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Abstract 

Theories of how cognitive biases arise rely on 
heuristics that influence attention and reasoning. These 
heuristics serve as a post-hoc description of how 
attention and reasoning is weighted to produce the 
patterns of deviation in judgment. We are unaware of 
any process account of how these heuristics arise. In 
this article, we present several simulations of classic 
studies of the availability heuristic and describe how 
the availability heuristic arises through distributed 
symbolic representations and simple process 
interactions in an existing model of relational reasoning 
and concept development (Discovery of Relations by 
Analogy; Doumas, Hummel, & Sandhofer, 2008). 
Keywords: availability heuristic, retrievability biases, 
symbolic-connectionism 

Cognitive Biases and Heuristics 
Tversky & Kahneman’s (1974) seminal paper on cognitive 
biases (patterns of deviation in judgment) identified several 
heuristics (rules that constrain which hypotheses are 
entertained) that limit how people reason in uncertain 
situations. These cognitive biases have captured the 
imagination of scientists and laypeople alike, resulting in a 
massive body of research and a Nobel prize for Kahneman. 
Three major heuristics were identified in the Tversky & 
Kahneman (1974) paper: representativeness (the degree to 
which an event is prototypical of its class or the process that 
generates it), availability (the ease of recall of instances or 
properties), and adjustment and anchoring (early 
experiences serve as an anchor and adjustments due to 
subsequent experience fall short of the mark). 

Despite the deep literature base and interest from fields 
ranging from behavioral economics to military science, the 
development and processing of heuristics held to account 
for cognitive biases remains largely unexplored. This gap in 
the literature seems strange given how much ink has been 
spilled on how such heuristics might operate, the cognitive 
biases that arise due to the interactions of various heuristics, 
and even the relative importance of each heuristic involved 
in a particular pattern of behavior. 

In this paper we focus on the availability heuristic - in 
short, what is easily recalled has a large influence on 
reasoning, especially around assessments of frequency or 
probability. This heuristic is intuitively satisfying, as it is 
likely that instances of large classes (i.e., ones which occur 
frequently) are recalled more quickly and completely than 

instances of less frequent classes. Indeed, this phenomena 
fits well with accounts relying on frequency to mediate 
access (e.g., Jacoby & Dallas, 1981). 

Recent theoretical work on the availability heuristic relies 
on the dual-process theory of reasoning (for a review, see 
Evans, 2008). Following Stanovich & West (2000), we shall 
refer to these processes as System 1 and System 2. System 1 
processes are characterized as fast, automatic, and reflexive 
whereas System 2 processes are characterized as slow, 
controlled, and reflective (e.g., Schneider & Schiffrin, 1977; 
Lieberman, Gaunt, Gilbert, & Trope, 2002). An integrated 
account of these processes has been identified as a key 
element in how people reason about relations differently 
than non-human animals (e.g., Hummel & Choplin, 2000; 
Doumas, Bassok, Guthormson, & Hummel, 2006). To our 
knowledge, no dual-process account explains how the 
availability (or any other) heuristic emerges without 
assuming it a priori as these accounts focus on a description 
of System 1 and System 2 at a computational level. We 
simulated several classic studies of the availability heuristic 
in Doumas, Sandhofer, and Hummel’s (2008) Discovery of 
Relations by Analogy (DORA) model, a theory of concept 
development and relational reasoning which provides an 
account of how such heuristics might arise as schemas 
developed through experience. 

Methods 
In this section we describe two studies from Tversky & 
Kahneman’s (1973) article on the availability heuristic, 
followed by a brief overview of the DORA model, and 
present task simulations. 

Task Description 
Tversky & Kahneman’s (1973) article outlines 10 studies 
designed to investigate the existence of cognitive biases 
attributed to the availability heuristic. We simulated Studies 
5 and 10. 

