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1. INTRODUCTION

Aluminum (Al) is a common element found in large amounts in the

earth’s crust (Priest et al., 1988). Aluminum-containing minerals are present

in relatively inert rock types, especially in igneous formations, such as granite
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and quartz. Laterization of various silicate rocks weathering into finer par-

ticles results in the formation of sedimentary bauxite, where together with

iron, Al is present largely as the oxide. It is as bauxite that Al is generally

mined and second only to iron, Al is the most widely used metal

(Hetherington, 2007).

Despite its commonality, Al has no known beneficial biological roles and

is not an essential element for any organism. Aluminum-containing minerals

are rather unreactive, and this is also true for metallic aluminum, as this is

quickly oxidized in air and thus coated by a very thin but robust layer of

the oxide. This apparent inertness has led to the concept that aluminum

may not constitute a health hazard. Consequently a wide range of Al com-

pounds have been added as stabilizers in many processed foods. Alum, which

is any trivalent Al-containing salt, is the oldest andmost commonly used vac-

cine adjuvant. Recent findings indicate that the effectiveness of the adjuvant

relies on both its immunomodulatory as well as inflammatory properties. Al

salts have also found utility in water clarifying processes by effecting precip-

itation of organic particulate matter. Growing incidence of acidic rain has led

to greater solubilization of aluminum salts from their insoluble form in rocks.

This has led to an elevated Al content in many water reserves used for res-

idential supply. Thus, human exposure to more soluble forms of Al in water

and foodstuffs has grown.

Reports from both biological laboratories and from study of human pop-

ulation health indicate that prolonged aluminum ingestion can result in neu-

rological abnormality. Accumulating indications strongly suggest that Al can

further the onset and development of neurodegenerative disorders, princi-

pally Alzheimer’s disease (AD). There are many reports suggesting that Al

can provoke excessive inflammatory events in the brain. Superfluous

immune reactivity that is not an obvious response to a trauma such as injury

or infection is a distinguishing feature of the elderly brain and appears exac-

erbated in nervous system abnormalities. Most neurodegenerative diseases

have no obvious cause and do not have a clear genetic basis. Thus, it is prob-

able that the origin of such diseases lies in unknown environmental influ-

ences that interact with the progression of aging. The nature of most of

such factors is unknown, but there is growing evidence, indicating that

Al is likely to be one of these environmental factors. In this review, reports

that point to the conclusion that aluminum are able to speed up the wors-

ening of brain function with age, and potential mechanisms are discussed. It

should be noted that acceleration of this process would inevitably increase
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the prevalence of those specific neurological disorders where age is a con-

comitant risk factor.

2. GROWING BIOAVAILABILITY OF ALUMINUM IN THE
ENVIRONMENT

Metallic aluminum was first made by Hans Oersted in 1825 by heating

aluminum chloride with elemental potassium (Sigel and Sigel, 1988).

Al-containing chemicals have many uses. Mixing aluminum sulfate and lime

together inwater leads to formation of colloidal aluminumhydroxide, and this

can bring about precipitation and removal of waterborne organic material.

This method for water clarification is widely used. Al-containing additives

are also found inmany foodstuffs. They are used as emulsifying agents in prep-

arationof processed cheese, as crisping agents in pickles, in bakingpowder, and

in a variety of food colorings. Aluminum-containing compounds are also

found in cosmetics. Commercial preparations of infant formula can contain

significant amounts of themetal (Burrell andExley, 2010;Dabeka et al., 2011).

High concentrations of soluble Al can be found in the juice resulting

from boiling of acidic fruit in aluminum cookware (Fimreite et al., 1997).

The aluminum content of city water supplies is variable, but on occasion,

concentrations as high as 0.4–1 mg/L have been reported in drinking water.

Although the health effects of these levels of the metal on humans are uncer-

tain, the Joint Food and Agriculture Organization/World Health Organiza-

tion Expert Committee on Food Additives in 2007 recommended a

maximum intake of Al less than 1 mg/kg body weight per week. This cor-

responds to 63 mg per week for a 140-pound adult. Some commercial pastry

products contain Al sulfate and sodium aluminum phosphate levels up to

28 mg in a single serving of muffin or other baked products where baking

powder is used (Pennington and Jones, 1989). Alum is a powerful adjuvant

in vaccines and performs this role by enhancing the intensity of the immune

responses evoked by the vaccine. The interest in determining the mecha-

nism by which Al salts produce adjuvant action has led to the understanding

that insoluble aluminum salts activate innate immune responses that lead to a

T helper 2 (Th2)-type reaction (Marrack et al., 2009). The metal is also pre-

sent in most antiperspirants, in buffered aspirin, and in antacids where the Al

content can reach 600 mg/tablet.

