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No individual has any right to come into the world and go out of it without leaving behind him 
distinct and legitimate reasons for having passed through it.  
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All truths are easy to understand one they are discovered; the point is to discover them. 
 
 

Galileo Galilei 
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ABSTRACT OF THE DISSERTATION 

 
Determinants of Health in Oral Cancer Patients 

 
By 

 
John Paul Schomberg 

 
Doctor of Philosophy in Epidemiology 

 
 University of California, Irvine, 2018 

 
Professor Hoda Anton-Culver, Chair 

 
 

 Oral cancer is a disease related to multiple factors.  In the United States, 

approximately 50,000 people are diagnosed with cancer of the head and neck each 

year.  Unfortunately, even though there have been some improvements in care, 10,000 

head and neck cancer patients die each year.  The focus of this dissertation is to 

determine those patients that would respond best to treatment by following quality of 

care guidelines, utilizing genetic signatures, and identifying genetic targets for treatment 

through machine learning analysis.   

 

This dissertation begins by specifically addressing the differences in survival of patients 

that meet and follow the National Comprehensive Cancer Network (NCCN) guidelines 

for the recommendation of chemotherapy. This study is a well-powered analysis of 

37,985 patients selected from the California cancer registry.  It was found that patients 

have significantly improved survival when their provider prescribes chemotherapy as 

recommended by NCCN.   

 



x 
 

In Chapter 3, gene expression signatures were utilized to predict patient response to 

treatment.  An aggregate signature was identified using a high dimensional dataset with 

a relatively low number of patient samples (n=257).  By permuting the dataset 100 times 

via Monte Carlo cross validation and then performing differential expression analysis 

between treatment responders and non-responders within each permuted dataset, this 

study was able to identify genes that were differentially expressed across multiple 

permutations and utilize those gene expression values within a final aggregated 

signature predicting treatment response.   

 

Chapter 4 utilizes the same gene expression data set in a different way by applying a 

machine learning method known as random forest to rank influential genes and 

evaluate the pathways within which those genes reside.  Integrated with this machine 

learning analysis is the application of chemical informatics to identify those small 

molecules in an FDA-approved drug database and a Traditional Chinese Medicine 

database that meet similarity criteria when measured against a reference ligand known 

to bind to a drug target site.   

 

This dissertation advances the knowledge of effective treatments in oral cancer, and 

provides greater understanding of the genetic pathways influencing treatment response. 
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CHAPTER 1 

INTRODUCTION 

Epidemiology of Head and Neck Cancer 
 

Head and neck cancers can be defined as cancers in the upper airway and/or digestive 

tract found in oral cavity, laryngeal, pharyngeal, and oropharyngeal, and hypo-

pharyngeal tissues. Such cancers make up 3% of cancers diagnosed each year[1,2]. 

Head and neck cancer incidence has declined from 25 cases per 100,000 at risk in the 

1990s to 15 cases per 100,000 at risk in the present day[3].  While the decrease in head 

and neck cancer incidence may be due to a drop in tobacco use [4,5],  the mortality 

associated with oral cavity cancers has not changed significantly in the last twenty 

years, with the exception of African American patients in whom we have seen a 

significant decrease in mortality associated with the disease[6].    While Human 

Papilloma Virus (HPV) positive patients have been observed to have an improved 

survival and response to treatment when compared to HPV negative patients these 

patients still make up the minority of head and neck cancers[7].  Thus, the decline in 

mortality could be attributed to decrease in smoking, increases in HPV positive cases, 

or a reduction in healthcare disparity for African-Americans.  The following studies will 

focus upon the determinants of treatment response in a subset of head and neck cancer 

patients, oral cancer patients.  Specifically, this study will measure the effect of NCCN 

guideline adherence on oral cancer patient survival, the identification of a gene 

expression signature that predicts oral cancer patient treatment response, and the use 

of machine learning methods to identify genes and gene pathways influencing treatment 

response.  These studies will improve understanding of the determinants of survival in 
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oral cancer patients while simultaneously outlining methods that can be utilized for 

identifying genetic signatures and gene targets in rare cancer.  

 

 

Human Papilloma Virus and Oral Cancer Etiology 

Human Papilloma Virus has been shown to be a driver of 99% of cervical cancers[8].  

This virus is also associated with development of oral cancer in men and women[9,10].  

Male patients with oral cancer are reported to have twice the prevalence of testing sero-

positive for human papilloma virus[11–13].  However, not all patients testing 

seropositive for HPV have oral tumors that are driven by HPV[14–17].  There are 

distinct molecular signatures associated with oral cancers associated with alcohol and 

tobacco use, and there are signatures associated with HPV driven tumors.  Currently 

these signatures are based upon mutations in TP53, CDKNA, EGFR, and PIK3A[18].  

HPV p18, or p16 are the only molecular signatures that have been shown to be 

predictive and prognostic[19–21].  These signatures are used to guide treatment of 

oropharyngeal tumors specifically.  HPV expressed proteins E6 and E7 specifically 

suppress TP53 which confers cell immortality.  Fortunately HPV genome expression is 

not associated with the mutations(MYC CCND1, SOX2) in tobacco driven tumors which 

are associated with treatment resistance[17].  It is for this reason that HPV sero-status 

is a useful predictor of treatment response.    
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Role of Alcohol and Tobacco in Oral Cancer 

Alcohol and tobacco are two known risk factors for oral cancer.  Alcohol alone has been 

shown to account for a small proportion of the attributable risk[22].  However, alcohol 

and tobacco use in combination have shown to have a multiplicative effect on risk[22].  

Alcohol is believed to multiply the cancer risk associated with tobacco use by 

dehydrating cell walls and increasing their permeability to carcinogens present in 

tobacco products.  Chronic alcohol use can lead to antioxidant deficiencies which 

predispose patients to the oxidative damage and DNA single strand breaks which lead 

to mutations resulting in oral cancer.  Tobacco products are known to carry several 

carcinogens, and the ignition of tobacco during tobacco produces polycyclic 

hydrocarbons that can also produce oxidative damage on cell DNA[23–26]. Alcohol and 

tobacco use in oral cancer has changed by time period in a way that is gender 

dependent[27].  Evaluation of response to treatment by period, gender, and tumor type 

will be an important part of evaluating persistence of gender disparity across 

combination of clinical features.  

 

Differences in Exposure by Gender 

In Oral cavity cancers environmental exposures like alcohol and tobacco use are well 

established in their association with head and neck cancer, as is the greater risk to male 

patients[28].  A 2013 study of SEER data showed that for the past 20 years the rate of 

head and neck cancers in men have been double that in women.  The relationship is 

consistent across race, and ethnicity.  The proportion of cases associated with HPV 

infection is twice as high in men as it is in women.  This study reported that 10-15% of 
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cases of head and neck cancer in women could not be attributed to alcohol or smoking 

exposures.  The California Cancer Registry is a database of cancer cases following 

SEER reporting guidelines.  The strength of such a database is the large number of 

cases tracked between the years 1988 and 2012 and the high number of variables 

tracked in this registry that can inform and improve upon analyses by adjusting for 

confounding and biases.  This database will be used to assess the persistence of 

treatment response disparities between men and women. Findings generated by this 

study will further illuminate the discussion of possible mechanisms to which oral cavity 

cancers can be attributed.  This study will strengthen the argument for or against the 

attribution of gender disparities to statistical artifact. 

 

In a 2009 pooled analysis of head and neck cancer case control studies [29] authors 

stated there was a 33% increased population attributable risk (PAR) of HNSCC for 

tobacco users, and another 35% increased PAR for patients reporting both alcohol and 

tobacco use, finally there was a 4% increased PAR for those who reported alcohol 

intake alone.  Women were reported to have a lower PAR than for men.  It is also 

important to note that while men had a higher PAR for alcohol and tobacco than for 

tobacco alone women did not.  These results indicate that HNSCC cases in women 

cannot be attributed to alcohol and tobacco use to the same extent they are attributed to 

alcohol and tobacco exposure in men.  This study reports that 42% of cases in women 

cannot be attributed to alcohol or tobacco exposure. A proportion of these cases could 

be attributed to human papilloma virus (HPV) infection however it is unlikely that all 42% 

of female cases not attributed to alcohol or tobacco exposures can be attributed to HPV 
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infection alone.  HPV infection is known to infect a greater proportion of male than 

female patients, it has been reported that male HNSCC cases that cannot be attributed 

to tobacco or alcohol account for only 26% of cases.  If we assume that all cases that 

cannot be attributed to alcohol and tobacco can be attributed to HPV in men, and that 

women can attribute a similar proportion of cases to HPV then there would still be 16% 

of cases in women that cannot be attributed to HPV.  However this number is likely to 

be higher as studies examining the distribution of HPV positive sero-status across the 

HNSCC patient population all report that the prevalence of HPV positive sero-status is 

greater in males than females. 

 

The Role of Race and Socioeconomic Status in Oral Cancer Survival 

African-American patients have been shown to have lower risk of survival when 

compared to white patients.  These differences in survival have been attributed to 

different distributions in the size of patient clinical stage, tumor size and tumor grade.  

There is also an association between race and socioeconomic status with African-

American.  Socioeconomic status is also predictive of patient access to all treatment 

modalities.  Other researchers have shown an association between socio economic 

status and access to chemotherapy.  It is important to take steps to adjust predictive 

models for socioeconomic status before assessing the disparities in access to care 

between racial groups.  Of course the power to detect such differences is also 

dependent upon well powered representative samples such as those using extracted 

from cancer registries.  Some believe that disparities in survival by race can be 

attributed to poor access to early screening that would provide access to care when oral 
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cancers can be treated with a greater rate of success.  Others have made the point that 

mistrust of medical institutions may be significantly different when stratified by race and 

thus mistrust may be an additional barrier to access to recommended treatment.  

Finally, it is possible that disparities in treatment response by race can be attributed in 

part to differences in those genes that metabolize chemotherapies.  Cytochrome P450 

genes within xenobiotic pathway are distributed differently by race and thus may play a 

role in disparities.  For a variety of reasons experimental trials used to verify the effect of 

chemotherapies are not racially diverse.  Using homogeneous populations when testing 

new therapeutics increases the ability of researchers to detect a treatment effect, 

however restrictions on racial disparity also limit the exportability of trial findings to a 

variety of racial groups.  Validation of chemotherapeutics effectiveness when 

administered according to recommended guidelines to ethnically diverse sample of 

patients would serve as an appropriate first step in determining the effectiveness of 

such therapies across racial and socioeconomic groups. 

 

Molecular Signatures in Oral Cancer 

There are few studies that have identified a group of genes for predicting those HPV-

negative HNSCC patients that will receive greater benefit from high intensity radiation 

treatment.  To date the most widely used molecular signature guiding HNSCC treatment 

is HPV status.  However, HPV infection preferentially infects oropharyngeal tissues 

which make up only 15% of HNSCC[30].  Pilot studies examining the role of genetic 

markers in head and neck cancer have reported promising but mixed results, although 

these studies also reported limitations in interpretation due to small sample size[31–33].  
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Past studies have focused upon gene expression and mutation in known oncogenes: 

Epidermal Growth Factor Receptor (EGFR), Transforming Growth Factor Beta 

(TGFRB), Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), and Tumor Protein 

53 (TP53).  However, those results have been difficult to interpret due to limitations of 

the study to mutation status or limitations of the study to the expression of single gene.  

Other studies have found that canonical oncogenes like EGFR are regulators of cell 

growth, migration and survival, and that EGFR is overexpressed in 80 out of 100 head 

and neck cancers.  Mutations and epigenetic changes in these classical oncogenes 

have been associated with proliferation, apoptosis, inflammation, angiogenesis and 

DNA repair in head and neck cancers. 

  

  Other studies report using microRNA expression to predict overall survival across 

laryngeal, pharyngeal , and oral tissues[34]. There have been multiple studies that have 

identified genetic markers that improve prediction of overall survival when HPV status is 

known[35–38].  Unfortunately, there has been little focus in squamous cell carcinoma in 

the oral cavity, a HNSCC subgroup that is known to respond significantly worse to 

treatment than patients with Oropharyngeal Squamous Cell Carcinoma (OPSCC).  It is 

also important to note that the authors of the Wong et al[34] study found that there was 

significant genetic heterogeneity in each HNSCC tissue subtype.    Therefore, this study 

focuses solely upon treatment sensitivity in OSCC specifically.  This study contributes 

evidence that even in the high risk populations of head and neck cancer patients, such 

as tobacco users and alcohol abusers, [39] patients can be stratified into meaningful 

treatment groups based upon measures of gene expression in oral cavity tumor cells. 
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New Chemotherapy Treatments in Oral Cancer 

In the last ten years one new medication has been approved for the treatment of head 

and neck cancer patients.  The most recent drug (PD-1 inhibitor Pembrolizumab) was 

previously approved for patients with stomach cancer.  Taxol based medications Erbitux 

and Paclitaxel have been found to induce greater radiation sensitivity in patients with 

cancer of the head and neck.  The standard or care in oral cancer is surgery, and 

radiation therapy.  Patients with tumors greater than clinical stage three, and node 

positive disease meet criteria for systemic/chemotherapy.  When identifying cancer 

targets in rarer cancers such as oral cancer, researchers must rely upon datasets 

implicitly smaller in size.    Several researchers have used machine learning methods to 

identify signals within genetic data.  Permuting genetic datasets with the machine 

learning method known as random forest is one method that has been shown to be 

effective in classifying patients via high dimensional genomic data.   

 

Chemical informatics is a widely utilized first step when identifying which ligands that 

should be considered in high throughput screening.  Using the ranked list of genes 

generated from random forest can be purposed towards the goal of using ligands known 

to bind proteins expressed by influential genes in virtual screening applications.  A 

single pipeline partnering bioinformatics and chemical informatics has the potential to 

improve interface and utility of drug discovery pipeline.  The final step would be to 

validate such a process against existing literature to verify the effectiveness of such 

applications. 
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Oral cancer is a disease that occurs less often than breast, lung, or prostate cancer.  

Understanding the effectiveness of the standard of care recommended by the NCCN, 

and the equity of the distribution of that care is important in that contributes to 

knowledge on the efficacy of such treatment quality guidelines, and it highlights sources 

of disparity in treatment in oral cancer patients.  Specialized methodologies should be 

used when evaluating the genetic information for a small sample of patients.  This work 

identifies how Monte Carlo cross validation can be used to strengthen the signal of 

genes, and to form an aggregated signature that predicts treatment response.  This 

work not only generates signatures that could be utilized within a clinical setting but 

offers insight to those pathways playing an important role in survival in head and neck 

cancer.  This work is furthered through the application of random forest a machine 

learning method that performs well with high dimensional datasets with low numbers of 

observations.   By integrating this approach with network analysis and chemical 

informatics, this work identified drug leads that actively inhibit progression of oral cancer 

cells.  This activity was identified via literature review of all drug leads with greater than 

50% Tanimoto similarity.  In addition, this work identifies influential genes and pathways 

in oral cancer specifically in those patients treated with platinum based chemotherapy 

and in non-platinum based chemotherapy.   
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Chapter 2 

NCCN Guideline Adherence and Oral Cancer Treatment and Response 
 
Introduction 

 
Head and neck cancers can be defined as cancers in the upper airway and/or digestive 

tract found in oral cavity, laryngeal, pharyngeal, oropharyngeal, and hypo-pharyngeal 

tissues. Such cancers make up 3% of cancers diagnosed each year[1,2]. Head and 

neck cancer incidence has declined from 25 cases per 100,000 at risk in the 1990s to 

15 cases per 100,000 at risk in the present day[3].  The decrease in head and neck 

cancer incidence has made progress, (521 per 100,000 at risk to 435 per 100,000 at 

risk annually) [4,5] from 1988-2012.  Additionally, the mortality associated with oral 

cavity cancers has decreased over the last twenty years (251 deaths per 100000 to 161 

deaths per 100000 annually)[4,5]. African American patients have also made progress 

in that there has been a decrease in mortality associated with oral cancer in this group 

of patients [6].  However, most recent reports still show that racial disparities persist 

between African-American and White patients with oral cancer with 65% of White 

patients reporting 5 year survival vs. 48% in African-Americans[7–12].  It is important to 

note that there have been few studies that closely examine whether racial disparities in 

oral cancer treatment response are associated with disproportionate levels of 

adherence to quality of care guidelines like the National Comprehensive Cancer 

Network (NCCN) recommendations.   There is a need to better understand the 

benefits/detriments associated with NCCN guideline adherence for providers treating 

patients with oral cancer.  Evaluating the clinical and demographic variables associated 
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with NCCN guideline adherence will improve understanding of how access to quality 

care may be improved. 

 

The NCCN is a non-profit organization of 27 cancer centers across the world dedicated 

to “improving the effectiveness, and efficiency of cancer care so that patients can live 

better lives”[13].  The NCCN provides guidelines on the treatment of common and rare 

cancers and offers annually updated treatment algorithms reflecting the highest 

standards of patient care.  Oral cancer treatment guidelines provided by NCCN offer 

guidance on the appropriate implementation of chemotherapy for each oral cancer 

patient.  One aim of this study will be to identify if NCCN guidelines are applied 

uniformly across racial groups, and if all racial groups respond without significant 

differences in overall survival when NCCN guidelines are applied uniformly across racial 

groups. While there have been few studies that report upon racial disparities in oral 

cancer patients there are many studies that report upon disparities in cancer treatment 

by race for other anatomic sites[14–17].  African-American patients have a 33% greater 

chance of dying of all-site cancer compared to White patients[18].  This disparity has 

been attributed to the observation that African-American patients are more likely to be 

diagnosed with regional, or metastatic tumors than White patients[19,20]. Even after 

adjusting for stage of cancer some studies have continued to note significant disparities 

in overall survival between White and African-American patients[7–12,21], indicating 

that stage of disease alone may not be the only risk factor for poor survival. 
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Treatment response is predicted in large part by the grade and size of a tumor, the 

degree of nodal invasion, and the type of treatment which is applied to a patient.  It is 

equally true that the mode of treatment (surgery, chemotherapy), is based upon the 

anatomic site, grade, nodal status, and tumor size of a given patient.  The 2017 NCCN 

treatment algorithm recommends systemic/chemotherapy to any patient with node 

positive disease diagnosed as Clinical Stage III or greater  Racial disparities in cancer 

treatment response have been attributed to differences in the distribution of advanced 

disease due to lack of appropriate screening.  However, if the significance of race as a 

predictor of NCCN recommendation adherence by providers persists across 

combinations of confounding variables then it strengthens the argument that differences 

in overall survival by race may be attributed to variables other than advanced stage of 

disease due to lack of screening. 

