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Abstract

Metrics-only Training of a Neural Network for Switching Among an Array of

Feedback Controllers

by

Marco Carmona

We propose a novel training approach for neural networks based on switching among

an array of feedback controllers (FC). Traditionally, the neural network training imple-

mented in reinforcement learning problems can be achieved with observable kinematic

variables (KV). In this work, our training approach takes a step further by using the

metrics-only (MO) or LTM inputs into the networks where each metric and FC fulfills

a design specification. Alongside, the reinforcement learning algorithm is a hierarchical

control architecture for switching among multiple FCs and its modes. With the designed

FCs based on Lyapunov functions or stochastic optimal control, we show that the MO

training has a faster convergence with less variations than the one that is based on KV.

These results are important for applications requiring large number of controllers. We

provide results for a pendulum control problem, a bicycle, and a tricycle navigation

problem. In the case of the tricycle problem, we also show that the trained neural

network can be applied beyond numerically simulated control problems. The results of

this work are illustrated by numerical and virtual reality simulations.
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Chapter 1

Introduction

Figure 1.1: Stochastic optimal steering of a car: the figure is a snapshot from the high-

fidelity simulator Anvel 3.0, in which we implemented the steering.

Typically, the design of a feedback controller is based on a certain set of as-

sumptions. These assumptions are in the form of models, training data, parameters,

etc. However, real world applications may or may not correspond to a single or a

combination of these assumptions. The topic of this thesis work is on how to combine

feedback controllers (FC), each designed under specific assumptions in a synergistic way

to obtain a controller that is under a certain metrics better than a sum of its individual

parts. We specifically investigate the synergistic composition by using a neural network

that implements a policy for switching among the controllers. As depicted in Fig. 1.2,
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Figure 1.2: The hierarchical control architecture: the neural network is trained for

switching among an array of feedback controllers (FC). The dotted lines indicate con-

nections that are omitted for certain plants.

the neural network decides which controller should be active and plays the role of a

supervisory controller.

The scenario which motivates this work is depicted in Fig. 1.1. The figure

shows a car that navigates a circular road. It is obvious that for the navigation of the

road, the driver does not need to know the exact radius of the circular road and the

car could be to the right or to the left of the circular path and still traverse the road.

The driver must trade off between adjusting the car velocity and keep the center of the

road, otherwise the vehicle could veer off the road. Our approach to the trade-off is to

design an array of controllers, in which each controller can navigate the road at a single

fixed velocity. The neural network is trained using only the kinematic variables (KV)

describing the motion of vehicle, or using only performance metrics of the controllers

2



(MO). During the training, we can also account for the constraints for the switching

sequence as shown in Fig. 1.2.

In this work, we study a bicycle, a tricycle mobile robot navigation problem,

and a pendulum mechanical system. Using a bicycle kinematic model we compute mul-

tiple stochastic optimal controllers with their corresponding metrics for the navigation

at different velocities. Then, we train the neural network for switching among the con-

trollers, but taking into account that the bicycle velocity cannot be abruptly changed.

After verifying the control in numerical simulations, we test the controller for a front-

wheel drive (FWD) tricycle in a high fidelity robot simulator. Following this, we also

find a way to implement the same controller to a back-wheel drive (BWD) tricycle.

In the case of the pendulum mechanism, the neural network is trained to

switch among multiple controllers, so that the pendulum reaches the upright position

in minimum time. In this case, the controllers are designed analytically and there are

no constraints on the switching sequence among them.

Overall, in all presented examples, the switching among the controllers is based

on neural networks that are trained using reinforcement learning. The examples show

that the learning and the hierarchical control architecture provide a general framework

to address control problems in a wider range of systems with arrays with known metrics.
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1.1 Related Work

The control architecture in Fig. 1.2 is a version of hierarchical control architec-

tures that have been studied both in control and robotics [52]. Due to the continuous

dynamics of the system under control and the switching among multiple controllers,

this system is also an example of hybrid or supervisory control systems [33]. While the

switching may result in instability [38, 12, 36], it can also contribute to performance

improvements [46, 37]. A performance signal-based switching for mobile robots has been

considered in [26] and the optimality of switching has been considered in [7] and [41]. To

switch between the navigation to goal and obstacle avoidance in [58], the authors used

Lyapunov functions, while in [43], the authors considered a stochastic problem and used

a rule for switching based on a probability inequality. This use of probabilistic infer-

ence to implement switching inspired our work on learning a safe switching policy. The

work presented here is aligned with hierarchical approaches for mobile robot navigation

which use learning [18, 22, 59] or stochastic control [45, 44], as well as the emergence

of data-driven approaches for learning rules for switching among multiple controllers

[1, 27] or options [55, 56, 8].

