our

system by implementing its prototype in a lab-based testbed, simulating mockup high-rise

fires.

152

In the third scenario, we focus on utilizing drones to assist mobile sensing and data trans-

mission in remote areas with limited in-situ sensors and poor network conditions, specifically

for wildland fire monitoring. We leverage the CPS control loop to automate the drone-based

monitoring system by enabling real-time perception of the physical world based on sensor

data, automatic task generation for mobile entities, and dynamic planning and control of

their movements to continuously monitor dynamic environments. We propose a rule-based

task generation procedure for spatio-temporal monitoring requirements based on fire status

and prediction. We investigate approaches for multiple-drone flight planning, considering

data collection timeliness, the trade-off between sensing coverage and data quality, and net-

work disconnection during flights. These proposed approaches are thoroughly evaluated by

comparing them with baseline algorithms in simulated wildland fire burns at the Blodgett

Forest Research Station. Additionally, we implement the proposed drone-based monitoring

system in a lab-based testbed with mockup wildland fires to assess its applicability and

performance in realistic conditions.

In the latter two scenarios, this thesis introduces a novel drone-assisted monitoring system

tailored to monitor dynamic environments, with high-rise and wildland fires as case stud-

ies. A synthesis of approaches from multiple fields and disciplines is required to achieve

this system. The system’s design entails creating semantic representations of user-specific

high-level monitoring needs using missions and tasks, taking inspiration from real-time sys-

tems terminology. These designs account for spatial sensor data collection requirements and

temporal necessities for data transmission to enable continuous monitoring in dynamic en-

vironments. Furthermore, rule-based approaches are incorporated using logical frameworks,

automating task generation and minimizing human intervention. In planning and scheduling

mobile entity actions, operations research techniques are harnessed to optimize the deploy-

ment and movement of entities, aligning with sensor coverage needs and diverse monitoring

objectives’ temporal demands. This approach encompasses heuristic methods grounded in

domain-specific knowledge and application needs alongside metaheuristic techniques like lo-

153

cal search approaches in high-rise fire scenarios. Furthermore, the thesis incorporates AI

concepts such as Markov decision processes and heuristic search methodologies to enhance

action planning and scheduling, especially relevant to wildland fire scenes. The thesis also

addresses challenges such as network disconnections during entity movement and 3D obstacle

avoidance, utilizing path planning methods derived from robotics, specifically in high-rise

fire scenarios. In the system implementation phase, we delved into network protocols and

message exchange models among diverse components. This enabled sensor data collection,

data processing, and its presentation on the dashboard, along with an interface for user

instructions input. Additionally, we implemented a control procedure to guide the move-

ment of entities. Our proposed drone-based monitoring system can be readily extended to

different scenarios through the customization of missions and task generation rules informed

by domain knowledge. Additionally, the system accommodates diverse sensor configura-

tions to implement our flight planning algorithms while also addressing challenges related to

network disconnectivity conditions. This flexibility and adaptability collectively enable the

generalization of our system.

7.2 Key Observations and Insights

Through our exploration of integrating mobility into diverse IoT applications, we have

learned the following valuable lessons.

Preliminary and domain knowledge are critical for designing IoT systems. When

planning the deployment of monitoring entities in IoT systems, considering both preliminary

knowledge and domain expertise is critical and helpful. In Chapter 4, for urban scenarios,

the awareness of in-situ sensor placement and the schedules of public transit fleets are crucial

for planning data transmission using mobile vehicles. In Chapter 5, when deploying drones

for mobile sensing in high-rise fire settings, understanding building structures and layouts

154

aids in predicting fire evolution and identifying critical areas for monitoring. Similarly, in

the wildland fire settings of Chapter 6, knowledge about forest topology and fire ignition

plans helps in planning drone flights to monitor areas at risk of fire arrival. Additionally,

our IoT platform for monitoring fire settings is designed based on domain knowledge from

fire experts. We determine monitoring objectives in high-rise fire scenarios based on fire-

fighters’ suggestions, focusing on factors such as building ventilation and window openings,

which significantly impact fire spread. For wildland fires, we employ physical fire models

for predictions based on perceived current fire status. Our design also includes rules, guided

by firefighters’ needs, to generate monitoring requirements that dictate drones’ motion. For

example, in prescribed fire settings, we task drones to inspect fire intensity and flame length

to facilitate the controlled burning of vegetation and track the fire front according to fire

predictions for quickly detecting potential fire spots and escape routes.

Balance data transfer timing and network infrastructure cost during mobile

entity-assisted data transmission. In this thesis (Chapter 4), we explored the tradeoff

between the timing of sensor data collection and the cost of network infrastructure instal-

lation. Our study involves mobile entities that collect data from local sensors and upload

them to access points along their routes, enabling cost-effective long-range data transmis-

sion. When deploying network access points along the routes of mobile entities, we encounter

two conflicting factors. Increasing the number of access points can reduce data transmission

delay, as entities encounter access points more frequently and promptly upload data after

collection. However, this leads to higher installation costs. Conversely, insufficient access

points along the routes can result in delayed data uploading and potential data loss. To

strike a balance between data transmission delay and installation costs, we consider the spe-

cific delay tolerance of diverse types of sensor data. By prioritizing access points near data

with lower delay tolerance, we optimize the deployment to minimize data transfer delay and

data loss while adhering to the constraint of installation cost.

155

Tradeoffs between sensing coverage and data quality in mobile sensing. In our

exploration of the placement of aerial mobile entities (drones) for capturing sensor data (in

Chapters 5 and 6), we encounter another tradeoff. The location of drones (and the sensors

mounted on them) significantly impacts the quality of sensor data, which directly relates to

the level of detail in the observations of targets. Visual sensors like RGB and thermal cameras

offer higher data quality when they are positioned closer to the observed area. This proximity

allows for more detailed observations and higher data resolution. However, this comes at the

cost of smaller sensor coverage, as the drones can only observe a limited area from close range.

Conversely, positioning the drones further from the targets results in larger sensor coverage

but lower data quality. To balance sensor coverage and data quality, we first determine

the required data quality (spatial resolution) for detecting specific events, such as fires or

humans. By establishing a mapping between data quality and event detection accuracy, we

can quantify the value of data quality for monitoring specific objectives. Additionally, we

assess the sensor coverage range concerning the diverse distances to the monitoring objectives

to ensure specific targeting areas can be covered when the drone is at a particular location.

When planning drones’ movements to monitor specific areas, we prioritize sensor coverage

over data quality. This decision is guided by the intuition that within limited data collection

timeframes, it is crucial to observe monitoring targets as much as possible, even if it means

accepting data of acceptable quality initially. If there is additional time available, we can then

focus on enhancing the data quality. This strategy effectively handle the tradeoff between

sensor coverage and data quality while efficiently monitoring critical areas.

Formulating temporal requirements in continuous monitoring with decay func-

tions or deadlines. During the development of flight planning approaches for monitoring

dynamic environments with drones (in Chapters 5 and 6), we faced the challenge of for-

matting continuous monitoring requirements to guide the drones’ actions. Each drone ac-

tion involves capturing sensor data to cover specific sub-areas and detect particular targets.

However, due to the dynamic nature of the monitoring areas, such as in fire settings, and

156

the limitations of mobile entities to provide constant coverage of the entire areas, we must

guide drones to repetitively monitor specific areas in accordance with the time-sensitivity

for data collection specified by domain experts. To address the continuous data collection

requirements with specific time sensitivity, we explored two approaches for formulating the

temporal requirements for drone data collection. In Chapter 5, we formulated the monitor-

ing requirements of a specific area using a decay function based on the time-sensitive delay

tolerance of sensor data collection. Each sub-area requiring monitoring maintains its infor-

mation accuracy to track the historical collected data perceived at that location, and this

accuracy function decays over time as the gap between consecutive observations increases.

The drone’s monitoring process aims to maximize the information accuracy of all monitoring

sub-areas. While this formulation accurately tracks the dynamics of each sub-area, it intro-

duces complexity by modeling information accuracy as a continuous function, which makes

it challenging to track task accomplishment at each delay tolerance period. In Chapter 6,

we adopted a simpler approach by modeling the monitoring requirements of each monitor-

ing objective as periodic tasks, each with a start time and a deadline. This time window

corresponds to the time-sensitive period required for data collection and observation. The

drone is tasked with observing the designated objectives within the specified time window;

failure to do so results in missing the subtasks. The goal of this formulation is to maximize

the completeness of all subtasks, providing an easier way to track task accomplishment at

each period.