 

Disparities in overall survival between African-American and White patients have been 

attributed to quality of care measures such as adherence of physician recommendation 

to cancer care guidelines.  Delivery of quality healthcare guided by physician 

recommendation often is dependent upon a group of best practices or standards that 

can serve to guide treatment.  Measurement of racial disparity can only be assessed 

after confounding variables like social status, age, gender, tumor grade, and treatment 

type have been accounted for.  Oral cancer is a rare cancer in which patient race has 

been shown to be a strong predictor of overall survival.  Analysis of data rich resources 

such as the California Cancer Registry can be performed to identify explanatory 

variables (such as physician adherence to NCCN chemotherapy assignment guidelines) 
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that may further the understanding of mechanisms of observed racial disparities in oral 

cancer that have not yet been explored. 

 

This study will specifically aim to address:  

 

1) The effect of NCCN guideline adherence on survival in those patients 

recommended to receive chemotherapy by NCCN (Stage III- Stage IV node 

positive)  

2) Whether racial disparity in overall survival persists in patients that are provided 

NCCN compliant care.  

3) Which factors (including race) drive provider assigned chemotherapy treatment 

when chemotherapy is not recommended by NCCN (Clinical Stage I-Clinical 

Stage III Node Negative)? 

4) What is the survival benefit associated with chemotherapy use in those patients 

not recommended by NCCN to receive chemotherapy (Clinical Stage I- Clinical 

Stage III Node Negative)? 
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Methods 

Descriptive Study of Population 

37,985 oral cavity cancer patients were selected from the California Cancer Registry 

(CCR) from 1988 to 2012 after exclusion of cases with missing variables.  “Oral cavity 

cancers” were inclusive of all patients within the CCR with cancer of the tongue, lip, 

gum, alveolar ridge, floor of mouth, and inner cheek.  8 oral cancer patients were not 

included in analyses as they were diagnosed at autopsy and so received no treatment. 

25 patients were diagnosed via death records and thus were also excluded from study.  

Only patients with malignant cancers within the CCR were included in this study, 1883 

benign tumors were excluded.  10789 patients without tumor grade treatment were also 

excluded from analyses. 2613 patients without nodal status were not included in the 

analyses of this study. Also, 5281 patients with unknown tumor size were also excluded 

from analyses.  Finally, 458 patients with unknown chemotherapy treatment were also 

excluded. There were 1955 patients with missing information on surgery treatment, 

these patients were included within analyses of all patients as they did have information 

on chemotherapy treatment and other clinical and demographic features thus improving 

the ability of this study to adjust for such confounders.  This left 37,985 patients 

remaining for this analysis.  When patients were grouped by NCCN recommendation 

status (a variable created through the combination of clinical stage and nodal status) 

there were 2416 patients that were without NCCN recommendation due to either lack of 

nodal status or lack of information on clinical stage.  Remaining were 23,521 patients 

not recommended to receive chemotherapy by NCCN (clinical stage I-III and node 



15 
 

negative), and 12,048 patients recommended to receive chemotherapy treatment by 

NCCN (clinical stage III node positive). (Supplemental Figure 1, Supplemental Figure 2) 

 

A goal of this study was to specifically examine if adherence to NCCN 

recommendations significantly improved the quality of patient care (measured in overall 

survival).  Treatment response was measured in overall survival in months.  Receiving 

chemotherapy was defined as receiving a chemotherapy treatment post diagnosis for 

any duration. The standard of care according to NCCN guidelines for treatment of head 

and neck cancers calls for the use of chemotherapy for clinical stage III node positive 

patients and all higher stages in combination with surgery and or radiation.  Radiation 

treatment adjusted for in this analysis refers to beam radiation therapy.  While surgery 

refers to any surgical procedure performed for the purpose of treating the cancer in 

question. Racial groups included in this analysis were White, African-American, Asian, 

Hispanic, and “Other”.  “Other” race consists of a combination of all races not aligning 

within the first four groups.  Native American patients were included within the “other” 

group as small sample sizes prevented stable estimates of effect size.  Tumor size 

<25mm is a binary measure using the greatest tumor dimension of all dimensions 

measured. 
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Statistical Methods 

This is a retrospective, population-based, case-only study of squamous cell oral cancer 

reported to California Cancer Registry between January 1st, 1988 and December 31st, 

2012.  California Cancer Registry case reporting is estimated to be 99% for the entire 

state of California, with follow-up completion rates exceeding 95%.  Case selection 

criteria included those patients 18 years of age or older and had to be the first cancer 

diagnosed (Fig. 1). Age at diagnosis was treated either as a continuous variable or as a 

categorical variable with four groups (younger than 45 years, 45–54 years, 55–69 years, 

and 70 years or older). Tumor characteristic included Clinical Stage, tumor grade, 

Tumor Size and Nodal Status. The last date of patient contact used was either the last 

date of contact listed or the date of death. Adherence to National Comprehensive 

Cancer Network recommended therapy was chosen as a measure of the quality of 

cancer care received and considered as a gold standard that most oral cavity cancer 

patients should be allowed. Provider adherence with treatment recommendations for 

oral cavity cancer was based on NCCN recommendations for surgery and 

chemotherapy treatment.  According to the most recent recommendations (2017) for 

Stages I–III (node negative) patients, surgical treatment and or radiation therapies were 

considered in compliance with NCCN recommendations.  NCCN does not provide 

recommendation for the use of chemotherapy in oral cancer patients with less than 

stage III node negative cancer. For cases of stages III-IV (node positive) oral cancer, 

surgical treatment and radiation and chemotherapy are recommended. Number of 

Chemotherapy agents and specific type of beam radiation were not considered for this 

study nor were the approaches of surgical intervention.  This study defined NCCN 
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guideline adherence with chemotherapy recommendation as those individuals receiving 

chemotherapy as their primary treatment or in conjunction with another treatment 

modality (surgery, radiation) that met NCCN requirements for recommendation of 

systemic/chemotherapy (Node positive disease of Clinical Stage III or greater).  

Socioeconomic status data in the California Cancer Registry represent a composite of 

measures of the census tract in which the patient resides at diagnosis (e.g., education, 

income, cost of living, and occupation type). This variable was categorized from lowest 

to highest quintile. This representation of SES has been used in past epidemiologic 

journal publications on various types of cancers.  NCCN compliance was considered 

across the sample subset by modality combinations (radiation, surgery, radiation and 

surgery, no radiation and no surgery).  

 

Survival Analysis 

Cox regression models predicting treatment response in overall survival (measured in 

months) were also produced. Cox models adjusted for tumor size, nodal status, surgery, 

grade, socioeconomic quintile, age, gender, and race.  Tumor size measured in cubic 

mm was converted into a binary measure of greater than 26 cubic mm or less than or 

equal to 26 cubic mm.  Multivariable logistic regression analysis was conducted to 

measure the probability of noncompliance with NCCN recommendations for 

chemotherapy use. The second measure of interest was disease-specific survival. 

Survival analysis was performed using the Kaplan-Meier estimate of survival probability 

and log-rank test to visualize difference in survival according to NCCN recommendation 

for chemotherapy (Figure 2, Figure 3).  After verifying the proportional hazards 
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assumption, a Cox proportional hazards model was used to estimate the effect of each 

variable on overall survival, with clinical stage treated as a strata and not a predictor. 

The model compared post diagnosis survival time in patients with the same clinical 

stage of disease and produced a coefficient weighted by stage for other factors in the 

model.  Hazard ratios (HR) and 95% confidence intervals (CI) were produced by these 

analyses. All statistical analysis was conducted using SAS 9.4. 

 

Results: 

Descriptive Results: 

This study identified 37985 patients from the CCR who met criteria for complete clinical 

and treatment modality information. The median age at diagnosis was 63 years old with 

a standard deviation of +13.7 years.  12048 of 37985 (31.7%) of patients met criteria for 

NCCN recommendation of chemotherapy.  Of those who were recommended to receive 

chemotherapy 4499 of 12048 (33.8%) were compliant with NCCN recommendations.  

Of those 23521 patients with early stage node negative disease, 1618 of 23521 (26.4%) 

were still prescribed chemotherapy by providers (Supplemental Table 1).  A summary of 

descriptive analyses can be found in Table 1. When subdivided by anatomic site it can 

be seen that patients with cancer of the tongue were more likely to receive 

chemotherapy when cancers were node negative and in early stage.  11% of early 

stage tongue cancer patients received chemotherapy compared with 6.2% and 6.3% in 

floor of mouth and gum cancers, and .7% in gum cancers.  In patients with “other oral 

cavity cancers the proportion receiving treatment in contrast with NCCN 

recommendation was 23%.  Frequency of patients receiving treatment by stage, nodal 
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status, and site can be viewed in Table 2.7.    When chemotherapy was not 

recommended by NCCN, greater proportions of African-American, Hispanic, Asian, 

patients received chemotherapy (11.1%, 8.3%, 7.1%) respectively than the proportion of 

white patients (6.5%) receiving chemotherapy that contradicted NCCN 

recommendations.  Patients with missing surgical treatment status were included in this 

analyses to provide additional power in detecting the effect of NCCN compliance on 

overall survival in those patients recommended to receive chemotherapy by NCCN and 

those that did not.   

 

Results of Multivariable Regression Predicting NCCN Compliance 

A multivariable logistic regression model was produced to measure the effect of clinical 

stage, weighted clinical and demographic features on the probability of provider 

adherence to NCCN treatment guidelines for oral cavity cancers (Table 2).  Clinical 

stage strata were used to better assess the contribution of each variable to model 

prediction. Demographic and clinical feature types were associated with compliance 

with NCCN recommendation for chemotherapy (Table 2).  Patients of lower socio 

economic status, were more likely to have providers that did not adhere to NCCN 

recommendation for chemotherapy in comparison to those patients in the highest 

quintile of socioeconomic status (OR 1.54, 95% CI 1.2-1.95, OR 1.38 95% CI 1.1-1.7, 

OR 1.24, 95% CI 1-1.5, OR 1.26, 95% CI 1-1.5.) for the first, second, third and fourth 

SES quintiles respectively.  Younger patients in the first four age groups were less likely 

to have providers that do not adhere to NCCN recommendations (OR .34, 95% CI .37-

.59, OR .34 95% CI .27-.41, OR .47, 95% CI .4-.55) for those patients younger than 45, 
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45-54, and 55-69 respectively.  There was no statistically significant difference between 

any racial group and white patients in terms of their likelihood to receive chemotherapy.  

Clinical features like tumor grade III (OR 1.25 95% CI 1.0-1.4), and tumor size <26 mm 

(OR 1.44, 1.2-1.6) were all more likely to be predictive of noncompliance with NCCN 

recommendations for chemotherapy (Table 2). 

When considering those clinical and demographic features that were predictive of the 

use of chemotherapy in those patients with early stage node negative disease, this 

study found that tumor grade and tumor size were significant predictors of whether a 

patient would receive chemotherapy to treat early stage disease (contradicting NCCN 

criteria).  Patients with Tumor size < 26 mm had an increased odds (OR 2.1, 95% CI 

1.4-3.0) that chemotherapy would not be given.  Patient with Tumor grade G1-G2 had 

an increased odds of having chemotherapy withheld when compared to G3 patients 

(OR 1.9 95% CI 1.5-2.3). There was no significant difference between White and 

African-American, Hispanic, or Asian patients in their likelihood to receive 

chemotherapy treatment that contradicted NCCN guidelines (Table 3).   

    

Survival Analysis Results  

Kaplan Meier survival analysis showed a statistically significant difference between 

patients receiving care that was compliant, and noncompliant with NCCN guidelines 

recommending use of chemotherapy as part of oral cancer treatment in node negative 

Stage I-III (Figure2) and node negative Stage III-IV (Figure 3) respectively.  The survival 

of patients in the node negative low stage group were significantly different from one 

another (logrank p-value <.0001), with those patients in compliance with NCCN 



21 
 

recommendations (not receiving chemotherapy) having better survival overall.  This was 

evident in that the median survival for those patients receiving chemotherapy was 36 

months, while median survival in those patients not receiving chemotherapy was 81 

months.  The survival of patients in the node positive late clinical stage group was 

significantly different between patients who received chemotherapy and those who did 

not (p-value<.0001).  Patients receiving chemotherapy with late stage node positive 

tumors had significantly better survival compared to those patients that did not receive 

chemotherapy.  Median survival in the node positive high stage groups was 21 months 

in those patients not receiving chemotherapy, and 32 months in those patients receiving 

chemotherapy. 

 

A multivariable Cox regression model was used to measure the effect of chemotherapy 

treatment in patient groups stratified by clinical stage and nodal status.   Cox models 

weighted clinical and demographic features on the probability of survival in patients 

meeting requirements for NCCN recommendation of chemotherapy. Compliance with 

NCCN recommendations was significantly associated with survival in those patients 

who also received surgery and radiation.  Compliance with chemotherapy use as 

recommended by NCCN, did not have a significant effect in those patients who received 

radiation alone, surgery alone, or no surgery and no radiation.  All patients included in 

analysis had information on clinical stage and nodal status and thus were eligible to be 

assigned NCCN recommendation on whether they should be receive chemotherapy 

treatment.  Multivariable Cox regression analysis confirmed the known negative effects 

of older age, advanced tumor grade (Table 4). After controlling for additional 
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confounding factors, compliance with NCCN recommendations for chemotherapy was 

statistically significant in predicting improved survival in oral cancer patients. Patients 

receiving compliant care had a 33% decrease in the risk of death (HR .67, 95% CI .6-

.8). In contrast, patients that did not meet the criteria for NCCN recommendation of 

chemotherapy (Stage I-III node negative) had a 50% increased odds of death (HR 1.5, 

1.4-1.7) when chemotherapy was received.  Patients receiving radiation alone, or no 

surgery and no radiation all had increased odds of death when chemotherapy was 

received (HR 1.4, 95% CI 1.2-1.7), (HR 1.9, 95% CI 1.5-2.3) for radiation alone, or no 

surgery and no radiation respectively (Table 5).  
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Discussion: 

Summary 

It is desirable to adopt measurements of adherence with NCCN guidelines as a 

measure of quality in that it provides a simple means of comparing the quality of care 

across different patient groups.  Use of NCCN guidelines also produces a benchmark 

against which future interventions can be compared and contrasted.  Analyses 

described within this paper present a population based study that groups patients by 

specific treatment modality types listed in the CCR to identify the probability of access to 

NCCN adherent care across clinical and demographic groups.  This study was able to 

measure the magnitude of effect of NCCN compliance across combinations of different 

treatment modalities.  These analyses examined the effects not only in those patients 

where chemotherapy treatment is recommended (late stage node positive oral cancer) 

by NCCN but also where it was not (early stage node negative oral cancer).  The effect 

of chemotherapy use on survival in those patients not recommended to receive 

chemotherapy by NCCN, and the factors associated with treatment assignment are 

important when considering the role of NCCN recommendations across all stages of 

disease, and the importance of providing guidance on restricting those treatments due 

to their association with increased mortality at specific stages of disease. 

 

In those patients with late stage oral cancer, when providers were also adherent to care 

guidelines of recommendations for surgery and radiation treatment, there was no 

significant difference in provider use of chemotherapy between White patients and any 

other racial group (African-American, Asian, Hispanic, Other).  Compliance with NCCN 
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recommendation for chemotherapy was less likely for African-Americans that received 

surgery alone as a treatment modality.  It is possible that the higher rate of 

comorbidities in African-American[22–24] patients drove provider noncompliance due to 

greater health risk associated with a regimen of surgery and radiation and 

chemotherapy as recommended by NCCN.  Comorbidities such as diabetes and 

hypertension have been shown to be risk factors for surgical complications[25–27].  

Currently, the NCCN does not provide guidance on tailoring therapy by patient 

comorbidity.  Such analysis is also not possible to perform with CCR data as there are 

no data related to comorbid status while receiving treatment.  Further analyses with 

datasets tailored to address these issues are recommended.  These results support 

adherence to NCCN recommendations across racial groups as a key step in the 

elimination of racial disparity in oral cancer treatment. 

 

This study’s strength is its use of a population based sample covering the entire state of 

California.  This is the first study using a population of this size in determining the 

survival benefit associated with provider adherence to NCCN oral cancer guidelines.  

This is a dataset tracking the incidence of cancer prospectively from point of diagnosis 

that aims to track 100% of cancer cases in the state of California through multiple 

reporting mechanisms.  This study was designed and powered to identify the magnitude 

of effect associated with adherence to NCCN recommended treatment.  It is notable 

that the majority of patients observed in this study were of lower clinical stage (< Clinical 

Stage 4 and node negative).  These patients are not recommended to receive 

chemotherapy by NCCN and yet 7% of those patients received chemotherapy 



25 
 

contradicting NCCN recommendations.  Conversely, only 37% of patients that were 

recommended to receive chemotherapy by NCCN actually received the recommended 

treatment.  The tendency for patients not to receive chemotherapy treatment could belie 

several mechanisms: chemotherapy access is gated by income (this is supported by the 

association with socioeconomic status), chemotherapy could also be gated by access to 

insurance providers offering full coverage of this treatment, chemotherapy access is not 

provided in advanced tumors due to impact on quality of life in patients with disease that 

is unlikely to respond to treatment, chemotherapy is declined by patients due to mistrust 

of medical institutions and is not reported as declination.  

 

For those patients receiving chemotherapy treatment for early stage tumors tumor size 

was predictive of survival specifically in those patients that did not receive surgery.  It is 

tempting to infer that if a patient does not receive surgery as recommended, and a 

tumor is large, then surgery may be withheld because a tumor is inoperable.  In such a 

situation where the recommended treatment (surgery) cannot be provided, a provider 

may feel it is their duty to provide other therapies regardless of whether those therapies 

are recommended by NCCN.  This inference is further supported by Table 7 which 

shows that the greatest proportion of patients receiving chemotherapy in contrast with 

NCCN guidelines are those with tongue and “other” oral cavity cancers.  Surgeries 

requiring removal or damage of nervous tissue enervating the tongue are deemed 

inoperable by a majority of oral surgeons.  It may be that providers that cannot offer 

surgical intervention feel that offering an unsupported therapy like chemotherapy is 

better than no intervention at all.  This study provides evidence that providing 
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chemotherapy in such situations is associated with a detrimental effect on patient 

survival.  Similar effects were identified in patients that had both radiation and surgery 

withheld.  This study should provide caution to providers that wish to exhaust all 

possible therapies in patient treatment, a case must be made for patient quality of life 

during treatment especially when treatment is not associated with improved survival.  

 

It should be noted that chemotherapy is not prescribed to extend life alone.  For patients 

with terminal disease chemotherapy may be prescribed to reduce discomfort while the 

patient is receiving hospice/ end of life care.  Data on the use of hospice services and 

the proportion of patients receiving chemotherapy while on hospice does not exist within 

the CCR, Further work is needed examining the palliative use of chemotherapy in oral 

cancer patients to determine if a disproportionate use of chemotherapy in early stage 

oral cancer on hospice contributes to the negative association between survival and 

chemotherapy use in early stage patients. This confounding would seem unlikely as 

hospice care is typically utilized in late stage patients with no treatment options 

remaining.  It is only when early stage patients advance to later stages that NCCN 

recommends combining treatment modalities of surgery, radiation, and chemotherapy.  