The most common form of human absorption of Al compounds is by

way of the gastrointestinal tract where the degree of uptake can be about
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0.2% (Priest et al., 1988). When Al salts are transferred from the stomach to

the hepatic portal vein, the metal is largely bound to transferrin (Harris et al.,

2003). Al can subsequently reach the brain by means of receptor-mediated

endocytosis of this transferrin complex. By this means, around 0.005% of the

total aluminum–transferrin complex can cross the blood–brain barrier

(Yokel et al., 2001).

Since soluble Al salts are gradually changed into insoluble high-

molecular-weight aggregates and the absorption of such Al complexes is

limited, environmental Al has often been considered to be harmless. Yet

there is evidence that Al-containing materials can be injurious to both plants

(Kochian and Jones, 1997) and animals (Sparling and Campbell, 1997).

There has been mounting disquiet over the possible toxic effects of Al on

humans (LaZerte et al., 1997).While some trepidation about Al harmfulness

to humans has been expressed for over 90 years, conventional medical views

have generally disregarded such concerns. An example of the dismissive tone

used is to be found in an article in JAMA stating, “Propaganda as to possible

dangers resulting from the use of aluminum cooking vessels is so persistent

that one suspects ulterior motives in its background” (Monier-Williams,

1935). The recent advances in understanding the mechanisms by which

adjuvant alum salts lead to cell death and immune activation reopens the

concept that aluminum salts may be biologically harmful (Reed et al., 2013).

3. ACUTE EXPOSURE TO HIGH LEVELS OF ALUMINUM
CAN LEAD TO ADVERSE NEUROLOGICAL
CONSEQUENCES

There is good evidence that relatively high concentrations of Al can be

acutely neurotoxic once accumulated. Formerly, hemodialysis of patients

suffering from kidney failure often led to toxic levels of Al in the blood.

The sources of the metal were from both the tubing used during dialysis,

and also the administration of aluminum-containing phosphate binders in

patients who already had an impaired ability to excrete Al. This often led

to aluminum-induced dialysis encephalopathy, which was attributed to

the ability of major amounts of Al to traverse into the brain (Russo et al.,

1992). Blood concentrations up to 7 μM Al were found in dialysis patients

prior to the onset of obvious dementia (Altmann et al., 1987). This enceph-

alopathy was associated with pathological changes in the brain indicting an

inflammatory state. In one case, treatment of a chronic renal failure patient,

with phosphate-binding Al gels produced an encephalopathy, which after
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9 months, led to death. Postmortem neuropathology showed pronounced

proliferation of microglia and astrocytes, indicative of an inflammatory

response, in specific brain areas (Shirabe et al., 2002). The clinical status

of patients suffering from such encephalopathy has been reported to be

improved by administration of deferoxamine, an Al chelator (Erasmus

et al., 1995). Encephalopathy due to acute exposure to high levels of Al

has also been found in patients suffering from kidney failure, treated by blad-

der irrigation with 1% alum (Phelps et al., 1999). Neurological derangement

involving intellectual deficits, loss of muscle control, tremor, and spi-

nocerebellar degeneration has been described in workers in the aluminum

industry (Polizzi et al., 2002).

An abnormal neurological condition has on occasion been found conse-

quent to an intramuscular injection of a vaccine preparation containing alum

adjuvant (Couette et al., 2009). The World Health Organization Vaccine

Safety Advisory Committee has determined that there is likely to be a subset

of individuals who respond undesirably to Al-containing vaccines (Authier

et al., 2001).

In the past, inhalation of Al oxide powder was used as a means of

protecting against silicotic lung disease in miners (Crombie et al., 1944).

This approach was reported to have utility in an animal model of silicosis

(Dubois et al., 1988). This inhalation procedure was continued for some

years despite the fact that miners suffering from silicosis did not report

any benefit from this treatment (Kennedy, 1956). Injurious effects of this

procedure upon brain function were ultimately clearly recognized (Rifat

et al., 1990), and such administration was terminated. A major accidental

discharge of Al sulfate into the drinking water supply of the town of

Camelford, UK, took place in 1988. After the spill, authorities initially indi-

cated that the water was safe to drink and suggested the addition of fruit juice

to conceal any unpleasant taste. Many acidic fruit juices can also enhance the

absorption of Al from the gastrointestinal tract. Evidence emerged later on,

of harmful neurological consequences to at least some of the exposed pop-

ulation (Altmann et al., 1999). Postmortem pathology of a person, who was

exposed to Al at Camelford and later died of an undetermined neurological

disorder, revealed evidence of early-onset beta amyloid angiopathy in the

cerebral cortical and leptomeningeal blood vessels. The Al content of some

brain areas, especially the cortex, was also strikingly elevated (Exley and

Esiri, 2006).