The options in our work are FCs that can be defined analytically based on

control theory or can be computed, e.g., using the numerical stochastic optimal control

[34]. Once we have obtained the FCs, we use reinforcement learning and the actor-critic

[53, 8] neural network to learn the rule for switching among the controllers. The neural

network training is performed under the assumption that the rule is applied at every

4



time step; in other words, we deal with single-step options [55]. A way to formulate

the training is to use data associated with the original problem formulation as in [56].

In that case, the KV/MO switch in Fig. 1.2 would be in the position KV, indicating

that the learning is based on the KV, otherwise, the switch indicates that the training

is based on MO.

A particular focus has been given when generating MO based controllers, which

stemmed from studying the problem of steering a vehicle in the presence of uncertain

information about the road. In that case, Kalman Filtering [29] or data fusion tech-

niques [10] can be used to reduce the uncertainty associated with the sensory data and

precisely estimate the steering relevant variables. Alternatively, the problem can be ap-

proached as a robust path-planning problem using various path-planning methods [35],

such as Rapidly-exploring Random Trees [50] or Model Predictive Control strategies

[32]. Finally, the problem can be considered as a problem of adaptive feedback control

[62] or a machine learning problem for which the deep learning approach [9] can be used

to learn the feedback control for steering. In this work, we use computationally gen-

erated stochastic optimal controllers with properties that can be proven based on the

principles of optimal control and stochastic calculus. This approach has been previously

used for various types of UAV navigation tasks [4, 3], and has been tested both with a

UAV [39] and with differential drive robots [40].
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1.2 Outline

After this introductory chapter, we describe the neural network training which

is implemented in the PyTorch environment. As a preliminary for the learning, we

compute a stochastic optimal control to navigate a vehicle as discussed in Chapter 3.

In chapters 4 and 5, we take multiple controllers, which are based on the principles de-

scribed in Chapter 3, and use the neural network for switching among them. Additional

results related to Chapters 3-5 are provided in Appendices A and B. Lastly, in Chapter

6, we provide conclusions and plans for future work. The outline of Chapters 3-5 is

provided below.

• Chapter 3. Stochastic Optimal Approach to the Steering of an Au-

tonomous Vehicle through a Sequence of Roadways. This chapter dis-

cusses the implementation of a stochastic optimal controller for steering a vehicle

to robustly follow an unpredictably winding road. The controller is based on a

bicycle model and the road is defined as a sequence of roadways. Each roadway

has a fixed position, but its orientation is uncertain. To anticipate this uncer-

tainty, we model the orientation with a Brownian stochastic process, which serves

as a stochastic process model for the orientation observations. The stochastic con-

troller based on such a model implicitly creates a robust road following controller.

The control design is illustrated with numerical simulations and implemented for

steering a car in a high-fidelity car simulator.
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• Chapter 4. Metrics-only Training Neural Network for Switching among

an Array of Feedback Controllers for Bicycle Model Navigation. Here

we propose a novel training approach for a neural network to perform switching

among an array of computationally generated stochastic optimal feedback con-

trollers. The training is based on the outputs of off-line computed lookup-table

metric (LTM) values that store information about individual controller perfor-

mances. Our study is based on a problem of bicycle kinematic model navigation

through a sequence of gates and a more traditional approach to the training is

based on kinematic variables (KVs) describing the bicycle-gate relative position.

We compare the LTM and KV based training approaches to the navigation prob-

lem and find that the LTM training has a faster convergence with less variations

than the KV based training. Our results include numerical simulations illustrating

the work of the LTM trained neural network switching policy.

• Chapter 5. Metrics-only Training of Neural Networks for Switching

among an Array of Feedback Controllers. Inspired by the novel training

approach in Chapter 4, here we provide further results using metrics-only (MO)

training. We are repeating the Chapter 4 training methods and further confirm

its results with more examples. In this chapter, we include trainings based on the

Lyapunov functions. We provide results for a pendulum control problem and a

tricycle navigation problem. We show results for both a front-wheel and back-

7



wheel drive tricycles. The training for both problems can be achieved based on

MO and observable kinematic variables (KV). The number of inputs to the neural

network in the case of the MO approach depends on the number of controllers,

which is important for applications requiring a large number of controllers. In the

case of the tricycle problem, we also show that the trained neural network can be

applied beyond numerically simulated control problems.
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Chapter 2