In Study 5, adolescents (N = 118) enrolled in college-
preparatory high schools provided estimates of the number 
of distinct combinations of committees of two to eight  
members that could be formed from a pool of ten 
candidates. Although the number of distinct committees of 
two and eight members are the same (as any committee of 
eight members drawn from a pool of ten candidates defines 
a unique unchosen group of two), the availability heuristic 
suggests that estimates of number of possible committees of 
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two members will be higher than any other size due to the 
ease of generating and remembering distinct committees of 
two members as compared to larger committees. Median 
estimates of possible committees of each size from two to 
eight are shown in Figure 1 along with the correct values. 
Estimates of the number of possible committees decreased 
with committee size. 

Figure 1. Results from Tversky & Kahneman’s (1973) 
Study 5. Correct values and median estimates of 
committee size are graphed on a logarithmic scale. !
In Study 10, undergraduate students (N = 62) were asked 

to recall paired personality traits after a training session. The 
personality trait pairs were standardized and grouped into 
two sets, a highly-related group (e.g., kind-honest) and a 
unrelated group (e.g., humble-messy), in which each of the 
highly-related pairs were rated as having a higher 
probability of co-occurrence than any of the unrelated pairs. 
During training, participants listened to an audio recording 
consisting of trait pairs occurring one to four times. Equal 
numbers of highly-related and unrelated trait pairs occurred 
at each level of frequency. The order of trait pairs was 
randomized. We focus on the recall task, in which 
participants were given a list of one trait from each pair and 
asked to recall the corresponding trait. Mean correct recall 
rates were 41% in the highly-related condition and 19% in 
the unrelated condition. 

The DORA Model 
Doumas, Hummel, and Sandhofer’s (2008) DORA model of 
concept development and relational reasoning attempts to 
explain how structured representations of concepts arise 
from unstructured examples in the world. Many 
computational models of analogical and relational reasoning 
have been developed (for reviews, see Doumas & Hummel, 
2005; Holyoak, 2005, 2012); however, DORA is the only 
model to date that provides an account for how the 
structured (i.e., symbolic) predicate representations of object 
properties and relations upon which models of relational 
reasoning rely can be learned from unstructured input 
(although see Lu, Chen, & Holyoak, 2012, for an alternate 
Bayesian account of how representations of weight vectors 
that support many forms of relational reasoning can be 

learned from simple feature lists). We focus here on the 
elements of the model that are important for our simulations 
of the availability heuristic - knowledge representation, 
retrieval, concept development, and relational mapping. For 
a complete description of the model in all its gory detail see 
Doumas et al. (2008). !
Knowledge Representation DORA is a symbolic 
connectionist architecture (i.e., a computational model based 
on traditional connectionist computing elements which 
represents and manipulates structured representations) 
descended from Hummel and Holyoak’s (1997, 2003) LISA 
model. Propositions in DORA are represented by a 
hierarchy of units (see Figure 2). At the bottom, semantic 
units represent the features of objects and roles in a 
distributed fashion. At the next level, these distributed 
representations are connected to localist units (POs) 
representing individual predicates (or roles) and objects. 
Localist role-binding units (RBs) link role and object units 
into specific role-filler sets. At the top of the hierarchy, 
localist P units link RBs into relational propositions.  

To represent the proposition, ‘Alex is messy and humble’, 
PO units (triangles and large circles in Figure 2) represent 
the object Alex and the predicates messy and humble. POs 
are are connected to semantic units describing their features. 
For instance, Alex might be represented by features such as 
‘human’, ‘male’, etc.; messy by ‘high-entropy’, 
‘disorganized’, etc.; and humble by ‘reticent’, ‘shy’, etc. 
While we label semantic units for expositional clarity, these 
units need not have any intrinsic representational meaning. 
Rather, semantic units instantiate distributed representations 
in the traditional connectionist sense (e.g., Rumelhart, 
McClelland, & PDP Research Group, 1986). 