Correlative findings by themselves cannot conclusively demonstrate cau-

sation, and it has been suggested that excessive penetrance of Al into the
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brain is an ancillary event following disruption of the blood–brain barrier

and may not in itself effect neurotoxicity. However, in patients suffering

from dialysis encephalopathy, chelation therapy using deferoxamine both

reduced the Al burden of the brain and improved neurological status.

And this suggests a direct causal relation between Al exposure and neurotox-

icity (McLachlan et al., 1991). A recent report of the use of chelation with

EDTA to effect Al excretion in “Al-intoxicated patients” acknowledges that

reduction of levels of other toxic metals by this relatively nonselective che-

lator might also account for recovery of patients (Fulgenzi et al., 2015).

These findings have not been extensively pursued, perhaps in part because

these chelators are rather nonspecific and can chelate essential as well as non-

essential metals. This can result in many undesirable side effects including

muscle pain, nausea, and visual deficits. Another possible hazard of chelation

therapy as means of effecting Al removal from the body is that it canmobilize

Al from quiescent deposits in bone, and thus lead to high serum levels of Al

which can then translocate to the brain. This then may cause emergence of

neurological symptoms resembling those found in dialysis dementia

(Sherrard et al., 1988).

Other indications of the acute neurotoxicity of Al include a case report

where aluminum-containing cement was used in the surgical resection of an

acoustic neuroma. Six weeks later the patient suffered from loss of con-

sciousness, myoclonic jerks, and persistent grand mal seizures, clinical symp-

toms that resembled those of lethal dialysis encephalopathy (Reusche et al.,

2001). Overall, there is considerable evidence that acute exposure to large

amounts of Al in humans can have harmful effects on cerebral function.

4. BASAL INFLAMMATION WITHIN THE BRAIN
INCREASES WITH AGING. MOST
NEURODEGENERATIVE DISEASES ARE
CHARACTERIZED BY AN EVEN GREATER DEGREE
OF INFLAMMATORY ACTIVITY

In order to assemble evidence that ingestion of Al-containing mate-

rials can accelerate brain aging, it is necessary to first take into account some

of the transformations associated with normal aging of the brain. This is typ-

ically attended by evidence of elevated levels of inflammatory activity (David

et al., 1997; Sharman et al., 2004). Even in the absence of detectable pro-

vocative exogenous immune stimuli, cerebral immune activity becomes
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increasingly pronounced during normal aging (Lucin and Wyss-Coray,

2009; Sharman et al., 2008).

Following the systemic injection of mice with an inflammogen such as

lipopolysaccharide, levels of inflammatory cytokines rapidly increase in

many tissues including serum and liver, but these are restored to basal con-

centrations within a week. However, the response in the brain to such treat-

ment leads to a much more sustained elevation of inflammatory cytokine

content. TNF-α remains at high levels for up to 10 months, before reverting

to basal levels. This extended response, which continues over a significant

portion of the mouse life span, is attended by evidence of glial activation

and extended neuronal death (Qin et al., 2007). Responses to acute inflam-

matory events such as infections are maintained for a long time in the brain

(Bilbo et al., 2005; Galic et al., 2008; Shi et al., 2003). In consequence, the

brain progressively accumulates changes reflecting a history of adverse sys-

temic events, leading to a persistent and undesirable degree of inflammatory

activity. This may account for the many reports of the excessive extent of

inflammation present in the aged brain (Bondy and Sharman, 2010).

A continuing state of inflammation is likely to contribute toward the devel-

opment of age-related neurodegenerative changes (Block et al., 2007; Lucin

and Wyss-Coray, 2009).

Several age-related neurological disorders are accompanied by the onset

of additional elevations of neuroinflammation greater than that present in

normal aging (Bondy, 2010). Neurodegenerative diseases where this has

been reported include AD, Parkinson’s disease (PD), amyotrophic lateral

sclerosis (ALS), and multiple sclerosis (MS). This additional inflammation

may underlie some of the characteristic pathological changes associated with

each disorder. In AD, evidence of astrocytic andmicroglial activation is most

prominent at the site of amyloid plaques, and such activated glia generate

inflammatory cytokines and acute-phase proteins (Cullen, 1997; Mrak

et al., 1995; Styren et al., 1998). This can also result in the appearance of

inflammatory cytokines in brain and cerebrospinal fluid (Sun et al., 2003;

Zhao et al., 2003). Some of these prolonged changes reflect altered expres-

sion and activation of inflammatory genes, especially in the hippocampus

(Colangelo et al., 2002). Aluminum nanoparticles can also reach the

CNS. Following deposition on the nasal epithelium such particles may be

taken up by exocytosis and then conveyed into the brain by way of the olfac-

tory nerve. This can result in phosphorylation of various kinases leading to

signal transduction and altered gene expression (Kwon et al., 2013).
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AD is characterized by amyloid beta (Aβ) deposition as senile plaques.

