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Abstract

In this paper we address the problem of clustering trajectories, namely sets of short se-
quences of data measured as a function of a dependent variable such as time. Examples
include storm path trajectories, longitudinal data such as drug therapy response, func-
tional expression data in computational biology, and movements of objects or individuals in
video sequences. Our clustering algorithm is based on a principled method for probabilistic
modelling of a set of trajectories as individual sequences of points generated from a finite
mixture model consisting of regression model components. Unsupervised learning is carried
out using maximum likelihood principles. Specifically, the EM algorithm is used to cope
with the hidden data problem (i.e., the cluster memberships). We also develop general-
izations of the method to handle non-parametric (kernel) regression components as well as
multi-dimensional outputs. Si.nulation results comparing our method with other clustering
methods such as K-means and Gaussian mixtures are presented as well as experimental
results on real data sets.
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Figure 1: Trajectories of the estimated vertical position of a moving hand as a function of
time, estimated from 6 different video sequences.

1 Introduction

In this paper we investigate the problem of clustering sets of measurements Y which are
measured as a function of an independent variable z. Typically the z variable represents
time and we have data on M different individuals, where for each individual we have mea-
surements of a response variable y (possibly multi-dimensional) over time. Figure 1 shows
an example of such data for a set of 6 different y measurements. The z-axis represents
time and the y-axis is the vertical location in pixel coordinates (relative to a fixed coordi-
nate frame), giving the centroid of a person’s hand as estimated from a sequence of images.
Each curve represents the (noisy) estimated trajectory of a particular individual performing
a particular simple hand movement.

We investigate the problem of clustering such trajectory data into distinct groups. This
type of data can arise in a variety of applications where repeated measurements are avail-
able on individual “objects” over time, e.g., response curves in drug therapy monitoring,
experimental gene expression data in protein modeling, individual responses to stimuli in
animal behavior experiments, and so forth.

Note that there are some complications which arise for data such as that in Figure 1
which make it difficult to apply standard clustering techniques. For example, the trajectories
are of different lengths, and thus, one cannot simply convert the trajectories to fixed-
length vectors and apply a clustering technique such as the K-means algorithm in a fixed-
dimensional space. We will return to these issues and to the video data set in more detail
later in the paper.

In statistics, this type of data is often referred to as longitudinal data or repeated mea-
sures data. Even though such data could be thought of as time-series data for each individ-
ual, it is typically the case that the data records per individual are too short to be amenable
to conventional time series modeling techniques (i.e., typically one may only have on the or-
der of 10 measurements per individual). For example, a simple longitudinal data set might



consist of 240 measurements giving the weight of twenty different rabbits, weighed once a
month, for a year. Datasets of this type are very common in medical research, where the
individuals being measured are separated into several different groups, and the difference
in “group behavior” is statistically analyzed. The most common example of this type of
analysis is realized through the use of the so called treatment and control groups. Methods
and procedures for dealing with these types of analyses are thoroughly discussed in Jones
(1993). In a slightly more general context the term functional data (Ramsay and Silverman
(1997)) is also used to describe these data sets, where in this case z need not necessarily be
a time index and it is explicitly assumed that y’s are a smooth function of the z’s.

In this paper we will use the term trajectory data as a general term to refer to this
type of data, emphasizing the notion that the data for each individual is assumed to be a
smooth trajectory in y space as a function of an independent variable z. We are interested
in being given trajectory data and determining if the data can be naturally clustered into
groups. In traditional approaches to modeling trajectory data it is assumed that any group
or cluster structure on the data is known a priori. For example, Jones (1993) describes a
common technique used in longitudinal data analysis in which a line is fit to the data within
each group using simple linear regression, and then the regression coefficients are used as
summary measures to compare the difference in group behavior. We are not aware of any
prior published work on probapbilistic or statistical clustering methods for trajectory data.

