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ARTICLE

Discovering de novo peptide substrates
for enzymes using machine learning
Lorillee Tallorin1, JiaLei Wang 2, Woojoo E. Kim1, Swagat Sahu1, Nicolas M. Kosa1, Pu Yang2,

Matthew Thompson1,3, Michael K. Gilson 4, Peter I. Frazier2, Michael D. Burkart 1 &

Nathan C. Gianneschi 1,3

The discovery of peptide substrates for enzymes with exclusive, selective activities is a

central goal in chemical biology. In this paper, we develop a hybrid computational and

biochemical method to rapidly optimize peptides for specific, orthogonal biochemical func-

tions. The method is an iterative machine learning process by which experimental data is

deposited into a mathematical algorithm that selects potential peptide substrates to be tested

experimentally. Once tested, the algorithm uses the experimental data to refine future

selections. This process is repeated until a suitable set of de novo peptide substrates are

discovered. We employed this technology to discover orthogonal peptide substrates for 4’-

phosphopantetheinyl transferase, an enzyme class that covalently modifies proteins. In this

manner, we have demonstrated that machine learning can be leveraged to guide peptide

optimization for specific biochemical functions not immediately accessible by biological

screening techniques, such as phage display and random mutagenesis.
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Machine learning has garnered increased attention in
recent years for success in applications ranging from
internet commerce to autonomous vehicles1–5 due in

large part to advances in computing power and availability of
data6. Machine learning methods enable the best selection among
a set of diverse options7,8 by predicting their quality. They can
also identify which additional experimental data would best
improve prediction9. This process affords a more efficient and
economical approach than unguided experimental evaluation.
While application of machine learning towards the optimization
and discovery of biochemical systems promises success similar to
that observed in business and engineering design problems9–11,
there have been relatively few biochemical applications reported
for optimizing multiple parameters in parallel12–15. Here, we
highlight a machine learning method that enables the discovery of
selective substrates for a set of functionally related enzymes,
where little orthogonality exists in nature.

Previous biochemical applications of machine learning used
the pure-exploitation approach16, in which confirmatory assays
experimentally evaluate only those options with the best predicted
performance12,17,18. More sophisticated Bayesian optimization9,10

and optimal learning16 approaches to designing assays given a
machine learning-based predictive model have been shown to
better assist in optimizing systems using a limited number of
experimental evaluations9,19,20. These approaches experimentally
evaluate options with the highest potential to improve over the
best previously evaluated option21. While previous work proposes
Bayesian optimization for biological molecular design
applications13,15,22, there is a current interest for implementing
machine learning toward macromolecular optimization and
small-molecule discovery12–15.

Using this optimal learning approach, we developed a method
entitled Peptide Optimization with Optimal Learning (POOL) to
identify short (8–20 residues) peptides as selective substrates for
enzymes. To validate POOL, we used a post-translational mod-
ifying enzyme, the 4′-phosphopantetheinyl transferase (PPTase)23.
PPTases covalently modify carrier proteins (CPs) involved in
various biosynthetic pathways at a conserved serine residue by the
addition of phosphopantetheine derived from coenzyme A (CoA)
(Supplementary Figure 1A–C)23. Previous work on PPTases using
phage display led to the discovery of the 11-residue peptide,
YbbR, that can act as a surrogate for the full-length CP and be
used as a short peptide tag for such applications as biochemical
protein labeling and affinity purification24.

Here, we used POOL to guide our experimental high-
throughput cellulose SPOT synthesis screening array25 to iden-
tify short peptides that meet the following criteria: (1) enzymatic
activity by PPTases by covalent attachment (labeling) of CoA
analog to peptide substrate; (2) orthogonal, in which a given
peptide is a substrate for one class of PPTase, but not the other;
these PPTase classes include the Sfp-type (surfactin phospho-
pantetheinyl transferase from Bacillus subtilis) and AcpS-type
(holo-acyl carrier protein synthase from Streptomyces coelicolor)
(Supplementary Figure 1B). Due to their structural difference and
nature of interaction between the various CPs, the pseudodimer,
Sfp, is known to be promiscuous toward a variety of CPs, while
the homotrimer, AcpS, is more selective23. In this study, we
demonstrate how POOL addresses complex biochemical chal-
lenges that are difficult or impossible to solve by conventional
methods to identify active orthogonal peptide substrates for
multiple post-translational modification enzymes.