Aluminum salts can promote amyloid peptide aggregation in defined

in vitro preparations (Bolognin et al., 2011; Bondy and Truong, 1999;

Exley, 1997). Exposure of transgenic mice overexpressing amyloid precur-

sor protein (APP) to Al salts by way of their drinking water has been

described as promoting Aβ accretion in plaques and leading to evidence

of oxidative stress in the cortex (Pratico et al., 2002). The ability of Al to

promote Alzheimer-like changes in animal models of AD has, however,

been questioned. Administration of Al salts in drinking water to a double

transgenic mouse line overexpressing both APP and Tau protein led to

no significant changes in Aβ levels or prooxidant activity (Akiyama et al.,

2012). Another study, which tested both wild-type and mutant mice, also

found no effect on the extent of amyloid deposition or cerebral Al content

(Ribes et al., 2012). Finally an experiment involving normal rats receiving Al

in drinking water reported negative results (Poirier et al., 2011). Such con-

flicting results are hard to explain, but study design variables in terms of vary-

ing dosage of Al, duration of exposure, age of animals at the initiation of

exposure may all play a substantive role.

5. EPIDEMIOLOGICAL STUDIES SUGGEST A
RELATIONSHIP BETWEENALUMINUMEXPOSURE AND
THE INCIDENCE OF NEURODEGENERATIVE DISEASE

The neurotoxicity of Al was originally reported in patients experienc-

ing comparatively brief exposure to high levels of Al notably in renal dialysis

patients. More controversially, harmful effects of prolonged exposure to

lower levels of Al have been described. Elevated cerebral Al in brains of

AD patients has been found. A greater content of Al has also been reported

in brains of less common neurological disorders such as Guamanian

Parkinsonian–ALS complex and Hallervorden–Spatz disease (Eidelberg

et al., 1987; Garruto et al., 1988). This has led to the question as to whether

Al may be a factor in the initiation and development of several neurological

disorders (Kawahra and Kato-Negishi, 2011).

Several studies have focused on specific types of worker such as welders,

exposed to high levels of Al. In an analysis, no association among welders

exposed to Al by inhalation and neurobehavioral functioning was apparent

(Kiesswetter et al., 2009). However, behavioral deficits in welders, which

showed a dose–response relation in proportion to the degree of Al exposure,
have been described (Giorgianni et al., 2014). This latter report highlighted
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the fact that the tests most sensitive to Al exposure involved intricate trials

reflecting attention and memorial capacity.

5.1 Alzheimer’s Disease
The possibility that Al exposure may advance the progression of AD is

strengthened by descriptions of excessive levels of Al in analyses of AD brain

tissue postmortem. The first report of this (Perl and Brody, 1980) was

questioned because of the difficulty of precise quantitation of Al in brain

samples (Bjertness et al., 1996). However, a range of more advanced analyt-

ical methods, such as laser microprobe mass analysis (Bouras et al., 1997),

neutron activation (Andrasi et al., 2005), upgraded graphite furnace atomic

absorption methods (Xu et al., 1992), or energy-dispersive X-ray spectros-

copy together with transmission electron microscopy (Yumoto et al., 2009),

have all substantially confirmed the original report. Laser microprobe mass

analysis revealed Al to be primarily concentrated in the neurofibrillary tan-

gles associated with AD (Bouras et al., 1997). High Al content is also present

in the cerebral arteries of AD patients (Bhattacharjee et al., 2013a). The pos-

sibility that high Al content in AD brains may be a secondary epiphenom-

enon, consequent to disruption of the blood–brain barrier must therefore be

borne in mind (Guerriero et al., 2016).

The suggestion of a causal relation between Al ingestion and neurode-

generative disease is apparent from the number of studies linking the Al con-

tent of drinking water and the incidence of AD. An early study reported the

AD prevalence was highest in areas where Al concentrations in the drinking

water supply were over 100 μg/L and incidence was directly related to the

concentration of Al in the drinking water (McLachlan et al., 1996). A similar

finding was made in a study of the elderly with AD and Al content of drink-

ing water (Rondeau et al., 2009). A review assembling data from a range of

epidemiological reports suggested that generally, there is a significant rela-

tion between usage of Al-containing antacids and AD prevalence (Flaten,

2001). A meta-analysis of nine independent studies where urinary Al con-

centrations were measured determined that cognitive performance was

impaired relative to control (Meyer-Baron et al., 2007). The effects of pro-

tracted exposure to low levels of Al on AD incidence are difficult to unam-

biguously identify. Since AD is largely idiopathic and not of genetic origin,

many possible confounding environmental factors exist that may influence

the incidence. For instance, AD has also been associated with other metal

imbalances such as abnormal copper levels, but the establishment of a causal
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relation remains unresolved (Akatsu et al., 2012; Exley et al., 2012; Kitazawa

et al., 2009).