Enhancing autonomy in IoT systems through CPS control loop. Automation is cru-

cial when designing mobile entities-based IoT systems, especially for monitoring large-scale

areas such as wildland fires. In such vast and remote areas, human ground-based monitoring

of mobile entities becomes challenging or impossible due to limited visibility. Additionally,

in forested areas, there can be a loss of network connectivity with aerial vehicles. To achieve

system autonomy, we implement multiple components following the CPS control loop. The

first component is the data analysis module, which abstracts meaningful information about

157

the physical world from sensor data. In addition, we design system semantics to represent

the status of the monitored environment based on data analysis results. For instance, in the

context of fire monitoring, we partition the entire monitoring area into smaller cells using

a grid system. This approach enables us to track the burning status at each cell, allowing

for the effective localization of fires. Furthermore, we create a rule-based task-generation

procedure that can automatically generate monitoring requirements for drones. Here, we

utilize if-then rules specific to fire experts’ knowledge to generate spatial and temporal data

collection requirements for drones based on multiple predefined conditions related to the

current perceived fire status and prediction of future fire evolution. Given the generated

tasks, we also designed the flight planning component to automatically plan and schedule

drone flights to fulfill these tasks.

By enabling the perception of the physical world’s status and rule-based task generation,

we can automatically guide drones to collect sensor data for user-specific purposes. This

framework can also be extended to other scenarios by modifying the data analysis procedures

and rules based on specific domain knowledge.

7.3 Future Work

Building upon the insights gained from our current study, we can explore several promising

areas that have the potential to significantly enhance the utilization of mobile entities in IoT

systems.

• Onboard computing and flight adaptation. In our current study, we conduct

periodic planning of aerial vehicles capturing sensor data for monitoring dynamic en-

vironments. However, this periodic planning approach may not be flexible enough to

react to unexpected events that occur during the planned duration. To enable dynamic

158

monitoring adjustments based on unexpected events during flight, it is essential to in-

vestigate the implementation of onboard computing capabilities in drones. This would

empower the drones to detect events based on onboard data analysis, such as using

temperature sensors to detect fires in proximity, and automatically adapt their actions

for safety or other concerns in real-time. For instance, if a drone detects a fire alarm

during its flight, it can dynamically adjust its trajectory to respond to the emergency.

Similarly, in case of a sudden network disconnection, the drone can adapt its flight to

upload data promptly when the connection is restored. Incorporating onboard com-

puting can enhance the responsiveness and efficiency of mobile entities in IoT systems,

allowing them to address unexpected situations more effectively.

• Utilizing formal methods for verifying system properties. Exploring the veri-

fication of system robustness and safety of mobile entities using formal methods-based

approaches is another important area for future work. By applying formal methods-

based approaches, we can systematically analyze and validate the system’s behavior,

identify potential vulnerabilities or safety concerns, and ensure that the mobile en-

tities operate efficiently and safely in various scenarios. First, using formal methods

approach, we can verify the correctness of the system’s operation. For example, we

can assess whether tasks can be completed within specific time durations based on

the rule-based task generation procedure. Additionally, we can verify if data can be

transmitted from drones to edge servers before the deadline of data collection. More-

over, exploring the verification of system robustness can involve assessing the mobile

entities’ resilience to various environmental factors and external disturbances. For ex-

ample, in the case of drones deployed for monitoring in extreme weather conditions

or challenging terrains, it is essential to verify their ability to maintain safe distances

from fires, avoid potential collisions with other mobile entities, and respond appropri-

ately to unexpected events, such as loss of power during task execution. Furthermore,

formal methods can be applied to evaluate the system’s adaptability and scalability.

159

For example, it becomes crucial to ensure that the mobile entities (drones) can effec-

tively handle the updating of monitoring tasks or the addition/removal of drones, and

dynamically adjust their operations to changing demands.

• Exploring multi-Hop networks with mobile entities for enhanced monitoring

processes. In this thesis, our primary focus was on one-hop data transmission between

mobile entities and the edge server. However, we recognize the potential of exploring

network communication among mobile entities, with an emphasis on creating multi-hop

data transmission among drones. This approach can effectively complement the limited

data transmission range and save drones’ flying time for uploading data. Given the

fast and flexible movement of aerial vehicles, our research will delve into investigating

the optimal placement of drones to establish a robust mesh network. This will involve

determining the roles of individual drones, such as access points, data relayers, or sensor

data collectors, within this mesh network. Addressing the issue of connection failures

between drones becomes crucial in this context. Further research should concentrate on

developing efficient algorithms and protocols for rerouting data transmission routes,

ensuring data continuity and recovery in case of network disruptions. By exploring

multi-hop data transmission and mesh network establishment, we can enhance the data

transmission efficiency and overall performance of mobile entities in IoT systems. This

investigation will contribute to a more resilient and well-connected network of mobile

entities, capable of seamless collaboration in real-time data collection and monitoring

tasks.

• Integrating mixed mode mobility into IoT systems. In this thesis, we focused

on exploring scenarios each of which involves a single type of mobile entities. In our

future work, we plan to investigate the incorporation of mixed mode mobility, which

includes both ground and aerial vehicles, in our IoT system. By combining these two

types of mobile entities, we can leverage their unique strengths to address various

160

challenges more effectively. Aerial vehicles excel in conducting sensing and actuation

in challenging environments due to their quick deployment and agile movement capa-

bilities. On the other hand, ground vehicles offer advantages such as larger payload

capacity and suitability for acting as power suppliers, overcoming the limitations of

aerial vehicles in terms of energy and loading weight. The collaboration of ground and

aerial vehicles to fulfill specific monitoring tasks presents several challenges, including

role assignment, resource allocation, and motion planning. To facilitate efficient co-

operation, we categorize the devices based on their functionalities, including sensors

responsible for data collection, actuators responsible for performing various actions,

decision makers handling computing and analysis, and auxiliary facilities such as ac-

cess points for networking assistance or energy suppliers. Once the roles are assigned,

we need to plan the actions of mobile devices to fulfill specific service tasks, framing

the problem as a cooperative multi-agent planning challenge. This approach allows

us to optimize the coordination and cooperation among the mobile entities, enabling

them to work together seamlessly and achieve higher efficiency in data collection and

mobile sensing tasks.

• Exploring edge computing through runtime resource allocation and adap-

tation. In our current IoT system, the data analysis component relies on centralized

data processing at the edge server. However, for future work, we aim to explore dis-

tributed edge computing, which involves allocating data processing and analysis tasks

among multiple edge servers or onboard computing components. By adopting a dis-

tributed approach, we can reduce the computing time required for data processing

and analysis, leading to improved efficiency and faster response times. The explo-

ration of distributed edge computing and resource allocation involves several research

challenges. One of the main problems is optimizing the workload allocation among

multiple edge servers and onboard components, considering factors such as running

time, data transmission delay and power consumption. This requires developing effi-

161

cient algorithms and techniques to determine the best distribution of data processing

tasks across the available resources to minimize overall processing time and reduce

communication overhead. Another critical aspect is the dynamic adaptation of data

processing task to respond to the dynamic status of the edge computing servers. For

instance, in the case of certain servers running out of power or experiencing failures, the

system needs to quickly redistribute the workload to other available servers to ensure

continuous and uninterrupted data analysis.

162

Bibliography

[1] Digitanimal. https://digitanimal.com/, 2018.

[2] E-Pasto. https://www.epasto.fr, 2018.

[3] Rating Camera Performance, DRI & DORI Explained. https://tinyurl.com/

3wex9uzu, 2021.

[4] PyKnow: Expert Systems for Python. https://github.com/buguroo/pyknow, 2022.

[5] DOME. https://github.com/Fangqierin/DOME-Monitoring-System, 2023.

[6] U. Acer, P. Giaccone, D. Hay, G. Neglia, and S. Tarapiah. Timely Data Delivery in a
Realistic Bus Network. In IEEE International Conference on Computer Communica-
tions (INFOCOM), pages 446–450, Apr. 2011.

[7] C. Aeronautiques et al. Pddl— the planning domain definition language. Technical
Report, Tech. Rep., 1998.

[8] M. A. Akhloufi, A. Couturier, and N. Castro. Unmanned aerial vehicles for wildland
fires: Sensing, perception, cooperation and assistance. Drones, 2021.