We demonstrate a computationally driven machine learning
system, POOL, that guides the evolution of optimized orthogonal
peptide substrates by alternating between prediction and targeted
experimentation. This targeted approach departs from methods
that randomly generate and experimentally screen many peptides,

and can optimize for multiple complex biochemical activities,
such as the ability to be selective for specific enzymes and
undergo chemical transformations that would normally require
several tandem screens to achieve. We show that POOL efficiently
identifies both active and orthogonal peptide substrates for post-
translational modification enzymes that are uniquely diverse from
its original training set. POOL increases its chance of identifying
active substrates by: (1) combining information across enzymes
with a predictive model; (2) diversifying selections against pre-
diction uncertainty, using ideas from Bayesian optimization; (3)
incorporating feedback iteratively. POOL can be applied generally
to optimize peptides for specific and/or simultaneous biochemical
activity.

Results
Hits identified by POOL. Truncated portions of the acyl carrier
protein (ACP) and peptides known to be active for either Sfp or
AcpS24,26 along with additional truncated proteins and peptides
known to be inactive were initially used to train the POOL model
to generate predicted short (8–20 amino acid) peptide substrates.
The POOL model produces a single top-scoring short peptide
from this initial data. To decrease statistical overfitting, the nat-
ural 20 amino acid residues were organized into eight reduced
residue classes by their chemical properties (Supplementary Fig-
ure 2). Prior to any experimental confirmation, the algorithm
calculates a new prediction model based on the same set of initial
experimental data used to generate this top-scoring peptide, but
with the assumption that the top-scoring peptide is not a hit; that
is, it lacks the desired pattern of orthogonal activity. POOL
subsequently selects a second top-scoring peptide based on this
new model. Then, a third model is produced based on the second
experimental data, with an assumption that neither of the first
two peptides are hits and another top-scoring peptide from this
third model is chosen. This process iterates so that each succes-
sive peptide is chosen based on a model that uses the existing
experimental data and the assumption that all previously chosen
peptides in the present set are not hits, until the desired number
of peptides to be tested is reached (Fig. 1). The assumption that
previously recommended peptides are not hits in these successive
models captures the real-world possibility that the predictions of
any given model are not valid and causes subsequent newly
recommended peptides to be different from previously recom-
mended ones, diversifying the set of peptides tested while still
including those likely to be a hit.

POOL was designed to find short hits in a small number of
experimental testing rounds to satisfy our criteria. Experimental
confirmation of predicted peptides was conducted by the
synthesis of membrane arrays containing 600 peptides. The
peptides were synthesized and displayed on a cellulose membrane
and then screened for enzymatic activity. These SPOT mem-
branes were evaluated for orthogonal labeling activity by using
fluorescent CoA27 to identify peptides labeled by two different
PPTases (Sfp and AcpS) (Fig. 1). After one round, we identified
peptides that were both hits and misses and inputted these to the
POOL algorithm for analysis. The POOL algorithm then
recommended a new set of peptides to test in the subsequent
round. This process was repeated for four rounds to identify de
novo peptide substrates.

Initial rounds of Sfp labeling yielded significantly more peptide
substrates (hits) than AcpS, presumably because our preliminary
experimental data came primarily from known protein targets of
Sfp. Iterative cycles of experimental input from SPOT membrane
treatments with orthogonal PPTases with POOL showed an
increase in the number of peptide hits (i.e., orthogonal substrates
for Sfp and AcpS, Fig. 2a, b) after several rounds.
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Importantly, screening of the initial predicted Sfp-specific
peptides garnered less than five hits, while the last round of Sfp
peptides yielded a 10-fold increase in peptide hits (Fig. 2a).

Model validation. To evaluate the accuracy of the prediction
model within POOL, receiver operating characteristic (ROC)
curves (Fig. 2c, d), which are commonly used to evaluate pre-
dictive models for classification, were generated from peptide hits
data. The dashed straight line in each plot is the baseline, indi-
cating the performance of a hypothetical random model without
prediction power. The further the solid curved line trends away

from the baseline toward the upper left corner, the higher the
prediction accuracy exhibited by the model.