There are conflicting claims concerning the neurotoxic hazard of the

levels of aluminum present in the human environment. These range from

claims that “AD is a human form of chronic aluminum neurotoxicity”

(Walton, 2014) and “aluminum may be the single most aggravating factor

related to AD” (Tomljenovic, 2011), through the more circumspect

“exposure to aluminum dust may possibly increase the risk of cardiovascular

disease and dementia of the Alzheimer’s type” (Peters et al., 2013), to totally

dismissive reports of the lack of evidence for any correlation between AD

and occupational exposures to aluminum (Santibáñez et al., 2007), with

inferences such as “lifetime occupational exposure to Al is not likely to

be an important risk factor for AD” (Flaten, 2001). A recent review sums

up this view with “consideration of the published research concerning

aluminum’s role in AD indicates that none of the four Bradford Hill criteria

considered necessary to establish causation with respect to Al and

neurocognitive disorders has been fulfilled” (Lidsky, 2014).

In an endeavor to resolve this issue, it has been proposed that inconsistent

findings may in part be due to a common failure to take silicate levels in

drinking water into account. Aluminosilicates do not readily cross the

bloodstream from the alimentary tract, and the presence of silicates in water

can be protective against the toxic effects of Al (Foglio et al., 2012; Krewski

et al., 2007). When the silicate content in drinking water is low, the risk of

impairment of brain function by Al is raised (Rondeau et al., 2009),

suggesting that silicates may reduce the harmfulness of waterborne Al

(Gillette Guyonnet et al., 2007). The use of chelators to enhance Al excre-

tion has been suggested to be beneficial in the treatment of AD ( Jansson,

2001; McLachlan et al., 1991). Chelators with a greater selectivity for Al

may improve this approach (Shin et al., 2003).

Overall, despite an extensive literature, the issue of the relation between

AD and exposure to aluminum remains unresolved. This is partly due to the

difficulty in obtaining unambiguous data from epidemiological studies. Fur-

thermore, a clear identification of the molecular basis of Al toxicity is lac-

king. However, laboratory studies under well-defined conditions, where

the number a confounding factors is lower, are generally consonant with

epidemiological reports. In this review, a subsequent section summarizes

findings from research involving Al-treated animals.

In summary, while mechanisms by which Al acts as a neurotoxicant

are unclear, Al exposure has been repeatedly found correlated with
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neuropathological changes associated with AD. This association between Al

and incidence of AD has been muchmore frequently described compared to

other neurological disorders. This may be at least in part because of the high

incidence of the disorder, which expedites epidemiological studies.

5.2 Association Between Al Exposure and Neurological
Disorders Other Than AD

Evidence of a link between Al and other neurological disorders is less well

established. Aluminum-containing salts that enhance the immune response

to vaccines are often used as adjuvant constituent of vaccines (Alvarez-Soria

et al., 2011; Chang et al., 2010; Girard, 2005; Schoenfeld and Agmon-

Levin, 2011; Sutton et al., 2009). Injection of alum into neonatal mice in

quantities parallel to those used in childhood vaccination schedules results

in behavioral abnormalities which persist into adulthood (Shaw et al.,

2013). Administration of aluminum-containing adjuvants led to induction

of granuloma, which persisted for a prolonged period in the injected muscle,

and Al was ultimately able to be transferred into the brain from this location

(Cr�epeaux et al., 2015). Injection of alum-containing vaccine intramuscu-

larly induced Al deposition in mouse brain in gradually progressive way

(Khan et al., 2013). However, there was no penetrance of Al into the

CNS following direct infusion of the vaccine into the vascular system. Entry

of Al from vaccines into the brain was facilitated by the lymphatic system and

monocyte chemoattractant CCL2 (Khan et al., 2013). Administration of an

Al-containing vaccine led to behavioral abnormalities in female mice that

was associated with microglial activation in the hippocampus (Inbar et al.,

2017). Furthermore, the neurobehavioral effects of Al adjuvant occurred

at the lowest but not highest doses tested. Thus, it appears that the neuro-

toxicity of the metal may follow a nonparametric dose–response relation-

ship. It was also noted that while Al levels in the injected muscle resolved

in 6 months, the cerebral levels were selectively increased (Cr�epeaux
et al., 2017).