The paper is organized as follows. In Section 2 we discuss the difficulties with using
standard clustering techniques for such data, motivate the use of probabilistic model-based
clustering, and discuss related prior work. In Section 3 we propose a generative probabilistic
framework for trajectory data, namely that each cluster can be modeled in a regression
manner as a smooth function of z with additive noise, and each cluster has a different
such function associated with it. Section 4 illustrates how the expectation-maximization
(EM) algorithm can be used to learn the cluster parameters. Extensions to non-parametric
regression functions (using kernel regression for example) are also presented, as well as the
generalization to the case where y is a multi-dimensional measurement. In Section 5 we
present a systematic analysis of EM-based trajectory clustering on simulated data, with
comparisons to alternative vector-based methods. Section 6 illustrates how the method can
be used to learn clusters of hand trajectories from video data, in a completely unsupervised
manner. Section 7 contains a brief discussion of various extensions of the general approach
and Section 8 presents general conclusions.

2 Background and Related Work

An obvious way that one might go about clustering trajectory data is to take all of the
n; measurements for an individual and form a vector y; of dimension n;. Assume for the
moment that each individual has the same number of measurements (i.e., n; = n for all
individuals ) and these measurements were all taken at exactly the same z values. We can
then treat the set of y; trajectories as a set of n-dimensional vectors in an n-dimensional
space and use any of a variety of the many clustering methods which operate in vector-
spaces.

While this may be a reasonable approach in some applications, it will not always be
applicable or appropriate. For many data sets, the trajectories will be of different lengths
and may be measured at different time points. In addition, the y measurements may be
multidimensional (e.g., 3d position estimates in tracking the dynamics of a moving object),



in which case there is no natural vector representation.

Perhaps more fundamentally, if one converts the data to a vector representation there
is a fundamental loss of information about the data, i.e., if we believe from the underlying
physics of the data-generating process that the y’s are a smooth function of the z’s, then this
smoothness information is lost when we convert a sequence of n numbers to an n-dimensional
vector of numbers. Thus, intuitively, retaining the notion of trajectory smoothness in our
clustering procedure, should generate better data models compared to throwing away this
information.

Thus, we will investigate model-based clustering of trajectories, where each cluster will
be modeled as a prototype function with some variability around that prototype. A distinct
feature of this model-based approach to clustering is the fact that it produces a descriptive
interpretable model for each cluster. Since we are estimating smooth functions from noisy
data it will be natural to use a probabilistic framework. Specifically we will use mixtures
of regression models as the basis for clustering.

Mixtures of multivariate (vector-based) distributions and densities have been widely
used for probabilistic clustering in the past (e.g., McLachlan and Basford (1988), Banfield
and Raftery (1993), Cheeseman and Stutz (1996), Smyth et al (1997), Fraley and Raftery
(1998), and Smyth, Ide, and Ghil (in press)). However, none of this work extends directly
to trajectory clustering unless one uses a vector representation for the data. The work of
Stanford and Raftery (1997) on mixture models for finding clusters in two-dimensional spa-
tial point patterns is similar in spirit to the approach proposed here. However, the problem
of clustering trajectory data is somewhat different to that of two-dimensional curves, since
there is an explicit dependence on an independent variable z present in the trajectory case.

The “mixtures of experts” models popular in neural networks research, as originally
proposed by Jordan and Jacobs (1994), is mathematically quite similar to our cluster models
(in fact, in mixtures of experts the weights for the clusters are allowed to vary smoothly,
which is a more flexible model than what we will propose here). However, there are also some
distinct differences between mixtures of experts and our trajectory mixtures. In mixtures
of experts, the emphasis is on prediction rather than clustering, and there is no explicit
focus on obtaining clusters. Furthermore, for mixtures of experts there is an input space
and an output space of fixed dimensionalities, and one is learning a mapping from one to
the other. There is no notion of having sets of trajectories, of possibly different lengths and
measured at different points. Thus, although mathematically similar, the focus of trajectory
clustering and the focus of mixtures of experts models are quite different.

3 A Generative Mixture Model for Clusters of Trajectories

3.1 A Brief Review of Standard Mixture Model Clustering

In probabilistic clustering we assume that the data are being generated in the following
“generative” manner:

¢ An individual is drawn randomly from the population of interest.

e The individual has been assigned to cluster k£ with probability wy, Zfﬂ wy = 1.
These are the “prior” weights on the K clusters. We will implicitly assume that K is
fixed in this paper, but in general we may also wish to learn K from the data.




e Given that an individual belongs to cluster k, there is a density function fi(y;|6k)
which generates observed data y; for individual j.

