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Abstract

The 26S proteasome is the essential compartmental protease in eukaryotic cells required for the 

ubiquitin-dependent clearance of damaged polypeptides and obsolete regulatory proteins. 

Recently, a combination of high-resolution structural, biochemical, and biophysical studies has 

provided critical new insights into the mechanisms of this fascinating molecular machine. A 

multitude of new cryo-electron microscopy structures provided snapshots of the proteasome 

during ATP-hydrolysis-driven substrate translocation, and detailed biochemical studies revealed 

the timing of individual degradation steps, elucidating the mechanisms for substrate selection and 

the commitment to degradation through conformational transitions. It was uncovered how 

ubiquitin removal from substrates is mechanically coupled to degradation, and cryo-electron 

tomography studies gave a glimpse of active proteasomes inside the cell, their sub-cellular 

localization, and interactions with protein aggregates. Here, we summarize these advances in our 

mechanistic understanding of the proteasome, with a particular focus on how its structural features 

and conformational transitions enable the multi-step degradation process.

Architecture and function of the 26S proteasome.

Targeted degradation of eukaryotic proteins occurs primarily through the ubiquitin-

proteasome system (UPS), whose executor, the 26S proteasome, must process hundreds of 

protein substrates with vastly different chemical and structural properties in a highly 

selective manner. Damaged or no longer needed regulatory proteins are targeted for 

proteasomal degradation through the attachment of either several single ubiquitins [1] or 
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poly-ubiquitin chains [2–4] by the E1/E2/E3 ubiquitination machinery [5]. The proteasome’s 

ability to balance promiscuity with selectivity is accomplished in part by its architecture. 

Central to the degradative function is the 20S core particle (CP), composed of seven 

different alpha and seven different beta subunits that are each present in two copies and form 

a compartmental, double-stacked barrel structure [6]. Three of the seven beta subunits 

contain proteolytic active sites that have trypsin-like, chymotrypsin-like, and caspase-like 

cleavage specificities, and are sequestered within the CP’s internal degradation chamber. 

Narrow axial pores restrict access to this chamber, with gates formed by the flexible N-

termini of the CP’s alpha subunits and controlled by the 19S regulatory particle (RP) [7]. 

The RP caps one or both ends of the CP, and is responsible for the recognition of 

ubiquitinated substrates, their deubiquitination, and ATP-hydrolysis-dependent delivery into 

the CP for proteolysis. The RP can be further subdivided into the base and lid subcomplexes 

[8,9]. The 10-subunit base includes the ring-shaped AAA+ (ATPases Associated with 

various cellular Activities) ATPase motor of the proteasome, as well as three intrinsic 

ubiquitin receptors, Rpn1, Rpn10, and Rpn13. Detailed biochemical and structural studies 

have previously revealed how these receptors interact with ubiquitin in isolation, showing 

their general preference for Lys48-linked chains despite vastly distinct ubiquitin-binding 

motifs [9–12]. Interestingly, deletion of these three intrinsic receptors in yeast is not lethal 

[10], suggesting that additional receptors or ubiquitin-binding sites may exist on the 

proteasome. Rpn1, Rpn10, and Rpn13 occupy key positions on the RP near the central 

processing channel to position substrates for entering the AAA+ motor (Figure 1A). This 

ring-shaped motor consists of six distinct ATPase subunits, Rpt1 -Rpt6, that drive the 

mechanical unfolding and translocation of protein substrates. Once a ubiquitin modification 

is recognized by a receptor, an obligate unstructured region of the substrate [2,13,14] has to 

enter the central pore of the ATPase motor, where it is engaged through interactions with 

conserved pore loops of the six Rpts and mechanically pulled on for unfolding and 

translocation into CP (Figure 1D, E). Five of the Rpts contain conserved Hydrophobic-

Tyrosine-X (HbYX) or related motifs at their C-terminus to dock into hydrophobic pockets 

of the CP’s alpha subunits and trigger opening of the access gate for substrate passage [15] 

(Figure 1G).

The 9-subunit lid subcomplex of the RP is bound to one side of the base and makes 

additional contacts with alpha subunits of the CP (Figure 1A). It includes the essential 

deubiquitinase (DUB) Rpn11 (or Poh1 in humans) that is positioned near the entrance to the 

central pore of the AAA+ motor and responsible for the en-bloc removal of ubiquitin 

modifications from substrates prior to their translocation into the CP [16,17]. The 

proteasome can harbor additional DUBs, such as Uch37 and Ubp6/Usp14, whose activity is 

strongly dependent on proteasome association to edit a substrate’s ubiquitin signal [18–20]. 