Propositions in DORA’s working memory (WM) are 
stored in two mutually exclusive sets. The driver represents 
DORA’s current focus of attention, and controls the 
sequence of firing. The recipient, or active memory in 
Cowan’s (2001) terms, contains propositions available for 
mapping to the propositions in the driver. Specifically, one 
to three proposition(s) become active in the driver (i.e., 
enter working memory). When a proposition enters working 
memory, role-filler bindings must be represented 
dynamically on units that maintain role-filler independence 
(i.e., POs and semantic units; see Hummel & Holyoak, 
1997, 2003). In DORA, objects are dynamically bound to 
roles by systematic asynchrony of firing with units for roles 
and their fillers firing in direct sequence (see Doumas et al., 
2008). 

For example, to bind Alex to the messy predicate, the 
units representing Alex fire followed by the units 
representing messy. Separate role-filler bindings fire 
sequentially to form relational structures (e.g., Alex + messy 
fires followed by Alex + humble). As units in the driver 
become active, they impose patterns of activation on the 
semantic units. Units in the recipient compete via lateral 
inhibition to respond to the pattern of firing imposed on the 
semantic units. Grossly, this driver to recipient flow of 
activation corresponds to the process of comparison, where 
propositions in the driver will tend to activate propositions 
in the recipient to which they are most similar both 
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structurally (through shared role semantics) and featurally 
(through shared object feature semantics). 

Figure 2. DORA representation of the proposition 
“Alex is messy and humble”. PO units include roles 
(triangles) and objects (large circles) and are 
represented as patterns of simultaneous activation over 
semantic units (small circles) that encode their semantic 
content. RB units (rectangles) are represented as 
patterns of sequential activation of their constituent PO 
units (e.g., Alex followed by messy). P units (ovals) are 
represented as sequential activation of their constituent 
RB units (e.g., Alex + messy followed by Alex + 
humble). Simple propositions such as “Alex is messy 
and humble” can be bound to PO units to form higher-
order relations. !
These representations support structured thinking and 

when combined with a few simple processes (e.g., the 
ability to form mappings between co-active units in the 
driver and recipient, below) allow DORA and LISA to 
account for over 50 phenomena from the adult analogy 
making and relational reasoning literature (e.g., Hummel & 
Holyoak, 1997, 2003; Morrison, Doumas, & Richland, 
2011; Viskontas, et al., 2004). Additionally, DORA provides 
an account of how these representations can be built from 
initially flat (i.e., unstructured) feature lists, and successfully 
simulates more than 40 phenomena surrounding the 
development of relational thinking (e.g., Doumas & 
Hummel, 2010; Doumas, Bassok, Guthormson, & Hummel, 
2006; Doumas et al., 2008; Sandhofer & Doumas, 2008). 
Recent work explores how the model might account for 
linguistic behavior in a variety of domains (e.g., word 
segmentation, developing number and quantification 
(Hamer & Doumas, 2013), development of sociolinguistic 
markers, indicators, and stereotypes, etc). We now describe 
some of the core mechanisms in the DORA model. We 
focus on mechanisms crucial for simulating the findings of 
Tversky & Kahneman (1973) described above. !
Retrieval During retrieval, units currently in the driver fire 
sequentially until every unit has been active (i.e., one phase 
set). Units in long-term memory (LTM) become active in 
response to the patterns imposed on the semantic units by 

the units in the driver. After all units in the driver have fired 
once, DORA places units from LTM into the recipient using 
Luce’s (1959) choice axiom. For a full description of the 
retrieval algorithm used by LISA and DORA, see Hummel 
& Holyoak (2003). !
Concept Development DORA uses comparison to 
bootstrap learning structured representations of new 
concepts. When DORA compares (via co-activation) items 
in the driver and the recipient, features common to both 
items are highlighted. For example, when DORA compares 
Emily Graslie and Alton Brown, the representation in the 
driver activates a set of semantic units while the 
representation in the recipient activates a different 
(overlapping) set of semantic units. Emily Graslie and Alton 
Brown share some traits (e.g., ‘kind’ and ‘honest’), but also 
some differences (e.g., ‘female’ and ‘scientist’ vs. ‘male’ 
and ‘chef’). When DORA compares these representations 
(i.e., when they are coactive) features shared by both people 
will receive roughly twice as much input and therefore 
become roughly twice as active as unshared features (see 
Figure 3). DORA exploits this differential feature activation 
and recruits a unit that learns connections to active semantic 
units in proportion to their activation. The new unit learns 
strong connections to any overlapping features and weaker 
connections to non-overlapping features. The result is a 
crude representation of the idea that ‘kind’ and ‘honest’ are 
related traits (along with several extraneous features, such as 
‘internet stardom’). Importantly, DORA can bind this new 
representation to objects in the future (via asynchrony-based 
dynamic binding, above), so this new representation 
functions as a single-place predicate. 