From this generative model, it follows that the observed density on the y’s must be a
mixture model, i.e., a linear combination of the component models:

K .
P(y;16) = D fi(y;l0e)wr, 1)
k

Thus, if we observe the y;’s, and we assume a particular functional form for the fi compo-
nents, we can try to estimate from the data what the most likely values of the parameters
fr and the weights wy are. The EM algorithm (e.g., McLachlan and Krishnan, 1997) is
a general procedure for finding the maximum likelihood estimates of the parameters of a
mixture model.

In practice, if each y; is a multivariate vector, it is common to use simple functional
forms for the component models, e.g., multivariate Gaussian bumps. Under the Gaus-
sian assumption, the EM algorithm is used to find the means (locations) and covariances
(“shapes”) of the Gaussian bumps in the vector space where the y’s are measured. The
component models (as estimated from the data) can then be treated as the clusters, and
Bayes’ rule can be used to determine the probability of membership in the learned clusters
for any data point y;.

A feature of the mixture model approach is that it allows uncertainty in cluster member-
ships, or equivalently, overlap in the cluster models. In addition, it can effectively “learn”
the appropriate distance metric in the y space for each cluster (for Gaussians for example
this will be the Mahalonobis distance defined by the covariance and mean of each compo-
nent), rather than relying on any predefined (and possibly inappropriate) notion of distance.
Finally, the probabilistic framework allows one to address issues such as finding the best
number of clusters in a principled and relatively objective manner (e.g., see Fraley and
Raftery, 1998).

3.2 Mixtures of Regression Models

We can straightforwardly generalize the multivariate mixture model in the last section
(Eq. (1)) to define miztures of regression models, where we have measurements y which are
a function of some known z. Each component now is a conditional density function of the
form fi(y|z,60k). Assume for now that y and z are each 1-dimensional. Typically we will
assume a standard regression relationship between y and z, e.g.,

y = gr(z) +e, (2)

where e is zero-mean Gaussian with standard deviation oy, and gx(z) is a deterministic
function of z. Thus, in the case of Gaussian noise (which we assume henceforth in this
paper) we have that the conditional density fi(y|z,0k), given that y belongs to the kth
group, has mean gi(z) and standard deviation ok. Here 6 includes both the parameters of
the model gx(z) and the noise deviation ox. The noise model e could easily be generalized to
be dependent on x, rather than being constant. Such a generalization may be appropriate
in specific situations and can be handled in the mixture model in a straightforward fashion.
For simplicity of notation, however, we will assume a constant noise term in this paper.
We are now ready to define a probabilistic cluster model for sets of trajectories. Let
our data set S consist of n; measurements for each of M individuals, 1 < j < M. We will




refer to these measurements as being a function of time (i.e. z is synonymous with time),
although this is not strictly necessary. Let the trajectory of measurements for the jth
individual be denoted as y;, with the ith measurement of y; denoted as y; (7). Furthermore,
suppose that the trajectory of measurements y; were taken at the times in z;. Finally, let
each trajectory in § belongs to one of K groups.

The probability of observing a particular measurement y; (%), given «;(¢) and component
model k, is defined as fi(y;(2)|z;(%), 0x), and is assumed to be a conditional regression model
as discussed above. We can then define the probability of a complete trajectory, given a
particular component model k as

P(yjle;,6c) = P(y; (1), - - -, yi(nj)|2;(1), - .., 2; kayJ (9)]z;(2), 0k).  (3)

Here we make the standard regression assumption that, conditioned on the model and the z
values (and, thus, the means for the y’s are known), the noise is independent at different 2
points along the trajectory. Dependent noise could be modeled if appropriate for a particular
application.

When we don’t know which component generated that trajectory (as is the case in
practice for clustering), the conditional density of the observed data P(y;|z;) is a mixture
density:

K
P(y;lz;,0) = > fulyiles, Ok)wr, (4)
k

where fi(y;|z;,0k) are the mixture components, wy are the mixing weights, and 8} is the
set of parameters for component k.

Conditional independence between trajectories, given the model, amounts to assuming
that our individuals constitute a random sample from a population of individuals, and
allows the full joint density to be written as:

M K nj

PY|X,0) = szkﬂfk v (D2;(2), 0%)- (5)

The log-likelihood of the parameters 6 given the data set S can be defined directly from
Eq. (5).