Furthermore, Ubp6 modulates the DUB activity of Rpn11 [21] and allosterically influences 

the conformational state of the proteasome [22–24].

Previous electron microscopy (EM) studies indicated that the RP undergoes major 

conformational changes upon substrate engagement, leading to a coaxial alignment of the 

base and the CP, the formation of a more planar ATPase ring and a continuous channel for 

substrate processing, and the positioning of Rpn11 directly above the central pore [25]. 

Several additional sub-states had been identified and proposed to represent alternative 
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substrate-free conformations (often termed s1 and s2) and substrate-processing 

conformations (s3, s4, and s6) [25–28], providing a basic structural framework for 

understanding the mechanisms of the proteasome. However, the functional roles of these 

snapshots and how they relate to each other within RP’s conformational landscape or in 

terms of the degradation process remained elusive. New high-resolution cryogenic electron 

microscopy (cryo-EM) and crystal structures, along with complex biochemical and 

biophysical analyses, have now illuminated how the proteasome components are 

functionally orchestrated to catalyze ubiquitin-dependent substrate degradation, and how the 

RP transitions through distinct conformational states for substrate recognition, engagement, 

and processing. In addition, advances in cryogenic electron tomography (cryo-ET) have 

captured spatial information about the localization of 26S proteasomes within live cells. 

Here we summarize the significance of these findings and outline our current understanding 

of how the conformational dynamics of the RP allow the proteasome to select and degrade 

protein substrates.

Degradation-coupled deubiquitination by Rpn11.

Recent biochemical and structural data revealed the detailed mechanism of ubiquitin 

removal from translocating substrates by the deubiquitinase Rpn11 as an integral step of 

ubiquitin-dependent degradation. Rpn11 is a member of the JAB1/MPN/Mov34 

metalloenzyme (JAMM) DUB family and utilizes a catalytic Zinc (II) ion to hydrolyze the 

isopeptide bond between the ε-amino group of a modified lysine side chain and the C-

terminus of ubiquitin. In isolation, Rpn11 is highly promiscuous and able to cleave between 

ubiquitin moieties linked through any of ubiquitin’s seven lysines, albeit with relatively low 

rates and affinities [29]. To prevent this promiscuous DUB activity before full proteasome 

assembly, Rpn11 in the isolated lid subcomplex is inhibited through steric occlusion and 

coordination of its catalytic Zinc by the neighboring lid subunit Rpn5 [30]. Upon lid 

incorporation into the 26S holoenzyme, this inhibition is released, and Rpn11 is positioned 

in close proximity to the AAA+ motor, which sterically restricts the space on the proximal 

side of the isopeptide bond, prevents cleavage between folded ubiquitin moieties, and favors 

the en-bloc removal of ubiquitin from unstructured substrate polypeptides at the entrance of 

the ATPase motor [29,31].

Premature deubiquitination prior to substrate engagement with the AAA+ motor would lead 

to substrate escape from the proteasome. The appropriate timing of ubiquitin removal only 

after a substrate polypeptide is grabbed by the Rpt pore loops and committed to degradation 

is therefore critical for efficient turnover. An important prerequisite for this coupling of 

degradation and deubiquitination is the conformation of the Insert-1 region in Rpn11, which 

adopts an occluding loop structure over the catalytic active site [29,32] until ubiquitin 

binding induces the transition to a beta hairpin that forms a 3-stranded beta sheet with 

ubiquitin’s flexible C-terminus and stabilizes it in Rpn11’s active site for cleavage 

(highlighted in orange in Figure 1B,C) [33–35]. Importantly, this loop-to-hairpin transition 

is rate-limiting for Rpn11 cleavage and accelerated by almost an order of magnitude when 

the AAA+ motor pulls an ubiquitinated substrate into the Rpn11 active site [33,36]. 