As long as further treatments aimed to control disease remain, a patient would not be 

considered for hospice unless recommended care was declined.  This study did control 

for the effect of care declination by excluding all patients declining chemotherapy care 

from analyses.   
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Lower SES was a predictor of a greater likelihood of not receiving chemotherapy 

regardless of whether patients had early or late stage tumors.  One hypothesis is that in 

the case of low SES patients price of healthcare may prevent the use of high price 

therapies like chemotherapy and also insurance availability.  The fact that the same 

trend in SES is also present when chemotherapy is recommended by NCCN strengthen 

this hypothesis.  Differences in insurance coverage for treatment may explain 

differences in treatment response by SES. However, insurance coverage was not 

included within analyses as data on insurance provider represented less than 20% of 

patients within the CCR. One exception to this was observed in those patients that 

received no surgery and no radiation.  In these patients low socio economic status was 

predictive of being less likely to have chemotherapy withheld.  This flipping of the effect 

of the SES predictor could be attributed to access to insurance such as Medicaid which 

is only available to low SES patients.  Currently the CCR has very limited data collected 

on the insurance status of oral cancer patients.  Further research is needed exploring 

the relationship between SES and chemotherapy use.   

 

This study could not identify a significant effect of racial group when predicting 

assignment of chemotherapy for early and late stage patients.  Past attributions of 

difference in survival by race in oral cancer may be due in part to the distribution of 

socioeconomic status and access to care across racial groups.  Lack of significance in 

racial group predictors indicate that disparities in overall survival between racial groups 

are not driven by disparities in chemotherapy assignment by race.  It is possible that 

these differences in survival could be attributed to disproportionate distribution of 
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comorbidities by race that have been observed in past studies. Currently the CCR does 

not track comorbid status, access to this data would improve the ability of researchers 

to detect if comorbid status does contribute to racial disparities in survival.    

 

Study Limitations 

Multiple limitations should be addressed when assessing the results presented in this 

study.  This study was unable to control for variables that were not reported by CCR, 

this could influence survival and compliance with NCCN recommended care.  

Comorbidities, tumor gene expression, chemotherapy dose, chemotherapy type, and 

dose intensity, Gy of radiation, and medication use were not included within CCR data. 

An analysis of the surgical techniques applied during treatment were not available at the 

time of this study. It is possible surgical approach and other aspects of technique could 

better define the effect of surgery on treatment response.  The use of chemotherapy to 

promote quality of life was also not able to be measured as there are no measures 

within the CCR of which patients utilize chemotherapy to diminish suffering while 

receiving hospice care.  The implications of insurance provider coverage was also not 

able to be assessed in this study. Although insurance provider data does exist for some 

patients within CCR this data is available in less than 20% of patients and is 

confounded by the period in which care was received as treatment coverage may vary 

from year to year for each insurer and between insurers.  A stratified analysis taking 

insurance provider data into account would severely limit the power to detect any 

significant effects of treatment on survival.  Lastly, this study did not consider effects of 

provider metrics (number of patients seen, number years of experience) and institution 
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type that have been the focus of other CCR studies examining the effect of NCCN 

compliance on outcomes in ovarian cancer[28].  Further studies of these variables may 

enhance interpretation of results reported in this study.  These limitations do not detract 

from the reported results, and their ability to provide a unique contribution in validating 

NCCN recommendations in oral cancer both in those patients that receive 

recommendation for chemotherapy by NCCN and those that do not.  

 

Conclusion 

It has been shown that in those patients receiving care in compliance with NCCN 

guidelines, there is no significant difference in survival by race.  It is clear that special 

attention should be paid to furthering the guidance provided by NCCN in applying 

recommended treatment equally across race, and thus minimizing differences in overall 

survival across racial groups. Chemotherapy treatment is not associated with improved 

survival of all oral cancer patients.  The majority of patients (consisting of low stage 

node negative tumors) were found to have poorer survival when prescribed 

chemotherapy. Patients that do not receive surgery with early clinical stage node 

negative tumors were not shown to receive benefit when assigned to a 

chemotherapeutic regimen by their providers.  This illustrates the idea that offering 

patients more treatment does not necessarily lead to better treatment outcomes. 

Greater guidance should be provided by NCCN in regards to which patients would 

receive the greatest benefit from chemotherapy, and also specifically for which patients’ 

chemotherapy use has been associated with decreased survival. 
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Table 2.1. Study Population Characteristics 

Characteristic     

  All 
Patients 

Surgery 
and 
Radiation
* 

Surgery* Radiation
* 

No 
Surgery 
No 
Radiation* 

 Total N=37,985 N=5,447 N=2126 N=10,178 N=18,289 

Age at diagnosis           

Younger than 45 3834(10.0
%) 

237(4.35
%) 

113(5.31
%) 

1160(11.3
%) 

2225(12.1
%) 

45-54 5860(15.4
%) 

961(17.6
%) 

270(12.6
%) 

1755(17.2
%) 

2627(14.3
%) 

55-69 14036(36.
9%) 

2435(44.
7%) 

826(38.8
%) 

3987(39.1
%) 

6127(33.5
%) 

70 or Older 13275(34.
9%) 

1660(30.
4%) 

864(40.6
%) 

3022(29.6
%) 

6851(37.4
%) 

missing 980(2.57
%) 

154(2.82
%) 

53(2.49%
) 

254(2.49
%) 

459(2.50
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Mean, Median 63.05,  
(13.72) 

62.89,(11
.6) 

62.5, 
(14.4) 

62.2, 
(14.7) 

63.6, 
(15.1) 

Stage           

I 18062(47.
5%) 

842(15.4
%) 

437(20.5
%) 

2916(28.6
%) 

13418(73.
3%) 

II 5406(14.2
%) 

849(15.5
%) 

344(16.1
%) 

1735(17.0
%) 

2136(11.6
%) 

III 4476(11.7
%) 

1181(21.
6%) 

249(11.7
%) 

2051(20.1
%) 

826(4.51
%) 

IV 8590(22.6
%) 

2327(42.
7%) 

842(39.6
%) 

3319(32.6
%) 

1557(8.51
%) 

Unspecified 1451(3.81
%) 

248(4.55
%) 

254(11.9
%) 

157(1.54
%) 

352(1.92
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Grade           

1 9158(24.1
%) 

659(12.0
%) 

340(15.9
%) 

1429(14.0
%) 

6336(34.6
%) 

2 18186(47.
8%) 

2381(43.
7%) 

995(46.8
%) 

4785(47.0
%) 

9088(49.6
%) 

3 9311(24.5
%) 

2267(41.
6%) 

723(34.0
%) 

3231(31.7
%) 

2530(13.8
%) 

4 1330(3.50
%) 

140(2.57
%) 

68(3.19%
) 

733(7.20
%) 

335(1.83
%) 
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Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Tumor Thickness           

>25 cubic mm 17728(46.
6%) 

1331(24.
4%) 

462(21.7
%) 

4341(42.6
%) 

11255(61.
5%) 

<26 cubic mm 12228(32.
1%) 

2558(46.
9%) 

911(42.8
%) 

4538(44.5
%) 

3591(19.6
%) 

Unknown 8029(21.1
%) 

1558(28.
6%) 

753(35.4
%) 

1299(12.7
%) 

3443(18.8
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

QUINYOST Socioeconomic 
Status 

          

1 4159(10.9
%) 

612(11.2
%) 

311(14.6
%) 

1098(10.7
%) 

1784(9.75
%) 

2 5299(13.9
%) 

734(13.4
%) 

307(14.4
%) 

1382(13.5
%) 

2500(13.6
%) 

3 6034(15.8
%) 

819(15.0
%) 

316(14.8
%) 

1549(15.2
%) 

2968(16.2
%) 

4 6073(15.9
%) 

770(14.1
%) 

292(13.7
%) 

1607(15.7
%) 

3049(16.6
%) 

5 6180(16.2
%) 

813(14.9
%) 

315(14.8
%) 

1644(16.1
%) 

3090(16.8
%) 

missing 10240(26.
9%) 

1699(31.
1%) 

585(27.5
%) 

2898(28.4
%) 

4898(26.7
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Gender           

Male 23852(62.
7%) 

3936(72.
2%) 

1372(64.
5%) 

6481(63.6
%) 

10854(59.
3%) 

Female 14133(37.
2%) 

1511(27.
7%) 

754(35.4
%) 

3697(36.3
%) 

7435(40.6
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Racial Group           

White 29130(76.
6%) 

4294(78.
8%) 

1541(72.
4%) 

7540(74.0
%) 

14325(78.
3%) 

Black 1971(5.18
%) 

389(7.14
%) 

214(10.0
%) 

550(5.40
%) 

673(3.67
%) 

Hispanic 3954(10.4
%) 

491(9.01
%) 

213(10.0
%) 

1262(12.3
%) 

1806(9.87
%) 

Asian 2338(6.15
%) 

231(4.24
%) 

114(5.36
%) 

762(7.48
%) 

1135(6.20
%) 

Other† 592(1.55
%) 

42(0.77%
) 

44(2.06%
) 

64(0.62%
) 

350(1.91
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

Chemotherapy Assignment           
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Assigned  6881(18.1
%) 

3000(55.
0%) 

658(30.9
%) 

2201(21.6
%) 

499(2.72
%) 

Not Asigned 31104(81.
8%) 

2477(45.
4%) 

1468(69.
0%) 

7977(78.3
%) 

17790(97.
2%) 

Total 37985(100
%) 

5477(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

NCCN Chemotherapy 
Recommendation 

          

No Recommendation Given  23521(61.
9%) 

1716(31.
5%) 

783(36.8
%) 

4669(45.8
%) 

15561(85.
0%) 

Recommended 12048(31.
7%) 

2927(53.
7%) 

967(45.4
%) 

5210(51.1
%) 

2334(12.7
%) 

Missing 2416(6.36
%) 

804(14.7
%) 

376(17.6
%) 

299(2.93
%) 

394(2.15
%) 

Total 37985(100
%) 

5447(100
%) 

2126(100
%) 

10178(10
0%) 

18289(100
%) 

SD, standard deviation; NOS, not otherwise specified. Data are n (%) unless otherwise 
specified. *1945 Patients missing data on surgical treatment. Of 1945 missing 543 are 
missing status on NCCN recommendation, 792 are not recommended to receive 
chemotherapy by NCCN and are missing surgery status, 610 are recommended to receive 
chemotherapy by NCCN and are missing surgery status. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2.2 Multivariable Logistic Regression Analysis of Variables 
Associated With Withholding Chemotherapy in Patients with Node Positive 
Disease Stage III and Later 
  All 

Patients(n=12
048) 

Surgery and 
Radiation (n=2927) 

Radiation Alone 
(n=5210) 

Surgery Alone 
(n=967) 

No Radiation 
No Surgery 
(n=2334) 

Factors O
R 

95% 
CI 

p-
valu
e 

OR 95% 
CI 

p-value OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

O
R 

95% 
CI 

p-
valu
e 

Grade 
Referenc
e G4 

  
 

    
 

    
 

    
 

  
  

  

G3 1.
25 

1-1.4 <.00
01 

1.01 1.15-
1.69 

0.57 1.3
9 

1.18-
1.85 

0.000
5 

0.7
4 

.45-
1.2 

0.23 1.
63 

1.07-
2.47 

0.00
2 
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QUINYO
ST 
Socioeco
nomic 
Status 

  
 

    
 

    
 

    
 

  
  

  

1 1.
54 

1.21-
1.95 

0.00
03 

1.65 1.20-
2.3 

0.03 1.6
8 

1.63-
3.48 

<.000
1 

1.7 .7-
4.1 

0.19 0.
7 

.35-
1.4 

0.37 

2 1.
38 

1.1-
1.7 

0.00
03 

1.57 1.15-
2.2 

<.001 1.5
8 

1.32-
2.72 

0.000
5 

0.6
3 

.3-
1.3 

0.23 1.
01 

.41-
2.02 

0.96 

3 1.
24 

1-1.5 0.03 1.59 .86-
1.5 

<.001 1.1
4 

.95-
1.85 

0.63 1.4 .66-
3.0 

0.36 0.
82 

.4-1.6 0.58 

4 1.
26 

1-1.5 0.02 1.74 .92-
1.62 

<.001 1.2
2 

1.07-
2.08 

0.01 1.2 .57-
2.4 

0.65 0.
6 

.3-1.2 0.13 

Age 
(compare
d to those 
70 or 
older) 

  
 

    
 

    
 

    
 

  
  

  

Younger 
than 45 

0.
34 

.37-

.59 
<.00
01 

0.34 .18-
.65 

0.001 0.3
9 

.28-

.56 
<.000
1 

0.2
4 

.07-

.77 
0.01 0.

26 
.13-
.51 

<.00
01 

45-54 0.
34 

.27-

.41 
<.00
01 

0.3 .20-
.44 

<.0001 0.3
8 

.28-

.51 
<.000
1 

0.2
6 

.12-

.53 
0.000
3 

0.
34 

.18-

.61 
0.00
04 

55-69 0.
47 

.4-.55 <.00
01 

0.38 .28-
.52 

<.0001 0.5
6 

.43-

.73 
<.000
1 

0.4
5 

.25-

.77 
0.004 0.

48 
.27-
.84 

0.01 

Gender   
 

    
 

    
 

    
 

  
  

  

Male 0.
7 

.62-

.85 
<.00
01 

0.67 .50-
.90 

0.008 0.7
6 

.61-

.94 
0.01 1.0

2 
.61-
1.7 

0.91 0.
61 

.38-

.96 
0.03 

Racial 
Group 

  
 

    
 

    
 

    
 

  
  

  

African 
American 

1 .8-1.4 0.59 1.5 .93-
2.4 

0.18 1.1
9 

.78-
1.8 

0.41 0.3
6 

.15-

.85 
0.02 1 .42-

2.6 
0.89 

Hispanic 1.
4 

1.2-
1.6 

0.03 0.91 .57-
1.4 

0.67 0.6
9 

.51-

.92 
0.01 1.3

5 
.58-
3.08 

0.48 0.
42 

.40-
1.3 

0.31 

Asian 0.
7 

.5-.9 0.01 0.94 .50-
1.7 

0.85 0.7
2 

.50-
1.05 

0.08 0.7
8 

.23-
2.6 

0.69 0.
37 

.22-

.82 
0.01 

Other 0.
93 

.3-2.1 0.84 1.17 .27-
5.0 

0.98 0.9
8 

.27-
3.4 

0.97 0.4 .02-
6.5 

0.51 0.
19 

.05-
4.5 

0.54 

Radiation 
Treatmen
t  

  
 

    
 

    
 

    
 

  
  

  

No 
Radiation 
Treatmen
t 

2 1.7-
2.4 

<.00
01 

NA NA NA NA NA NA NA NA NA N
A 

NA NA 

Surgical 
Treatmen
t 

  
 

    
 

    
 

    
 

  
  

  

No 
Surgical 

6.
6 

5.7-
7.6 

<.00
01 

NA NA NA NA NA NA NA NA NA N
A 

NA NA 



34 
 

Treatmen
t 

Tumor 
Size 
(referenc
e 
Tumor>2
5mm) 

  
 

    
 

    
 

    
 

  
  

  

Tumor is 
<26 mm 

1.
4 

1.2-
1.6 

<.00
01 

1.35 1.02-
1.90 

0.03 1.3
4 

1.1-
1.7 

0.004 1.3 .68-
2.4 

0.43 1.
32 

.9-2.2 0.12 

*610 patients were missing information regarding surgical treatment. *The total number of late 
stage node positive patients added to the total number of early stage node positive patients 
does not sum to 37,985 due to the fact that 2,416 patients were missing information on nodal 
status or clinical stage.   
 
 

 

Table 2.3 Multivariable Logistic Regression Analysis of Variables 
Associated With Withholding Chemotherapy in Patients with Node 
Negative Disease Stage III and Earlier 
  All 

Patients(n=235
21) 

Surgery and 
Radiation 
(n=1716) 

Radiation 
Alone 
(n=4669) 

Surgery Alone 
(n=783) 

No Radiation 
No Surgery 
(n=15561) 

Factors OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95
% 
CI 

p-
value 

OR 95% 
CI 

p-
valu
e 

OR 95
% 
CI 

p-
value 

Grade 
Reference G4 

   
  

 
    

 
    

 
  

  
  

G3 1.9 1.5-
2.3 

<.000
1 

1.7 1.2-
2.3 

0.001 1.9 1.4-
2.5 

<.000
1 

0.7 .35-
1.4 

0.32 2.2 1.4-
3.7 

0.000
7 

QUINYOST 
Socioeconomic 
Status 

  
 

    
 

    
 

    
 

  
  

  

1 0.94 .72-
1.2 

0.63 1.1 .7-
1.9 

0.62 1.0
3 

.65-
1.6 

0.89 0.76 .27-
2.1 

0.6 0.5
8 

.31-
1.1 

0.09 

2 1.17 .91-
1.5 

0.24 1.5 .9-
2.4 

0.1 1.1
8 

.77-
1.8 

0.43 0.95 .34-
2.6 

0.92 0.8
7 

.5-
1.7 

0.68 

3 1.2 .9-
1.6 

0.14 1.4 .9-
2.3 

0.12 1.2
6 

.83-
1.9 

0.27 0.46 .19-
1.1 

0.09 1.6 .8-
3.4 

0.17 

4 1.3 1-
1.7 

0.03 1.8 1.1-
2.9 

0.01 1.5
3 

.99-
2.3 

0.05 0.4 .16-
1.0 

0.05 1.1
6 

.6-
2.2 

0.64 

Age (compared 
to those 70 or 
older) 

  
 

    
 

    
 

    
 

  
  

  

Younger than 
45 

0.54 .4-.8 0.000
3 

0.37 .17-
.83 

0.01 0.6
1 

.38-

.98 
0.04 0.66 .16-

2.6 
0.56 0.4

4 
.2-
.9 

0.03 
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45-54 0.48 .4-.6 <.000
1 

0.34 .20-
.56 

<.000
1 

0.5
8 

.38-

.89 
0.01 0.57 .2-

1.4 
0.24 0.4

6 
.2-
.9 

0.04 

55-69 0.53 .43-
.66 

<.000
1 

0.46 .31-
.66 

<.000
1 

0.7
6 

.54-
1.0
8 

0.13 0.59 .3-
1.1 

0.12 0.2
8 

.16-

.5 
<.000
1 

Gender   
 

    
 

    
 

    
 

  
  

  

Male 0.8 .76-
1.1 

0.42 0.82 .58-
1.16 

0.27 0.8
5 

.63-
1.1
5 

0.3 1.3 .73-
2.5 

0.31 1.1 .7-
1.7 

0.55 

Racial Group   
 

    
 

    
 

    
 

  
  

  