L6|S) = Zlogzwkﬂfk (y; (1) |z;(3), 0. (6)

4 The EM Algorithm for Mixtures of Regression Models

The task at hand is to pull the mixture components out of the joint density, using S as
a guide, so that the underlying group behavior can be discovered. The problem would
be simple if it was known to which group each trajectory belonged. Given the group
membership of each trajectory, and assuming some particular form for the density functions
fk (e.g., linear regression models with Gaussian noise), the K models can simply be fit to
the grouped data. If, however, the group memberships are hidden, as is the case in practice,
more complex procedures are required.

A common approach for dealing with hidden data is to employ the EM algorithm (Demp-
ster, Laird, and Rubin, 1977; McLachlan and Krishnan, 1997). Realizing that if we knew



the hidden data, the problem usually becomes a set of much simpler problems (Just as
above), it makes sense to estimate the hidden data, work out the out the answers to the
simpler problems, and then re-estimate the hidden data again using the current answers
that we just computed. This process is then repeated until some stabilization occurs. The
EM framework gives us a consistent way to estimate the hidden data so that £(6|S) is
guaranteed to never decrease.

In Eq. (6), the hidden data corresponds to the unknown group membership for each of
the M trajectories. Let Z be a matrix of indicator vectors z; = (21, ..., k), such that
zjk = 1 for some k, and zj; = 0,Vt # k. So, if zjr = 1, then the jth trajectory is said to be
generated from the kth mixture component. The joint density of Y and Z given X can be
defined as follows.

P(Y,Z|X,6) = P(Y|Z,X,6)p(ZIX,0)

M

= JIPilzj, ;. 0)p(z;)
j
M K

= H H[fk (yj|zj, O ) w7

ij

= HH wkak (95(D)]z;(2),66) | - (7)

This follows from our previous conditional independence assumptions on y; and y; (%), and
the fact that our z;’s are indepenent. The augmented log-likelihood function (also referred
to as the complete-data likelihvod) follows directly from Eq. (7):

M K nj

L(6|S,Z) ZZz]klogwk+ZZZZ]klogfk (v (9)]25(3), Ok). (8)

The EM algorithm consists of two steps: (1) the expected value of Eq. (8) is taken with
respect to p(Z|Y, X, 0'~1), where #*~1 is a current set of parameters, and (2) this expectation
Is maximized over the parameters 6 to yield the new parameters 6*. For the particular form
of Z chosen here, the expectation of £L(8|S, Z) is

M K M K nj

L£(8|S,2Z)] ZZh]klogwk—i—ZZZthlngk (y; () ]2;(3), Or), (9)

where

hik = E[zji]
= p(zk = 1y;, 25,61
x (yjIij =1,2;,0")p(zjr = 1)

x wchfk (95 (3)|25(3), 671). (10)

The hjj can be thought of as soft (0 < h;rx < 1) indicator variables, and the Zjk can
be thought of as hard (zjr € {0,1}) indicator variables. That is, hjr corresponds to the




posterior probability that trajectory y; was generated by component k. Note that all of the
measurements for trajectory j share this membership probability.

In Eq. (2), we defined the regression equation for y such that the expected value of y
was equal to g(z), a linear function of z. We adapt our notation to fit our data § into this
framework by defining the regression equation as follows.

Y; =X;B; + ek, (11)
with Y; = [1 yj(1) --- y;(n;)) ,and
1 zi(1) z;(1)? -+ =z (1)
IR
1 l‘j(.nj) zj(n;)? - mj(;lj)”

In other words, Y; is a column vector formed from the measurements of the jth trajectory,
and X; is an n; by p+ 1 matrix whose second column contains the times corresponding
to the measurements in Y; (p gives the order of the regression model). We assume that
ej is a vector of size n; consisting of zero-mean Gaussians with variance 0;‘:, and that
Br= [Bro Br1 -+ Prp)’ is a vector of regression coefficients. By specifying our mixture
components as regression models defined by Eq. (11), we are setting fx(y;|z;, k) equal to
a Gaussian with mean X;8;, and covariance matrix diag(c2).