As expected, the trained prediction model within POOL
provided predictions that were substantially better than random
chance, but still imperfect. These imperfections are due to four
factors. First, POOL's prediction model uses a reduced amino acid
alphabet that does not distinguish between amino acids in the
same class. Second, POOL’s predictive model makes a conditional
independence assumption. That is, that an amino acid’s
contribution to activity at a position does not depend on the
amino acids at other positions. This reduces the amount of data
required to make predictions but introduces statistical bias. Third,
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Fig. 1 Overview of the iterative Peptide Optimization with Optimal Learning (POOL) method workflow. Top cycle illustrates the autonomous computer
algorithm coupled with experimental testing of peptide recommendations. [1] An initial set of peptides from known substrates of PPTase (Supplementary
Methods 1) are entered in the algorithm defined in the box below. [2] A set of peptides are recommended. [3] Next, peptides are synthesized on a
cellulose membrane where peptides are [4] chemoenzymatically labeled by PPTase (Sfp or AcpS) (hit peptide labeled in pink) (PAP is 3′,5′-
phosphoadenosine phosphate). [5] Experimentally confirmed peptide hits are fed back into the algorithm and the process repeats. The details of the
algorithm used to recommend peptides are described in Supplementary Methods 2
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predictive performance is evaluated on peptides recommended by
POOL, which were selected in part because they were likely to be
active. Ordering these by activity level is substantially more
challenging than it would be for peptides with a wider range of
predicted activity. Fourth and finally, the quantity of initial
experimental data is small relative to the complexity of the space
of peptides over which prediction was performed. These factors
are discussed in more detail in the supplementary information
(Supplementary Methods 2B).

A traditional pure-exploitation approach for selecting peptides
based on a predictive model with such imperfect accuracy would
have had limited success because of sensitivity to prediction error
during the discovery phase (Supplementary Methods 3B). Unlike
this traditional approach, POOL accounts for prediction
uncertainty and actively diversifies its selections to increase the
chance of finding hits, as discussed below.

POOL performance relative to other methods evaluated via
simulation. The POOL method first analyzes existing experi-
mental data to produce an initial machine learning model to
predict peptide substrates that are selective for each PPTase type.
The POOL approach then chooses experiments to perform that
are likely to reveal hits, even when a lack of training data creates
less than perfect predictive accuracy within an iterative scheme.
Unlike a pure-exploitation or predict-then-optimize method
(Supplementary Methods 3A) which does not explicitly account
for prediction error, the POOL approach contains a built-in
contingency plan to combat prediction errors in previously added
peptides, while also broadening the diversity of potential peptide
substrates (Fig. 1). This mirrors the importance of balancing

exploitation (selecting options predicted to work well) and
exploration (selecting items with uncertain predictions) found in
other applications of Bayesian optimization16.

To further confirm this aspect of POOL’s behavior and
performance relative to other methods, it was compared via a
simulation study with the mutation method and the predict-then-
optimize method (Fig. 3, Supplementary Methods 3A).

The mutation method takes an evolutionary approach and
mutates known hits, while the predict-then-optimize method
trains POOL’s machine learning model and recommends
peptides predicted to be hits, but does not use POOL’s iterative
approach of re-training the model with an artificial dataset. In
this simulation study, a peptide’s probability of being a hit was
determined via the prediction model trained using data gathered
from multiple rounds (2602 peptides). The three methods were
then provided with only the initial training set and data from the
first two rounds. Then, we asked POOL to recommend 100 new
potential Sfp-specific hits and 100 potential AcpS-specific hits.
The probability that the recommended set contained at least one
peptide hit was then calculated via the trained model for each
recommended set. POOL had a higher probability of finding at
least one peptide hit in its recommended batch compared to the
alternative prediction methods (Fig. 3). This analysis suggests that
iterative machine learning of peptide hits over several rounds
balancing exploitation and exploration is advantageous as POOL
identified multiple, unique orthogonally labeled peptides. The
significantly higher probability of finding Sfp-specific hits
compared to the other methods in the simulation study suggests
that POOL outperformed the other methods for Sfp selectivity
(Fig. 3a). Due to the lack of AcpS-specific hits in the training data,
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all three methods had a low probability of finding AcpS-specific
hits, though the POOL method displayed a significantly higher
chance of predicting AcpS-selective peptides than mutation and
predict-then-optimize (Fig. 3b).