African 
American 

1 .69-
1.4 

0.97 1.8 .9-
3.6 

0.09 1.1
5 

.61-
2.1
7 

0.65 0.65 .2-
1.8 

0.41 0.4
8 

.2-

.9 
0.04 

Hispanic 0.82 .6-
1.1 

0.19 0.65 .36-
1.2 

0.17 1.1 .68-
1.7 

0.69 0.37 .15-
.92 

0.03 0.8 .4-
1.5 

0.51 

Asian 0.82 .6-
1.2 

0.3 0.82 .40-
1.7 

0.58 0.9
2 

.55-
1.5
5 

0.76 0.52 .16-
1.0 

0.37 0.8 .3-
1.9 

0.64 

Other 0.52 .2-
1.3 

0.18 <.00
1 

<.00
1-
>999 

0.98 0.2
8 

.06-
1.3 

0.11 >99
9 

<.00
1-
>999 

0.98 1.1 .2-
8.1 

0.92 

Radiation 
Treatment  

  
 

    
 

    
 

    
 

  
  

  

No Radiaiton 
Treatment 

3.43 2.8-
4.2 

<.000
1 

NA NA NA NA NA NA NA NA NA NA NA NA 

Surgical 
Treatment 

  
 

    
 

    
 

    
 

  
  

  

No Surgical 
Treatment 

5.6 4.6-
6.8 

<.000
1 

NA NA NA NA NA NA NA NA NA NA NA NA 

Tumor Size 
(reference 
Tumor>25mm) 

  
 

    
 

    
 

    
 

  
  

  

Tumor is <26 
mm 

3.4 2.9-
4.1 

<.000
1 

2.1 1.45-
3.04 

<.000
1 

1.7 1.3-
2.3 

0.000
2 

3 1.5-
6.0 

0.00
2 

2.2 1.4-
3.5 

0.000
7 

792 Patients were missing information on surgical treatment. *The total number of late stage 
node positive patients added to the total number of early stage node positive patients does not 
sum to 37,985 due to the fact that 2,416 patients were missing information on nodal status or 
clinical stage.   
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Table 2.4. Cox Proportional Hazards Model for Oral Cancer Patients with 
Node Positive Disease Stage III and Later 
  All 

Patients(n=12
048) 

Surgery and 
Radiation (n=2927) 

Radiation 
Alone (n=5210) 

Surgery Alone 
(n=967) 

No Radiation No 
Surgery (n=2334) 

Factors HR 95% 
CI 

p-
valu
e 

HR 95% 
CI 

p-value HR 95
% 
CI 

p-
value 

HR 95
% 
CI 

p-
value 

HR 95% 
CI 

p-value 

Clinical 
Stage 
(Referen
ce 
Remote 
Disease) 

              
  

Regional 
by 
Lymph 
Nodes 

0.6
7 

.09-
4.8 

0.69 0.5 .38-
.64 

<.0001 0.2
6 

.15-

.46 
<.000
1 

0.2
7 

.2-

.5 
<.000
1 

  
  

Regional 
by Direct 
Extensio
n and 
Lymph 
Nodes 

0.6
7 

.62-

.73 
<.0
001 

0.6 .5-.7 <.0001 0.5
4 

.39-

.73 
0.000
1 

0.5
4 

.4-

.7 
0.000
1 

0.9 .7-
1.00 

0.07 

Regional 
NOS 

0.4
9 

.81-

.94 
0.00
02 

NA NA NA NA NA NA NA NA NA 1.1 .9-
1.3 

0.3 
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Grade 
Referenc
e G4 

            
0.6 .2-

1.6 
0.3 

G3 1.0
3 

.97-
1.09 

0.23 1.3 1.1-
1.5 

0.0005 0.9
7 

.71-
1.3 

0.03 1 .7-
1.3 

0.85 0.8 .6-.9 0.0001 

Tumor 
Size 
(referenc
e 
>25mm) 

              
  

Tumor 
less than 
26mm 

0.7 .65-
.74 

<.0
001 

0.65 .5-.8 <.0001 0.7
7 

.54-
1.1 

0.17 0.8 .5-
1.1 

0.17 0.7 .6-.8 <.0001 

QUINYO
ST 
Socioec
onomic 
Status 

              
  

1 1.4 1.2-
1.5 

<.0
001 

1.9 1.4-
2.4 

<.0001 1.5 .88-
2.4 

0.13 1.5 .9-
2.4 

0.13 1.2 .9-
1.5 

0.14 

2 1.3 1.2-
1.4 

<.0
001 

1.7 1.3-
2.1 

<.0001 1.5 .95-
2.3 

0.07 1.5 .9-
2.3 

0.07 1.5 1.2-
1.8 

0.0003 

3 1.3 1.1-
1.4 

<.0
001 

1.5 1.2-
1.9 

0.0007 1.4 .91-
2.2 

0.11 1.4 .9-
2.2 

0.11 1.2 .9-
1.4 

0.13 

4 1.2 1.05-
1.25 

<.0
001 

1.5 1.2-
1.8 

0.001 1.2 .7-
1.9 

0.49 1.2 .7-
1.9 

0.46 1.1 .9-
1.3 

0.34 

Gender 
              

  

Male 0.9
8 

.92-
1.05 

0.71 0.95 .8-
1.1 

0.63 0.9 .7-
1.3 

0.82 1 .7-
1.3 

0.82 1 .9-
1.2 

0.64 

Racial 
Group 

              
  

African 
America
n 

1.3 1.1-
1.5 

<.0
001 

1.2 .9-
1.5 

0.21 1.2 .7-
1.9 

0.44 1.2 .7-
1.9 

0.44 1.3 .9-
1.8 

0.08 

Hispanic 1 .9-
1.1 

0.95 1.1 .8-
1.4 

0.36 1.1 .6-
1.9 

0.28 1.2 .7-
1.9 

0.59 0.8 .6-
1.0 

0.03 

Asian 0.9
1 

.8-
1.0 

0.18 0.8 .6-
1.2 

0.33 1.1 .5-
2.3 

0.85 1 .5-
2.3 

0.85 0.8 .6-
1.1 

0.19 

Other 0.9
2 

.6-
1.4 

0.71 1.4 .6-
3.2 

0.43 0.6 .1-
3.5 

0.61 0.6 .1-
3.5 

0.61 0.5 .2-
1.2 

0.11 

Chemoth
erapy 
Treatme
nt Status 

              
  

Receive
d 
Chemoth
erapy 
Treatme
nt 

0.9
8 

.9-
1.05 

0.67 0.7 .6-.8 <.0001 0.9 .7-
1.2 

0.46 0.9 .7-
1.2 

0.46 1.2 .9-
1.5 

0.09 
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Radiatio
n 
Treatme
nt Status 

               

No 
Radiatio
n 
Treatme
nt 

1.2
72 

1.2-
1.4 

<.0
001 

NA NA NA NA NA NA NA NA NA NA NA NA 

Surgical 
Treatme
nt Status 

               

No 
Surgical 
Treamen
t 

0.8
8 

.8-

.96 
0.00
3 

NA NA NA NA NA NA NA NA NA NA NA NA 

610 patients are missing surgical treatment.  *The total number of late stage node positive 
patients added to the total number of early stage node positive patients does not sum to 37,985 
due to the fact that 2,416 patients were missing information on nodal status or clinical stage.  
.”NA” indicates that this strata is not applicable as tumors with the clinical stage in question do 
not exist within the treatment modality subgroup. 
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Table 2.5. Cox Proportional Hazards Model for Oral Cancer–Specific 
Overall Survival in Patients with Node Negative Disease Stage III and 
Earlier 

  All 
Patients(n=2
3521) 

Surgery and 
Radiation (n=1716) 

Radiation 
Alone (n=4669) 

Surgery Alone 
(n=783) 

No Radiation No 
Surgery (n=15561) 

Factors HR 95
% 
CI 

p-
valu
e 

HR 95% 
CI 

p-
value 

HR 95
% 
CI 

p-
value 

HR 95
% 
CI 

p-
value 

HR 95% 
CI 

p-value 

Clinical 
Stage 
(Region
al by 
Lymph 
Nodes 
(Node 
Negative
)) 

              
  

Localize
d 

1.5 .9-
2.6 

0.1 4.2 1.3-
14 

0.01 1.3 .6-
2.7 

0.5 0.6 .5-
.9 

0.003 0.6 .2-1.6 0.3 

Regional 
by direct 
Extensio
n 

2.1 1.3-
3.5 

0.00
3 

4.6 1.4-
15 

0.01 1.6 .8-
3.3 

0.2 NA NA NA 0.9 .3-2.3 0.7 

Tumor 
Grade 
(referenc
e G3) 

              
  

<G3 0.8 .8-
.9 

<.00
01 

1.2 1-1.5 0.02 0.9 .8-
1.1 

0.6 0.9 .7-
1.4 

0.87 0.7 .6-.7 <.0001 

Tumor 
Size  
(greater 
than 
25cm) 

              
  

Less 
than 26 
cm 

0.7 .7-
.8 

<.00
01 

0.8 .7-1.0 0.02 0.8 .8-
.9 

0.000
4 

0.6 .4-
.8 

0.000
3 

0.7 .7-.8 <.0001 

QUINYO
ST 
Socioec
onomic 
Status 

              
  

1 1.4 1.3-
1.5 

<.00
01 

1.3 1-1.7 0.04 1.5 1.2-
1.7 

<.000
1 

1.6 .9-
2.5 

0.06 1.4 1.2-
1.5 

<.0001 

2 1.2 1-
1.2 

<.00
01 

1.4 1-1.8 0.01 1.3 1.1-
1.5 

0.000
8 

1 .7-
1.6 

0.9 1.2 1.1-
1.3 

<.0001 
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3 1.1 1-
1.2 

0.00
08 

1.1 .9-1.4 0.5 1.1 1-
1.3 

0.17 1 .6-
1.3 

0.6 1.15 1.1-
1.2 

0.0003 

4 1.1 1-
1.1 

0.04 1.5 1.2-
1.9 

0.001 1.2 1-
1.3 

0.02 0.9 .6-
1.4 

0.6 1 .9-1.1 0.68 

Gender 
              

  

Male 1.1 1.1-
1.2 

<.00
01 

0.9 .7-1 0.18 1.2 1.1-
1.3 

0.000
7 

0.9 .7-
1.2 

0.5 1.2 1.2-
1.3 

<.0001 

Racial 
Group 

              
  

African 
America
n 

1.2 1-
1.3 

0.00
7 

1.2 .9-1.7 0.2 1.1 .9-
1.4 

0.27 1.2 .7-
2.1 

0.4 1 .9-1.2 0.7 

Hispanic 0.7
6 

.7-

.82 
<.00
01 

0.7 .5-1 0.08 0.7 .6-
.8 

<.000
1 

1 .6-
1.7 

0.9 0.8 .7-.9 <.0001 

Asian 0.8 .7-
.9 

<.00
01 

1.1 .8-1.7 0.5 0.8 .7-1 0.05 1.3 .6-
3.1 

0.5 0.8 .7-.85 0.0002 

Other 0.7 .6-
.9 

0.00
4 

1.1 .2-4.9 0.9 1.1 .5-
2.4 

0.9 1.2 .3-
4.2 

0.8 0.7 .5-.9 0.003 

Radiatio
n 
Treatme
nt Status 

              
  

No 
Radiatio
n 
Treatme
nt 

0.9 .85-
.95 

0.00
03 

NA NA NA NA NA NA NA NA NA NA NA NA 

Surgical 
Treatme
nt Status 

              
  

No 
Surgical 
Treamen
t 

0.6
4 

.59-

.69 
<.00
01 

NA NA NA NA NA NA NA NA NA NA NA NA 

Chemot
herapy 
Treatme
nt Status 

              
  

Receive
d 
Chemot
herapy 
Treatme
nt 

1.5 1.4-
1.7 

<.00
01 

1 .8-1.2 0.9 1.4 1.2-
1.7 

<.000
1 

1.3 .9-
2.0 

0.16 1.9 1.5-
2.3 

<.0001 

792 Patients were missing information on surgical treatment. *The total number of late stage 
node positive patients added to the total number of early stage node positive patients does not 
sum to 37,985 due to the fact that 2,416 patients were missing information on nodal status or 
clinical stage.   
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Table 2.6 Clinical Stage and Nodal Status by 
Chemotherapy Assignment 

NCCN 
Chemotherapy 

recommendation 

Measure Chemotherapy 

Received Not 
Received 

Total 

Early Stage 
(Stage I-III Node 

Negative) 
Chemotherapy not 
recommended by 

NCCN 

Frequency 1618 21903 23521 

Percent 4.55 61.58 66.13 

Row Pct 6.88 93.12   

Col Pct 26.45 74.37   

Late Stage  
(Stage III-IV Node 

Positive) 
Chemotherapy 

Recommended by 
NCCN 

Frequency 4499 7549 12048 

Percent 12.65 21.22 33.87 

Row Pct 37.34 62.66   

Col Pct 73.55 25.63   

Total 
 

6117 29452 35569 

  17.2 82.8 100 

*The total number of patients recommended to receive chemotherapy 
treatment by NCCN added to the total number of patients not recommended to 
receive chemotherapy treatment by NCCN does not sum to 37,985 due to the 
fact that 2,416 patients were missing information on NCCN recommendation.  

This missingness is attributable to either missing information on stage or nodal 
status which are used to code the NCCN recommendation variable. 



42 
 

 
 
 
 
 
 

 
 
 
 
 

Table 2.7. Patient Use of Chemotherapy by Anatomic Site, Stage and 
Nodal Status (n,% Patients Receiving Treatment Specific to Anatomic 

Site and Stage/Nodal Status) 

    Lip 
Tong
ue 

Floor of 
Mouth Gum 

Other Oral 
Cavity 

Late Stage Node 
Positive Chemotherapy 

received 

33 
(21.7
%) 

2961 
(49.1
%) 

301 
(26.6%) 

597 
(25.8
%) 

178 
(39.2%) 

Chemotherapy 
not received 

119 
(78.2
9%) 

3081 
(50.9
%) 

827 
(73.3%) 

1715 
(74.2
%%) 

276 
(60.8%) 

Early Stage 
Node Positive Chemotherapy 

received 
33 
(.7%) 

852 
(11.3
%) 

160 
(6.2%) 

328 
(6.3%
) 

92 
(23.2%) 

Chemotherapy 
not received 

4398 
(99.3
%) 

6692 
(88.7
%) 

2418 
(93.8%) 

4900 
(93.7
%) 

305 
(76.8%) 
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Early stage refers to those patients that are Node negative and at stages I-III, Late 
stage refers to those patients that are node positive and at stages III-IV. Node positive 
refers to invasion of >1 lymph node. 
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Figure 2.1. Survival by Chemotherapy Treatment in Those Patients 
Recommended to Receive Chemotherapy by NCCN
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Figure 2.2. Survival by Chemotherapy Treatment in Those Patients Not 
Recommended to Receive Chemotherapy by NCCN 
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Figure 2.3. Study Exclusion Criteria Diagram 
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Figure 2.4. Role of NCCN Recommendation in Oral Cancer Study 
Population Subsets Diagram 
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Chapter 3 

 
Identification of a Gene Expression Signature Predicting Survival in Oral 
Cavity Squamous Cell Carcinoma Using Monte Carlo Cross Validation  

 

Introduction 

Head and neck cancers are cancers of the upper airway and/or digestive tract found in 

the oral cavity, laryngeal, pharyngeal, oropharyngeal, and hypo-pharyngeal tissues. 

Head and neck cancers make up 3% of cancers diagnosed each year[1,2]. Head and 

neck cancer incidence has declined from 25 cases per 100,000 at risk in the 1990s to 

15 cases per 100,000 at risk in the present day[3].  While the decrease in head and 

neck cancer incidence may be due to a drop in tobacco use [4,5],  the mortality 

associated with these cancers has not changed significantly in the last twenty years[62].  

Human Papilloma Virus (HPV) positive patients have been observed to have an 

improved survival and response to treatment when compared to HPV negative patients. 

However, these patients make up the minority of oral squamous cell cancers (OSCC) 

[7].  Thus, the decline in mortality could be attributed to decrease in smoking, increases 

in HPV positive cases, or other unknown mechanisms.   

 

Few studies have identified a group of genes predicting treatment response in HPV-

negative OSCC patients.  To date, the most widely used molecular signature guiding 

head and neck squamous cell carcinoma (HNSCC) treatment is HPV status.  HPV 

status can be measured directly through polymerase chain reaction analysis, or 

indirectly through cyclin-dependent kinase inhibitor 2A (CDKN2A) expression.  
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However, HPV preferentially infects oropharyngeal tissues which make up only 15% of 

HNSCC[30].  There have been multiple studies that have identified the genetic markers 

that improve prediction of overall survival when HPV status is known[35–38].  

Unfortunately, there has been less focus on HPV-negative OSCC patients, an HNSCC 

subgroup that is known to respond significantly worse to treatment than patients with 

Oropharyngeal Squamous Cell Carcinoma (OPSCC)[35,38].  OSCC patients have been 

shown to be less likely to be HPV positive than Oropharyngeal cancer patients and thus 

are more reflective of the outcomes of HPV negative patients.   

Past studies examining molecular signatures in OSCC have found that pathways in cell 

migration, cell-to-cell signaling and interaction, and cellular growth and proliferation are 

predictive of overall survival[63,64].  The keratin pathway is also notable in that it has 

been identified by several studies for its role in predicting the conversion of leukoplakia 

to malignant tumor, tumor progression, nodal stage,  and overall response to 

treatment[65]. Of the OSCC studies listed the largest sample was 130 patients[64].  A 

common theme among the reported studies is low reproducibility in the genes identified 

as predictive of advanced disease or survival.   

 

There has been much success in the production of site specific predictive models that 

draw upon the rich resource of data in the TCGA[66].  Models predicting survival in 

glioblastoma, colorectal, ovarian, and even head and neck cancer have drawn upon 

TCGA data in the past [67–71].  The 2015 study examining head and neck cancer data 

in the TCGA focused on gene mutations that were observed across all head and neck 

cancer patients and in those patients that tested HPV positive.  While this study did 
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describe treatment response, it did not utilize gene expression data when conducting 

survival analyses.  This study does draw upon gene expression data in the TCGA to 

produce an aggregated model that predicts survival across strata of tumor behavior, 

treatment regimen, and gender. 

 

There are a host of methods that can be applied in the identification of a predictive 

molecular signature.  When composing a signature that is predictive and prognostic, 

there are several quality checkmarks that must be addressed.  Model building of any 

kind must go through an internal validation process where data is divided between test 

and training data.  While model simplicity or complexity improve model usability, they 

are superseded in importance by measures of model performance[72].  Internal 

validation is an acceptable form of validation only when the test data set is completely 

untouched and no aspect of test data plays a part in model development.  A drawback 

to splitting data in this way is the decrease in model efficiency due to the use of only a 

subset of the total data.  One method addressing this inefficiency is to split a dataset 

into training and test data many times in a Monte Carlo validation (MCCV) or leave-one-

out cross validation.  These methods lead to nearly unbiased estimates of model 

performance (in the case of leave-one-out cross validation), and do not require sacrifice 

of sample size[73,74]. These methods have been applied by other studies in the 

successful identification of predictive models in many different types of cancer using 

leave-one-out cross validation [75–79] and MCCV [80,81].  The application of MCCV 

involves random sampling without replacement which means that subsets of the 

population with gene expression values with strong effect have a greater opportunity to 
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have that effect detected.  MCCV differs from k-folds cross validation in that in MCCV 

an observation may be chosen to be included in a test set multiple times over the total 

number of iterations over all analyses opposed to one time in K-fold validation.  MCCV 

is also viewed as a more conservative approach to cross validation as it overestimates 

the model prediction error in comparison to a k-fold cross validation which tends to 

underestimate prediction error[82].    External validation is an important and often costly 

task required for measuring a model’s exportability.  It is for this reason that robust 

internal validation measures should be adopted by those studies that lack the funding to 

carry out external validation in early stages of analysis. 