Neural Network Training

Implementation in PyTorch

2.1 Introduction

The neural network is a universal function approximator able to approximate

any arbitrary continuous function [11]. A pair of neural networks used in this work are

the critic network shown in Fig. 2.1a and the actor network shown in Fig. 2.1b. These

networks are approximators that have multilayer perceptron structure mapping inputs

to outputs using nonlinear functions. We present the neural network architectures

used in this work and how we implemented the algorithm for updating the network

parameters in PyTorch.
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(a) (b)

Figure 2.1: Multilayer feedforward networks: (a) a critic neural network; (b) an actor

neural network. Both networks have an array of inputs denoted by x. The output for the

critic Ŝϕc(x) is dependent on x and its weight parameters ϕc and the output for the actor

πsϕa
is dependent on x and its weight parameters ϕa. The forward direction given by

the weight parameters ϕc and ϕa is indicated in the figure by arrows. The nonlinearities

of the networks are introduced with nonlinear activation functions a = f(z).

2.2 Neural Network Architecture

The critic network outputs a scalar value that estimates a cost-to-go function

of reinforcement learning. The actor network outputs action probabilities for a set of

available actions. At the input layer of the networks (layer 1), the inputs can include

kinematic variables, discrete variables associated with the current active controller, or

metric values. The nonlinear activation alj produced by f(z) at each neuron for hidden
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layers l = 2, 3 from Fig. 2.2 is given by

alj = f(zlj) = f

 k∑
k=1

ϕljka
l−1
k + blj

 (2.1)

where ϕljk weighs the kth activation al−1
k from the previous layer l − 1 with the neural

connection directed from the kth neuron to the jth neuron of the lth layer in addition

biased with value of blj . Note, l − 1 = 0 corresponds to the input layer, in this case the

activations are the inputs to the networks. In this work, we use the PReLU activation

function alj assigned from f(zlj) = max(0, zlj) + cmin(0, zlj) for some scalar variable

parameter c, and set the number of neurons in l = 2, 3 to k = j. At the output layer of

the networks, the critic outputs Ŝϕc(x) as an approximate value to the true cost-to-go

function S(x), while the actor outputs propabilities πsiϕa
= g(ϕ3) = e

ϕ3si∑
s e

ϕ3s
, which are

normalized values in the range (0,1).

2.3 Neural Network Weight Parameter Updates

The neural network outputs and updates of its parameters can be computed

and efficiently by the use of the PyTorch open source machine learning framework [51].

The learning, i.e., the optimization of the network weights is implemented in two steps:

(1) forward propagation of the input values that results in output values dependent on a

set of weights ϕ and input x values as noted in Section 2.2; (2) backpropagation when the

network weights are updated taking into account a loss function error. Our loss function

or performance metric for the critic network is the mean squared error and the actor

training minimizes the negative log-likelihood (for details see Chapter 5, expressions

11



(5.11)-(5.13)). Given the ”loss” functions and using Autograd, the PyTorch automatic

differentiation engine, we can compute the gradient of the loss with respect to the weight

parameters ∂loss
∂ϕ and ∂loss

∂b , which is the goal of backpropagation. An optimizer is then

used to update the weight parameters after the forward and backpropagation steps.

The implementation of this in PyTorch requires key features such as the torch.tensor’s,

Autograd (torch.autograd), nn.Module, optimizer (torch.optim), and a loss function.

The torch.tensor is a fundamental building block in the manipulation of multi-

dimensional arrays. We use the torch.tensor’s for storing the values output from net-

works, for the algebraic manipulations, and for the inputs into our respective loss func-

tions. More importantly, it allows tensors to be tracked in the Autograd tree structured

computation graph by setting a gradient flag to true, i.e., requires grad=True. This flag

tells Autograd to track every operation on these tensors and by default the flag is set to

true for network weight parameters in PyTorch. Thus, the output of the networks will

also have the flags set to true since it tracked the operations done on the weight parame-

ters. Subsequently, if the command torch.cat(·) is used to concatenate arrays as in lines

10-14 in Fig. 2.3, the resulting array will also have the flag set to true. The .backwards()

function in line 19 of Fig. 2.3 points to the importance torch.tensors have by identifying

the leaves of the tree and accumulating the gradients with respect to the graph leaves

(weight parameters). This can be verified by using the x.grad fn.next functions function

calls in the following snippet of example code

def pr in t g raph (g , l e v e l =0):
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i f g == None : return

print ( ’ ∗ ’ ∗ l e v e l ∗4 , g )

for subg in g . n ex t f unc t i on s :

p r in t g raph ( subg [ 0 ] , l e v e l +1)

pr in t g raph ( p o l i c y l o s s . grad fn , 0)

where .next functions is recursively called tracing the graph backwards towards the tree

leaves. The print graph(·) would be placed after the call to .backward() to print the

tree graph.