Diversity of peptides recommended in the simulation study.
The simulation study (Fig. 3) suggests that POOL is able to find
peptide hits more effectively than the predict-then-optimize and
mutation methods because it is able to better balance exploration
with exploitation. To further confirm this behavior, we investi-
gated the sequences of the peptides recommended by the different
prediction methods in the simulation study, and of the training
data. Figure 3c, d shows a two-dimensional (2D) representation
of peptides recommended by those methods, where each point in
the plot represents a distinct peptide (Supplementary Meth-
ods 3C). A large distance between any two points indicates dis-
similarity in sequence between the corresponding peptides.
Recommended peptides by the predict-then-optimize method
clustered together tightly, suggesting that the top-ranking pep-
tides are expected to share similar sequences. Both POOL and the
mutation method recommended more diversified peptides than
predict-then-optimize. To support comparison between POOL
and mutation, Fig. 3c, d includes a line between each of their
recommended peptides and the closest peptide in the training
data. Lines originating from the mutation method’s peptides tend
to be shorter than from POOL’s: mean lengths in Fig. 3c are 1.63
for mutation and 2.55 for POOL, and in Fig. 3d are 0.97 and 1.67,

respectively. This is also confirmed by a histogram and additional
summary statistics available in the supplementary information
(Supplementary Figure 3). This suggests that the process of
mutating known hits generates peptides that are more similar to
the training data than those generated by POOL. In contrast with
mutation, peptides recommended by POOL spread more broadly
in 2D space, filling more gaps between peptides in the training
data. In addition to this diverse exploratory behavior, POOL
chooses at least one peptide in the same region where the predict-
then-optimize method recommended a peptide. This pattern
indicates that POOL provides a balance between the exploitation
of model predictions and diversification accounting for prediction
errors.

Selective and diverse peptide hits identified by POOL. To
identify sequence elements that appear to confer PPTase selectivity,
three Sfp-type and four AcpS-type peptides identified by POOL
were aligned to known PPTase substrates. We included in this
alignment the B. subtilis peptidyl CP (PCP) from the tyrocidine
pathway, a known Sfp substrate; S. coelicolor ACP and E. coli ACP,
which are native AcpS-type CPs; and YbbR, a peptide substrate that
is recognized by both PPTases (Fig. 4)23,24,28.

All substrates recognized by Sfp contain a large hydrophobic
residue, here either Ile or Leu, at positions 2 and 5, relative to the
catalytic serine (position 1) (Fig. 4). This motif is consistent with
a recent crystal structure of a bound complex of PCP with Sfp28,
where residues 46 and 49 of the PCP, which correspond to
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positions 2 and 5 here, are Leu and Met, respectively. These
residues, located in the helix of the PCP, form favorable contacts
with the extended nonpolar patch on Sfp’s catalytic domain28.
Interestingly, mutation of Met49 in PCP to a polar residue
impairs catalytic activity and binding to Sfp28. In contrast, the
AcpS-type peptides do not show a clear motif involving positions
2 and 5, with Leu, Ser, and Val at position 2, and Gln, Arg, and
Val at position 5. These residues presumably disrupt interactions
important for binding to Sfp, and thus help account for the AcpS
selectivity of these peptides. Perhaps the most consistent feature
of these four AcpS substrates is that they have a small hydroxyl
residue (Ser or Thr) at position 4 (also present in one of the Sfp
substrates).

Sfp is known to be promiscuous toward many CPs from
various organisms and biosynthetic pathways, including CP
substrates of AcpS21. Additionally, CP substrates that are labeled
by AcpS, and not Sfp, are rare. POOL successfully identified four
AcpS-specific peptides that were not recognized by Sfp, which
when compared to the native CP substrates possess highly
divergent sequences. This highlights the advantage of POOL over
traditional genetic and combinatorial methods. These sequences
would not be typically accessible by traditional genetic and
combinatorial methods as they are not designed to simulta-
neously access for orthogonality and diversity, while also
employing rational design.

In vitro validation of peptide hits with GFP-peptide tags. Hit
peptides were chosen after normalization (Supplementary
Methods 4A–B) of fluorescence intensities on the SPOT array
membrane after treatment with each of the two PPTases. Peptides
that displayed orthogonal characteristics were selected as hits.
These hits exhibited a high fluorescence intensity when labeled by
one PPTase and low intensity when treated with the other.

Previous studies demonstrated that YbbR can be genetically
encoded at the N- and C-termini of enhanced green fluorescent
protein24. We sought to validate our hit peptide substrates
identified on the membrane in order to confirm that no labeling
artifacts were chosen as hits from the SPOT cellulose membrane.
Hit peptides were encoded at the C-terminal end of super-folded
GFP29. Recombinant purified GFP peptide tags were incubated
individually with both Sfp and AcpS and TAMRA-CoA. As
predicted by our POOL program, the Sfp-specific GFP -peptides

were only labeled by Sfp, and not by AcpS (Fig. 5) (Supplemen-
tary Figure 4).