   

Methods 

Datasets 

The Cancer Genome Atlas (TCGA) is a large, multi-dimensional, multi-center project 

compiling genomics data for over 29 cancer types into one central database[83].  TCGA 

contains clinical and demographic variables, gene expression profiling data, SNPs, 

protein expression, and methylation data.  Clinical data on radiation dose, demographic 

variables, exposures (tobacco, alcohol, and HPV), chemotherapy type, and measures of 

overall and disease progression-free survival are included in the TCGA database (Table 

1). Data accessed for this study were publicly available through the TCGA genomic data 

commons data portal.  523 head and neck cancer cases were downloaded from the 

data portal with all corresponding gene expression counts and corresponding clinical 

data.  Of these 523 patients 313 OSCC patients were selected.  264 of the remaining 

313 OSCC patients were included as only these patients possessed full survival data. 
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Differential Expression Analyses 

Differential Gene Expression (DGE) analysis is a method of identifying genes that are 

expressed differently across time, tissue, and conditions, such as disease states[84].  

This method of analysis uses fold change and significance criterion to select the genes 

in a molecular signature for predicting tumor phenotype, clinical subtype, or treatment 

response.  All patients with cancer in tongue, lip, alveolar ridge, hard palate, floor of 

mouth, maxilla, and buccal mucosa were included.  OSCC patients were the largest 

grouping of head and neck cancer patients and thus provided the most power to detect 

influential genetic pathways predicting treatment response.  DGE analysis yielded a list 

of genes that are expressed differently between two strata.  The strata used in this 

study were vital status within five years of follow-up.  The TCGA RNA sequencing data 

were preprocessed with RSEM software, yielding normalized counts per million (CPM) 

gene expression counts[66].  The data were filtered to CPM >= 2, absolute fold change 

>=1.5, Fisher’s exact p-value <= 0.05 and a false discovery rate <= 0.05.  The list of 

genes produced by these filters was used to create a predictive signature comprised of 

20 genes selected by the highest absolute log fold change value. 
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100 Runs of Differential Gene Expression Analysis using Monte Carlo Validation 

 

A defining feature of MCCV is the random selection of observations into test and 

training sets across multiple iterations[85].  This study did require that some 

randomness be sacrificed, as a constant proportion of living and deceased were 

included at each iteration (opposed to a random proportion) to ensure that Cox 

regression survival analyses could be conducted.  DGE analysis was repeated 100 

times with a randomly selected (without replacement) set of 100 patients from the 264 

total patients.  Of the 100 patients selected in each iteration, 66 survived past 5 years 

and 34 were deceased prior to 5 years.  At each iteration the top 20 genes with highest 

absolute fold change value were chosen to be placed in an additive Cox regression 

model predicting overall survival in OSCC patients.  An AUC was produced for each of 

the signatures (comprised of 20 genes) created at each of the 100 iterations using the 

remaining 164 patients as a test set.  The selected genes were aggregated to yield a 

table counting the number of times each gene met filter criteria over all the 100 

iterations (Table 3.4).  100 iterations is double the number of iterations used in previous 

studies applying MCCV for similar purposes[86,87].    The number of genes within the 

final model was set at 40 to produce more robust estimates of survival than those 

models with 20 genes.  The number of genes included in the signature did not exceed 

40 as the model would not converge properly due to sample size restrictions. This 

application of MCCV has been used in the past to identify genetic predictors of disease 

status in breast cancer and Parkinson’s disease[86,87].  This study applies a similar 
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method to identify those gene expression patterns that exert the greatest influence in 

predicting treatment response in OSCC.   

The final aggregated model was comprised of counts per million for each gene in the 

final aggregated signature multiplied by a model weight.  Once all 40 of the weighted 

CPM were summed across all 40 genes a risk score would be yielded indicating 

whether a patient would be set into high (>1.5) of low (<=1.5).  The cutoff for high risk 

and low risk was set as the minimum difference between sensitivity and specificity on 

the ROC curve.  This minimum value was identified using the pROC package in R[88]. 

In order to provide additional assurance that these results were not reached by chance 

alone, the study repeated the 100 signature validations using genes that were randomly 

selected from the 20530 genes in the dataset.  The distribution of AUC across 100 runs 

of signatures based upon DGE analysis results were compared to the distribution of 

AUC derived from signatures comprised of genes that were randomly selected.  To 

visualize these results, histograms were created by binning AUC by frequency (Figure 

3.4).  

 

Sensitivity of the Aggregated Signature 

The sensitivity of the aggregated signature was validated by applying it to clinical 

subsets of all 264 test patients.  Kaplan-Meier survival curves were used for this series 

of validation.  Cox regression was used to determine the sensitivity of the aggregated 

signature when other variables were in the model.  The cox model included race, 

gender, chemotherapy treatment, and tumor grade.  Alcohol consumption and radiation 

variables were run in the model with dummy variables to address the effect of large 
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amount of missingness within these variables (145 missing variables in alcohol 

consumption, 45 missing variables for radiation dose).  These variables were not found 

to have a significant impact on the estimates produced for the high risk scores and were 

excluded from the final cox regression model.  Tumor Necrosis was excluded from the 

model due to the high amount of correlation with the gender variable which led to 

unstable estimates (There were no female patients with tumor necrosis < 15% present 

in the sample).  Clinical stage was not included within this analysis due to the improved 

fit offered by the tumor grade variable, and both clinical stage and tumor grade were 

found to be nonsignificant when included within the model.  Similar results for both 

tumor stage and clinical stage are not unexpected as tumor grade is a component of the 

clinical staging criteria. All analyses used age as a strata to prevent bias created by any 

skew in the distribution of age within each variable.  Univariate cox regression was 

performed to provide context for multivariable analyses (Table 3.2). 

 

Pathway Enrichment Analysis Methods 

The R packages edgeR, and PA Reactome were used to conduct DGE and pathway 

enrichment analyses, respectively [89,90].  Pathway analysis tools and annotation 

databases were used to examine which pathways were enriched with the most 

frequently identified genes in the signatures produced over one hundred rounds of 

DGE.  It is important to note that false discovery rate (FDR) produced by PA Reactome 

was not weighted for the frequency we observed genes to be significant over the 100 

run DGE analysis, and thus the .05 FDR should be considered a conservative 
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threshold.  A table of those pathways meeting a Fisher exact p-value threshold of .05 

was included in the results (Table 3.3).  

 

Results: 

Differential Gene Expression 

Each run of the DGE analysis identified differentially expressed genes based upon the 

gene expression values of randomly selected patients.  An AUC reflecting the accuracy 

of each signature (each comprised of 20 genes) was recorded over 100 runs.  These 

AUCs had a median of .84, max of .96, minimum of .65, mean of .83, and a standard 

deviation of .04. Similar analyses were performed on gene signatures of genes 

randomly selected from the 20530 genes in the dataset.  The distribution of AUC for 

signatures made of randomly selected genes were median of .5, max of .63, minimum 

of .36, a mean of .5 and a standard deviation of .05 (Figure 3.4) 

Differential gene expression analysis results were aggregated into a list of 40 of the 

most frequently identified differentially expressed genes included over all 100 runs of 

MCCV. (Table 3.4).  When this molecular signature was tested in the dataset containing 

all patient data (n=264), it was found to correctly classify patient survival status, and it 

was found to have a specificity of 72%, sensitivity of 72%, and an area under the ROC 

curve of 75% (Figure3.1a, 3.1b).  The distribution of patient demographics across risk 

scores can be viewed in (Table 3.1). 
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Validation of Aggregate Signature across Clinical Strata 

 

This model was applied to subsets of the 264 patient test dataset.  When overall 

survival difference was measured using all patients in the test set, it was found that 

there was a significant difference in patient survival outcomes when stratifying by the 

molecular signature risk score (p-value =2.6e-08) (Figure 3.1c).  When stratifying by 

tumor grade, the signature was predictive of survival in those patients with high grade 

(Greater than G2) tumors and low grade (Less than G3) tumors (p-value .0008, 8.8e-

06), respectively (Figure 3.2a, 3.2b).   

   

The log rank survival by molecular signature risk score in only those patients receiving 

chemotherapy was (p-value=.002). The significance of difference by risk score in those 

patients not receiving chemotherapy was (p-value=.002) (Figure 3.3a, 3.3b).  This 

signature continues to be predictive when all women were removed from the sample 

and the prediction of survival in men alone was tested (p-value=9.7e-07).  However, this 

signature was not predictive in women and was found to be only marginally significant 

(p-value = 0.04) (Figure 3.3c, 3.3d).   

 

Univariate and Multivariable Cox Regression 

After adjusting for confounding variables, the signature risk score continued to be 

predictive of treatment response in both multivariable and univariate analyses (Table 

3.2).  High risk score was associated with an HR of 3.2 (95% CI 1.3 to 6.3, p-

value<.0001) times greater odds of death when compared to patients with low risk score 
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in a univariate model.  No significant effect was discovered when this model was 

applied to women alone.  It was observed that both the signature and tumor necrosis 

lost effect size when performing multivariable adjustment.  As this seemed indicative of 

possible correlation between the two variables, a Spearman correlation test was applied 

and yielded a 21% correlation significant with a (p-value = 9e-04).  Our results showed 

that in addition to the signature risk score, gender and chemotherapy treatment were 

also predictive of overall survival.   

 

Pathway Analysis Results 

Significant pathways enriched with genes in the original signature were Interleukin, 

Calcitonin, ligand-gated ion channel transport, keratinization, and cornified envelope 

pathways (Table 3.3). There were no pathways that were enriched with greater than 2 

genes from our signature.  The most significantly enriched pathway was the ion channel 

transport pathway  In total 11 genes from the 40 genes within the aggregated signature 

were identified as being enriched in the aforementioned pathways.  The ligand gated ion 

channel transport pathway passed both fisher exact test and false discovery rate 

thresholds for significant enrichment (fisher’s exact p-value =2.3 2-06, False discovery 

p-value=3.4 e-04). Genes within the ligand gated ion channel transport pathway were 

GLRA4 and HTR3C which were identified as significantly differentially expressed in 

17% and 13% of the MCCV respective replications.  All pathways listed in Table 3.3 

meet a Fisher’s exact p-value of .05 or less.  
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Discussion: 

Interpretation of Signature Validation 

The aggregated signature was shown to be predictive of treatment response in OSCC 

patients regardless of chemotherapy treatment status, or tumor grade.  In addition to the 

identification of a signature that predicts overall survival in OSCC patients, this study 

also validated the use of Monte Carlo cross validation in producing gene signatures that 

are more likely to be reproduced across multiple studies.  This method can be adopted 

by other researchers that wish to apply free and publicly available data to the testing of 

hypotheses in a manner that has the greatest likelihood of reproducibility across 

datasets.   

 

Interpretation of Pathway Enrichment 

The ion gate channel pathway was one of the pathways enriched with genes in the 

aggregated signature identified in this study.  Ion gate channel pathway genes within 

the aggregated signature that were found to be significantly enriched were 5-

Hydroxytryptamine Receptor (serotonin receptor) (HTR3C) and Glycine Receptor Alpha 

(4GLRA4). HTR3C has also been reported to be associated with other upper GI 

cancers such as esophageal adenocarcinoma [91]. Other Ion channel regulators like 

voltage-gated potassium channel Kv3.4 mRNA expression have been found to affect 

the progression of OSCCs, and inhibition of Kv3.4 inhibits growth of OSCC [92–94].   

POU5F1, OCT4, SOX2, NANOG gene repression pathways were also found to be 

significantly enriched.   These genes play a role in  chemosensitivity to platinum based 

chemotherapies[95,96].  The keratin pathway is also notable in that it has been 
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identified for its role in predicting the conversion of leukoplakia to malignant 

tumor[97,98].   The MCCV approach did not detect all pathways typically associated 

with the development of OSCC.  Pathways associated with HPV negative OSCC 

development include AKT, JNK, IL-6/STAT3, ILK, RAS, MAPK/ERK, p38/PAK, TGFβ, 

PI3K/mTOR and WNT signaling. The research questions focused upon by this study 

were which pathways were associated with treatment response thus, pathways 

associated with progression were not identified.  Evidence of supporting literature is 

provided (Table 3.4) in a matrix of gene names and search terms related to OSCC, 

head and neck cancer, and cancer treatment response produced by Pubmatrix[99] 

(Table 3.4). The Pubmatrix results show that 65% of genes identified in this study are 

supported by existing literature reporting these genes roles in treatment response, 

survival, and progression.   

 

Strengths and Limitations 

This study had several limitations, TCGA data are known to be biased towards patients 

with later stage cancers with tumor sizes that are greater than 200g[71,100].  

Additionally, samples in TCGA are contributed by multiple academic medical centers 

where collection methods may vary.  When studying rare cancers it is common to have 

analysis curtailed by sample size, which is the limitation that this study hopes to 

specifically address through the application of MCCV. OSCC occurs more often in men 

than women and thus women only make up approximately 1/3 of our sample.    The 

Monte Carlo validation approach is well suited to address these sample size limitations 

and is meant to serve as a model for other studies utilizing similar datasets.  A 
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drawback of the MCCV approach is that it necessitates discarding signatures identified 

as predictive in single runs.  Such sacrificed signatures may indeed point to true 

biological mechanisms which the other iterations of analysis did not detect due to their 

unique mix of patients.  MCCV is designed to exclude all but the strongest effects.  In 

many cases a combination of weak effects of genes may produce a predictive signature 

that can classify with accuracy but makes interpretation of biological mechanisms 

difficult.  This study provides support for greater adoption of MCCV when conducting 

genomic or transcriptomic research in less common cancers. 

 

Conclusion 

The role of ion gate channel pathway in OSCC and its role in a molecular signature 

predicting treatment response is supported by this study.  The ion channel gate pathway 

was the only pathway to pass both fisher exact test and false discovery rate significance 

thresholds.  These results provide evidence that applying a MCCV approach to DGE 

model creation is a suitable method to control variability in results when using 

heterogeneous datasets, and offers a method of validation prior to devoting time and 

funding required for additional sequencing.  The robustness of this signature was 

supported by the finding that the distribution of AUC for random signatures and 

signatures selected through MCCV were completely separate.  Those researchers 

adopting heterogeneous datasets combined over multiple studies must address issues 

of result variability if they truly wish to contribute to the advancement of this field.  This 

study describes and validates one approach that may be applied towards this goal. 
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Table 3.1 Patient Demographics Stratified by Molecular Signature 
 

Characteristics ALL (264, 100%) Low Risk      (n=151, 57%) 
High Risk     
(n=113, 42%) 

Vital Status       

Alive 189 (130, 86.6%) (59, 52.2%) 

Deceased 75 (21, 13.9%) (54, 47.7%) 

Age       

Age greater than 60 152 (85, 56.2%) (67, 59.2%) 

Age less than 61 112 (66, 43.7%) (46, 40.7%) 

Gender       

Female 88 (55, 36.4%) (33, 29.2%) 

Male 176 (96, 63.5%) (80, 70.7%) 

Tumor Grade       

G1 34 (19, 12.6%) (15, 13.3%) 

G2 153 (92, 61.3%) (61, 54.4%) 

G3 59 (29, 19.3%) (30, 26.7%) 

G4 5 (3, 2.0%) (2, 1.7%) 

GX 11 (7, 4.6%) (4, 3.5%) 

Race       

White 224 (127, 86.3%) (97, 88.1%) 

Not White 33 (20, 13.6%) (13, 11.8%) 

Clinical Stage       

Stage I 8 (4, 2.7%) (4, 3.6%) 

Stage II  57 (28, 19.1%) (29, 26.1%) 

Stage III 58 (38, 26.0%) (20, 18.0%) 

Stage IVA 126 (71, 48.6%) (55, 49.5%) 

Stage IVB 6 (4, 2.7%) (2, 1.8%) 

Stage IVC 2 (1, .6%) (1, .9%) 

Alcoholic Drinks>2 
consumed per day 

      

TRUE 57 (37, 50.6%) (20, 41.6%) 

FALSE 64 (36, 49.3%) (28, 58.3%) 

History of Smoking       

TRUE 195 (113, 74.8%) (82, 72.5%) 

FALSE 
69 (38, 25.1%) (31, 27.4%) 

Tumor Necrosis 
Greater than or equal 
to 15% 

      

TRUE 115 (60, 41.0%) (55, 50.4%) 

FALSE 140 (86, 58.9%) (54, 49.5%) 

Radiation >66 Gy       
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TRUE 23 (14, 11.4%) (9, 9.2%) 

FALSE 196 (108, 88.5%) (88, 90.7%) 

Receiving 
Chemotherapy 

      

TRUE 95 (60, 39.7%) (35, 30.9%) 

FALSE 169 (91, 60.2%) (78, 69.1%) 
 
Table 3.1.”Chemotherapy” is not specific to a given chemotherapeutic agent.  This merely reflects 
whether a patient was assigned to chemotherapy treatment or not. History of Smoking stratifies patients 
into “never” or “ever” smokers. High Grade includes G1 and G2 patients, while low grade includes G3, 
G4, GX tumor grades.  Not all characteristics total to 264 as some variables were incomplete (Tumor 
Grade NA=2, Clinical Stage NA=7, alcohol consumption per day NA=143, Tumor Necrosis NA=9, 
Radiation NA=45)  
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Table 3.2 Univariate and Multivariable Cox Regression Analyses 
 

  
Univariate Multivariable 

 

 Characteristic 

HR 
95% 
Confidence 
Interval 

p-
value 

HR 
95% 
Confidence 
Interval 

p-value 

No Smoking History 0.7 0.4-1.2 0.24 0.6 0.1-3.2 0.5 

Female Gender 0.4 0.2-0.7 0.002 0.4 0.2-.07 0.004 

Tumor Grade <2 0.7 .5-1.2 0.23 0.7 0.4-1.2 0.6 

Caucasian Race 1.0 0.4-1.9 0.96 1.0 0.5-2.16 0.90 

Chemotherapy Not Received 1.9 1.1-3.4 0.01 1.9 1.1-3.5 0.01 

High Risk Signature 3.3 1.9-5.5 <.0001 3.25 1.3-6.3 <.0001 
 
Table 3.2. Univariate and Multivariable Cox Regression adjusting for pertinent clinical strata.  All p-values 
less than .05 are considered significant. Radiation and Alcohol not included in analyses within table due 
to high number of missing observations.  Tumor Necrosis removed from table due to the fact that there 
were 0 female patients with tumor necrosis > 15%.  Clinical Stage not included as Tumor Grade and 
stage correlated at 39.5%.  All Analyses were age stratified. 
 