Peripheral administration of aluminum-containing nanoparticles,

30–60 nm in diameter, for 3 weeks, elevated the Al content of mouse brain

and also increased prooxidant events. In this study, hippocampal memory-

forming processes were impaired and there was an elevated rate of Aβ for-

mation (Shah et al., 2015). Significant amounts of Al are often present in

infant formulae at significant levels, 100–756 μg/L, and it may be that this

represents a nontrivial developmental hazard (Chuchu et al., 2013). The use

of vaccines has been associated with increased incidence of MS, and urinary
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aluminum content is elevated in MS patients (Exley et al., 2006). Chelation

therapy leading to reduced levels of circulating Al has been stated to have

therapeutic value in the treatment of MS (Fulgenzi et al., 2015). On the

other hand, vaccines with Al-containing adjuvants have been described as

protecting mice from developing experimental autoimmune encephalomy-

elitis (Wållberg et al., 2003). Despite these apparently conflicting reports,

there is convincing evidence that nanomolar levels of aluminum can increase

expression of the inflammatory biomarker C-reactive protein in isolated

endothelial cells derived from microvessels (Alexandrov et al., 2015). The

consistent findings that Al can increase markers of neuroinflammation,

either directly by microglial activation, or indirectly by influencing the

microvasculature, may be an important mechanism by which exposure to

the metal can enhance and promote neurodegeneration and subsequent

behavioral abnormalities.

There are suggestions linking Al and PD. PD is another rather wide-

spread common neurological disease characterized by elevated levels of oxi-

dative and inflammatory events (Selley, 2005). Such an association has been

made based on a relation between gastric ulcers and the incidence of PD,

which may reflect the high use of Al-containing antacids by those suffering

from ulcers (Altschuler, 1999). Other hints of a possible connection between

Al and PD lie in the property of Al salts to bring about activation of mono-

amine oxidase B. This enzyme is elevated with age and further raised in PD

(Zatta et al., 1999). Monoamine oxidase B is able to promote aggregation

and fibril formation of α-synuclein, which could account for the reported

association between several neurotoxic metals and PD (Uversky et al.,

2001). Activated microglia and high levels of inflammatory cytokines within

nervous tissue are present in PD (Nagatsu and Sawada, 2005). The activation

of NF-κB, a transcription factors leading to induction of a series of inflam-

matory events, can occur in a synergistic way after treatment of experimental

animals with both the dopaminergic neurotoxin, MPTP in conjunction

with the presence of low levels of Al in drinking water (Li et al., 2008). Non-

steroidal antiinflammatory drugs may delay the onset and progression of the

disease (Hald et al., 2007).

Neuropathological and behavioral modifications resembling those found

in ALS have been described in animals after administration of Al salts. Injec-

tion of Al-containing adjuvants at levels equivalent to those typically admin-

istered to humans, resulted in motoneuron death, impairments in motor

performance, reduced retention of spatial memory and increased activation

of astrocytes, and microglia in mice (Petrik et al., 2007; Shaw and Petrik,
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2009). Thus, exposure to Al may promote an array of neurological impair-

ments. The unique epigenetic and genetic profile of diverse individuals, the

dose and duration of exposure to Al, as well as combination of other envi-

ronmental factors such as coexposure to other metals may all determine the

specific type of neurological abnormality that is manifested.

6. RESEARCH FROM ANIMAL MODELS AND IN VITRO
SYSTEMS IMPLIES THAT HIGH LEVELS OF ALUMINUM
CAN FURTHER THE EVOLUTION OF AGE-RELATED
COGNITIVE DEFICITS

Clinical reports of aluminum neurotoxicity are matched by similar

findings found in several experimental animal models. Administration of

Al salts in such models can result in neuropathological changes resembling

those found in human brain aging (Bowdler et al., 1979; Miu et al., 2004).

However, several of these studies have involved concentrations of Al not

commonly met among human populations. Other studies that better mirror

human exposures have been performed using more extended treatment

using low levels of Al paralleling those found in environmental exposures.

It is apparent that immunomodulation, neuroinflammation, and oxidative

stress are mechanisms that have consistently been shown to contribute to

neurodegenerative diseases. In this section, the role of Al in exacerbating

these events will be further delineated (Fig. 1).

6.1 Immunomodulation and Neuroinflammation
Aluminum salts, used as adjuvants in vaccines, cause necrosis and uric acid

production which functions as a danger signal to activate the NLRP3

inflammasome (Eisenbarth et al., 2008). The activation of the NLRP3

inflammasome plays a crucial role in amplifying the inflammatory response

(Baroja-Mazo et al., 2014). Furthermore, it has been reported that DNA

released from alum-exposed dying cells functions as another danger signal

(damage-associated molecular pattern) contributing to the immunomodula-

tory role of aluminum adjuvants (Marichal et al., 2011). These findings all

point to the impression that Al salts are not biologically benign and that pro-

longed environmental exposure to the metal may lead to cellular stress and

subsequent potentiation of inflammatory events. Since an enhanced inflam-

matory state underlies many disease states, including age-related neurode-

generative diseases, the role of Al in exacerbating the pathology of these

disorders should be further examined.
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Low levels of Al in the drinking water of mice led to elevation of indices

of inflammation in brain tissue such as increases in levels of inflammatory

cytokines and nitric oxide synthase (Campbell et al., 2004). These changes

occurred after 3 months of contact with Al salts in the drinking water using

concentrations of Al below some of those reported for some residential

water reserves. Extended exposure to low levels of Al can also lead to ele-

vated levels of glial fibrillary astrocytic protein an indicator of astrocytic

immune activation (Yokel and O’Callaghan, 1998). Other evidence con-

cerning the potential neurotoxicity of Al includes descriptions of cognitive

and pathological alterations in aged rats resembling those characteristic of

AD, following exposure to Al at levels equivalent to those ingested by some

human populations (Walton, 2009a,b, 2012; Walton and Wang, 2009).