When creating the class to define the neural networks in PyTorch, the nn.Module

class is inherited inside our network class. From this class, many important functions

can be defined such as the forward(·) function, which allows data to be propagated

forward from the input to the output of the neural network. This outputs a prediction

value starting from some time point t and predicting a value at a next time point t+∆t.

The next time point prediction relies heavily on the network parameters and on the op-

timizer parameters, i.e., learning rates, momentum, weight decays, etc. to find local or

global minima.

In this work, we selected the Adam optimizer for its robustness since it uses

both the mean and the variance to optimize our neural network weight parameters.

Updates of the network parameters based on the Adam algorithm are shown in Fig. 2.2.

The Adam algorithm combines ideas from both the stochastic gradient descent with

13



Figure 2.2: [31] Adam algorithm used as the optimizer in this work.

momentum and Adadelta, where in the former it simply uses the gradient descent al-

gorithm with the moving average and in the latter it uses the square of the gradient

descent in the learning rate parameter. This is a major improvement over using a brute

force method to compute the optimal weights for each parameter. Adam is computa-

tionally efficient, is not memory intensive, and handles noisy gradients. Its robustness

is demonstrated by its moving average and a bias correction where the algorithm’s ini-

tialization m0 = 0 and v0 = 0 is important in directing the gradients with no influence

on any specific gradient gt.

The loss function is of critical importance as this is where the learning algo-

rithm must minimize the loss for the network weights to update its parameters. In

the case of a classifier i.e. actor network, the negative log-likelihood ”loss” function is

used. On the other hand, the mean squared error (MSE) loss function is used for a

cost function network, i.e., the critic network. Both work together finding solutions and
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output action values for the loss function.

Figure 2.3: Outline of the PyTorch code implemented for both the bicycle-gate envi-

ronment and the pendulum environment. In the algorithm, data are collected and used

in the loss function for the updates of the neural networks.

Following the works presented in Chapters 4 and 5, Fig. 2.3 gives psuedocode

for the actor-critic network training implemented in PyTorch. In lines 2-4 the ini-

tialization takes place, which also includes the initialization of computed metrics and

controllers that belong to the bicycle-gate environment. This initialization can be

very memory intensive. Then for each BATCH SIZE, in line 7 data is collected from
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play episode(·). The function play episode(·) is where multiple trials are ran to reach

the target set, while collecting data that will be returned to reduce the error of reaching

this set. In line 8, the get discounted returns(·) function outputs a prediction of dis-

counted returns over a horizon given by NUM STEPS with GAMMA discounting factor.

Lines 9-14 is code for storing data that is being setup for the computation of the mean

entropy or the loss functions, with the exception of line 14, which is used for plotting the

performance to reaching the target set. For each NUM EPOCHS, Line 15 reports the

confidence in the selected actions and lines 16-17 evaluate the loss functions. In line 18,

we clear the networks gradients found in the previous iterations. Calling .backward()

computes the gradients for this iteration and .step() updates the network parameters

according to Adam algorithm.

2.4 Conclusions

With the efficiency and ease of use PyTorch provides, we have implemented

an actor-critic neural network architecture and updated its parameters. Both the actor

and critic networks have multiple layers with nonlinear activation functions for the

learning of nonlinear functions. The learning is accomplished by a forward propagation

of the input values to compute output values and the update of the weight parameters

is done after the backward propagation of the error through the network starting from

the last layer (output layer). The resulting weight parameters are updated based on

the computed loss error according to the Adam algorithm. This framework allow us to
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use these networks in a hierarchical control architecture for switching among multiple

controllers.
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Chapter 3

Stochastic Optimal Approach to the

Steering of an Autonomous Vehicle

through a Sequence of Roadways
• M. A. Carmona, A. A. Munishkin, M. Boivin, and D. Milutinović, “Stochastic

optimal approach to the steering of an autonomous vehicle through a sequence of

roadways,” in 2019 American Control Conference (ACC), 2019, pp. 3279–3284.

3.1 Introduction

With an increasing interest in the use and deployment of self-driving cars, there

is a pressing need to analyze and develop robust steering strategies for these automated

vehicles. These strategies need to be able to steer an autonomous car in such a way that

it smoothly guides itself and stays on the road even when the curves are unpredictable.