We found that we were unable to label our AcpS-type GFP
peptides with our TAMRA-CoA analog after purification from E.
coli. We hypothesized that these GFP peptides were modified by
endogenous CoA and AcpS in E. coli. To test whether our AcpS-
type GFP peptides were labeled by E. coli AcpS, in cellulo labeling
with our previously published coumarin phosphopantetheine
analog27 was confirmed by LCMS. Ions characteristic of
coumarin 4′-phosphopantetheine were observed (Supplementary
Figure 5)30,31.

To evaluate the catalytic efficiency of the Sfp-type GFP
peptides, a kinetic analysis was conducted (Supplementary
Table 1). The catalytic efficiency for labeling the various GFP
peptide substrates was comparable to that of the previously
published YbbR-GFP24.

Unlike previous phage display studies that identified similar
peptide sequences, POOL was able to specifically hone in on
important residues adjacent to the catalytic serine that increased
the diversity of peptides recognized by Sfp and AcpS. POOL was
trained to pick hit peptides, not necessarily catalytically efficient
peptides. Future studies include incorporating kinetic data into
the algorithm to be employed by an optimization strategy in
subsequent rounds of POOL.

Demonstrating orthogonal peptides on a membrane support.
To demonstrate peptide specificity for each of the two PPTases,
the top lead peptide for each PPTase was synthesized on the
surface of two duplicate cellulose membranes as two letters, “A”
and “S.” The circle on the left-hand side (A) is specific to AcpS
labeling, while the circle on the right-hand side (S) is specific to
Sfp type (Fig. 6). The peptide AVKMESLEYLDTM (4F01), spe-
cific to Sfp, was synthesized on the cellulose membrane to
highlight “S” (imaged on the right). Conversely, peptide WPEE-
GIESFMSVPPP (4T25), specific to AcpS, was synthesized on the
cellulose membrane highlighting “A” (imaged on the left). All
unfilled areas inside the circle were prepared with IHD-
GADSVVWLWSNC peptide, a sequence that is neither a sub-
strate for Sfp nor AcpS. Duplicate membranes synthesized with
the orthogonal and unspecific peptides were treated with
TAMRA-CoA and either AcpS or Sfp. After treatment by AcpS
with TAMRA-CoA, the peptides forming an “A” pattern were
illuminated, while the duplicate membrane treated with Sfp
illuminated the “S” peptides (Fig. 6). In all treatments, the non-
specific peptides synthesized in all unfilled areas within the circles
were neither labeled by Sfp nor AcpS as expected. These results
demonstrate the selectivity for each of these enzyme isoforms for
the newly discovered peptides via POOL.

Discussion
Here, we demonstrate POOL’s rapid convergence on biomole-
cules with a desired activity. Unlike classical selection-based
approaches, such as phage display and mutagenesis, POOL is
efficient at simultaneously (1) searching for orthogonal activity;
(2) exploring diverse peptide scaffolds beyond known substrates;
(3) and judiciously selecting small sets of peptides rather than
screening large, randomly generated libraries. Coupled with the
SPOT technology, POOL offers a mathematically driven
approach for discovery of structurally diverse orthogonal peptide
substrates that are selective for multiple enzymes catalyzing the
same enzymatic reaction.

POOL enabled the discovery of short, selective oligopeptide
substrates for Sfp and AcpS. While POOL was utilized herein for
PPTases and the identification of peptide substrates for these
enzymes, our approach is generalizable and can be applied for the

Sfp-type

1 2 3 4 5

α2

AcpS-type

Fig. 4 Sequence alignment of hit peptides relative to native PPTase
substrates. The sequence alignment for B. subtilis PCP, S. coelicolor ACP, E.
coli ACP, YbbR peptide, compared to Sfp-type peptide hits (4P28, 4N28,
4F01) and AcpS-type peptide hits (1F01, 1I04, 3K17, 4T25) to the secondary
(α2) structure of B. subtilis PCP (PDB: 4MRT). The blue box and red
residues show general conserved sequences across all the peptides. The
majority of AcpS-type peptides have conserved polar residues in position 2
and 5 (highlighted in yellow). The peptide identification corresponds to the
round number and location it was identified from (round number_letter
row_spot number on membrane) during the iterative rounds of POOL
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discovery of peptide substrates of other enzymes, such as kinases,
proteases, and glycosyltransferases, which are therapeutically
relevant enzyme targets32–34. A key advantage of POOL over
traditional peptide substrate discovery methods is the ability to
screen for multiple biological properties simultaneously. Here, we
demonstrated the discovery of orthogonal peptides that are spe-
cific for different classes of PPTases. Furthermore, the orthogonal
peptides differ significantly from each other and from their initial
training set (Fig. 3c, d), which includes natural substrates26. That
is, when compared to the mutation and predict-then-optimize
methods, POOL enables an enhanced departure in peptide
sequence space from the nearest training set, underscoring
POOL’s ability to generate a wide diversity of evolved peptide
substrates. Previously discovered orthogonal peptides maintained
high sequence conservation toward the N-terminus when com-
pared to the natural CP substrate and a constant length of 12
amino acids26. The orthogonal peptides found in POOL are
beyond the initial peptide training set and differ in length (8–20
residues), position of the catalytic serine residue, and chemistry of
residues surrounding the catalytic serine.