The maximization of Eq. (9) with respect to the parameters 8, = {wg, By, 0‘]%} is straight-
forward. In fact, the solutions for 8, and JZ are exactly those obtained from the well known
weighted least squares problem (Draper & Smith, 1981).

The solutions for the regression coefficients 8y, the variance terms oZ, and the mixing
weights Wy are given below.

B, = (X'H.X)"'X'H,Y (12)
~ — 3 / — 3
o2 = (Y X:Bk)AI/;Ik(Y XBy) (13)
25 hik

1 M
Wy = Mzhjk (14)

J
Above, we let Hy = diag((hi; h3; - hjgn)), with by = [pY) A® ... pl))

That is, h;k is a row vector consisting of n; copies of the membership probability A ;.

If welet N = Z;” n;, then Hy is an N by N diagonal matrix whose elements on its
main diagonal represent the weights to be applied to Y and X during regression. The
weights, in this case, are the membership probabilities for each of the trajectories. Thus,
they determine how much of an impact the jth trajectory has on the kth regression. We also
have Y= [Y] Y, - Y)y), andX = [X] X}, --- X)J. In other words, Y is an
N by 1 matrix containing all the y;(z) measurements, one trajectory after another, and X
is an N by p+1 matrix whose second column gives the time points where the corresponding
Y values were measured.

Intuitively, the estimate o is a kind of weighted residual resulting from the regression in
the transformed weighted-space, and Wy, is the average proportion of trajectories contribut-
ing to the kth regression. These equations yield the following EM algorithm for mixtures




bandwidth), but clearly one could generalize our algorithms to include a “data-adaptive
bandwidth” component.

One further extension to the above framework that we have developed so far, is to
include the handling for multivariate y,; measurements (or outputs). For example, suppose
we have trajectory data that measures the movement of a particle in two-dimensional space,
over time. In this case, our regression equation will look like the following.

@) =1 as@ ] B 55 | 4 e o0
[v; ") ;7 O] =[1 =) | 8 8 |+t el (15)
B B

where ey, is zero-mean multivariate Gaussian with covariance matrix ;. In other words,
now y; is a multidimensional trajectory, and correspondingly, the density fi(y;(¢)|z;(z), 6%)
will be multivariate Gaussian.

The steps in our EM algorithm do not change for the multidimensional measurements
case, except that in Eq. (10), we replace the univariate density with the above multivariate
density, and we calculate full covariance matrices during Step 2.

5 Experiments with Simulated Data

This section describes clustering experiments performed using mixtures of regression mod-
els, or more simply regression miztures, using the EM framework described above. For
comparison purposes, regression mixtures performance is compared with that of standard
Gaussian mixtures, and K-means.

Because there are differences in the types of data that the three clustering methods can
handle, a number of restrictions were adopted for proper comparison purposes. First, as
pointed out in Section 2, in order for the use of Gaussian mixtures or K-means to be appli-
cable, we must restrict our trajectories to be of the same lengths, and the trajectories must
be measured at the same X values (or time points). Second, the multivariate density com-
ponents for Gaussian mixture models can, in general, be described by a multi-dimensional
mean vector g and a covariance matrix X. However, we previously focused our discus-
sion on regression model components whose variance can be described by a single variance
parameter o2, and so we will do so for the components in the Gaussian mixture models
also. That is, the covariance matrices shall be restricted to be of the form ¢2I, where I is
the identity matrix. There is another reason why one may want to restrict the covariance
matrices to be of this form. Some trajectory data sets contain M trajectories each of length
n, where M < n. In this case, the data matrix D to be used with Gaussian mixtures is of
size M by n, and the covariance matrices are of size n by n. However, & = D'D/M, and
thus we have that rank(X) < rank(D) < M. Therefore, & cannot be of full rank, and thus
will not have an inverse. We will see a similar type of trajectory data set in Section 6.

The data sets used for experiments described in this section were generated from K
different polynomials by evaluating these polynomials at n different points (or times) in X,
and adding some Gaussian noise to each of these values. For each polynomial, ! different
trajectories were sampled from it, giving a total of M = [K trajectories in each generated
data set. The task is to cluster the M trajectories into K groups that correspond to the
different underlying polynomials (or clusters/classes).

