UC Irvine UC Irvine Previously Published Works

Title

COMPARISON OF PULMONARY-FUNCTION OF EXERCISING DOGS INHALING O-3 ALONE OR A MIXTURE OF O-3, SO2, AND ACID AEROSOL

Permalink

https://escholarship.org/uc/item/3wb8j5r5

Journal FEDERATION PROCEEDINGS, 43(3)

ISSN 0014-9446

Authors

MAUTZ, WJ KLEINMAN, MT BUFALINO, C <u>et al.</u>

Publication Date

1984

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

COMPARISON OF PULMONARY FUNCTION OF EXERCISING DOGS INHALING O₃ ALONE OR A MIXTURE OF O₃, SO₂, AND ACID AEROSOL. <u>William J. Mautz*, Michael T. Kleinman*, Charles</u> Bufalino*, and Robert F. Phalen. Univ. of Calif., Irvine, CA 92717.

Adult beagle dogs were exposed to 3 atmospheres: 1) Clean air; 2) 0.6 ppm O_{3} ; and 3) Aged (0.5 h) mixture of 0.6 ppm O_{3} , 5 ppm SO_{2} , 1 mg/m³ H₂SO₄, 0.02 mg/m³ MnSO₄, and 1.2 mg/m³ Fe₂(SO₄)₃. Dogs (n=5) wore a low deadspace mask with an esophogeal balloon, and ran on a treadmill at 5 km/h and 7.5% grade for 120 min during exposure. Inspiratory and expiratory flow rates, respiratory gas fractions, skin and rectal temperatures, and transpulmonary pressure were continuously recorded for breath-by-breath computation of V_E , V_{O2} , V_{CO2} , breath time, expired tidal volume, and a dynamic measure of pulmonary resistance and lung compliance. In both test atmospheres, dogs developed a progressive change in breathing pattern toward rapid-shallow respiration. However in O3 alone, onset of response was earlier (40 min vs. 80 min in mixed atmosphere) and the magnitude of response (%change relative to clean air) was greater at the end exercise exposure: breath time decreased 47% in O_3 and 36% in the mixture, and expired tidal volume decreased 42% in O3 and 30% in the mixture. During the last half of exposure to both atmospheres, pulmonary resistance increased by 37% and compliance declined by 40%. We conclude that inhalation of an ozone atmosphere containing SO2 and acid aerosol delays development of rapid-shallow breathing response to ozone, but does not significantly modify ozone induced changes in resistance or compliance in a 2 h exposure. Supported by EPRI #RP1962-1 and EPA #R808267.