POOL is a powerful method that can be readily extended to a
broad class of biochemical applications because the underlying
machine learning model is a flexible classifier that can predict
other properties from training data. By defining a hit as any
biochemical property or outcome of interest in parallel with
experimental data, POOL’s predictive model can be trained to
guide the discovery process towards any application. Addition-
ally, POOL is a flexible method that can be adapted beyond
the naive Bayes prediction model to a wide range of com-
plementary machine learning models, while still maintaining its
theoretically guaranteed performance (Supplementary Meth-
ods 2E). We envision applying and adapting POOL to identify
biologically active peptide substrates important for epitope
mapping, antigen discovery, receptors, and natural ligands that
are therapeutically relevant. Additionally, POOL can be applied
toward identifying peptide substrates important for

characterizing enzymatic functions, while simultaneously
screening for multiple biochemical activities.

Methods
Bayesian machine learning and POOL process. The prediction model used in
POOL is a Bayesian variant of naive Bayes, modified to incorporate the belief that
amino acids far from the central serine at which modification occurs have less
impact on activity. Despite the word naive in its name, naive Bayes is a simple but
powerful classification method widely used within machine learning for text
classification. POOL then selects peptides to add iteratively by maximizing the
conditional probability of being a hit, conditioned on previously added peptides in
the batch not being hits. It performs this maximization across all peptides with a
target length. Details of the method are provided in Supplementary Methods 1A.

Preparation of super-folded GFP peptide constructs. Super-folded GFP29

gBlock gene fragment (IDT) was subcloned into the NdeI–XhoI site of a pET28b
vector (Novagen) containing an N-terminal His6-tag. The Sfp-type (4P28, 4N28,
and 4F01) and AcpS-type (1F01, 1I04, 3K17, and 4T25) peptides for the various
GFP constructs were ordered as single-stranded oligonucleotides (forward and
reverse) with 5′-phosphorylation (IDT) and its corresponding XhoI overhangs. To
prepare the double-stranded oligonucleotides, the forward and reverse single-
stranded oligonucleotides were mixed together in equal molar amounts in 100 mM
potassium acetate; 30 mM HEPES, pH 7.5. The equimolar forward and reverse
oligos were heated to 94 °C for 2 min and slowly cooled by decreasing the tem-
perature 1 °C every 30 s to a final temperature of 4 °C. The double-stranded oli-
gomer was ligated into the corresponding XhoI (NEB) cut vector. These plasmids
were transformed into an E. coli BL21 ΔentD strain, which was a gift from Pro-
fessor D.F. Ackerley35.

Recombinant protein purification. PPTases, B. subtilis Sfp, S. coelicolor AcpS, and
GFP-peptide proteins were expressed and purified29,36. Cells were grown at 37 °C
in terrific broth media containing 100 mg L−1 kanamycin sulfate to an optical
density at 600 nm (OD600) of 0.8. The cells were induced with a final concentration
of 250 mM of isopropyl-β-D-thiogalactopyranoside (IPTG) and grown overnight at
16 °C. The cells were harvested by centrifugation at 2000 × g for 30 min, resus-
pended in lysis buffer (50 mM Tris-HCl buffer, pH 7.5, with 250 mM NaCl), and
supplemented with 0.1 mg mL−1 lysozyme (Worthington Biochemical Corp), 5 µg
mL−1 DNAse I (Sigma), and 5 µg mL−1 RNAse (Worthington Biochemical Corp.).
The cells were lysed by a French pressure cell press between 500 and 1000 psi. The
lysate was subsequently centrifuged at 12,000 × g for 45 min, and the supernatant
was bound with Ni-NTA resin (Qiagen). The column was sequentially washed with
the wash buffer (50 mM Tris-HCl buffer, pH 7.5, 250 mM NaCl, 25% glycerol, 10