 

  



66 
 

Table 3.3.  Pathway Analysis of Aggregated Signature 
 

Pathway Name Number of 
Genes from 
Aggregate 
Signature in 
Pathway 

Total 
Number of 
Genes in 
Pathway 

Fisher’s 
Exact p-
value 

Aggregated 
Signature 
Genes Found 
in Pathway 

Ligand-gated ion channel transport 
2 33 2.27E-06 HTR3C;GLRA4 

Defective pro-SFTPC causes 
pulmonary surfactant metabolism 
dysfunction 2 (SMDP2) and 
respiratory distress syndrome 
(RDS) 

1 2 0.005 SFTPC 

Assembly of active LPL and LIPC 
lipase complexes 1 30 0.01 FGF21 

Surfactant metabolism 1 52 0.01 SFTPC 

Formation of the cornified 
envelope 2 130 0.01 KRT38;KRT72 

Defective ABCA3 causes 
pulmonary surfactant metabolism 
dysfunction type 3 (SMDP3) 1 9 0.02 SFTPC 

Regulation of signaling by NODAL 
1 12 0.03 LEFTY2 

Calcitonin-like ligand receptors 1 11 0.03 CALCR 

Plasma lipoprotein remodeling 1 54 0.03 FGF21 

Class B/2 (Secretin family 
receptors) 2 99 0.04 CALCR;GLP2R 

Keratinization 2 218 0.04 KRT38;KRT72 

POU5F1 (OCT4), SOX2, NANOG 
repress genes related to 
differentiation 

1 10 0.04 CDX2 

Interleukin-4 and 13 signaling 1 212 0.04 IL17A 

 
Table 3.3.  Pathway analysis produced using Pathway Reactome. The “Fisher’s exact p-value” 
represents the probability that the genes would be selected if they were selected by chance alone.  Only 
pathways with a p-value less than .05 were listed in this table.  The false discovery rate (FDR) was also 
calculated but not shown here.  The FDR represents the probability that a gene is significantly enriched in 
error.  The FDR is considered to be a conservative measure of significance, as it is not weighted to adjust 
for the number of times a gene was identified over 100 runs. Of the pathways listed only the first “Ligand-
gated ion channel transport” had an FDR p-value of less than .05 (p-value=3.43E-04) 
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Figure 3.1. Validation of Aggregated Signature by Histogram, ROC Curve, 
Overall Survival Plot 

 

 
 

ROC curve threshold was selected by taking the point where there was a minimal difference between 
sensitivity and specificity.  True Positive Fraction is synonymous with “Sensitivity”, False Positive Fraction 
is synonymous with 1-Specificity. 
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Figure 3.2. Survival Analysis, Stratifying by Tumor Grade 
 

 
High tumor grade in the lot refers to patients with tumor grade of three or greater.  Low tumor grade refers 
to patients with grade of grade 2 or lower. 
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Figure 3.3. Survival Analysis Stratifying by Chemotherapy Treatment 
Status, Survival Analysis Stratifying by Gender. 
 

 
 

Patient chemotherapy status was divided into: “received any type of chemotherapy”, “did not receive any 
type of chemotherapy”. 
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Figure 3.4. Distribution of AUC of 100 signatures selected via DGE and 
Distribution of AUC of 100 Signatures using Randomly Selected Genes. 
 

 
 

This figure shows that the distribution of AUC produced by 100 runs of DGE did not overlap with the 
distribution of AUCs produced from gene signature produced from randomly selescted genes. 
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Table 3.4.  Frequency of Gene identification over 100 runs of Cross 
Validation 
 

Gene Name Frequency 
Identified over 
100 iterations 

Full Gene Name 
 

Cox Model Variable 
Coefficient in 
Aggregated Signature. 
  
 

DHRS7C 34 Dehydrogenase/reductase (SDR 
family) member 7C 0.001 

CDX2 30 Caudal type homeobox 2 

0.004 

RETN 30 Resistin 

0.001 

FGF21 28 Fibroblast growth factor 21 

-0.003 

ANKS4B 27 Ankyrin repeat and sterile alpha 
motif domain containing 4B 0.009 

RNF17 26 Ring finger protein 17 

0.0003 

SERPINA12 21 Serpin peptidase inhibitor 

0.001 

LEFTY2 20 Left-right determination factor 2 

-0.006 

LOC158696 20 LOC158696 

-0.005 

WDR87 20 WD repeat domain 87 

0.001 

KRT72 20 Keratin 72; 

-0.03 

GLP2R 19 Glucagon-like peptide 2 receptor 

0.1 
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EXD1 19 Exonuclease 3'-5' domain 
containing 1 

0.06 

ITIH1 18 Inter-alpha-trypsin inhibitor heavy 
chain 1 

 
0.004 

SP7 18 Sp7 transcription factor 

0.01 

GLRA4 17 Glycine receptor, alpha 4 

-0.01 

KLK3 17 Kallikrein-related peptidase 3 

0.04 

C1orf194 17  
Chromosome 1 open 

reading frame 194 
-0.05 

GDF7 17  
Growth differentiation 

factor 7 
0.0001 

HTN3 16 Histatin 3 

-0.003 

AKR1D1 16 Aldo-keto reductase family 1 

0.0004 

LOC100192378 16 LOC100192378 

-0.0006 

C20orf56 16 OCSTAMP 

0.0005 

GP2 16 Glycoprotein 2 (zymogen granule 
membrane) 

0.03 

SLC22A25 16 Solute carrier family 22, member 
25 

-0.06 

FAM138F 16 Family With Sequence Similarity 
138 Member F 

-0.009 
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CASR 15 Calcium Sensing Receptor 

-0.04 

ACSBG2 15 Acyl-CoA Synthetase Bubblegum 
Family Member 2 

-0.15 

HERC2P4 14 Hect Domain And RLD 2 
Pseudogene 4 
 

-0.007 

C20orf123 14 Interleukin 1 family, member 10 

0.01 

IL17A 14 Interleukin 17A 

-0.007 

C10orf107 14 Chromosome 10 open reading 
frame 107 

0.007 

ASB4 14 Ankyrin repeat and SOCS box 
containing 4 
 

-0.0004 

CCDC129 14 Coiled-coil domain containing 
129 

-0.01 

CALCR 13 Calcitonin receptor 

-0.0007 

HTR3C 13 5-hydroxytryptamine (serotonin) 
receptor 3C, ionotropic 

4.74E-05 

DCT 13 Dopachrome tautomerase 

0.0004 

KRT38 13 Keratin 38 

0.04 

SFTPC 13 Surfactant protein C 
 

0.04 

 

Risk score= log[∑ (𝑐𝑖 ∗ 𝑐𝑝𝑚𝑖)
40
𝑖=1 ] , cpm=Gene Expression Counts per Million, 𝑐𝑖= “Cox Model Variable 

Coefficient in Aggregated Signature for gene i”. 
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Table 3.5.Number of Literature Citations Detected For Each Gene in Final 
Aggregated Signature 
 

Pubmatrix Terms Oral 
Can
cer 

Hea
d 
and 
Nec
k 
Can
cer 

Chemothe
rapy 
Resistanc
e 

Treatm
ent 
Respo
nse 

Over
all 
Survi
val 

Canc
er 
Survi
val 

Tumor 
Progres
sion 

Tumor 
Metasta
ses 

Tumo
r 
Necro
sis 

KRT72(keratin 72, K6IRS2, 
KRT6IRS2,KRT6,K6irs*) 

34 82 2 37 116 103 40 92 23 
DHRS7C 1 0 0 0 1 0 0 0 0 
CDX2 10 99 8 51 214 185 144 187 29 
RETN 1 2 41 47 33 4 13 6 127 
FGF21 0 1 67 125 49 8 9 1 35 
ANKS4B(FLJ38819, HARP*) 4 8 7 52 142 51 37 23 21 
RNF17 0 0 0 0 0 0 0 0 0 
SERPINA12 0 1 17 8 5 0 1 0 13 
LEFTY2(LEFTY,LEFTA,LEFTYA,
EBAF,TGFB4*) 

0 1 1 13 19 6 7 3 6 
LOC158696 0 0 0 0 0 0 0 0 0 
WDR87 0 0 0 0 0 0 0 0 0 
GLP2R 0 0 2 4 3 0 0 0 1 
EXD1 0 0 0 0 0 0 0 0 0 
ITIH1(H1P,IATIH,ITIH,IGHEP1,ITI-
HC1) 

0 0 0 1 3 2 2 1 1 
SHAP 0 0 0 4 9 7 3 2 4 
SP7 2 0 2 27 47 5 3 1 21 
GLRA4 0 0 0 0 0 0 0 0 0 
KLK3(PKK8,PKKD,PPK*) 14 15 8 42 72 33 47 20 3 
C1orf194 0 0 0 0 1 1 0 0 0 
GDF7 1 3 0 4 1 1 2 0 0 
HTN3 1 1 8 7 14 0 1 0 3 
AKR1D1 0 0 1 1 1 0 0 0 1 
LOC100192378 0 0 0 0 0 0 0 0 0 
C20orf56 0 0 0 0 0 0 0 0 0 
GP2(ZAP75*) 0 1 1 27 30 10 4 9 11 
SLC22A25(UST6, 
HIMTP,MGC120420*) 

0 0 0 0 0 0 0 0 0 
FAM138F 0 0 0 0 0 0 0 0 0 
CASR 
(FHH,NSHPT,GPRC2A,CAR,EIG8
,FIH,PCAR1*) 6 196 150 1302 

245
7 622 179 127 207 

ACSBG2 0 0 0 0 0 0 0 0 0 
HERC2P4 0 0 0 0 0 0 0 0 0 
C20orf123 0 0 0 0 0 0 0 0 0 
IL17A 7 10 12 186 112 32 51 11 222 
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C10orf107 0 0 0 0 1 0 0 0 0 
ASB4 0 0 0 0 1 0 0 0 2 
CCDC129 0 0 0 0 0 0 0 0 0 
CALCR 

0 3 0 4 7 2 1 1 5 
HTR3C 1 1 1 4 0 0 0 1 0 
DCT 10 15 11 84 90 45 23 20 14 
KRT38 

0 0 0 0 0 0 0 0 0 
SFTPC(SP-C,PSP-
C,SMDP2,BRICD6)* 

117 181 327 1460 
207
2 452 194 176 483 

All genes listed within parentheses preceding an asterisk were known aliases of the preceding gene 
which was included within the aggregated signature.  Aliases were included to provide greater ability to 
detect citations for genes included within the final aggregated signature. 
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Chapter 4 

 
Identification of Targetable Pathways in Oral Cancer Patients via 

Random Forest and Chemical Informatics 
 
Introduction: 
 

Treatment of head and neck cancer has also been slow to change with EGFR inhibitors, 

PD1 inhibitors, and taxol based chemotherapies being the only therapies approved by 

the FDA in the last 10 years for head and neck cancers.  Head and neck cancer is 

relatively rare compared to more common cancers like breast or lung cancers.  

However, it is possible that existing therapies for more common solid tumors could also 

prove effective in oral cancers.  Many therapies have molecular targets that could be 

appropriate in oral cancer as well as the cancer in which the drug gained initial FDA 

approval.  There may also be targets in oral cancer that may be viable for which existing 

FDA approved drugs could be applied.  This study describes informatics methods that 

utilize machine learning to identify influential gene targets in patients receiving platinum 

based chemotherapy, non-platinum based chemotherapy, and genes influential in both 

groups of patients.  

 

Drugs approved by the FDA for oral cancer are methotrexate, cetuximab, 

pembrolizumab, nivolumab, and docetaxel.  These therapies are combined to be used 

in conjunction with platinum based chemotherapies such as cisplatin or carboplatin 

unless those therapies are contraindicated due to comorbidities such as renal disease.  

The small number of new oral cancer drugs could be attributed in part to the low overall 

burden of oral cancer in comparison with other cancers.  The current timeline for FDA 
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approval of a novel small molecule or biologic is 10 years or more.  Using existing FDA 

approved drugs is a popular method utilized to shorten this process to 3-4 years.  

Cetuximab is an EGFR inhibitor that has been shown to decrease the rate of 

progression of oral cancer used in conjunction with cisplatin. Pembrolizumab and 

Nivolumab are both PD1 inhibitors that utilize T-cells to attack cancer while it 

progresses.  These therapies use the bodies immune system as another treatment 

modality to reduce the burden of oral cancer.  Current literature provides support for the 

role of ligand channel gating, hedgehog signaling[6–8], NOTCH, B-WICH[9], 

inflammasome[10], WNT[11], and Calcineurin pathways in cancer[12–14].  The role of 

these pathways and targeting specific genes within them has been pursued in other 

cancers, but have with the exception of only  a few studies, not yet been examined in 

oral cancer.  Possible gains from targeting these pathways would be initiating immune 

response, targeting cancer metabolism, targeting signaling for metastasis, and targeting 

inflammation pathways that may drive progression.  If there is a synergistic effect to 

attacking multiple hallmarks of cancer simultaneously then the net gain to the patient 

would be in overall post diagnosis survival time for the oral cancer patient. 

Identifying a means by which drugs may be prioritized for further screening and 

validation for a specific cancer type would be desirable.  Databases linking genes, the 

proteins they express, ligands corresponding to those proteins, and structural data that 

can be analyzed all exist in varying forms or completeness across different publicly 

available databases.  This study describes how integration of analyses of these 

databases can be used to select gene targets in a specific cancer, and how therapies 
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can be prioritized for screening based upon existing structural information for the 

ligands associated with genes and the proteins they express. 

There are several hurdles to the analysis of high dimensional genomic data using 

traditional regression analyses.  Random forest analysis is a machine learning approach 

that is less hindered by datasets with large predictor to observation ratios.  In this study 

we apply random forests analysis to gene expression data to identify those genes, and 

pathways that are most predictive of post diagnosis survival across treatment strata. 

This is the first application of this approach to head and neck cancer patient data in the 

cancer genome atlas (TCGA). National Comprehensive Cancer Network (NCCN) 

guidelines recommend that node positive patients with tumors of clinical stage 3 and 

greater receive chemotherapy[15].  Platinum based chemotherapy with radiation and 

surgery is the current standard of care recommended to these patients.  Patients that do 

not receive chemotherapy recommendations by NCCN are node negative with clinical 

stage 2 and lower.  Following standards set by NCCN guidance on treatment, this study 

chose to identify patients receiving and not receiving platinum based chemotherapy as 

separate groups.  Analysis of influential genes in each group will improve knowledge of 

possible mechanisms driving treatment response for early stage and more advanced 

tumors. 

 

Random Forest is a machine learning approach to identifying the most important 

predictors in high dimensional datasets[16–18]. This approach is uniquely suited for 

classification of observations in datasets where P (predictors) are > than N (number of 

observations).   Random forest randomly selects predictors from a large group of 
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predictors and then applies those predictors to a decision tree predicting overall 

survival.   Random forest does not pay a statistical penalty when the number of 

observations is small.  Instead the strength and limitation of this method is its reliance 

upon computational intensity.  That is, as the number of decision trees in a random 

forest increase so does classification accuracy.  Accuracy is also dependent upon the 

number of predictors tried at decision tree nodes.  As node size and forest size increase 

so does forest classification accuracy.  However, there is a rate of diminishing returns in 

the accuracy gained from each tree added to a forest.  This is why computational time 

and cost must be factored into all random forest analysis plans to measure project 

feasibility.  Random Forest has been successfully applied to predicting cancer 

diagnosis, and treatment response for a variety of cancers[19–23].  For this study we 

have selected to apply random forest analysis to the gene expression values of oral 

cavity cancer patients to identify the upregulated pathways most predictive of improved 

treatment response across gender and environmental exposure subgroups like alcohol 

and tobacco.  RNAseq data is inherently high dimensional, applying typical regression 

models to such data can be costly as large sample sizes are required to identify even 

moderate effect.  Identifying gene interactions can be even more costly in terms of the 

required statistical power.  Stratified pathway analysis via random forest methods has 

been shown to be successful in identifying single influential genes (within the context of 

larger pathways) that are predictive of overall survival with limited sample size[24].  This 

approach has not yet been applied to identification of influential genes and gene 

interactions within oral cancer patients stratified specifically by treatment.  In this way 

the importance of pathways and genes of interest can be compared across strata to 
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assess which subgroups may be most sensitized to changes in gene expression within 

a given pathway. 

 

Methods 

This study focuses upon the identification of the role of gene expression in oral cavity 

cancer patients and applying machine learning approaches like random forest to 

determine genes that are important in influencing treatment response. Reference 

ligands known to bind to proteins expressed by genes deemed influential by random 

forest, can be sent through a virtual screening pipeline to identify small molecules with 

greater likelihood of acting as protein agonists/antagonists.  Ligands that have a strong 

shape similarity to known binding ligands have greater potential for success in high 

throughput screening endeavors.  Of course shape similarity alone is insufficient in 

identifying new drug leads, this is why all leads will also be validated with existing 

literature, and those leads without previous biological validation will be presented as 

such.  

 

  By using a stratified random forest analysis we will be able to rank genes within the 

strata of chemotherapy treatment status. This approach will allow for the identification of 

those top ranked genes that are unique to each stratum.  This will be done by identifying 

common and unique genes between sets of genes influencing the treatment response 

in patients receiving platinum based chemotherapy and those that do not.  The end 

result will be the identification of oral cavity cancer pathways influencing treatment 

response which will inform researchers on mechanisms driving treatment response in 
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specific groups such as those late stage, node positive patients that are more likely to 

receive chemotherapy treatment.  This analysis will illustrate and support existing 

studies showing the strength of machine learning methods as an alternative method in 

identifying gene expression values influencing treatment response.  This study is 

focused not on the predictive power of an aggregated panel of gene expression values, 

but rather to integrate random forest with chemical informatics and thus describe 

methods to shorten the pursuit of novel therapies treating cancers with relatively lower 

incidence. 
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Retrieval of Public Data  

This study used clinical and genetic data obtained from The Cancer Genome Atlas 

(TCGA).  Genetic data included raw counts per million (CPM) of RNA sequence 

expression values for 523 patients posted to TCGA. Of these 523 patients, 313 were 

diagnosed with Oral Squamous Cell Carcinoma (OSCC). Oral squamous cell carcinoma 

patients included tongue, buccal mucosa, alveolar ridge, general oral cavity, and soft 

palate tissues.  Of these 313 patients, 267 were included based upon complete survival 

time.  Of these 267, 109 received either Carboplatin, Oxaliplatin, or Cisplatin while 158 

patients received a treatment other than the platinum based chemotherapy treatment 

regimen.  All tissue samples were collected prior to start of treatment.  Clinical data on 

tumor stage, necrosis, size, and nuclei were also retrieved from TCGA.  We obtained 

demographic data on ethnicity, race, and gender from TCGA clinical files.  In addition, 

this dataset had information on environmental exposures like tobacco history (ever/ 

never smoke), number of alcohol containing drinks in a day (greater than two drinks 

consumed per day, two drinks or less consumed per day), Overall survival time in 

months was extracted as a measure of treatment response.  
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Machine Learning Methods 

Description of Random Forest Approach 

Stratified pathway analysis considers important covariates in data analysis. In this 

analysis of head and neck cancer gene expression data, this study used information 

regarding patient age, gender, alcohol and smoking exposures. In the first round of 

analysis the sample of 267 oral squamous cell carcinoma patients were organized into 

109 and 158 subsamples based upon whether patients received platinum or non-

platinum based chemotherapy respectively. For each group, this study built a random 

forest[18] to predict survival time based upon the gene expression levels within each 

subgroup.  