Mechanical substrate translocation thus has a dual effect on deubiquitination: it decreases 

KM through the vectorial delivery of ubiquitin to the Rpn11 active site and increases kcat by 
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accelerating the Insert-1 conformational switch from an inhibitory loop to a ubiquitin-

stabilizing beta hairpin. This mechano-chemical coupling is enabled by the perfect 

alignment of Rpn11’s catalytic groove with the trajectory of the translocating polypeptide 

through the AAA+ ATPase motor (Figure 1A, B, C) [34,35]. Fast ubiquitin removal is 

therefore limited to motor-engaged, translocating substrates that are committed to 

degradation. Deubiquitination of these substrates is consequently not rate-limiting, even 

when multiple ubiquitin modifications are present [36]. Consistently, a mutation that 

disfavors the inhibitory loop in Rpn11 leads to accelerated, premature deubiquitination of 

un-engaged substrates and their escape from degradation [33], which highlights the 

importance of degradation-coupled deubiquitination for efficient protein turnover. On the 

other hand, inhibiting Rpn11-mediated deubiquitination, for instance by targeting its 

catalytic Zinc ion, stalls substrates on the proteasome and is deleterious to degradation. 

Rpn11 has therefore been identified as a potent target for small-molecule inhibitors to treat 

cancers refractory to CP-proteolysis inhibitors, like bortezomib [37–40].

Cryo-EM reveals the proteasome conformational landscape during 

substrate processing.

Several critical cryo-EM studies were instrumental in defining RP’s subunit architecture 

[31,41] and various conformations of the 26S proteasome [25–28]. Together, they laid out a 

landscape of RP conformational states whose distribution can be influenced by numerous 

factors [42]. In its substrate-free ground state, the proteasome shows an equilibrium 

primarily between two conformations, s1 and s2 [26,27,43] (Figure 2B). Rpn11, the AAA+ 

motor, and CP are offset from each other in the s1 conformation, leading to a discontinuous 

processing channel, but a central pore that is openly accessible and therefore facilitates 

initial entry of a substrate polypeptide (Figure 2B). In contrast, the s2 conformation as well 

as the proposed substrate-processing states s3, s4, and s6 are characterized by a coaxial 

alignment of Rpn11, the AAA+ motor, and CP, which establishes a wider, continuous central 

channel whose entrance is occluded by Rpn11. These non-s1 states thus seem well suited for 

processive substrate translocation into CP and translocation-coupled deubiquitination by 

Rpn11, which acts as a gatekeeper at the motor entrance. Factors that shift the 

conformational equilibrium away from the s1 state include substrate engagement by the 

AAA+ motor [25,34,35], binding of free K48-linked ubiquitin chains [44], binding of non-or 

slowly-hydrolyzable ATP analogs to Rpt subunits [26–28,45–48], the inactivation of ATP 

hydrolysis in individual Rpts through Walker-B mutations [28], the disruption of lid-base 

contacts [43], binding of CP inhibitors [49], and interactions of the ATPase ring with Ubp6 

in its ubiquitin-free or ubiquitin-bound state [22,23,26].

While previous EM reconstructions revealed the major conformational changes that occur 

upon substrate engagement with the AAA+ motor, two recent studies have captured details 

of the substrate-bound and actively processing proteasome. In one study conducted by our 

group, substrate translocation was stalled by inhibiting Rpn11’s deubiquitination activity 

with a Zinc chelator, which trapped the ATP-hydrolyzing proteasome at the stage of 

ubiquitin-chain removal and revealed a ubiquitin-bound state of Rpn11 that was identical to 

the previously described crystal structure of the isolated ubiquitin-bound DUB [34](Figure 
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1B, C). This approach captured four distinct motor states, with three of them likely 

representing consecutive stages of the ATP-hydrolysis and substrate-translocation cycles, 

and thus providing critical new insights into the mechano-chemical coupling of the AAA+ 

motor. Furthermore, the defined stall of a specific model substrate led to clearly resolved 

density for the substrate polypeptide, spanning from the ubiquitin-modified lysine at 

Rpn11’s active site, through the AAA+ motor, and into the proteolytic core (Figure 1F). The 

polypeptide was observed stably engaged with the pore loops of five Rpt subunits (Figure 

1D, E), which appear to undergo hand-over-hand substrate translocation, driven by 

sequential ATP hydrolysis around the Rpt hexameric ring. In addition, the motor 

communicates with the CP through the docking of five Rpt C-terminal tails, which induce 

complete gate opening for substrate passage into the CP’s degradation chamber (Figure 1G). 