Exposure to dietary Al also resulted in increased levels of APP in a rodent

model (Walton and Wang, 2009). AD-like changes in rats following
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Fig. 1 Mechanisms by which aluminum enhance neurotoxicity. The left panel shows
how aluminum aggregates cause enhanced activation of antigen-presenting cells
(APC) which then provide the signals necessary to promote a T helper 2 (Th2) subset
of T cells. Th2 cells are important mediators of B cell activation and antibody (Ig) pro-
duction. Different isotypes of antibodies cause immunomodulation by their effects on
different immune cells. This immunomodulation may result in enhanced neurotoxicity.
The center panel shows how aluminum aggregates can also activate the NLRP3
inflammasome and by doing so amplify the inflammatory response. Enhanced inflam-
mation has been shown to directly lead to neurotoxicity. The right panel shows that
aluminum aggregates can function as a platform for redox-active metals such as iron
to induce a Fenton reaction. The accelerated formation of free radicals then leads to
oxidative stress, another mechanism directly linked to neurotoxicity. Although separate
phenomenon, these events may be interrelated and this is indicated in the figure by the
two-sided arrows.
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aluminum exposure have been attributed to induction of α- and

β-secretases, leading to increased formation of Aβ from APP (Wang

et al., 2014). The evidence for Al salts to induce Aβ formation and its aggre-

gation has been previously reviewed (Zhao et al., 2014).

Changes in expression of specific genes have been described in a trans-

formed neuronal cell line following exposure to an Aβ–aluminum complex,

and several of the genes whose expressionwas increased are among those also

elevated in AD (Gatta et al., 2011). After Al treatment of transgenic mouse

models of AD, the profile of micro-RNA-mediated gene expression dis-

tinctly resembles changes found in AD (Pogue and Lukiw, 2016). These

accounts suggest a genetic or epigenetic basis for many of those changes cau-

sed by Al treatment that resemble altered expression associated with AD.

If the extended increase in inflammatory activity that characterizes brain

aging was worsened in the presence of low Al, this would resemble the dou-

bly enhanced level of inflammation found in many neurodegenerative dis-

eases. Thus, Al may act initially by accelerating the rate of normal brain

aging. This could then form a platform that would further the development

of a range of more specific neurodegenerative disorders.

Despite the relative inertness of Al salts, there are several potential path-

ways by which Al could initiate toxic events (Tomljenovic, 2011). The acti-

vation of glia and macrophages by Al-containing chemicals and mineral has

been described (Evans et al., 1992; Gorell et al., 1999; Platt et al., 2001).

Similar to the alum adjuvant, the activation of the NLRP3 inflammasome

and consequent amplification of the inflammatory response may play a role

in this glial activation. Since Al salts can produce inflammatory reactions in

isolated glia as well as in glia of intact animals, it is probable that a direct

action on some glial species is implicated (Campbell et al., 2002).

6.2 Oxidative Stress
Al is not a valence-active element and does not have a significant affinity for

sulfhydryl groups, but it has the capacity to enhance the production of oxi-

dant free radicals. This property may be due to the enhancement of the

redox activity of trace amounts of iron. The ability of aluminum to increase

the prooxidant properties of iron is found even in the absence of tissues or

organic material (Bondy et al., 1998). Themechanism by which this catalysis

is brought about is likely to be by Al complexes in solution forming colloids,

upon whose surfaces iron can be loosely sequestered. This partial complex-

ation enables iron to undergo Fenton dynamics and undergo valence redox
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flux thus causing production of reactive oxygen species (Bondy, 2009;

Ruip�erez et al., 2012). This can then lead to increased expression of genes

associated with inflammation (Alexandrov et al., 2005). An analogous

enhancement of the prooxidant properties of iron by an inert mineral is

known in the case of silica fibers (Napierska et al., 2012). The binding of

transition metals on the surfaces of nanoparticles composed of inert core

materials can greatly enhance the toxicity of such particles (Bhattacharjee

et al., 2013b). This is likely to have applicability to aluminum salts, which

generally exist as colloids in aqueous media.