 

To better communicate the function of random forests, understanding of a decision tree 

construction is needed. A decision tree is constructed by:  

Step A:  Taking a bootstrap sample from the original sample.  

Step B:  A decision tree is grown for each bootstrap sample.  

Step C:  At each tree node apply a predetermined number of predictors randomly to 

create branches within the tree. 

 Step D:  A branch is formed using the predictor from step C.  

Step E:  Repeat steps C and D until the end of every tree branch contains samples 

above or below the same survival threshold or contain only one sample.  
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Random Forest Result Measurements 

Random Forests build many decision trees to comprise a forest.  Each tree is put 

together by using a random bootstrap sample of the original data and applying a 

random number of predictors at each node of a decision tree.  The SRCRandomForest 

R package [25] employed in this study sets aside half of the data to be used for 

validation purposes to measure the accuracy of the random forest model.  The p-values 

yielded through this analysis are defined as the “proportion of cross validation errors 

smaller than the cross validation errors obtained from 500 iterations of random forest 

runs of randomly permuted labels of patients”. This list of genes can be used to identify 

pathways that are enriched with the influential genes identified through random forest at 

odds that would be greater than can be attributed to chance alone with a p-value=.05.  

This analysis will present pathways common to, and unique to, each chemotherapy 

treatment strata.  Such analyses may identify plausible biological mechanisms that 

enhance understanding of observed differences in survival.  To reiterate, the focus of 

this study is not to pursue a diagnostic tool but to identify those gene expression values 

exerting a strong influence on treatment response.  This study adopted random forest 

as the machine learning method of choice due to its superior interpretability and 

scalability.   
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Random Forest Tuning Parameters 

Our random forest model used 20,000 tree forests for a forest size, with 320 variables 

tried at each node in each decision tree.  20,000 trees was the point at which we could 

identify no significant increase in our ability to predict patient survival.  320 tries at each 

node in each decision tree was double the recommended number of tries given by the 

author of our R software package RandomForestSRC.  The author H. Ishwaran refers 

to a generally accepted practice of using the “square root of the total number of 

predictors as a starting point for the number of variables tried at each node”[25].  It was 

for this reason that we applied 20000 trees and 320 variables tried at each node in each 

decision tree for every strata in our analysis. This approach was applied to our entire 

final sample of 2677 OSCC patients.  We then divided this sample by whether a patient 

received platinum based chemotherapy or not.  The output of each group’s analysis 

produces a list ranking each gene.  This analysis identified common and unique 

pathways between the entire dataset and each chemotherapy treatment group.  We 

then identified the unique and common genes between chemotherapy groups.  This 

analysis will allow us to observe the difference in gene importance and corresponding 

pathways in relation to overall survival. 
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Description of Virtual Screening Approaches 

Using chemical informatics techniques, ZINC drug database [26] of 1,379 FDA 

approved drugs (FDA), and ZINC Traditional Chinese Medicine database of 39,894 

small molecules (TCM) can be used to apply three-dimensional chemical informatics 

approaches to the identification of small molecules that are the best candidates for 

inhibition of proteins expressed by those genes influencing treatment response. 

Reference ligands for each protein are obtained from the Royal Chemistry society 

Protein Database[27] and then virtually screened against FDA and TCM small molecule 

libraries.  Molecular shape overlay is an approach for measurement of the similarity of 

one molecule in comparison with another.  A Tanimoto coefficientis used to measure 

the degree of similarity between two molecules.  A goal of this study is to perform 

searches of two small molecule databases FDA and TCM using a maximum common 

substructure measurement of Tanimoto similarity from the R Rcpi package[29]  that has 

been shown to perform robustly  across a variety of molecule types. 

 
The Tanimoto coefficient between two points, a and b, with k dimensions is calculated as: 

 

The Tanimoto similarity only applies to binary variables, for binary variables the Tanimoto coefficient ranges from 0 to 
1 (where 1 is the highest possible similarity).[28] 

 

  

Pathway Analysis 
 
Table 1 provides information on those genes that are significantly enriched within our 

gene set beyond what would be expected by chance alone.  The significance of 

enrichment is calculated as the odds of randomly selecting the number of genes in the 

submitted set of genes by randomly selecting from 20,530 genes over 100 times. The 
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false discovery rate (FDR) reported by the Pathway Reactome application utilized for 

this study represents an adjustment for multiple comparisons across all pathways. 

Benjamini-Hochberg false discovery rate is calculated as the p-value ranking (smallest 

being 1 and all following having greater or equal rank dependent upon size of p-value) 

divided by the number of tests performed, multiplied by the significance criterion.  In this 

study .05 is the criterion used to measure significance.  The false discovery rate can be 

interpreted as the proportion of tests within a set of tests that falsely rejects the null 

hypothesis.  If a FDR. Is .5 then 50% of those pathways identified falsely reject the null 

hypothesis.  It is important to note that the FDR calculation utilized by Pathway 

Reactome defaults to perform a large number of analyses/tests.  Additionally there are 

many pathways examining similar genes and gene types.  Unfortunately this thorough 

examination strategy also inflates the number of analyses and causes the FDR to 

become overly conservative. 

 

To identify those genes that are most likely to be connected to influential pathways two 

filters were applied to gene selection.  First the gene had to be in the top 5 of influential 

genes identified via random forest.  Second, if the gene was not within then to 5% of 

genes it could still be included within the analysis if it was within the to 40% of genes 

and was known to be connected via past experimental studies supporting the 

Cytoscape/Pathway Reactome plugin database.  This can be accessed by uploading 

topology from a given gene and merging it with that gene’s corresponding random forest 

importance values.  Thus, the selection of genes included those ranked as the most 

important by random forest (top 5%) or of moderate importance and high topology 
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(shown through past experiment or literature search to be connected to 50 genes or 

more).  For each set of analyses 1000 influential genes were selected and 100 high 

topology genes were selected.  In this way, integration of network analysis with random 

forest allowed for identification of pathways significantly enriched with the genes 

identified by this approach. 

 

Results 

Top Pathways 

This section will describe pathways uniquely influential in patient response to platinum 

based chemotherapy, and influential in response to non-platinum based therapy.  

Influential pathways shared by both platinum based chemotherapy users and non-users 

will also be presented.  An influential pathway will be defined as a pathway that is 

significantly enriched with genes that were in the list of top 1000 (5%) of most influential 

genes yielded by random forest analysis for platinum based chemotherapy users, non-

platinum based chemotherapy users, and for those pathways enriched with genes 

shared in common in lists of top 1000 genes for platinum based chemotherapy users 

and non-users.  The top 5% of genes were conservatively selected to produce greater 

certainty of the link between highly ranked genes, the pathways in which they were 

enriched, and the link between treatment response and significant pathways identified 

through gene enrichment analysis. Top pathways could also be enriched with those 

genes in the top 40% of important genes identified by random forest if they also had a 

high amount of connectedness (a gene was connected to 25 gene nodes in a gene 

network) reported by the Cytoscape/reactome application. 
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Pathways significantly enriched with genes identified as the most influential (top 5%) in 

predicting treatment response for platinum based chemotherapy users were those 

related to calcium channel gating, hedgehog signaling, histone acetylation, elastic fiber 

production, tRNA acetylation, hexokinase deficiency, inhibition of adenylate cyclase, 

CLEC7A inflammasome.  It has been reported that calcium channel gating has been 

associated with multiple cancers[30–32].  There have also been recent studies 

evaluating the benefit of targeting histone deacetylation pathways in oral cancer[33–35].  

The hedgehog signaling pathway has also been shown to signal progression in other 

cancers “Hh signaling has been shown to regulate the self-renewal of CSCs in breast, 

glioma and multiple myeloma, and more convincingly in the maintenance of chronic 

myelogenous leukemia (CML) stem cells”[36–41]].”    All significant pathways for 

platinum based chemotherapy users are in Table 1.  

 

 Significant pathways for patients not using platinum based chemotherapy were those 

related to B-WICH complex,TP53 pathway, FGFR pathway, potassium channel gating, 

and RNA polymerase chain elongation pathways and their epigenetic regulation.  TP53 

and FGFR pathways represent the expression of canonical oncogenes which have 

been shown to be cancer drivers and associated with the production of all 

cancers.[42][43–45].The B-WICH complex has been found to be linked to maturation of 

invadopodium in breast cancer and has been suggested as both a biomarker and target 

for cancer invasiveness [46,9]. Potassium channel gating has also shown to be a 

potential target for head and neck cancers due to this pathways association with 
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immune response and treatment response [47–51].  RNA polymerase chain elongation 

and its role in transcription is a logical contributor to cancer progression and 

differentiation, however the lack of specificity makes this a difficult pathway to target 

specifically in cancer cells.  All significant pathways for non-platinum based 

chemotherapy users are in Table 2.   

 

For those pathways enriched with genes shared by users and non-users of platinum 

based chemotherapy it was found that pathways related to g-protein beta folding, NFAT 

activation and repression of Wnt pathway genes were enriched with genes influential in 

treatment response in both groups of patients.  Repression of Wnt pathway genes may 

be done through targeting the sonic hedgehog pathway as previously outlined or 

through more direct means which have been researched in multiple other cancers.[52–

54].  NFAT proteins have been found to be associated with cancer progression in blood 

and solid tumors however the literature is mixed as to whether NFAT pathways are 

viable targets for treatment. [55–57]    These pathways influencing treatment response 

in both users and non-users of platinum based chemotherapy can be seen in Table 3. 

 

Important genes and biological implications 

A visualization of pathways overlapping between users and non-users of platinum 

based chemotherapy highlight the importance of several genes in a way that random 

forest analysis alone could not.  By visualizing the four common pathways it becomes 

possible to identify not only highly influential genes but those genes that have the 

highest degree of connectivity to influential genes.  Using annotation built into 



91 
 

Cytoscape[58,59] we can also identify existing small molecules used in cancer therapy 

that are not yet commonly used in oral cancer, and we can also observe those genes 

previously found to be associated with oral cancer.  Genes found to be influential in oral 

cancer for patients receiving platinum based chemotherapy with existing literature 

supporting the targeting of these genes in cancer were INSR, BRAF, and PSMB7 which 

are targeted by ceritinib, (regorafenib&dabrafenib), and bortezomib respectively.  These 

drugs are not currently FDA approved for treatment in oral cancer.  Genes found to be 

influential in oral cancer for patients not receiving platinum based chemotherapy with 

existing FDA approved chemotherapy drugs targeting the products of said genes are 

FGFR3, EGFR, PRKAA2, CSNK2A1, INSR, MET, CAMK2A, PSMB5, and PSMB1.   

 

There are multiple chemotherapy drugs targeting these pathways with 14 different drugs 

targeting EGFR alone.  It should be noted that EGFR is a gene pathway being targeted 

in current oral cancer treatment.  Sarafenib Tosylate, Pazopanib Hydrochloride, and 

Vadetanib all target the FGFR pathway specifically.  Sunitinib Malate is unique in that it 

has been found to act on 4 different genes that were found by random forest to be 

influential in treatment response FGFR3, CDNK2A1, PRKAA2, and CAMK2A.  Again we 

see that Certinib acts on a gene that is influential in both patient treatment groups, this 

gene is INSR. Bortezomib, Carfilzobib, and Ixazomib all act on PSMB5 which is an 

influential gene in both Platinum and non- platinum based therapy.  PSMB5 and PSMB1 

are both found to be within the top 5% of influential genes in random forest analysis and 

are genes that are significantly enriched within the sonic hedgehog pathway.  

Chemotherapy drugs and their relationship to genes in common influential pathways 
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between users and non-users of platinum based chemotherapy are visualized in Figure 

1 for platinum based Chemotherapy users and Figure2 for non-platinum based 

chemotherapy users. 

 

 In addition to analysis of the intersection of existing cancer drugs and genes deemed 

influential by random forest, this study also looked at the intersection between gene 

topology within a pathway and random forest influence.  This analysis identified 

CTNNB1, PLCG2, SHC1, UBA52, UBB, UBC, and HDAC3 as genes that meet filters of 

belonging to one of the four common enriched pathways, being a gene that is one of the 

top 5% of influential genes listed by random forest analysis, and being connected to 

over 100 genes within the four interconnected pathways (Figure 1, Figure 2).  CTNNB1 

mutations have found to be predictive of Lung and other thoracic cancers [60–64],   

PLCG2 and calmodulin knockdown have been shown to induce paclitaxel sensitivity in 

cervical cancer tumors. This may prove of use to oral cancer patients which may be 

assigned to paclitaxel or other taxol regimen [65,66]. SHC1 has been shown to be a 

regulator of EGFR function and thus a potential target for multiple cancer types where 

EGFR is a key driver [67–69].  Ubiquitin genes UBA52, UBB, and UBC have been 

shown to be associated with several cancers and research is currently being pursued in 

targeting ubiquitin ligases to improve treatment response [70–74]. Histone-Deacetylase 

genes specifically HDAC3 is shown to be a hub to several genes that are influential in 

platinum based chemotherapy response genes that have been associated with 

metastatic invasion in breast and pancreatic cancer Figure 1).  Inhibition of HDAC3 was 

shown to impact signaling to cancer stem cells  This gene has been shown to be a 
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regulator of apoptosis control exerted by TP53 [75–78].  These genes were not shown 

to currently have any antibody or small molecule therapies targeting their action.  High 

level topology (over 100 connected genes) and high random forest importance ranking 

should provide impetus for further research into the targeting of gene action in oral 

cancer. 

 

Chemical Informatics Analysis of Drug Targets and Leads 

For those genes meeting topology and random forest filters, the known ligands of 

proteins expressed by each gene were identified though the RCSB protein data bank.  

Structural files of ligands were downloaded as .sdf files and uploaded into the chemical 

informatics R package Rcpi.  Once loaded, each ligand had to undergo virtual screening 

against all FDA approved drugs to identify existing FDA approved drugs that may prove 

efficacious as therapeutic agents.  Only those molecules with a Tanimoto similarity 

score > 50% were included in results.  A Traditional Chinese Medicine (TCM) small 

molecule database was also utilized as biologic derived small molecules are known to 

provide better shape overlay when screened against other biologic small molecules.  

Additionally the molecules in the TCM database have been shown to be generally safe 

in people by merit of its long historical use in human populations.   For CTNNB1 several 

ligands were identified via RCSB PDB (2s)-3-{[{[(2s)-2,3-

dihydroxypropyl]oxy}(hydroxy)phosphoryl]oxy}-2-[(6e)-hexadec-6-enoyloxy]propyl (8e)-

octadec-8-enoate was the single ligand associated with CTNNB1 that was used for 

virtual screening against the FDA and TCM libraries. Unfortunately neither library 

yielded a small molecule candidate with greater than a 50% Tanimoto score.   
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The Ligand of PLCG2 did yield several interesting drug leads in both the FDA approved 

library and the TCM library. Fludarabine has been tested in oral cancer cell lines and 

found to be effective in inducing cell apoptosis[79].  Ganciclovir an HIV drug has also 

been tested in oral cancer and found to have a clinical effect on cell differentiation[80]. 

Entecovir and didanosine are drugs used in the treatment of HepB infection and HIV 

and have not yet been tested on oral cancer.  Small molecules in the TCM database 

meeting shape overlay filters were [4-(2,6-dimethylmorpholin-4-yl)sulfonylphenyl]-[4-(2-

phenoxyethyl)piperazin-1-yl]-methanone which has not yet been used on oral cancer 

cell lines.  There was overlap between drug leads for ligands of UBB and PLCG2.  This 

is due to the structural similarity between cytosine and guanine ligands used as 

reference molecules for similarity matching.  Drug leads for UBB included Cytarabine 

(Cancer), Fludarabine (Cancer), Azacitidine (myelodysplastic syndrome), Gemcitabine 

(Cancer), and Lamivudine (HIV).  Gemcitabine is unique in that it is the only drug of 

those listed, that has been approved by the FDA for use in oral cancer patients.  For 

HDAC3 there were no matches exceeding a Tanimoto score threshold of 50% of the 

reference molecule when using a library of FDA approved drugs.  The TCM database 

did yield a match with an extract from Mallotus Phillipinensis a member of the 

Euphorbiacae plant family.  An extract of this plant known as Rottlerin has been found 

to inhibit growth of colon cancer, and breast cancer cells [81,82].   

Quercetin, and Diosmetin were other phenols found in citrus that were also identified as 

matches meeting Tanimoto thresholds.  There are no reports of the effect of quercetin 

or diosmetin in oral cancer.  It should be noted that Quercetin, and Rottlerin have been 

noted in literature as promiscuous ligands that are often found in natural product insilico 

http://zinc.docking.org/synonym/%5B4-%282%2C6-dimethylmorpholin-4-yl%29sulfonylphenyl%5D-%5B4-%282-phenoxyethyl%29piperazin-1-yl%5D-methanone
http://zinc.docking.org/synonym/%5B4-%282%2C6-dimethylmorpholin-4-yl%29sulfonylphenyl%5D-%5B4-%282-phenoxyethyl%29piperazin-1-yl%5D-methanone
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screenings[83].  A recent study reported quercetin as the number one natural product in 

terms of number of occurrences within the database[84]. The aforementioned studies 

do show that Rottlerin is related to the metastatic potential and viability of colorectal 

cancer cells[81].  Caution and validation of results with existing literature or carefully 

designed follow up experiments should always be pursued to justify the results of 

promising insilico analyses. These analyses enhance knowledge of genes influencing 

treatment response in oral cancer.  Pathway, network, and chemical informatics 

analysis can be paired with a literature review to identify drug leads for oral cancer 

treatment. Reference ligands associated with influential genes in the Royal Chemistry 

Society Protein Database are listed along with Drug leads and their corresponding 

Tanimoto similarity scores in Table 4. 