[9] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan. A comprehensive
survey on vehicular ad hoc network. Journal of network and computer applications,
37:380–392, 2014.

[10] E. Alba and R. Mart́ı. Metaheuristic procedures for training neural networks, vol-
ume 35. Springer Science & Business Media, 2006.

[11] M. Aljehani and M. Inoue. Safe map generation after a disaster, assisted by an un-
manned aerial vehicle tracking system. IEEJ Transactions on Electrical and Electronic
Engineering, 14(2):271–282, 2019.

[12] S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki. Survey on collaborative smart
drones and internet of things for improving smartness of smart cities. Ieee Access,
7:128125–128152, 2019.

[13] S. H. Alsamhi, O. Ma, M. S. Ansari, and S. K. Gupta. Collaboration of drone and
internet of public safety things in smart cities: An overview of qos and network per-
formance optimization. Drones, 3(1):13, 2019.

163

https://digitanimal.com/
https://www.epasto.fr
https://tinyurl.com/3wex9uzu
https://tinyurl.com/3wex9uzu
https://github.com/buguroo/pyknow
https://github.com/Fangqierin/DOME-Monitoring-System

[14] S. Amador, S. Okamoto, and R. Zivan. Dynamic multi-agent task allocation with
spatial and temporal constraints. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014.

[15] Apache Software Foundation. Hadoop.

[16] J. Arshad, A. U. Rehman, M. T. B. Othman, M. Ahmad, H. B. Tariq, M. A. Khalid,
M. A. R. Moosa, M. Shafiq, and H. Hamam. Deployment of wireless sensor network
and iot platform to implement an intelligent animal monitoring system. Sustainability,
14(10):6249, 2022.

[17] O. Avatefipour and F. Sadry. Traffic management system using iot technology-a com-
parative review. In 2018 IEEE International Conference on Electro/Information Tech-
nology (EIT), pages 1041–1047. IEEE, 2018.

[18] E. D. Ayele, N. Meratnia, and P. J. Havinga. Towards a new opportunistic iot network
architecture for wildlife monitoring system. In 2018 9th IFIP international conference
on new technologies, mobility and security (NTMS), pages 1–5. IEEE, 2018.

[19] H. Azpúrua, G. M. Freitas, and e. Macharet, D. G. Multi-robot coverage path planning
using hexagonal segmentation for geophysical surveys. Robotica, 36(8), 2018.

[20] M. Babar and F. Arif. Real-time data processing scheme using big data analytics
in internet of things based smart transportation environment. Journal of Ambient
Intelligence and Humanized Computing, 10:4167–4177, 2019.

[21] J. A. Baijnath-Rodino and e. a. Li, S. Historical seasonal changes in prescribed burn
windows in california. Science of the total environment, 2022.

[22] J. Ballesteros, B. Carbunar, M. Rahman, N. Rishe, and S. Iyengar. Towards safe
cities: A mobile and social networking approach. IEEE Transactions on Parallel and
Distributed Systems, 25(9):2451–2462, 2013.

[23] R. W. Beard and T. W. M. et al. Coordinated target assignment and intercept for
unmanned air vehicles. IEEE Transactions on Robotics and Automation, 18, 2002.

[24] Beatrice Rasciute. What Is IoT? All You Need to Know About the Internet of Things,
November 2021. https://www.ipxo.com/blog/what-is-iot/,.

[25] B. Behsaz, M. R. Salavatipour, and Z. Svitkina. New Approximation Algorithms
for the Unsplittable Capacitated Facility Location Problem. In Algorithm Theory -
Scandinavian Symposium and Workshops, pages 237–248, Jun. 2016.

[26] J. Bellingham et al. Receding horizon control of autonomous aerial vehicles. In Pro-
ceedings of the 2002 American Control Conference, volume 5, 2002.

[27] L. Bengtsson, X. Lu, A. Thorson, R. Garfield, and J. Von Schreeb. Improved response
to disasters and outbreaks by tracking population movements with mobile phone net-
work data: a post-earthquake geospatial study in haiti. PLoS medicine, 8(8):e1001083,
2011.

164

https://www.ipxo.com/blog/what-is-iot/

[28] F. Z. Benhamida, A. Bouabdellah, and Y. Challal. Using delay tolerant network for the
internet of things: Opportunities and challenges. In 2017 8th International Conference
on Information and Communication Systems (ICICS), pages 252–257. IEEE, 2017.

[29] K. Benson et al. Scale: Safe community awareness and alerting leveraging the internet
of things. IEEE Communications Magazine, 53(12), 2015.

[30] T. Black, V. Mak, P. Pathirana, and S. Nahavandi. Using Autonomous Mobile Agents
for Efficient Data Collection in Sensor Networks. In World Automation Congress
(WAC), Aug. 2006.

[31] S. Bonadies and S. A. Gadsden. An overview of autonomous crop row navigation
strategies for unmanned ground vehicles. Engineering in Agriculture, Environment
and Food, 12(1):24–31, 2019.

[32] O. Bräysy and M. Gendreau. Tabu search heuristics for the vehicle routing problem
with time windows. Top, 10(2):211–237, 2002.

[33] D. Buezas. Constraint-Based Modeling of Minimum Set Covering: Application to
Species Differentation Constraint-Based Modeling of Minimum Set Covering: Applica-
tion to Species Differentation. PhD thesis, Faculdade de Ciências e Tecnologia, 2010.

[34] T. Buratowski, J. Garus, M. Giergiel, and A. Kudriashov. Real-time 3d mapping in
isolated industrial terrain with use of mobile robotic vehicle. Electronics, 11(13):2086,
2022.

[35] M. N. Bygi. 3D Visibility Graph. Computer Engr., 2007.

[36] T. M. Cabreira, L. B. Brisolara, and P. R. Jr. Ferreira. Survey on coverage path
planning with unmanned aerial vehicles. Drones, 2019.

[37] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti. Real-time urban
monitoring using cell phones: A case study in rome. IEEE transactions on intelligent
transportation systems, 12(1):141–151, 2010.

[38] P. Cao, Z. Fan, R. X. Gao, and J. Tang. Solving Configuration Optimization Problem
with Multiple Hard Constraints: An Enhanced Multi-Objective Simulated Annealing
Approach. arXiv preprint arXiv:1706.03141, (860), Jun. 2017.

[39] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and P. Bouvry.
A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities.
IEEE communications surveys & tutorials, 21(3):2419–2465, 2019.

[40] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem.
Operations research, 47, 1999.

[41] A. Cardoso, J. Pereira, L. Nóbrega, P. Gonçalves, P. Pedreiras, and V. Silva. Sheepit:
Activity and location monitoring. In Proceedings of the INForum, pages 1–12, 2018.

165

[42] A. A. Chaudhry, R. Mumtaz, S. M. H. Zaidi, M. A. Tahir, and S. H. M. School.
Internet of things (iot) and machine learning (ml) enabled livestock monitoring. In
2020 IEEE 17th International Conference on Smart Communities: Improving Quality
of Life Using ICT, IoT and AI (HONET), pages 151–155. IEEE, 2020.

[43] C. Chen, D. Zhang, Z.-H. Zhou, N. Li, T. Atmaca, and S. Li. B-planner: Night bus
route planning using large-scale taxi gps traces. In 2013 IEEE International Conference
on Pervasive Computing and Communications (PerCom), pages 225–233, 2013.

[44] S. Chen, J. Dong, P. Ha, Y. Li, and S. Labi. Graph neural network and reinforce-
ment learning for multi-agent cooperative control of connected autonomous vehicles.
Computer-Aided Civil and Infrastructure Engineering, 36(7):838–857, 2021.

[45] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun. 3D object proposals
using stereo imagery for accurate object class detection. IEEE transactions on pattern
analysis and machine intelligence, 40(5):1259–1272, May 2017.

[46] H. Cheng and G. V. Hadjisophocleous. Dynamic modeling of fire spread in building.
Fire Safety Journal, 46:211–224, 2011.

[47] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. Intl. Conf.
on Intelligent Agent Technology, 2004.

[48] N. Chiaraviglio and e. Artés, T. Automatic fire perimeter determination using modis
hotspots information. In 12th Int. Conf. on e-Science, 2016.

[49] W. Choi, J. Kim, S. Lee, and E. Park. Smart home and internet of things: A biblio-
metric study. Journal of Cleaner Production, 301:126908, 2021.