The same process is used to refine previously learned 
predicates; one might later meet other people who are kind 
and honest and compare this experience to the existing 
representation of traits clustered around kindness and 
honesty. Again, some features will be shared, such as ‘kind’ 
and ‘honest’, while others, such as ‘baker’, will not. 
Features that are shared across many instances remain 
fundamental parts of the representation while features that 
occur rarely become more weakly connected to the concept. 
Over time, extraneous features “fall” out of the 
representation, leaving only the features that are invariant 
across instances of the concept. DORA uses this process to 
learn representations of invariance and refine these 
representations to learn concepts that are never experienced 
without contextual baggage, such as meeting a particular 
person. The ability to learn the invariants of concepts that 
are never encountered in isolation is a crucial element of 
human cognition. Currently, DORA provides the only 
account for how this learning might occur. !
Relat iona l Mapping DORA a t t empts to f ind 
correspondences between representations in the driver and 
representations in the recipient by activating items in the 
driver. Items in the driver impose a pattern of activation on 
semantic units, and items in the recipient compete via lateral 
inhibition to respond to this pattern of semantic activation. A 
set of mapping nodes build connections to the coactive 
items in the driver and recipient. This process differs from 
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the learning algorithm described above by connecting to the 
tokens in the driver and recipient rather than the semantic 
units these tokens are connected to. This allows the system 
to build analogies without fundamentally altering the 
properties associated with the objects involved. 
 Where the representation in the driver has no structure 
corresponding to the representation in the recipient new 
units will be recruited in the recipient to fill the structural 
gaps (e.g., the corresponding trait for an item in a highly-
related pair) using previously-learned corresponding items 
(e.g., ‘kind’ and ‘honest’). 

Figure 3. Concept development in DORA. Emily 
Graslie is in the driver while Alton Brown is in the 
recipient. A comparison is performed between them 
(i.e., they are coactivated) and the shared features 
(darker circles) receive approximately twice as much 
input as the unshared features. A new node is recruited 
to store this pattern of activation, the concept that ‘kind’ 
and ‘honest’ are related traits. !
This process and its sensitivity to both structure and 

semantic features allow DORA to rule out inferences that 
are unreasonable; while the propositions “Aaron is honest” 
and “Aaron is messy” may exist in the recipient, the system 
will not infer that “Aaron is humble” because of the lack of 
correspondence between messiness and humility. This 
sensitivity to both structure and semantics allows DORA to 
exploit correspondences at the structural level (through 
shared role semantics) as well as at the feature level 
(through shared object semantics), and provides a 
comprehensive account of relational reasoning, including 
analogy discovery, analogical inference, schema induction, 
and (with representations of quantities) scalar implicature. 

Simulations 
Study 5 We simulated Study 5 in two steps. In the first step, 
we placed representations of 10 objects (i.e., the potential 
committee members) in the recipient. In the second step, we 
allowed DORA to run for three phase sets (a rough 
approximation of the length of time people focus on a task 
before serializing to something else) with four placeholder 
members in the driver, performing mappings between 
placeholder objects in the driver and committee members in 
the recipient (analogous to sampling with replacement). We 
constructed sets of distinct committees by examining the 
mappings incrementally, moving the starting point for 
committee composition forward by one place whenever we 
encountered a member already in the current set. We 
recorded both the median and mean number of distinct 
groups recalled of each size, reported in Table 1. 