The requirement of five docking sites on CP’s alpha ring to be filled with Rpt tails for 

productive gate opening was also uncovered through genetics and cryo-EM studies of 

various proteasome mutants [28]. In a separate study, Mao and colleagues trapped the 

proteasome with bound substrate by adding a non-hydrolyzable ATP analog, which allowed 

capturing of six distinct motor conformations [35]. In addition to a state with ubiquitin-

bound Rpn11, this study revealed proteasome states in which ubiquitin appears to interact 

with Rpn1 or the N-terminal coiled coil of Rpt4 and Rpt5, which had previously been 

suggested as a ubiquitin-binding site based on crosslinking experiments [50]. Furthermore, 

this study proposed three different modes of ATP hydrolysis corresponding to substrate 

deubiquitination, initiation, and translocation, which is in contrast to the single-mode 

hydrolysis model derived from the structures for Rpn11-inhibited, actively ATP-hydrolyzing 

proteasomes [34] and highlights an aspect of AAA+ motor research requiring further 

experimental inquiry.

Biochemical and biophysical assays reveal proteasome kinetics and 

conformational dynamics.

While extensive structural studies of the 26S holoenzyme and its constituents have provided 

snapshots of the proteasome in action, more details on the timing and dynamics of this 

molecular machine have been contributed by a combination of classical biochemical 

experiments with bulk and single-molecule fluorescence approaches.

Several recent studies aimed to dissect the kinetics and coordination of individual 

degradation steps, as well as the significance of the conformational changes observed upon 

substrate engagement. A single-molecule TIRF-microscopy-based approach was employed 

to investigate initial substrate binding to ubiquitin receptors on the proteasome [51]. This 

study revealed a direct correlation between the number of ubiquitin modifications and a 

substrate’s residence time on the proteasome, and suggested that the linkage type of 

ubiquitin chains affects productive degradation. Monitoring the co-localization of substrate 

and proteasome did, however, not allow capturing the entry of a substrate into the 

proteasome pore and its engagement by the AAA+ motor, which is considered the 

commitment step of degradation [25,34,35]. A comprehensive kinetic map of proteasomal 

substrate processing was generated using a variety of fluorescence assays and the site-

specific labeling of proteasomes on incorporated unnatural amino acids [36](Figure 2A). 
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Two FRET based probes were designed to monitor the insertion of a substrate’s unstructured 

initiation region into the AAA+ motor and the global conformational changes of the RP 

when switching from a substrate-free to substrate-processing states (Fig 2B). These studies 

revealed that substrate engagement by ATPase subunits in the central pore induces the major 

conformational switch, providing both, an important selectivity filter for appropriate 

substrates with sufficiently long initiation regions and a kinetic trap for committing 

substrates to processive degradation. This mechanism restricts fast deubiquitination to 

actively translocating substrates and allows the proteasome to reject ubiquitinated proteins 

that lack the necessary unstructured regions. These studies also demonstrated that unfolding 

represents the rate-limiting step of degradation, and they constitute an important platform for 

future mechanistic studies into substrate prioritization and the regulation of proteasomal 

turnover.

To address how perturbations to the RP’s conformational landscape affect proteasome 

activities, the Tomko group developed a method that allows the readout of s1 versus non-s1 

states through disulfide crosslinking [28]. Using this approach combined with genetics and 

cryo-EM, they investigated how inactivating Walker-B mutations in individual Rpt subunits 

affect the RP’s conformational landscape (Figure 2C) and cause certain degradation defects, 

though the exact mechanisms remain elusive. Focusing on the interface between the lid and 

base subcomplexes, we recently found that s1-state-specific interactions of the lid subunit 

Rpn5 with Rpt3 in the ATPase ring influence the RP’s conformational landscape (Figure 

2C), likely by affecting the dwell time in the s1 conformation and thereby regulating the 

proteasome’s ability to engage a substrate [43](Figure 2B). Taken together, these studies 

highlight the critical dependence of proteasomal degradation on the RP’s conformational 

switch between the engagement-competent s1 state and the non-s1 processing states that 

commit substrates to degradation and translocation-coupled deubiquitination (Figure 2B, C).

Cryo-Electron Tomography shows the proteasome in action within the cell.