[50] H. Choset. Coverage for robotics–a survey of recent results. Annals of mathematics
and artificial intelligence, 31:113–126, 2001.

[51] S. Chu, P. Wei, X. Zhong, X. Wang, and Y. Zhou. Deployment of a Connected
Reinforced Backbone Network with a Limited Number of Backbone Nodes. IEEE
Transactions on Mobile Computing, 12(6):1188–1200, Apr. 2013.

[52] I. I. Cplex. V12. 1: User’s manual for cplex. Intel., 2009.

[53] A. Crooks, A. Croitoru, A. Stefanidis, and J. Radzikowski. # earthquake: Twitter as
a distributed sensor system. Transactions in GIS, 17(1):124–147, 2013.

[54] M. Crosby et al. Automated agent decomposition for classical planning. In Intel.
Conference on Automated Planning and Scheduling, 2013.

[55] P. H. Cruz Caminha, F. Ferreira da Silva, R. Gonçalves Pacheco, R. de Souza Couto,
P. Braconnot Velloso, M. E. Mitre Campista, and L. H. M. K. Maciel Kosmalski Costa.
Sensingbus: Using bus lines and fog computing for smart sensing the city. IEEE Cloud
Computing, 5(5):58–69, 2018.

166

[56] F. Cui. Deployment and integration of smart sensors with iot devices detecting fire
disasters in huge forest environment. Computer Communications, 150:818–827, 2020.

[57] C. D. F. and o. Giorgio. Coverage path planning for uavs photogrammetry with energy
and resolution constraints. Journal of Intel. & Robotic Systems, 83(3), 2016.

[58] S. M. S. M. Daud, M. Y. P. M. Yusof, C. C. Heo, L. S. Khoo, M. K. C. Singh, M. S.
Mahmood, and H. Nawawi. Applications of drone in disaster management: A scoping
review. Science & Justice, 62(1):30–42, 2022.

[59] B. De Longueville, R. S. Smith, and G. Luraschi. ” omg, from here, i can see the
flames!” a use case of mining location based social networks to acquire spatio-temporal
data on forest fires. In Proceedings of the 2009 international workshop on location based
social networks, pages 73–80, 2009.

[60] V. R. Desaraju et al. Decentralized path planning for multi-agent teams in complex
environments using rapidly-exploring random trees. In IEEE ICRA, 2011.

[61] DJI. Mobile SDK. https://developer.dji.com/mobile-sdk/.

[62] D. Droeschel, M. Nieuwenhuisen, M. Beul, D. Holz, J. Stückler, and S. Behnke. Multi-
layered mapping and navigation for autonomous micro aerial vehicles. Journal of Field
Robotics, 33(4):451–475, 2016.

[63] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T. Camp-
bell. Bikenet: A mobile sensing system for cyclist experience mapping. ACM Trans.
Sen. Netw., 6(1), jan 2010.

[64] E. et al. UAV aerial imaging applications for post-disaster assessment, environmen-
tal management and infrastructure development. Intl. Conf. on Unmanned Aircraft
Systems, pages 274–283, 2014.

[65] M. et al. Fire fighting tactics under wind driven conditions: laboratory experiments.
Fire Protection Research Foundation, 2009.

[66] Y. Eun et al. Cooperative task assignment/path planning of multiple unmanned aerial
vehicles using genetic algorithm. Journal of aircraft, 2009.

[67] T.-Y. Fan, F. Liu, J.-W. Fang, N. Venkatasubramanian, and C.-H. Hsu. Enhancing
situational awareness with adaptive firefighting drones: Leveraging diverse media types
and classifiers. In Proc. of the 13th ACM Multimedia Systems Conference, Athlone,
Ireland, 2022.

[68] M. A. Finney. FARSITE, Fire Area Simulator–model development and evaluation.
Number 4. US Department of Agriculture, Forest Service, 1998.

[69] FireRescue1. 5 Drone Technologies for Firefighting, Mar. 2014. https://tinyurl.

com/y4ldl8mf, Last accessed on 2019-11-10.

167

https://developer.dji.com/mobile-sdk/
https://tinyurl.com/y4ldl8mf
https://tinyurl.com/y4ldl8mf

[70] P. M. e. a. França. The m-traveling salesman problem with minmax objective. Trans-
portation Science, 29(3):267–275, 1995.

[71] E. Fresk, K. Ödmark, and G. Nikolakopoulos. Ultra wideband enabled inertial odom-
etry for generic localization. IFAC-PapersOnLine, 50(1):11465–11472, 2017.

[72] J. Gai, L. Xiang, and L. Tang. Using a depth camera for crop row detection and
mapping for under-canopy navigation of agricultural robotic vehicle. Computers and
Electronics in Agriculture, 188:106301, 2021.

[73] Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, and C. Chen. Mosaic: A low-
cost mobile sensing system for urban air quality monitoring. In IEEE INFOCOM 2016 -
The 35th Annual IEEE International Conference on Computer Communications, pages
1–9, 2016.

[74] E. Garcia, M. A. Jimenez, P. G. De Santos, and M. Armada. The evolution of robotics
research. IEEE Robotics & Automation Magazine, 14(1):90–103, 2007.

[75] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

[76] A. Gatouillat, Y. Badr, B. Massot, and E. Sejdić. Internet of medical things: A review
of recent contributions dealing with cyber-physical systems in medicine. IEEE internet
of things journal, 5(5):3810–3822, 2018.

[77] K. A. Ghamry and Y. Zhang. Cooperative control of multiple uavs for forest fire
monitoring and detection. In MESA, 2016.

[78] A. A. Ghapar, S. Yussof, and A. A. Bakar. Internet of things (iot) architecture for
flood data management. International journal of future generation communication and
networking, 11(1):55–62, 2018.

[79] A. Goudarzi, F. Ghayoor, M. Waseem, S. Fahad, and I. Traore. A survey on iot-enabled
smart grids: Emerging, applications, challenges, and outlook. Energies, 15(19):6984,
2022.

[80] R. Grosso, U. Mecca, G. Moglia, F. Prizzon, and M. Rebaudengo. Collecting built
environment information using uavs: Time and applicability in building inspection
activities. Sustainability, 12(11):4731, 2020.

[81] A. Gunawan and e. H. C. Lau. Orienteering problem: A survey of recent variants,
solution approaches and applications. EJOR, 2016.

[82] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou. Opportunistic iot: Exploring the
harmonious interaction between human and the internet of things. Journal of Network
and Computer Applications, 36(6):1531–1539, 2013.

[83] S. Guo, M. Derakhshani, M. Falaki, U. Ismail, R. Luk, E. Oliver, S. U. Rahman,
A. Seth, M. Zaharia, and S. Keshav. Design and implementation of the kiosknet
system. Computer Networks, 55(1):264–281, 2011.

168

[84] W. He, G. Yan, and L. D. Xu. Developing vehicular data cloud services in the iot
environment. IEEE Transactions on Industrial Informatics, 10(2):1587–1595, 2014.

[85] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning
trees: Part ii. Mathematical programming, 1, 1971.

[86] S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial, and P. T. Fischer. Prototyping
connected devices for the internet of things. Computer, 46(2):26–34, 2012.

[87] J. Hoffmann et al. The ff planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 2001.

[88] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[89] T. Huang, J. Li, S. Koenig, and B. Dilkina. Anytime multi-agent path finding via
machine learning-guided large neighborhood search. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 9368–9376, 2022.

[90] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Bal-
akrishnan, and S. Madden. Cartel: a distributed mobile sensor computing system. In
Proceedings of the 4th international conference on Embedded networked sensor systems,
pages 125–138, 2006.

[91] A. Ilah N. Alshbatat. Fire Extinguishing System for High-Rise Buildings and Rugged
Mountainous Terrains Utilizing Quadrotor Unmanned Aerial Vehicle. Intl. Journal of
Image, Graphics and Signal Processing, 10(1):23–29, 2018.

[92] N. Indra Er, K. Deep Singh, J.-M. Bonnin, N. E. Indra, and K. Deep SINGH. On
the Performance of VDTN Routing Protocols with V2X Communications for Data
Delivery in Smart Cities. In International Workshop on System Safety & Security
(IWSSS), pages 1–2, Aug. 2017.

[93] A. Jadon et al. Firenet: a specialized lightweight fire & smoke detection model for
real-time iot applications. arXiv preprint arXiv:1905.11922, 2019.