7. THE NEUROTOXICITY OF ALUMINUM IN AMOUNTS
ENCOUNTERED IN THE HUMAN ENVIRONMENT
CONTINUES TO BE CONTENTIOUS

The question of Al neurotoxicity has a long history, but no consensus

has been reached concerning the hazard posed by environmental exposure.

As a result the necessity for increased regulatory action is not regarded as crit-

ical. Research on animals is limited by the fact that rodent biology does not

completely reflect the human condition, especially as regards to brain func-

tion. While there is a range of diverse and often opposing opinions, the pre-

ponderance of evidence from both laboratory studies and epidemiology

suggests that the issue of Al neurotoxicity should not be cavalierly dispelled.

In view of the large number of people ingesting various amounts of this ele-

ment, this risk should not be dismissed but should remain under careful

consideration.

The history of lead toxicity can perhaps give clues as to why there has

been failure to reach agreement on the importance of hazards posed by

Al, and why there is an inclination to regard these as not of critical concern.

Lead has been in use in its metallic form and as salts for more than 3000 years

and has been intermittently recognized as poisonous since 700 B.C., and its

widespread global presence has risen markedly in the last 200 years. How-

ever, only in the last two decades has the harmfulness of lead at low levels

been widely accepted. In consequence, increasingly severe legislative mea-

sures to curtail lead exposure have been instituted and these appear to be

generally effective. A long period of controversy preceded the recognition

of the neurotoxicity of lead. Before the universal acceptance of the harm-

fulness of low levels of lead, the lead industry vigorously fought against

the regulation of environmental lead and damaged the reputation of

researchers in this area. Prominent scientists evaluating the effects of
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exposure to low levels of lead on child development were accused of bias and

fraud (summarized in Needleman, 2008).

In comparison, Al has only had broad industrial use for a comparatively

short time. However, as was the case leading up to recognition of the neu-

rotoxicity of low levels of lead, the harmfulness of low levels of Al is

intensely disputed as, once again, major economic forces are involved.

Accordingly, no newmajor efforts to minimize Al levels in food or drinking

water are currently being legislatively deliberated. The much shorter history

of Al usemeans that we appear to be at an early stage of concern regarding the

dangers posed for human health, than is the case with lead. In common with

lead, levels of thismetal, once regarded as trivial, are likely to be recognized as

potentially hazardous. Also, in common with lead, broad population expo-

sure to ingested Al may cause subtle deficits and vulnerabilities rather than

spectacular and specific toxic incidents. It is thus hoped that similar to lead,

there will be a growing recognition of the neurotoxicity of environmental

aluminum and the introduction of legislation that would protect populations

at risk, which are likely to be manifold.

8. SUMMARY

The potential for aluminum ingestion to further the development of

neurodegenerative disease is not yet unambiguously accepted. However,

several key findings are undisputable. These are as following:

2 Al-containing materials have a widespread presence in the environment,

and when ingested by humans, some Al salts can reach the brain.

2 Brief exposure to high levels of Al can lead to clear evidence of neuro-

logical damage.

2 The level of basal inflammatory activity in the brain is progressively

increased with aging, and this is intensified in several neurodegenerative

conditions.

2 Administration of amounts of Al to experimental animals in the drinking

water that correspond to levels found in some residential water sources

can increase inflammatory activity in the brain and are associated with

neuropathological changes, resembling those found in AD.

As life expectancy in the United States grows, a greater incidence of slow

developing neurodegenerative disorders such as AD, PD, ALS, and MS

can be anticipated. These diseases are largely of nongenetic origin and are

likely to be initiated by unidentified gene–environmental interactions. As

long dormant periods can occur between exposure to an injurious
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environmental or occupational agent and the manifestation of explicit clin-

ical symptoms, this makes the identification of specific factors that initially

begin the disease trajectory difficult. Aging is a critical feature in permitting

occurrence of neurodegenerative syndromes. Hastening of normal changes

taking place during brain aging could facilitate the incidence of distinctive

neurological disorders. A favorable strategy toward alleviation of slowly

developing age-related changes might be the recognition of those environ-

mental factors which hasten changes associated with normal brain senes-

cence, and then developing measures to protect against such harmful factors.

The simplest way of explaining much of the research on Al neurotoxicity

is the idea that Al can accelerate the development of the inflammatory

changes that characterize the normally aging brain. Colloidal aluminum

can also exist in a form that promotes the free radical-producing potential

of redox-active metals such as copper and iron. Such enhanced free radical

generation may also contribute to the inflammatory cascade. This could be a

mechanism underlying the impact of Al ingestion upon the promotion of

AD. It could also help to account for more tenuous connection suggested

for Al and less prevalent age-related neurological diseases. Thus, if Al is able

to amplify the inflammatory aspect of normal brain aging, such a chronic

state of excessive and ineffective immune function could form a base for

the advent and expansion of more specific neurological age-related

disorders.
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