While cryo-EM and biochemistry have provided a structural, kinetic, and mechanistic 

understanding of the proteasome, cryo-ET contributes important spatial information about 

proteasome localization and distribution in the cell. Using cryo-ET, the Baumeister group 

had first located 26S proteasomes within intact neurons and confirmed that the 

conformations observed by cryo-EM in vitro also exist in vivo, with the majority of 

complexes apparently in a resting, unengaged state [52] (Figure 2C). A subsequent study 

overexpressing aggregation-prone and ALS-relevant poly-Gly-Ala repeat proteins revealed 

that proteasomes cluster on aggregates and get trapped in a substrate-processing state, likely 

due to stalled degradation [53]. This is especially thought-provoking given reports that the 

proteasome can fragment tau and alpha-synuclein fibrils into smaller aggregates with 

increased cellular toxicity [54]. Another study investigating proteasomes near the nuclear 

pore complex (NPC) found that they attach to both the membrane surrounding the NPC and 

the basket structure of the NPC itself [55]. The proximity to the NPC suggests that 

proteasomes may play a key role in regulating nuclear transport of proteins. Cryo-ET also 

provided important new insight into processes or pathways that lie upstream or downstream 

of the UPS and rely on physical proximity. For instance, proteasomes were localized near 

the tripeptidyl peptidase II (TPPII), a large protease complex proposed to function in the 
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exopeptidolytic cleavage of small peptides into amino acids downstream of the proteasome 

[56]. Furthermore, the proteasome appears to co-localize with the chaperonin TRiC under 

proteostatic stress [53], suggesting that protein unfolding, degradation, and peptide clearance 

could be coupled through subcellular localization.

In the future, cryo-ET may provide more information about how the 26S proteasome is 

organized around other molecular machines, such as Cdc48/p97 that is critically involved in 

ER-associated degradation and retro-translocation, and acts immediately upstream of the 

proteasome in the UPS [57,58].

Conclusions and future directions.

The past few years have led to significant advancements in the understanding of how the 

various activities of the 26S proteasome are coordinated and coupled with conformational 

changes to enable efficient ubiquitin-dependent degradation. A complete kinetic map of 

proteasomal degradation, together with atomic-resolution structural information, allows us 

now to perturb the system and identify the allosteric networks responsible for the regulation 

and fine-tuning of protein turnover, and investigate the effects of transiently bound effectors 

or posttranslational modifications on proteasomal activities and conformations. We look 

forward to elucidating how the ubiquitin code of a substrate, in combination with multivalent 

receptor interactions or ubiquitin editing on the proteasome surface, influences degradation 

kinetics and substrate prioritization, and how other proteostasis pathways connect to the 

UPS.
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Highlights

• New structures show the 26S proteasome with engaged substrate during ATP 

hydrolysis.

• The proteasomal Rpn11 is an essential, AAA+ motor-assisted deubiquitinase.

• Detailed biochemical assays now outline the kinetic landscape of the 26S 

proteasome.

• Proteasome conformational switching allows regulation of substrate 

commitment.

• Cryo-electron tomography shows proteasome conformations and distributions 

in cells.
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Figure 1: 
High-resolution substrate-bound structures of the 26S proteasome reveal mechanistic and 

regulatory details of substrate processing. (A) Architecture of the substrate-bound 

proteasome (EMD: 9045), displaying the core particle in gray and regulatory particle in 

multi-color, with substrate in red and ubiquitin in magenta. Ubiquitin receptors Rpn13 

(PDB: 6FVW), Rpn10, and the T1 site on Rpn1, as well as a potential binding site on the 

Rpt4/Rpt5 coiled-coil (CC) are presented in purple. The hexameric AAA+ ATPase motor 

consists of three N-terminal coiled-coils (navy blue) and a ring formed by the six N-domains 

(N-ring, sky blue) atop the ring of AAA+ domains (cornflower blue). Rpn1 and Rpn2 are 

presented in dark cyan, and the Rpn11 deubiquitinase in green. Lid subunits are shown in 

yellow. (B) X-ray structure of Rpn11-bound ubiquitin (PDB: 5U4P; Rpn11 in green, Ins-1 

loop in orange, active-site residues and catalytic zinc in dark gray, ubiquitin in magenta) 

docked into the cryo-EM density of substrate-bound proteasome (EMD: 9045; regulatory 

particle in gray, substrate in red) and overlaid with the atomic model for the substrate-bound 

proteasome (PDB: 6EF3; ubiquitin in violet red, substrate in red). The catalytic groove 

formed by active Rpn11 is highlighted. (C) Zoomed-in representation of (B), omitting the 

ubiquitin model from the crystal structure and including density for ubiquitin from the cryo-