[94] S. I. Jiménez-Jiménez, W. Ojeda-Bustamante, R. E. Ontiveros-Capurata, and M. d. J.
Marcial-Pablo. Rapid urban flood damage assessment using high resolution remote
sensing data and an object-based approach. Geomatics, Natural Hazards and Risk,
11(1):906–927, 2020.

[95] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences with
zebranet. In Proceedings of the 10th international conference on Architectural support
for programming languages and operating systems, pages 96–107, 2002.

169

[96] A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag: Selective blocking of rfid tags
for consumer privacy. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 103–111, 2003.

[97] G. Kahn, P. Abbeel, and S. Levine. Badgr: An autonomous self-supervised learning-
based navigation system. IEEE Robotics and Automation Letters, 6(2):1312–1319,
2021.

[98] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldu, and M. I. Ali. Agri-iot: A semantic
framework for internet of things-enabled smart farming applications. In 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT), pages 442–447. IEEE, 2016.

[99] L. Kang. A Public Transport Bus as a Flexible Mobile Smart Environment Sensing
Platform for IoT. In International Conference on Intelligent Environments (IE), pages
1–8, Sep. 2016.

[100] L. Kang, S. Poslad, W. Wang, X. Li, Y. Zhang, and C. Wang. A Public Transport Bus
as a Flexible Mobile Smart Environment Sensing Platform for IoT. In International
Conference on Intelligent Environments (IE), pages 1–8, Sep. 2016.

[101] L. Kang, S. Poslad, W. Wang, X. Li, Y. Zhang, and C. Wang. A public transport
bus as a flexible mobile smart environment sensing platform for iot. In 2016 12th
International Conference on Intelligent Environments (IE), pages 1–8. IEEE, 2016.

[102] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis. A survey of un-
manned aerial vehicles (uavs) for traffic monitoring. In 2013 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 221–234. IEEE, 2013.

[103] D. Kazakov and D. Kudenko. Machine learning and inductive logic programming
for multi-agent systems. In ECCAI Advanced Course on Artificial Intelligence, pages
246–270. Springer, 2001.

[104] H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-Completeness of Knap-
sack Problems. In Knapsack Problems, pages 483–493, 2004.

[105] F. Kendoul. Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems. Journal of Field Robotics, 29(2):315–378, 2012.

[106] A. Ker and K. Teemu. Simulating Mobility and DTNs with the ONE. Journal of
Communications, 5(2):92–105, Sep. 2010.

[107] A. Keränen. “Opportunistic Network Environment Simulator”, 2008.

[108] A. W. Khan, A. H. Abdullah, M. H. Anisi, and J. I. Bangash. A Comprehensive Study
of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks. Sensors,
pages 2510–2548, May 2014.

[109] A. Khanna and S. Kaur. Internet of things (iot), applications and challenges: a com-
prehensive review. Wireless Personal Communications, 114:1687–1762, 2020.

170

[110] M. S. Kiarostami, M. R. Daneshvaramoli, S. K. Monfared, D. Rahmati, and S. Gorgin.
Multi-agent non-overlapping pathfinding with monte-carlo tree search. In 2019 IEEE
Conference on Games (CoG), pages 1–4. IEEE, 2019.

[111] D. Kim, R. N. Uma, B. H. Abay, W. Wu, W. Wang, and A. O. Tokuta. Minimum
Latency Multiple Data Mule Trajectory Planning in Wireless Sensor Networks. IEEE
Transactions on Mobile Computing, 13(4), May 2014.

[112] H. Kim, L. Mokdad, and J. Ben-Othman. Designing uav surveillance frameworks for
smart city and extensive ocean with differential perspectives. IEEE Communications
Magazine, 56(4):98–104, 2018.

[113] J. Kim and H. I. Son. A voronoi diagram-based workspace partition for weak cooper-
ation of multi-robot system in orchard. IEEE Access, 8, 2020.

[114] Y. Kim, D. W. Gu, and I. Postlethwaite. Real-time optimal mission scheduling and
flight path selection. IEEE Transactions on Automatic Control, 52(6):1119–1123, 2007.

[115] E. King et al. Coordination and control experiments on a multi-vehicle testbed. In
Proceedings of the 2004 American Control Conference, volume 6, 2004.

[116] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., USA, 2005.

[117] C. Konstantopoulos, G. Pantziou, and D. Gavalas. A Rendezvous-Based Approach En-
abling Energy-Efficient Sensory Data Collection with Mobile Sinks. IEEE Transactions
on Parallel and Distributed Systems (TPDS), 23(5):809–817, Sep. 2011.

[118] H. Korala, D. Georgakopoulos, P. P. Jayaraman, and A. Yavari. A survey of techniques
for fulfilling the time-bound requirements of time-sensitive iot applications. ACM
Comput. Surv., 54, sep 2022.

[119] S. Koulali, E. Sabir, T. Taleb, and M. Azizi. A green strategic activity scheduling for
uav networks: A sub-modular game perspective. IEEE Communications Magazine,
54(5):58–64, 2016.

[120] P. Kuila and P. K. Jana. “Clustering and Routing Algorithms for Wireless Sensor
Networks: Energy Efficiency Approaches”. Chapman and Hall/CRC, Sep. 2017.

[121] R. Kulkarni and P. R. Bhave. Integer programming formulations of vehicle routing
problems. European journal of operational research, 20(1):58–67, 1985.

[122] N. Lakshminarayana, Y. Liu, K. Dantu, V. Govindaraju, and N. Napp. Ac-
tive face frontalization using commodity unmanned aerial vehicles. arXiv preprint
arXiv:2102.08542, June 2021.

[123] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, and
H. Cha. Piggyback CrowdSensing (PCS): Energy Efficient Crowdsourcing of Mobile
Sensor Data by Exploiting Smartphone App Opportunities. In ACM Conference on
Embedded Networked Sensor Systems (SenSys), Nov. 2013.

171

[124] J. Lanza, L. Sánchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, and
V. Gutiérrez. Large-scale mobile sensing enabled internet-of-things testbed for smart
city services. International Journal of Distributed Sensor Networks, 11(8):785061, 2015.

[125] G. Laporte and F. Semet. Classical heuristics for the capacitated vrp. In The vehicle
routing problem, pages 109–128. SIAM, 2002.

[126] A. Lavric, A. I. Petrariu, and V. Popa. Sigfox communication protocol: The new era
of iot? In 2019 international conference on sensing and instrumentation in IoT Era
(ISSI), pages 1–4. IEEE, 2019.

[127] S. Leary, M. Deittert, and J. Bookless. Constrained UAV mission planning: A com-
parison of approaches. Proceedings of the IEEE Intl. Conf. on Computer Vision, pages
2002–2009, 2011.

[128] S. K. Lee, M. Bae, and H. Kim. Future of iot networks: A survey. Applied Sciences,
7(10):1072, 2017.

[129] Leonardo DRS, Electro-Optical & Infrared Systems. How To Assess Thermal Camera
Range For Site Design, White Paper. shorturl.at/osyHT.

[130] V. Lesch, M. Züfle, A. Bauer, L. Iffländer, C. Krupitzer, and S. Kounev. A literature
review of iot and cps—what they are, and what they are not. Journal of Systems and
Software, 200:111631, 2023.

[131] L. Li, Y. Liu, Z. Li, and L. Sun. R2R: Data Forwarding in Large-Scale Bus-Based
Delay Tolerant Sensor Networks. In IET International Conference on Wireless Sensor
Network (IET-WSN), pages 27 – 31, Nov. 2010.

[132] C. M. D. A. Lima, E. A. D. Silva, and P. B. Velloso. Performance evaluation of 802.11
iot devices for data collection in the forest with drones. In Global Comms. Conf., 2018.

[133] C. R. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks. IEEE
Journal on Selected Areas in Communications, 15(7):1265–1275, Sep. 1997.

[134] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem. In
Intl. Conf. on Decision and Control, volume 2, 2003.

[135] F. Liu and e. a. T. Y. Fan. Dragonfly: Drone-assisted high-rise monitoring for fire
safety. In Int. Symposium on Reliable Distributed Systems, 2021.

[136] X. Liu, T. Yang, and B. Yan. Internet of things for wildlife monitoring. In 2015 IEEE/-
CIC International Conference on Communications in China-Workshops (CIC/ICCC),
pages 62–66. IEEE, 2015.

[137] J. Ma, N. Lu, and H. Zhang. PSO-Based Proactive Routing in Delay Tolerant Network.
In International Conference on Cyberspace Technology (CCT), pages 1–4, Nov. 2014.