Figure 2 shows one such generated data set and a few iterations of our developed
EM algorithm for regression mixtures applied to this data. The data set shown in Fig-
ure 2 was sampled. from the three underlying polynomials (three clusters): y = 120 + 4z,
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Figure 2: Trace of the EM algorithm as applied to a linear regression mixture model at
various iterations. The upper left plot shows some of the original trajectories, the upper
right shows the initial locations of the 3 cluster trajectories for EM, lower left shows the
locations after 1 iteration of EM, and lower right shows the cluster locations (solid) after
EM convergence, as well as the locations of the true data-generating trajectories (dotted).

y = 10+ 2z + 0.1z%, and y = 250 — 0.75z. The number of trajectories sampled from each
underlying true function is [ = 4, and the length of each trajectory is » = 10. In the upper
left graph of Figure 2 the plotting symbols (square, circle, and ex) for each trajectory rep-
resent its class label (i.e., which polynomial it was generated from), and the line styles are
used to differentiate between different trajectories within a single class. The upper-right
graph shows the same data (with the class labels and lines removed for clarity) along with
the random starting points (solid lines) for each of the three true models. Initially, each
sequence is randomly assigned to a cluster (more accurately, each sequence is assigned with
uncertainty to each cluster through the use of membership probabilites, or weights on the
sequences) and weighted least squares is run to get the three inital estimates. Each esti-
mate, represented by a regression line, was obtained assuming a second-order polynomial
regression model. The lower-left graph shows the regression lines obtained after iteration
1, and the lower-right graph shows the final regression lines as output by our algorithm.
In addition, the lower-right graph shows the true models as dotted lines as well as the
learned clustering for the trajectory data, shown by the plotting symbols. The cluster-
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Figure 3: Mean log-likelihood and classification error rate performance on test data as the
noise level increases from ¢ = 10 to 0 = 35. (I = 10,n = 15).

ing/classification is perfect in this case, i.e., all trajectories are assigned to the true clusters
which generated them.

In order to demonstrate the effectiveness of the linear regression mixture model, several
different comparison tests are presented here. The experimental results described below
were collected as follows. Two polynomials were selected to represent the mean behavior
for two different clusters of Gaussian perturbed trajectories: y = 200 + 1.7z, and y =
200 + 0.7z. Fifty different randomly generated training sets and test sets were created by
randomly choosing some X-values and adding gaussian noise to the function values evaluated
at these points. Using these data sets, each of the three clustering techniques (K-means,
Gaussian mixtures, and linear regression mixtures) were applied to the sets in order to
assess performance based on log-likelihood scores and classification error rate tests (note
that K-means is not a probabilistic model, and thus will not have log-likelihood scores).
Finally, these tests were repeated over eight different noise levels, and the mean values for
the attained log-likelihood scores, and the classification error rates on the test data are
reported.

In the left graph of Figure 3, we see the log-likelihood scores for both linear regression
mixtures, and Gaussian mixtures on test data. The training data in these tests each con-
tained [ = 10 trajectory samples from each class (i.e., from each polynomial), with each
trajectory having length of n = 15. The noise level was increased from ¢ = 10 to ¢ = 35
along the z-axis. In the graph, we see that the linear regression mixture model attains a
higher likelihood score, on the test sets, at every noise level.

The right-hand graph of Figure 3 compares the clustering (or classification) effectiveness
for each of the three clustering algorithms on the same data as above. In the graph, we see
that the linear regression mixture model classifies (clusters) the test data with less error,
at every noise level, than the other approaches.

In most tests, the Gaussian mixture model returns a higher log-likelihood on the training
data, than the regression mixture model does. This appears to be an overfitting effect.
The Gaussian mixtures model exhibits this behavior on this type of data because it treats
the trajectory data as if it were simple vector data, and thus cannot use the trajectory
information to guide it in the learning process. The natural incorporation of this trajectory
information into the regression mixture model is one of its distinct advantages over vector-
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Figure 4: Mean log-likelihood and classification error rate performance on test data as the
noise level increases from o = 10 to o = 35. (I = 20 and n = 15).

based clustering approaches.