EM reconstruction (EMD: 9045), displayed in dark gray mesh. (D) Cut-away view of the 

cryo-EM density (EMD: 9045) and atomic model (PDB: 6EF3) for the AAA+-motor 
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engaged substrate, with substrate in red, ubiquitin in violet, Rpt1 in blue, and the pore-loop 

tyrosine residues of all six Rpts shown in dark blue. The substrate traverses through the N-

domain ring (dark gray), makes contact with five of the six Rpts (Rpt1 density and atomic 

mode shown in cornflower blue), and reaches into the core particle (light gray). (E) Zoomed-

in representation of (D) with substrate density (EMD: 9045) shown dark gray mesh and four 

of the five engaged pore loops in dark blue. (F) Cut-away density (EMD: 9045; PDB: 6EF3) 

of the substrate (red) entering through the gate of the core particle (gray). The atomic model 

(PDB: 6EF3) for the core particle is displayed in dark gray, with the proteolytic active site 

residues highlighted as red spheres and the atomic model for substrate shown in red. (G) 

Representation of core-particle density (EMD: 9045) from the top-down, with the gate 

shown fully open and occupied with substrate (red; PDB: 6EF3). The docking sites for Rpts’ 

C-terminal HbYX motifs are circled and labeled with the respective Rpt binding partner.
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Figure 2: 
Substrate degradation by the 26S proteasome depends on large conformational changes that 

can be observed in vitro and in situ. (A) Cartoon representation of the substrate-degradation 

pathway with time constants derived from a recent study [36]. A substrate (red) containing 

an unstructured initiation region and an ubiquitin modification (light purple) is recruited to 

the proteasome via intrinsic proteasome receptors (dark purple). The substrate’s unstructured 

region can passively diffuse into the central channel before being gripped by the pore loops 

of the AAA+ ATPase (blue). This substrate engagement drives a major conformational 

switch, committing a substrate to degradation via a kinetic gateway and placing Rpn11 into a 

coaxially aligned position with the AAA+ motor for co-translocational deubiquitination. 

Substrates are then unfolded and translocated into the core particle for proteolytic cleavage. 

Unfolding appears to be the rate-limiting step of degradation, with time constants depending 

on a substrate’s thermodynamic stability. (B) Top: EM densities of the 26S proteasome in 

Greene et al. Page 15

Curr Opin Struct Biol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the s1 (EMD: 3534, left) and s2 (EMD:3535, right) conformations, with Rpn11 (green) 

offset or coaxially aligned with the pore of the AAA+ motor (dark blue). Ubiquitin receptors 

are in purple, lid subunits in yellow, and Rpn1 and Rpn2 are in dark blue. Red and purple 

stars represent locations on the 26S proteasome where fluorescent dyes were incorporated to 

track conformational switching by FRET [36]. Bottom: cryo-EM densities of the 26S 

proteasome in the s1 (EMD: 3534, left) and s3 (EMD: 3536, right) conformations, 

highlighting the s1-specific contacts (orange) between the lid subunit Rpn5 (yellow) the 

AAA+ motor (cornflower blue), and the coaxial alignment of the AAA+ motor with the core 

particle (gray) in the s3 conformation. Other lid subunits are in light gray. (C) Bar graph of 

the fraction of proteasomes in s1 (green) or non-s1 (blue) conformations observed in in vitro 
cryo-EM and in situ cryo-ET studies. Gray represents unknown functional states. For in 
vitro studies, experimental conditions or mutations, and the observed degradation activities 

are noted. For in situ studies, subcellular localization and experimental conditions and noted 

where applicable. (D) Cartoon representation of the cell, showing proteasomes (core particle 

in dark gray, regulatory particle in light gray) localized near the nuclear pore complexes 

and/or protein aggregates (red). 3D representations of the substrate-processing proteasome 

conformations SPS1 (EMD: 3914) and SPS2 (EMD: 3915) from Guo et al. [53] are shown 

with the core particle in gray, the AAA+ motor in cornflower blue, Rpn1 and Rpn2 in dark 

blue, lid subunits in yellow, and potential density for bound substrate in red.
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