[138] N. Maisonneuve, M. Stevens, M. Niessen, and L. Steels. Noisetube: Measuring and
mapping noise pollution with mobile phones. pages 215–228, 01 2009.

172

shorturl.at/osyHT

[139] T. Malche, P. Maheshwary, and R. Kumar. Environmental monitoring system for
smart city based on secure internet of things (iot) architecture. Wireless Personal
Communications, 107(4):2143–2172, 2019.

[140] D. Marikyan, S. Papagiannidis, and E. Alamanos. A systematic review of the smart
home literature: A user perspective. Technological Forecasting and Social Change,
138:139–154, 2019.

[141] J. Matute. “Publicly-Accessible Public Transportation Data”, 2018.

[142] T. W. McLain and R. W. Beard. Coordination variables, coordination functions, and
cooperative-timing missions. Journal of Guidance, Control, and Dynamics, 28, 2005.

[143] Measure a 32 Advisor Company. Drones for Disaster Response and Relief Operations,
Apr. 2015. https://tinyurl.com/yy2pp6tc,.

[144] M. S. Mekala and P. Viswanathan. A survey: Smart agriculture iot with cloud comput-
ing. In 2017 international conference on microelectronic devices, circuits and systems
(ICMDCS), pages 1–7. IEEE, 2017.

[145] A. Mitra, B. Bera, and A. K. Das. Design and testbed experiments of public blockchain-
based security framework for iot-enabled drone-assisted wildlife monitoring. In IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 1–6, 2021.

[146] F. Montori, L. Bedogni, and L. Bononi. A collaborative internet of things architecture
for smart cities and environmental monitoring. IEEE Internet of Things Journal,
5(2):592–605, 2017.

[147] M. Moore Bick. Grenfell tower inquiry: Phase 1 report overview - report of the
public inquiry into the fire at grenfell tower on 14 june 2017, 2019. https://www.

grenfelltowerinquiry.org.uk/phase-1-report.

[148] N. H. Motlagh, M. Bagaa, and T. Taleb. Uav-based iot platform: A crowd surveillance
use case. IEEE Communications Magazine, 55(2):128–134, 2017.

[149] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah. Mobile internet of things: Can uavs
provide an energy-efficient mobile architecture? In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, 2016.

[150] A. Mukhopadhyay et al. An online decision-theoretic pipeline for responder dispatch.
In ACM/IEEE Intel. Conference on Cyber-Physical Systems, 2019.

[151] S. Munirathinam. Industry 4.0: Industrial internet of things (iiot). In Advances in
computers, volume 117, pages 129–164. Elsevier, 2020.

[152] A. Nadi and A. Edrisi. Adaptive multi-agent relief assessment and emergency response.
Intel. journal of disaster risk reduction, 24, 2017.

173

https://tinyurl.com/yy2pp6tc
https://www.grenfelltowerinquiry.org. uk/phase-1-report
https://www.grenfelltowerinquiry.org. uk/phase-1-report

[153] T. Nägeli et al. Real-time planning for automated multi-view drone cinematography.
ACM Transactions on Graphics (TOG), 2017.

[154] R. Nakata and C. et al. Rf techniques for motion compensation of an unmanned aerial
vehicle for remote radar life sensing. In Intl. Microwave Symp., 2016.

[155] National Institute for Occupational Safety and Health (NIOSH),. Three Fire Fighters
Die in a 10-Story High-Rise Apartment Building - New York, August 1999. https:

//tinyurl.com/y63p84j7,.

[156] National Institute of Justice. A Guide for Investigating Fire and Arson, May 2009.
https://tinyurl.com/yy48k9wq.

[157] Netage B.V. Smart Data for Smarter Firefighters. https://netage.nl/resc-info/.

[158] F. Nex and F. Remondino. Preface: Latest developments, methodologies, and appli-
cations based on uav platforms. Drones, 3(1), 2019.

[159] T. Ni, W. Li, D. Zhao, and Z. Kong. Road profile estimation using a 3d sensor and
intelligent vehicle. Sensors, 20(13):3676, 2020.

[160] E. Niforatos, A. Vourvopoulos, M. Langheinrich, P. Campos, and A. Doria. Atmos:
A hybrid crowdsourcing approach to weather estimation. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing: Ad-
junct Publication, UbiComp ’14 Adjunct, page 135–138, New York, NY, USA, 2014.
Association for Computing Machinery.

[161] I. K. Nikolos et al. Uav path planning using evolutionary algorithms. Innovations in
intelligent machines-1, 2007.

[162] T. Oda, A. Barolli, E. Spaho, L. Barolli, and F. Xhafa. Analysis of Mesh Router
Placement in Wireless Mesh Networks Using Friedman Test. In IEEE International
Conference on Advanced Information Networking and Applications (AINA), pages 289–
296, Jun. 2014.

[163] S. O’Dea. Data volume of iot connected devices worldwide 2019 and 2025, 2020.

[164] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering. Expert
systems with applications, 36, 2009.

[165] J. Parkman. “6 Urban Green Space Projects That Are Revitalizing U.S. Cities”, 2016.

[166] P. Pecho, P. Magdolenová, and M. Bugaj. Unmanned aerial vehicle technology in
the process of early fire localization of buildings. Transportation Research Procedia,
40:461–468, 2019.

[167] A. Petz, J. Enderle, and C. Julien. A Framework for Evaluating DTN Mobility Models.
In IEEE International Conference on Software Testing, Verification and Validation
(ICST), pages 94:1–94:8, May 2009.

174

https://tinyurl.com/y63p84j7
https://tinyurl.com/y63p84j7
https://tinyurl.com/yy48k9wq
https://netage.nl/resc-info/

[168] H. Pham, H. M. La, D. Feil-Seifer, and M. Deans. A distributed control framework
for a team of unmanned aerial vehicles for dynamic wildfire tracking. In Int. Conf. on
Intel. Robots and Systems, 2017.

[169] M. Pierzcha la, P. Giguère, and R. Astrup. Mapping forests using an unmanned ground
vehicle with 3d lidar and graph-slam. Computers and Electronics in Agriculture,
145:217–225, 2018.

[170] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & operations research, 31(12):1985–2002, 2004.

[171] T. Qiu, K. Zheng, M. Han, C. P. Chen, and M. Xu. A data-emergency-aware schedul-
ing scheme for internet of things in smart cities. IEEE Transactions on Industrial
Informatics, 14(5):2042–2051, 2017.

[172] L. Quintero-Cano, M. Wahba, and T. Sayed. Bus Networks as Graphs: New Connec-
tivity Indicators with Operational Characteristics. Canadian Journal of Civil Engi-
neering, Sep. 2014.

[173] C. Raffelsberger and H. Hellwagner. A Hybrid MANET-DTN Routing Scheme for
Emergency Response Scenarios. In International Conference on Pervasive Computing
and Communications (PerCom) Workshop, Mar. 2013.

[174] K. Rafiq, B. J. Pitcher, K. Cornelsen, K. W. Hansen, A. J. King, R. G. Appleby,
B. Abrahms, and N. R. Jordan. Animal-borne technologies in wildlife research and
conservation. Conservation Technology, pages 105–28, 2021.

[175] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. Ear-phone: An end-to-
end participatory urban noise mapping system. In Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks, IPSN ’10,
page 105–116. Association for Computing Machinery, 2010.

[176] R. Ravi and A. Sinha. Approximation Algorithms for Problems Combining Facility
Location and Network Design. Operations Research, 54(1):73–81, Feb. 2006.

[177] C. Reardon and J. Fink. Air-ground robot team surveillance of complex 3D environ-
ments. Intl. Symp. on Safety, Security and Rescue Robotics, pages 320–327, 2016.

[178] H. U. Rehman, M. Asif, and M. Ahmad. Future applications and research challenges of
iot. In 2017 International conference on information and communication technologies
(ICICT), pages 68–74. IEEE, 2017.

[179] D. Reifsteck, T. Engesser, R. Mattmüller, and B. Nebel. Epistemic multi-agent plan-
ning using monte-carlo tree search. In KI 2019: Advances in Artificial Intelligence:
42nd German Conference on AI, Kassel, Germany, September 23–26, 2019, Proceed-
ings 42, pages 277–289. Springer, 2019.

[180] Report Linker. “Internet of Things (IoT) Networks: Technologies and Global Markets
to 2022”, 2017.