If the number of trajectories sampled for each underlying true model is increased, then
we would expect that the loss of the trajectory information incurred by Gaussian mixtures
would be somewhat offset by the increased data information. The results shown in Figure 4
demonstrate this type of behavior for our data. In these graphs, the number of trajectories
sampled from each model was increased from [ = 10 to [ = 20 (i.e., the total number of
trajectories in the data was increased from 20 to 40), while all else remained as for earlier
tests. The graphs, indeed, show that the performance of Gaussian mixtures more closely
resembles that of regression mixtures when the data information is increased.

Another way in which we can increase the data information useful for clustering is to
sample the trajectories with different levels of noise for each class. In the left graph of
Figure 5, the noise level for trajectories sampled from the first model was initially set to
o1 = 10, while the noise level for trajectories sampled from the second model was initially
set to 09 = 20 (again, { = 10 and n» = 10). While it is clear from the graph that the
performance for both mixture modelling techniques has increased, it still seems that the
regression mixture model outperforms the Gaussian mixture model proportionately so. In
the right-hand graph of Figure 5, we initially set o; = 10 and o2 = 30. Even though the
difference in variance between classes is so large that the classification/clustering is almost
perfect, there is still a slight advantage that the linear regression mixture model enjoys.

6 Clustering Trajectories in Video Streams

In this section, we apply both the linear regression mixture model, and the kernel regression
mixture model, to the problem of clustering sequences of images. Our data set consists of
20 video streams depicting 5 different hand movements made by an actor: (1) an upward
movement (Up), (2) a downward movement (Down), (3) a left-to-right movement (Left-
Right), (4) a right-to-left movement (Right-Left), and (5) a diagonal movement acting from
the bottom-left to the top-right of the frame (bLeft-tRight). All movement directions are
from the perspective of the actor. There are 4 samples (video streams) for each movement.
Figure 6 displays some sample images from these streams.
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Figure 5: Mean classification error rate performance measured on test data with different
noise levels per class. In the left graph, oy increases from 10 to 35, and o9 increases from
20 to 45. In the right-hand graph. oy increases from 10 to 35, and o, increases from 30
to 55. Note that the z-axis tracks o;; however, both ¢y and o4 are increasing by the same
amount at each point. (! =10 and n = 15).

Figure 6: Sample frames from our video stream data, depicting hand movements made by
an actor. The top row of images show a portion of a left-to-right movement, while the
bottom row of images show a portion of a down movement.

From each video stream is produced a two dimensional trajectory, in pixel coordinates,
measured over time (or frames). The trajectory crudely follows the movement of the hand by
tracking the centroid of the image difference between frames.Because each of the trajectories
are of different lengths (different videos of the movements have different numbers of frames),
vector-based clustering such as K-means or Gaussian mixtures cannot be applied directly
here.

We attempt to cluster the 20 video streams into 5 groups, based on our estimated
trajectory data. The data is clustered using both a linear regression mixture model, and a
kernel regression mixture model (fitting locally-weighted linear regressions of order 1). The
trajectory data is input to our algorithms without scaling or registering them in any way.
Since the trajectory data is two dimensional, we will regress two dimensional output vectors
y;i(i) = [y; () y;(:)®)] on a univariate z;(i) representing time (frame number), and our
density on y; will be the multivariate gaussian with mean g (z;) and covariance matrix Xy
(note that, in this case, £ is a 2 by 2 matrix).

The top graph in Figure 7 gives the resulting clustering from running linear regression
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Figure 7: The top graph shows clustering/classification comparisons based on regressing
only on the vertical trajectories, the horizontal trajectories, or on both trajectories (2D).
The line labeled True gives the pattern of the true clustering. Only the 2D regression
achieves the correct clustering. The bottom graphs show mean-behavior lines as estimated
by linear regression mixtures and kernel regression mixtures.

mixtures on the video data. The line marked True, in the graph, represents the true
“pattern” of clustering for the video data. It shows that trajectories 1-4 are in group one,
5-8 are in group two, 9-12 are in group three, 13-16 are in group four, and 17-20 are in
group five. The lines marked Vertical and Horizontal show the patterns of clustering when
our algorithm is only allowed to look at one of the dimensions of the data at a time. It is
clear that these patterns do not match the True clustering. However, the line marked 2D
shows the pattern of clustering if our algorithm is allowed to regress the full 2-dimensional
output trajectories y; on the univariate z;. In this case, the true pattern of clustering is
found, and we find value in the multi-dimensional extension to the problem. The same
sort of caricature can be seen when kernel regression components are inserted into the EM
algorithm.