C-terminal
peptide

GFP

a

b

 �ex = 532 nm
�ex = 580 nm

 �ex = 532 nm
�ex = 580 nm

TAMRA-CoA

AcpS Sfp
O

or

OH

3’,5’-PAP

YbbR-GFP4F014N284P28

Predicted to be Sfp selective

Coomassie

Sfp

AcpS + + + +– – – – – – – –

––––––––+ + + +

Fig. 5 Validation of PPTase-specific peptide hits using GFP-peptide tags. a Modification of GFP-peptide fusions by addition of TAMRA-CoA onto selective
peptides appended on the C-terminus of GFP. b Twelve percent SDS-PAGE gel corresponding to labeling (λex=532 nm/ λem=580 nm) of GFP peptide tag
by Sfp and AcpS. PPTase (Sfp and AcpS) is not observed due to low abundance (Coomassie sensitivity). TAMRA-CoA was present in each enzymatic
reaction
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mM buffered imidazole), followed by elution at 300 mM buffered imidazole. The
purified protein was desalted into 50 mM Tris-HCl buffer, pH 7.5, with a PD-10
desalting column (GE Healthcare Life Sciences) and concentrated with a 10-kDa
Amicon spin filter (Millipore Sigma). The concentrated sample was subsequently
stored in 20% glycerol, 50 mM Tris-HCl buffer, pH 7.4, with 150 mM NaCl at −80
°C after flash freezing in liquid nitrogen.

SPOT synthesis of cellulose membrane peptides. The peptides were synthesized
on an amino-PEG-cellulose 10×15 cm2 membrane and synthesized automatically
by MultiPep RSi (INTAVIS Bioanalytical Instruments AG). After Fmoc cleavage
with 20% 4-methyl piperidine (Sigma) in dimethylformamide (DMF), activated
with 1 equiv. hydroxybenzotriazole and 2 equiv. N-methylpyrrolidone (NMP), and
directly spotted on the membrane; after 15 min this step was repeated. The
membrane was washed with DMF (3 × 3min). Solutions of the Fmoc amino acids
in NMP were spotted on the membrane (0.6 M solutions; 0.8 M solutions for C, H,
N, Q, and R; triple coupling, 15 min each). The Fmoc group was removed from the
spots, and the sequences of the peptides were completed using the standard SPOT
synthesis protocol and followed by an N-terminal tag. Membranes were stored at
−20 °C until treated.

Membrane treatment. Synthesized membranes were deprotected with cleavage
cocktail consisting of 94% trifluoroacetic acid (TFA), 2.5% water, 1% triisopro-
pylsilane (Sigma), and 2.5% 1,2-ethanedithiol (Sigma) shaking at 2 h at room

temperature. The membranes were washed in triplicate with dichloromethane
(Sigma), ethanol (Sigma), distilled deionized water, and Tween-20 Tris-buffered
saline (TBST) (20 mM Tris-HCl buffer, pH 7.4, with 150 mM NaCl), respectively.
The membrane was incubated with 5% bovine serum albumin (BSA) in TBST for 1
h at room temperature. Following blocking by BSA, the membranes were washed
three times with TBST. The membranes were subjected to labeling by their
respective PPTase, either B. subtilis Sfp or S. coelicolor AcpS. The final 20 mL
reaction volume consisted of 10 µM PPTase enzyme, 40 µM TAMRA-CoA, 0.01%
Triton X, and 15 µM BSA in 50 mM Tris-HCl buffer, pH 8.0, and 10 mM MgCl2.
The reaction was incubated for 16 h at 37 °C. The membranes were rinsed liberally
with TBST buffer, 0.1% TFA, and distilled deionized water before imaging on a
Typhoon TRIO Variable Mode Imager (GE Healthcare BioSciences) at 50-µm
resolution with 532 nm green laser excitation and 580 nm emission filter and a
photomultiplier tube setting of 350 V. The membrane images were analyzed by the
ImageJ software37,38.