175

[181] D. Roberts. “A Fascinating New Scheme to Create Walkable Public Spaces in
Barcelona”, 2017.

[182] V. M. Rohokale, N. R. Prasad, and R. Prasad. A cooperative internet of things (iot)
for rural healthcare monitoring and control. In 2011 2nd international conference
on wireless communication, vehicular technology, information theory and aerospace &
electronic systems technology (Wireless VITAE), pages 1–6. IEEE, 2011.

[183] C. Roman and H. Singh. Consistency based error evaluation for deep sea bathymetric
mapping with robotic vehicles. In Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pages 3568–3574. Ieee, 2006.

[184] S. A. Sadat, J. Wawerla, and R. T. Vaughan. Recursive non-uniform coverage of
unknown terrains for uavs. In Conf. on Intel. Robots and Systems, 2014.

[185] T. Sakaki, M. Okazaki, and Y. Matsuo. Tweet analysis for real-time event detection
and earthquake reporting system development. IEEE transactions on knowledge and
Data Engineering, 25(4):919–931, 2012.

[186] A. Salam. Internet of things for sustainable community development: introduction and
overview. In Internet of Things for sustainable community development, pages 1–31.
Springer, 2020.

[187] A. Salam and A. Salam. Internet of things for sustainable forestry. Internet of Things
for sustainable community development: Wireless communications, sensing, and sys-
tems, pages 147–181, 2020.

[188] Sarah Calams. 6 takeaways on how fire departments are using drones and the barriers
preventing purchase, 2018. https://tinyurl.com/y2qhs43x,.

[189] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl, G. Loianno,
and V. Kumar. System for deployment of groups of unmanned micro aerial vehicles
in gps-denied environments using onboard visual relative localization. Autonomous
Robots, 41:919–944, 2017.

[190] T. Savolainen, J. Soininen, and B. Silverajan. Ipv6 addressing strategies for iot. IEEE
Sensors Journal, 13(10):3511–3519, 2013.

[191] M. Schaefer, R. Teeuw, S. Day, D. Zekkos, P. Weber, T. Meredith, and C. J.
Van Westen. Low-cost uav surveys of hurricane damage in dominica: automated
processing with co-registration of pre-hurricane imagery for change analysis. Natural
hazards, 101(3):755–784, 2020.

[192] K. Schmid, P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller. Autonomous vision-
based micro air vehicle for indoor and outdoor navigation. Journal of Field Robotics,
31(4):537–570, 2014.

176

https://tinyurl.com/y2qhs43x

[193] E. Schubert and P. J. Rousseeuw. Faster k-medoids clustering: Improving the pam,
clara, and clarans algorithms. In G. e. a. Amato, editor, Similarity Search and Appli-
cations. Springer Intl. Publishing, 2019.

[194] V. Sea, A. Sugiyama, and T. Sugawara. Frequency-based multi-agent patrolling model
and its area partitioning solution method for balanced workload. Lecture Notes in
Computer Science, 10848 LNCS, 2018.

[195] M. Sede, X. Li, D. Li, M. Wu, M. Li, and W. Shu. Routing in Large-Scale Buses Ad
Hoc Networks. In WCNC, pages 2711–2716, Mar. 2008.

[196] J. Shah and B. Mishra. Iot enabled environmental monitoring system for smart cities.
In 2016 international conference on internet of things and applications (IOTA), pages
383–388. IEEE, 2016.

[197] A. Sharif, J. Li, M. Khalil, R. Kumar, M. I. Sharif, and A. Sharif. Internet of
things—smart traffic management system for smart cities using big data analytics.
In 2017 14th international computer conference on wavelet active media technology
and information processing (ICCWAMTIP), pages 281–284. IEEE, 2017.

[198] R. Sharp and H. Peng. Vehicle dynamics applications of optimal control theory. Vehicle
System Dynamics, 49(7):1073–1111, 2011.

[199] J. Shermeyer and A. Van Etten. The effects of super-resolution on object detection
performance in satellite imagery. In Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[200] S. L. Smith and D. Rus. Multi-robot monitoring in dynamic environments with guar-
anteed currency of observations. IEEE Conf. on Decision and Control, 2010.

[201] C. Song, J. Gu, and M. Liu. Deployment Mechanism Design for Cost-Effective Data
Uploading in Delay-Tolerant Crowdsensing. In IEEE International Symposium on Par-
allel and Distributed Processing with Applications and IEEE International Conference
on Ubiquitous Computing and Communications (ISPA/IUCC), Dec. 2017.

[202] Q. Song and e. a. Zeng, Y. A survey of prototype and experiment for uav comms.
Science China Information Sciences, 2021.

[203] J. A. Stankovic and e. a. M. Spuri. Deadline scheduling for real-time systems: EDF
and related algorithms. Springer Science & Business Media, 1998.

[204] B. L. R. Stojkoska and K. V. Trivodaliev. A review of internet of things for smart
home: Challenges and solutions. Journal of cleaner production, 140:1454–1464, 2017.

[205] M. Štolba and A. Komenda. The madla planner: Multi-agent planning by combination
of distributed and local heuristic search. Artificial Intelligence, 252:175–210, 2017.

[206] K. Su, J. Li, and H. Fu. Smart city and the applications. In 2011 international
conference on electronics, communications and control (ICECC), pages 1028–1031.
IEEE, 2011.

177

[207] S. Suzuki. Recent researches on innovative drone technologies in robotics field. Ad-
vanced Robotics, 32(19):1008–1022, 2018.

[208] S. Tanwar, S. Tyagi, and S. Kumar. The role of internet of things and smart grid for the
development of a smart city. In Intelligent Communication and Computational Tech-
nologies: Proceedings of Internet of Things for Technological Development, IoT4TD
2017, pages 23–33. Springer, 2018.

[209] Team Recurrency. The IoT Data Explosion: How Big Is the
IoT Data Market?, January 2019. https://priceonomics.com/

the-iot-data-explosion-how-big-is-the-iot-data/,.

[210] S. R. Thangiah, J.-Y. Potvin, and T. Sun. Heuristic approaches to vehicle routing with
backhauls and time windows. Computers & Operations Research, 23(11):1043–1057,
1996.

[211] A. Torreno et al. Cooperative multi-agent planning: A survey. ACM Computing
Surveys (CSUR), 50, 2017.

[212] A. Torreno, E. Onaindia, A. Komenda, and M. Štolba. Cooperative multi-agent plan-
ning: A survey. ACM Computing Surveys (CSUR), 50(6):1–32, 2017.

[213] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-
routing problem. Informs Journal on computing, 15(4):333–346, 2003.

[214] E. E. Tsiropoulou, S. T. Paruchuri, and J. S. Baras. Interest, Energy and Physical-
Aware Coalition Formation and Resource Allocation in Smart IoT Applications. In
CISS, pages 1–6, Mar. 2017.

[215] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros. The glasgow raspberry
pi cloud: A scale model for cloud computing infrastructures. In 2013 IEEE 33rd
International Conference on Distributed Computing Systems Workshops, pages 108–
112, 2013.

[216] E. Tuyishimire, A. Bagula, S. Rekhis, and N. Boudriga. Cooperative data muling from
ground sensors to base stations using uavs. In 2017 IEEE Symposium on Computers
and Communications (ISCC), pages 35–41. IEEE, 2017.

[217] S. L. Ullo and G. R. Sinha. Advances in smart environment monitoring systems using
iot and sensors. Sensors, 20(11):3113, 2020.

[218] United States Fire Administration National Fire Academy. Incident Command for
Highrise Operations ICHO-Student Manual. 2006.

[219] K. P. Valavanis and G. J. Vachtsevanos. Handbook of unmanned aerial vehicles.
Springer, 2015.

[220] A. Wallar, E. Plaku, and D. A. Sofge. Reactive Motion Planning for Unmanned Aerial
Surveillance of Risk-Sensitive Areas. IEEE Transactions on Automation Science and
Engr., 12, 2015.

178

https://priceonomics.com/the-iot-data-explosion-how-big-is-the-iot-data/
https://priceonomics.com/the-iot-data-explosion-how-big-is-the-iot-data/

[221] Z. Wang et al. Multi-agent based path planning for first responders among moving
obstacles. Computers, Environment and Urban Systems, 56, 2016.

[222] N. White and M. Delichatsios. Fire hazards of exterior wall assemblies containing
combustible components. Springer, 2015.