The lower-left graph in Figure 7 displays two of the four example Up trajectories with
dotted lines, and two of the four example Down trajectories with solid lines. The dashed-
dotted line represents the weighted-regression line returned from the EM algorithm for the
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Figure 8: Estimated component model lines as returned from our EM algorithm for mixtures
of kernel regression models.

Up class (movement), when (2-dimensional output) linear regression components are used,
and the dashed line represents the same line for the Down class (movement). The inverse
relationship that can be seen in the trajectory data is exactly what the EM algorithm found
through the use of the weighted-linear fits. The lower-right graph depicts the same scene,
except where (2-dimensional output) kernel regression components were used in the EM
algorithm. We can see that the same features are picked up during the clustering, albeit
with more degrees of freedom.

The top half of Figure 8 shows each of the weighted-regression lines returned by our EM
algorithm while employing (two-dimensional output) linear regression components. The
lines in the left graph describe the mean-movement behavior, per class, with respect to
vertical pixel position. Notice, that the Up and Down lines behave inversely (as they
should, since up is the inverse movement of down), and that the Left-Right and Right-Left
lines behave similar to each other (as they should, since they are similar movements as far
as the vertical dimension is concerned). The bLeft-tRight line shows some similarity to all
lines, except the Down line, which is what we expect.

The top-right graph depicts the same mean-movement behavior as above, except that
here we see the mean behaviors with respect to the horizontal dimension. The same sort
of relationships as noted above, can be seen in this graph also. For example, the Left-Right
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and Right-Left lines are now inverse, as they should be.

The bottom half of Figure 8 mimics the previous two graphs, but depicts the (two-
dimensional output) kernel regression mixtures case. We can see the same types of inverse
relationships in these graphs, as for the previous, though the behaviors seem more separated.
For example, the differences between the bLeft-tRight and Right-Left mean-vertical behaviors
can be more easily discerned in the kernel regression case, than for the linear regression case.

7 Discussion and Future Work

The probabilistic framework allows for a variety of extensions which were not discussed in
this paper due to space limitations. In particular, the number of clusters and the functional
form of the component models can in principle be determined automatically using penalized
likelihood or cross-validated likelihood. There is of course a rather large search space and
an interesting direction for future work is how to perform efficient heuristic search over
the space of such models. Another direction for generalization is to allow linear shifts and
scaling of the trajectories such as replacing g(z) by g(az +b) where a and b are scaling and
translation parameters specific to each trajectory which are estimated from the data.
Another generalization of this approach is to couple the parameters for each trajectory
to a prior density on parameters in a hierarchical modeling framework. It can be shown that
the method proposed in this paper (as well as other earlier methods for clustering sequences
using mixtures of Markov models) is a special case of a more general hierarchical framework
(Cadez and Smyth, 1999). In particular, constraining all of the individuals in a cluster to
have the same parameters is equivalent to assuming a delta function prior in a hierarchical
framework. By relaxing this assumption, one can still couple the regression parameters
both within and between clusters, but allow for a more flexible clustering “language,” e.g.,
the slopes of the lines in a particular cluster are constrained to be quite similar (a narrow
prior) but the intercepts are allowed to vary quite substantially (a fairly broad prior). These
priors are not conventional Bayesian priors which need not be specified ahead of time, but
instead can be estimated from the data using EM (as in an empirical Bayesian framework).

8 Conclusions

In this paper we investigated the problem of clustering trajectbry data. Traditional vector-
based clustering algorithms are inadequate in many cases for these types of data sets. We
introduced a probabilistic mixture regression model for such data and showed how the
EM algorithm could be used to cluster trajectories. The model-based assumption can be
relaxed to allow for non-parametric regression components and the technique can also be
easily extended to handle multivariate trajectories. We demonstrated the utility of the
approach on both simulated and real data sets; the method is seen to outperform the more
naive k-means and Gaussian mixture models.
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