Table 1: Results from simulating Tversky & 
Kahneman’s (1973) Study 5 !
As can be observed in Table 1, DORA’s performance in 

this simulated task accounts for much of the variance 
reported by Tversky & Kahneman (R2 = .96 mean; .98 
median). These results depend on the working memory 
constraints of the model that arise from the interaction 
between two factors in the neural system: its temporal 
resolution (i.e., the minimum amount of time needed to 
activate and deactivate a unit) and phase length (i.e., the 
maximum amount of time a unit can be inhibited before 
losing its exited state). 

This is not a new explanation for sampling probability 
distribution at the computational level; however, we posit a 
mechanism by which such sampling processes might occur. 
Furthermore, this mechanism already accounts for many 
other phenomena within the availability literature and 
beyond. !
Study 10 We simulated Study 10 in three steps. In the first 
step, we used DORA’s relation learning algorithm to learn 
representations of the word pairs. We presented DORA with 
240 instances of feature sets (corresponding to the trait pairs 
from Tversky & Kahneman, 1973). We used 120 instances 
to train the highly-related pairs and 120 instances to train 
the unrelated pairs. In the highly-related training set, 60 

Group 
Size

DORA 
Mean

DORA 
Median

Tversky & 
Kahneman Median

2 5.5 5 68

3 4 4 50

4 3 3 40

5 2 2 28

6 2 2 28

7 1.5 2 32

8 1 1 18
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instances consisted of a highly-related pair of features as the 
only elements, while the remaining 60 instances consisted of 
sets of three traits which did not occur as a pair (roughly 
approximating the mean standardization reported for the 
highly related pairs). In the unrelated training set, 20 
instances consisted of an unrelated pair of features as the 
only elements, while the remaining 100 instances consisted 
of sets of five traits, none of which occurred as a pair 
(roughly approximating the mean standardization reported 
for the unrelated pairs). 

In the second step, we allowed DORA to learn new 
predicates for 600 learning iterations. During each iteration, 
a random object was retrieved from LTM and placed in the 
driver. This object was used to retrieve other objects from 
LTM via DORA’s retrieval algorithm. DORA then compared 
the item in the driver with the items in the recipient using 
the concept development algorithm (described above) to 
create (or refine) predicates. 

In the final step, we presented DORA with objects 
consisting of a single trait and used these objects to retrieve 
a predicate from LTM. In the highly-related condition, 
DORA retrieved the corresponding trait 38% of the time, 
while in the unrelated condition, DORA retrieved the 
corresponding trait 13% of the time. These results closely 
mirror those reported by Kahneman & Tversky, 41% in the 
highly-related condition and 19% in the unrelated condition. 

Discussion 
Dual-process accounts of the availability heuristic provide a 
computational level description of how resulting cognitive 
biases might arise. However, these accounts fall short of full 
explanatory power by assuming the existence of heuristics 
that drive cognitive biases (Chaiken (1980) and Evans 
(1989) go so far as to label their System 1 analogs 
heuristic). Additionally, dual-process accounts fail to 
explain how such heuristic processing might be 
implemented in the brain. 

DORA moves beyond a computational level description 
by providing an account of how the availability heuristic 
might arise as a consequence of simple operations already in 
place for concept development and relational reasoning. 
These operations are implemented in a neurally plausible 
symbolic-connectionist architecture and already account for 
more than 40 developmental findings surrounding the 
development of relational concepts and reasoning as well as 
over 50 findings from the adult relational reasoning and 
analogy-making literature. In DORA, the availability 
heuristic emerges from the interaction of working memory 
constraints, relational mapping algorithms (Study 5), 
concept development, and retrieval algorithms (Study 10) 
originally designed to provide an account for the 
development of relational thinking. We believe that other 
heuristics characteristic of cognitive biases may arise 
through similar interactions in the DORA model. 
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