[223] Wildland Fire Lessons Learned Center. North Schell Escaped RX (2012). https:

//tinyurl.com/bdddnksc.

[224] G. Wilkinson. Digital terrestrial tracking: The future of surveillance. DEFCON, 22,
2014.

[225] H. Wirtz, J. Rüth, M. Serror, J. Á. Bitsch Link, and K. Wehrle. Opportunistic inter-
action in the challenged internet of things. In Proceedings of the 9th ACM MobiCom
workshop on Challenged networks, pages 7–12, 2014.

[226] F. Xhafa, C. Sánchez, A. Barolli, and M. Takizawa. Solving Mesh Router Nodes
Placement Problem in Wireless Mesh Networks by Tabu Search Algorithm. Journal
of Computer and System Sciences, 81(8), Dec. 2015.

[227] F. Xhafa, C. Sánchez, and L. Barolli. Locals Search Algorithms For Efficient Router
Nodes Placement in Wireless Mesh Networks. In International Conference on Network-
Based Information Systems (NBiS), Aug. 2009.

[228] X. Xiao, B. Liu, G. Warnell, and P. Stone. Motion planning and control for mobile
robot navigation using machine learning: a survey. Autonomous Robots, 46(5):569–597,
2022.

[229] J. Xin, H. Zhao, D. Liu, and M. Li. Application of deep reinforcement learning in
mobile robot path planning. In 2017 Chinese Automation Congress (CAC), pages
7112–7116. IEEE, 2017.

[230] H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier. CrowdTasker: Maximizing
Coverage Quality in Piggyback Crowdsensing Under Budget Constraint. In Inter-
national Conference on Pervasive Computing and Communications (PerCom), Jul.
2015.

[231] K. Xiong. Solving the Performance Puzzle of DSRC Multi-Channel Operations. In
IEEE International Conference on Communications (ICC), Jun. 2014.

[232] Z. Xu, L. Mei, K.-K. R. Choo, Z. Lv, C. Hu, X. Luo, and Y. Liu. Mobile crowd sensing
of human-like intelligence using social sensors: A survey. Neurocomputing, 279:3–10,
2018. Advances in Human-like Intelligence towards Next-Generation Web.

[233] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent coop-
eration: Model and experiments. In Proceedings of the fifth international conference
on Autonomous agents, pages 616–623, 2001.

179

https://tinyurl.com/bdddnksc
https://tinyurl.com/bdddnksc

[234] G. Yang and X. e. a. Lin. A telecom perspective on the internet of drones: From
lte-advanced to 5g. arXiv preprint, 2018.

[235] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.
Apache spark: A unified engine for big data processing. Commun. ACM, 59(11):56–65,
oct 2016.

[236] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things for
smart cities. IEEE Internet of Things journal, 1(1):22–32, 2014.

[237] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris. A review of machine learning
and iot in smart transportation. Future Internet, 11(4):94, 2019.

[238] M. Zarafshan-Araki and K.-W. Chin. Trainnet: A transport system for delivering non
real-time data. Computer Communications, 33(15):1850–1863, 2010.

[239] Y. Zguira, H. Rivano, and A. Meddeb. Iob-dtn: A lightweight dtn protocol for mobile
iot applications to smart bike sharing systems. In 2018 Wireless Days (WD), pages
131–136. IEEE, 2018.

[240] F. Zhang, B. Jin, Z. Wang, H. Liu, J. Hu, and L. Zhang. On Geocasting over Ur-
ban Bus-Based Networks by Mining Trajectories. IEEE Transactions on Intelligent
Transportation Systems, 17(6):1734–1747, Jun. 2016.

[241] F. Zhang, H. Liu, Y. Leung, X. Chu, and B. Jin. CBS: Community-Based Bus System
as Routing Backbone for Vehicular Ad Hoc Networks. IEEE Transactions on Mobile
Computing, 16(8):2132–2146, Aug. 2017.

[242] S. Zhang, D. Gao, H. Lin, and Q. Sun. Wildfire detection using sound spectrum
analysis based on the internet of things. Sensors, 19(23):5093, 2019.

[243] M. Zhao, Y. Yang, and C. Wang. Mobile Data Gathering with Load Balanced Clus-
tering and Dual Data Uploading in Wireless Sensor Networks. IEEE Transactions on
Mobile Computing, 14(4):770–785, Apr. 2015.

[244] S. Zhao, Q. Wang, X. Fang, W. Liang, Y. Cao, C. Zhao, L. Li, C. Liu, and K. Wang.
Application and development of autonomous robots in concrete construction: Chal-
lenges and opportunities. Drones, 6(12):424, 2022.

[245] W. Zhao, M. Ammar, and E. Zegura. A Message Ferrying Approach for Data Delivery
in Sparse Mobile Ad Hoc Networks. In International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), May 2004.

[246] K. Zhu and T. Zhang. Deep reinforcement learning based mobile robot navigation: A
review. Tsinghua Science and Technology, 26(5):674–691, 2021.

[247] Q. Zhu, W. Chen, H. Hu, X. Wu, C. Xiao, and X. Song. Multi-sensor based attitude
prediction for agricultural vehicles. Computers and electronics in agriculture, 156:24–
32, 2019.

180

[248] Q. Zhu, M. Y. S. Uddin, Z. Qin, and N. Venkatasubramanian. Upload Planning for
Mobile Data Collection in Smart Community Internet-of-Things Deployments. In IEEE
International Conference on Smart Computing (SMARTCOMP), pages 1–8, 2016.

181

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	IoT Applications and Techniques: An Overview
	Challenges and Concerns in IoT Deployment
	Using Mobility to Enhance IoT Applications
	Thesis Contributions and Organization

	Related Work
	Characteristics of IoT Applications
	Mobility of Humans and Animals
	Enhancing IoT Sensing with Human and Animal Mobility
	 Enhanced Networking with Human or Animal Mobility

	Mobility of Ground Vehicles
	Mobility-Enhanced IoT Sensing with Ground Vehicles
	Ground Vehicles and IoT Networking

	Mobility of Aerial Vehicles (UAV/Drones)
	Mobility-Enhanced IoT Sensing with UAV and Drones
	Aerial Vehicles in Data Transmission

	Guiding Mobile Entities: Insights from Various Research Fields

	Approach Overview
	Time-Sensitive Community IoT Applications
	Opportunistic vs. Planned Mobility
	Leveraging Planned Mobility to Enhance IoT
	Scenario 1: Mobility for Cost-Effective Network Coverage
	Scenario 2: Utilizing Mobility to Enhance Sensing Coverage
	Scenario 3: Mobility for Enhanced Networking and Sensing

	Cost-Effective Data Transmission with Public Transportation Fleets
	Chapter Overview
	Sample Scenario and Problem Statements
	Problem Formulation
	Symbols and Notations
	Formulation

	Solution Approach and Algorithms
	Upload Point Placement Algorithms
	Upload Path Planning Algorithms

	Experimental Evaluation of our Approach
	Scenarios
	Comparison Results

	Summary and Discussion

	DragonFly: Drone-Assisted High-Rise Monitoring for Fire Safety
	Chapter Overview
	Tackling the High-Rise Fire Scene
	The DragonFly Framework
	Multi-Drone Coordination for High-Rise Fires
	Monitoring Tasks
	Candidate Waypoints
	Accuracy of Monitoring Tasks
	Formulation of the Multi-Drone Waypoint Scheduling Problem (MWSP)

	Proposed Algorithms for MWSP
	Allocation of Monitoring Tasks: AMT
	Dynamic Waypoint Scheduling: DWS

	Evaluations
	Simulator Implementations and Setup
	Simulation Results

	DragonFly Implementation
	System Architecture
	Prototype Implementation and Experiments

	Summary and Discussion

	DOME: Drone-assisted Monitoring of Emergent Events For Wildland Fire Resilience
	Chapter Overview
	Problem Definition and Approach
	Physics-inspired Task Generator
	Multi-drone Flight Planning
	Symbols and Notations
	Spatial-temporal Factors for Task Execution
	Formulating MFP

	Proposed Algorithms for MFP
	Step 1: Allocating Tasks to Drones
	Step 2: Single Drone Flight Planning

	Experimental Evaluation
	Simulation setup
	Experimental Results

	System Implementation
	Summary and Discussion

	Conclusion
	Summary of Thesis Contributions
	Key Observations and Insights
	Future Work

	Bibliography