Discussion  

A machine learning approach known as random forest was used to identify genes 

influencing oral cancer treatment response specific to the platinum based chemotherapy 

treatment type, and the non-platinum based chemotherapy treatment type. This paper 

emphasizes the benefits on integrating the results of this line of analyses with pathway, 

network, and chemical informatics analysis to identify promising gene targets, and drug 

leads.  Biological plausibility of these findings were highlighted with a review of existing 

literature supporting the findings for pathways, genes, and small molecules that our 

reported approach identified as influential in oral cancer.  The results of this work 

identify pathways influencing treatment response in platinum based chemotherapy 

users, non-users, and those common to both users and non-users.  Network analysis 

via Cytoscape allowed for the identification of those influential genes within each 
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treatment modality group within the context of inter connected gene networks.  The 

utility of random forest was underscored in that in addition to pathways it also provides a 

rank to each gene in its influence on treatment response. This approach is a low cost 

method of prioritizing gene targets and drug leads.  These methods are validated in that 

the genes identified have been shown to be associated with cancer progression in oral 

cancers and other cancers.  Several drug leads identified were also shown to be 

effective in inhibiting oral cancer cells and were reported to be in different phases of the 

drug approval pipeline.  

 

A possible criticism of the method outlined in this study is that there is uncertainty in the 

degree of trust that should be extended to random forest measures of gene influence, 

and the inference of importance to the pathways in which “influential” genes reside.  To 

further such criticisms a point could be made that the Tanimoto threshold of >50% 

similarity could be perceived as low and the 50% difference in the molecules compared 

may prevent activity and may also be shown to have toxicity for a given disease state.  

Given such uncertainties it may seem that the evidence supporting these methods is 

tenuous.  This study recognizes these criticisms, however, the counterpoints must be 

made that gene influence is not observed in a single sample of the data, but rather in 

over 20000 permuted samples of the data in which the top ranked genes were found to 

be more influential that thousands of other genes.  The computational intensity provided 

in this study (20000 trees and 320 tries at each node of each decision tree) provides 

justification of the trust provided for each gene influence value.  In respect to the results 

yielded by chemical informatics analysis it is important to note that the outlined chemical 

informatics method was able to identify gemcitabine a drug that has been approved for 
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use in oral cancer by the FDA.  This method also identified Fludarabine, and Ganciclovir 

which have both been reported as providing significant reduction in oral cancer cell line 

progression and viability. 

 

 Drug leads were identified in both FDA and Traditional Chinese Medicine libraries, the 

benefit in expanding the number of libraries is that it increases the probability of finding 

a match meeting the Tanimoto threshold of >50%.  The negative aspect of adding 

libraries is that if computational resources are not planned for accordingly then the 

amount of time required to screen against each reference molecule will scale upward 

with library size.  The tools used in this study were all open source and freely available, 

a limitation to the adoption of this pipeline is that tools and their dependencies are 

distributed across different R repositories that may or may not be kept up to date.  

Combining these tools into a single package that allows for the identification of both 

gene targets and drug leads may enhance the pace of drug discovery pipelines.    We 

have shown in this study that random forest is well suited to datasets with small 

observations and high number of features.  Gene targets that have been shown 

(through literature review) to be associated with treatment response and cancer 

progression were identified through this study’s use of random forest analysis.  

Stratifying this analysis by the type of chemotherapy received allows for interpretation of 

influential genes and pathways within the context of treatment.  Indeed, the lack of 

overlap in the importance of genes from one treatment modality to another highlights 

that the gene expression patterns influencing platinum based treatment response differ 

from those gene expression patterns influencing non-platinum treatment response.   
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It is likely that there is bias inherent to the stratification of patients by chemotherapy 

treatment type.  Chemotherapy treatment is associated with clinical variables like 

clinical stage, tumor size, and tumor grade, as well as gender and socioeconomic 

quintile[85–87].  This study attempted to address these confounders by including them 

within the bag of randomly selected features available for construction of the random 

forest model.  By integrating chemical informatics analyses, random forest results can 

be translated into lists of drug leads for each target gene.  This method identified drug 

leads that have already entered or passed phase three trials.  Our review of identified 

drug leads and comparison with existing annotations show that the chemical informatics 

methods described can identify small molecules with therapeutic potential.  This study 

provides the impetus for further exploration of the role of the identified small molecules 

in oral cancer treatment response, and the targeting of those genes identified as most 

influential by our series of analyses.  This study also serves as a model for researchers 

identifying gene targets in rarer cancers where the number of cases is limited.  

  

 
 

Table 4.1.  Top Pathways Enriched with Genes Influencing Platinum Based 
Chemotherapy Treatment Response in Oral Cancer 
 

Table 1. Top Pathways Enriched with Genes Influencing Platinum Based Chemotherapy Treatment 
Response in Oral Cancer 

Pathway name 
p-
value 

FD
R 

Influential Genes Enriched in Pathway 

Signaling by Hedgehog 
6.2E-

05 
0.0
02 

ARRB1;ARRB2;KIF7;ADCY6;PSMA7;ADCY
5;PSMB6;TUBB6; 
PSMC6;PSME4;PSME1;PSME2;CDON 

Molecules associated with elastic fibres 
3.4E-

04 
0.0
06 ELN;FN1;FBLN1;LTBP3;BMP7 

CLEC7A/inflammasome pathway 
9.9E-

04 
0.0

1 

IL1B,UBE2D4;ITPR2;ITPR3;PSMA7;PSMB6
;PSMC6;IL1B; 
PSME4;PSME1;PSME2;TAB2;IKBKG;CALM
1;CARD11 
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Table 4.2. Top Pathways Enriched with Genes Influencing Treatment 
Response in Oral Cancer Patients not Receiving Platinum Based 
Chemotherapy 

 
Pathway 
identifier 

Pathway 
name 

p-
value FDR 

Influential Genes Enriched in 
Pathway 

R-HSA-
5250924 

B-WICH 
complex 
positively 
regulates 
rRNA 
expression 

3.2E-
12 

1.7E-
10 

HIST1H2BM;H2AFJ;H2AFZ;HIST1
H2AJ; 
HIST1H2BK;H3F3A;POLR1C;H2A
FV; 
HIST2H3C;HIST2H2BE 

R-HSA-
5250913 

Positive 
epigenetic 
regulation of 
rRNA 
expression 

8.8E-
11 

3.0E-
09 

HIST1H2BM;H2AFJ;H2AFZ;HIST1
H2AJ; 
HIST1H2BK;H3F3A;POLR1C;H2A
FV; 
HIST2H3C;HIST2H2BE 

R-HSA-
1296065 

Inwardly 
rectifying K+ 
channels 

2.4E-
03 

9.6E-
03 GNG2;KCNJ14;GNB3 

R-HSA-
1839130 

Signaling by 
activated 
point 
mutants of 
FGFR3 

2.7E-
03 

1.1E-
02 FGFR3 

R-HSA-
5655332 

Signaling by 
FGFR3 in 
disease 

3.9E-
03 

1.2E-
02 KRAS;FGFR3 

R-HSA-
8853338 

Signaling by 
FGFR3 

3.9E-
03 

1.2E-
02 KRAS;FGFR3 

Phase 0 - rapid depolarisation 0.001 
0.0

1 
CAMK2B;CAMK2D;CACNB3;CAMK2A;CAC
NA2D2;CALM1 

Adrenaline,noradrenaline inhibits insulin 
secretion 0.001 

0.0
1 CACNB3;GNG2;CACNA2D2;ADCY6;ADCY5 

Signaling by NOTCH1 in Cancer 0.006 
0.0

3 HDAC5;HDAC1;EP300;CCNC;TBL1X 

LGI-ADAM interactions 0.04 
0.0

8 LGI2;ADAM11 

SeMet incorporation into proteins 0.05 0.1 QARS 

Presynaptic depolarization and calcium 
channel opening 0.05 0.1 CACNB3;CACNA2D2 
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point 
mutants in 
cancer 

R-HSA-
2033514 

FGFR3 
mutant 
receptor 
activation 

8.0E-
03 

2.4E-
02 FGFR3 

R-HSA-
5654227 

Phospholipa
se C-
mediated 
cascade; 
FGFR3 

3.5E-
02 

7.0E-
02 FGFR3 

R-HSA-
6803211 

TP53 
Regulates 
Transcriptio
n of Death 
Receptors 
and Ligands 

3.5E-
02 

7.0E-
02 TNFRSF10D 

R-HSA-
2033515 

t(4;14) 
translocation
s of FGFR3 

4.7E-
02 

9.5E-
02 FGFR3 

R-HSA-
5619109 

Defective 
SLC6A2 
causes 
orthostatic 
intolerance 
(OI) 

4.7E-
02 

9.5E-
02 SLC6A5 

R-HSA-432030 

Transport of 
glycerol 
from 
adipocytes 
to the liver 
by 
Aquaporins 

4.7E-
02 

9.5E-
02 AQP7 

R-HSA-
1226099 

Signaling by 
FGFR in 
disease 

5.4E-
02 

9.7E-
02 KRAS;FGFR3 
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Table 4.3 Top Common Pathways Enriched with Genes Influencing 
Treatment Response in all Oral Cancer Patients 
 

Pathway 
name 

p-
value 

FDR Influential Genes Enriched in Pathway 

Signalin
g by 
WNT 

6.7E-
15 

5.2E-
12 

HIST1H2BM;HIST1H2BK;CAMK2A;ITPR2;LRP6;PPP3CA;
PPP3CB;GNG2;PSMB3; 
PPP2R1A;PSMD2;PSMB1;PSMD1;SOST;SOX6;BCL9L;S
KP1;CSNK2A1; 
HIST1H2AJ;WNT5A;H2AFV;PPP2R5D;WNT16;RNF146;P
SMC3;PSME4 

CLEC7
A 
(Dectin-
1) 
signalin
g 

8.5E-
08 

7.3E-
06 

PPP3CA;PPP3CB;PSMC3;PSMB3;PSMD2;PSMB1;PSME
4;ITPR2; 
PSMD1;BCL10;MALT1;SKP1 

Coopera
tion of 
PDCL 
(PhLP1) 
and 
TRiC/C
CT in G-
protein 
beta 
folding 

3.3E-
05 

4.7E-
04 

GNG2;CSNK2A1;CCT8;RGS6;CCT6B;CCT4 

Calcine
urin 
activate
s NFAT 

0.01 0.03 PPP3CA;PPP3CB 
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Table 4.4. Drug Leads identified in FDA approved and Traditional Chinese 
Medicine database 
 

Table 4 Drug Leads by Population Subset, Linked Gene, and Tanimoto Similarity 
Score 

Reference Ligand RCS
B 
linke
d 
Prote
in/Ge
ne 

Drug Candidates FDA 
(Disease Treated) 

TCM 
Candidat
es 

Tani
moto 
Scor
e 
(FDA
),(TC
M) 

 (2S)-3-{[{[(2S)-2,3-
DIHYDROXYPROPYL]OX
Y}(HYDROXY)PHOSPHO
RYL]OXY}-2-[(6E)-
HEXADEC-6-
ENOYLOXY]PROPYL 
(8E)-OCTADEC-8-
ENOATE 

 CTN
NB1 

 No candidates found No 
candidate
s found 

 <50
% 

 5'-GUANOSINE-
DIPHOSPHATE-
MONOTHIOPHOSPHATE 

 PLC
G2 

Fludarabine(Lung Cancer), 
Inosine (Multiple Sclerosis), 
Ganciclovir(HIV), 
Didanosine(HIV),Entecovir(H
epB,HIV) 

[4-(2,6-
dimethyl
morpholin
-4-
yl)sulfony
lphenyl]-
[4-(2-
phenoxye
thyl)piper
azin-1-yl]-
methano
ne 

 (60
%, 
59%, 
56%, 
53%, 
51%)
, 
(55%
) 

 CYTOSINE ARABINOSE-
5'-PHOSPHATE 

 UBB  Cytarabine(Cancer),Fludara
bine(Cancer),Azacitidine(my
elodysplastic 
syndrome),Gemcitabine(Can
cer), Lamivudine(HIV) 

 No 
Candidat
es Found 

 (80
%, 
73%, 
72%, 
69%, 
63%)
,(NA) 
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d-MYO-INOSITOL-1,4,5,6-
TETRAKISPHOSPHATE 

HDA
C3 

No Candidates Mallotoph
illipen-D, 
Quercetin
, 
Diosmeti
n 

(NA), 
(77%
, 
77%,
77%) 

 
 
 

Figure 4.1. Network Visualization of Pathways Enriched with Genes 
Influencing Platinum Based Treatment Response in Oral Cancer  

 
 

 
Notes: Hexagon shapes are genes. Dark red are of greater influence based upon random forest analysis 
results (Within top 5% of influential genes), white genes do not fall within the criteria of being in the to 5% 
of influential genes. Genes are clustered by pathway with Calcineurin pathway in the top left corner, The 
WNT signaling pathway in the upper right corner, CLEC7A pathway genes are in the lower right corner, 

and the cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding pathway 
is in the lower left corner.  Grey lines represent interconnectedness between pathways. 
Genes are arranged in a flower pattern with influential genes on the outside and genes 
that are not influential in treatment response on the inside.  Patterns are constructed to 
contrast gene influence with those patients not receiving platinum based chemotherapy. 
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Figure 4.2. Network Visualization of Pathways Enriched with Genes 
Influencing Non-Platinum Based Treatment Response in Oral Cancer  

 

 
 Notes: Hexagon shapes are genes. Dark red are of greater influence based upon random forest analysis 
results (Within top 5% of influential genes), white genes do not fall within the criteria of being in the to 5% 
of influential genes.  Loss of ring structure is indicative of differences in influence of genes between 
patients receiving platinum and non-platinum therapies.  Genes are clustered by pathway with Calcineurin 
pathway in the top left corner, The WNT signaling pathway in the upper right corner, CLEC7A pathway 

genes are in the lower right corner, and the cooperation of PDCL (PhLP1) and TRiC/CCT in G-
protein beta folding pathway is in the lower left corner.  Grey lines represent 
interconnectedness between pathways. 
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Chapter 5 

Conclusion 

 

The studies detailed in depth in this dissertation contribute to the current body of 

knowledge on the determinants of health in oral cancer.  There is great variability in the 

response to treatment in patients with oral cancer.  Agencies assigning quality of care 

guidelines such as NCCN provide recommendations for when providers should use 

chemotherapy in oral cancer patients.  This study provides evidence that there is merit 

to the recommendations of NCCN in situations when patients meet criteria for 

chemotherapy, and when they do not.  The use of a large population based sample of 

ethnically diverse patients show that NCCN guideline adherence is an important 

predictor of patient survival.  Subset analysis provides evidence that assigning 

chemotherapy treatment to those patients with large tumors that receive radiation only 

(possibly indicating that such tumors are inoperable) were significantly less likely to 

survive when prescribed chemotherapy in contradiction of NCCN recommendations.  

These results provide guidance to the NCCN to promote stronger language against the 

use of chemotherapy in node negative patients of stage three and lower.  Most 

importantly this work has validated the importance of adherence to NCCN guidelines on 

the use of Chemotherapy for oral cancer patients. 
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In addition to the validation of NCCN guidelines, this dissertation has specifically 

focused on the use of gene expression signatures predicting response to treatment in 

oral cancer patients.  In contrast to the initial study reliant upon the well powered 

California Cancer Registry, the study of oral cancer patients from the Cancer genome 

atlas was small with only 276 cases used to detect those genes differentially expressed 

over 100 runs of differential expression analysis.  By creating an aggregated gene 

signature, generated from the top differentially expressed genes a gene set that 

predicted treatment response in oral cancer was identified.  This model strengthens 

evidence that the ligand channel gating pathways are influential in the classification of 

treatment responders.  An example of how small datasets representing rare cancers is 

also set, highlighting the utility of Monte Carlo cross validation is such situations.  While 

the availability of public genetic data is growing, this growth is naturally limited in 

cancers where incidence is lower.  Thus, validating a method that successfully identifies 

gene expression signatures composed of the differentially expressed genes provides 

value to other researchers seeking to validate gene signatures in rare cancers where 

the number of observations are sparse.  By utilizing the high dimensional data in the 

cancer genome atlas, signature performance was described across gender, stage, and 

grade visualizing the effectiveness of the signature across meaningful strata.  This 

analysis describes the genes and pathways that are significant predictors of treatment 

response in oral cancer, with strongest evidence supporting the role of ligand gated ion 

channel pathways. 
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The final chapter of this dissertation approaches the problem of interpreting high 

dimensional data with low number of observations by utilizing non parametric machine 

learning method known as random forest.  This method of classification can be utilized 

to rank genes in their ability to classify treatment responders and non-responders.  This 

study shows those genes and pathways that are influential in predicting treatment 

response in oral cancer.  Specifically, it shows those unique and shared pathways 

between those patients receiving platinum based chemotherapy and non-platinum 

based chemotherapy.  It also shows that the pathways that are influential in both 

treatment subgroups (platinum and non-platinum) contain influential genes that differ 

depending on treatment.  This means that the genes that influence treatment response 

in the WNT signaling pathway, or in pathways regulating histone deacetylation pathway 

that were based upon platinum based chemotherapy patient gene expression data are 

not all the same genes in the ketone body metabolism pathway that influence treatment 

response in non-platinum based chemotherapy.  This method allows the targeting of 

unique drivers of treatment response that may only be relevant to patients on a 

particular treatment.   

 

In addition to identifying influential gene pathways this study had integrated the use of a 

chemical informatics package in R to also identify drug leads that may act on such 

targets.  This process aired with a review of the pathway for highly connected genes 

identified in Cytoscape allowed for the selection of small molecules with high Tanimoto 

similarity when compared to reference molecules that are known to bind to proteins 

expressed by the gene found to be influential via integrated analyses.  When pairing 
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these drug leads with existing literature it was found that this approach does identify 

drug leads that are effective in reducing progression of oral cancer cells or inducing 

apoptosis when tested in cell lines.  This provides validation of this method for the 

identification of drug leads in rare cancers with relatively low number of observations. 

 

In total, this dissertation has used classical epidemiologic analyses to identify the 

benefit of adherence to NCCN guidelines, adopted permutation of RNA seq data to 

strengthen the signal of an oral cancer gene signature, and integrated random forest 

analysis with gene network and chemical informatics analysis to identify influential 

genes/pathways and possible drug leads that could act on such genes.  This work 

advances the knowledge of effective treatments in oral cancer, and provides greater 

understanding of the genetic pathways influencing treatment response.  The methods 

outlined in this study can be adopted by others when faced with the challenge of 

extracting meaning from high dimensional datasets with small number of observations.  

The findings related to adherence to NCCN guidelines are relevant specifically to 

providers treating patients with oral cancer.  This study also serves as an impetus for 

further research investigating the action of specific small molecules on oral cancer 

treatment response.  All Chapters within this manuscript have focused upon the central 

theme of the identification of the determinants of health in patients with oral cancer.  

The spirit embodied within this manuscript is one of positive change, positive change in 

advancing the standards of care in oral cancer, change in rigor to the approach applied 

to identifying those genes influencing rare cancers, and change to the pace at which the 
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identification of novel treatments for this disease must be identified not for the cancer 

patients of tomorrow but for those being treated in the here and now.  
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