In vitro validation of peptide hits with GFP-peptide tags. Three Sfp-type (4P28,
4N28, and 4F01) and four AcpS-type (1F01, 1I04, 3K17, and 4T25) peptides were
fused to the C-terminal end of super-folded GFP29. To access orthogonal labeling,
these specific GFP-peptide tags were incubated with either Sfp or AcpS in the
presence of TAMRA-CoA (4). The reactions were conducted in a 30 µL reaction
containing a final concentration of 10 µM of the respective GFP-peptide tag, 5 µM
TAMRA-CoA (4), and 0.05 µM of either Sfp or AcpS in 50 mM HEPES, 10 mM

AcpS-
specific peptide

Sfp-
specific peptide

Non-specific
peptide

Duplicate SPOT membranes

Orthogonal labeling

AcpS Sfp
 �ex = 532 nm
�ex = 580 nm

Fig. 6 Scheme illustrating selective Sfp and AcpS labeling on duplicate SPOT membranes. Peptide AVKMESLEYLDTM (4F01), specific to Sfp, was
synthesized on the cellulose membrane to highlight “S,” while peptide WPEEGIESFMSVPPP (4T25), specific to AcpS, highlighting “A.” All unfilled areas
inside the circle were synthesized with a non-specific peptide, IHDGADSVVWLWSNC, which was neither a substrate for Sfp nor AcpS
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MgCl2, pH 7.2. The mixture was gently shaken at 37 °C overnight. The resulting
reactions were analyzed by 12% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) gel and imaged on a Typhoon TRIO Variable Mode
Imager (GE Healthcare BioSciences) at 50-µm resolution with 532 nm green laser
excitation and 580 nm emission filter and a photomultiplier tube setting of 350 V.

PPTase gel-based electrophoretic mobility shift kinetics. A concentration-
dependent assay varying concentrations of GFP peptides was conducted to char-
acterize the kinetics of all the GFP peptides with Sfp39. Briefly, reaction was
initiated by the addition of 0.1 µM Sfp into a 30 µL reaction containing 1 mM
TAMRA-CoA buffer (50 mM HEPES, 10 mM MgCl2, pH 7.2), and with varying
concentrations of GFP peptide (0.1– 10 µM). The reactions were quenched every 5
min sequentially by adding 100 mM EDTA. Resulting reactions were analyzed by
12% SDS-PAGE gel and imaged from Typhoon (GE Healthcare) scanner (λex=
532 nm/λem= 580 nm). The intensity of the fluorescence gel bands were measured
and analyzed using GraphPad Prism and fitted to the Michaelis–Menten equation,
Y=Vmax × X/(Km+ X), where Km is the Michaelis–Menten constant, X is the
substrate concentration, Vmax is the maximum enzyme velocity, and Y is the
velocity of the enzyme. The data were collected in triplicate (Supplementary
Table 1).

In cellulo labeling and LC-MS analysis of AcpS GFP peptides. GFP peptides
encoded in a pET28b plasmid in E. coli BL21 (ΔentD) cells were grown for 5 h at
37 °C in 5 mL LB medium containing 100 mg L−1 kanamycin sulfate to an OD600

of 0.6–0.8 and induced with a final concentration of 500 µM IPTG. Along with the
addition of IPTG, 1 mM of coumarin phosphopantetheine analog was added into
the growth medium to investigate uptake and labeling27. The cultures were grown
for 16 h at 16 °C. The cells were centrifuged and resuspended in lysis buffer (50
mM sodium phosphate, 300 mM NaCl, pH 7.5), and lysed by incubation with
lysozyme (1 mgml−1) for 1 h on ice followed by sonication (3 × 10 second pulses)
and centrifugation. 50 µL of protein lysate of GFP peptide at a concentration of 5
µM was precipitated by the addition of 1 mL trichloroacetic acid solution (10%
weight per volume percent) and pelleted by centrifugation at 4 °C at 14,000 rpm for
20 min. The pellet was washed with 1 mL water twice and centrifuged at 4 °C at
14,000 rpm for 20 min after each washing step. Subsequently, 100 µL of 0.1 M KOH
was added and the sample was heated for 30 min at 75 °C. Then, the protein was
precipitated with 10 µL trifluoroacetic acid (50% volume per volume percent)
followed by centrifugation as before, and the supernatant was analyzed by LC-MS
(liquid chromatography-mass spectrometry) under single-ion detection mode.
Hydrolyzed coumarin phosphopantetheine (m/z= 626.64) was detected30.

Sequence alignment. Sequence alignment was conducted using the open online
software ESPript 3.040.

Code availability. Code is available at https://github.com/peter-i-frazier/pool.
Code is published under an Apache 2.0 license.

Data availability
The data are freely available at https://github.com/peter-i-frazier/pool.
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