To achieve that, we propose a stochastic optimal steering controller based on a bicycle
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kinematics model. This nonholonomic model has been frequently used in the literature

as an approximation of car kinematics [29, 50, 32].

We consider a road following scenario in which a car attempts to stay on a

road as shown in Fig. 3.1. The road is composed of curvature-bounded road segments.

At the beginning of each road segment, we attach a roadway, which is uniquely defined

by its position, orientation and width. We assume that the road has a constant width,

therefore the width of roadways is the same for all of them. If the roadway is depicted

as a gate, then steering the car along the road is equivalent to steering the car through

a sequence of gates. If the required sequence of roadways is known in advance, the

problem of car steering can be considered as a path-planning problem [35]. However,

in a general case, the sequence may not be known in advance due to a limited view of

the road. An example of this is when a car follows a curved road which goes along the

base of a wall or a cliff. The steering that we propose requires only information about

the next roadway, but this information can be uncertain and may change as the car

approaches it, specifically when the information about the orientation of the roadway is

in question. To anticipate that uncertainty in our control design, we use the model in

which each roadway’s orientation changes unpredictably following a Brownian process.

This type of model accounts for a curved road, as well as for the process of updates on

the orientation of the next roadway as the car approaches it.

The problem of steering a vehicle in the presence of uncertain information

about the road can be considered as an estimation problem. In that case, Kalman

Filtering [29] or data fusion techniques[10] can be used to reduce the uncertainty as-
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Figure 3.1: Stochastic optimal steering of a car. The figure is from the high-fidelity

simulator [5] in which we implemented the steering. The steering implementation rep-

resents the road by a sequence of roadways. At every time point, the car is steered

through the next roadway. Each roadway is represented by its center (orange flag),

orientation and width. The first roadway in the sequence is depicted by the red line.

The corresponding numerical data is in Fig. 3.8.

sociated with the sensory data and precisely estimate the steering relevant variables.

Alternatively, the problem can be approached as a robust path-planning problem using

various path-planning methods [35], such as Rapidly-exploring Random Trees [50] or

Model Predictive Control strategies [32]. Finally, the problem can be considered as a

problem of adaptive feedback control [62] or a machine learning problem for which the

deep learning approach [9] can be used to learn the feedback control for steering.

The steering controller proposed in this paper is not only robust to the un-

certainty, but is suitable for real time control applications dealing with very short time

scales, such as driving. Once the controller is computed offline, it is stored in a lookup

table and its values can be quickly accessed by a minimal amount of computations,

which is in contrast with the amount of computations required for other methods, e.g.,
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those based on path-planning approaches. Contrary to machine learning methods, the

controller does not depend on training sets and has properties that can be proved on

the principles of optimality and stochastic calculus. This approach has been previously

used for various types of UAV navigation tasks [4, 3], and has been tested both with a

UAV [39] and with differential drive robots [40].

The paper is organized as follows. Section 3.2 formulates the problem of steer-

ing a bicycle to enter a single roadway. The stochastic optimal control formulation of

the steering problem is presented in Section 3.3 and its numerical solution is described

in Section 3.4. In Section 3.5, the numerical solution is implemented to steer the bicycle

through a sequence of roadways, as well as to steer a car to follow the road in the Anvel

3.0 simulation environment. Section 3.6 gives conclusions.

3.2 Problem Formulation

Let us consider a scenario in which a car drives on a road. If the road is divided

in segments and each segment starts with a gate, i.e., with a roadway, then this scenario

is equivalent to the one in which the car drives through a sequence of roadways (see

Fig 3.1). Therefore, the basic problem is to steer the car to enter the next roadway

taking into account that the roadway orientation is uncertain and that the information

about it may change due to updates from the sensory system.

The car kinematics in this chapter is modeled by the kinematics of a back

wheel drive bicycle, as depicted in Fig. 3.2. to describe the basic problem precisely, we
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Figure 3.2: The car model is represented as a back wheel drive bicycle model. The

center of the front wheel is located at A with its perpendicular steering handle and

the center of the back wheel is located at B with its perpendicular bicycle pegs . The

velocity vector shown as a solid arrow is applied at point B.
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describe below the roadway and bicycle kinematics, and introduce relative coordinates

that uniquely define the roadway-bicycle relative position.

Roadway: The roadway is a gate defined with a position width D and orienta-

tion angle, i.e., the heading angle θR (see Fig. 3.2). In our control design, the roadway

heading angle uncertainty is anticipated by a Brownian, i.e., random walk process

dθR = σRdwR (3.1)

where dwR is the unit intensity Wiener increment [48].

Bicycle: The kinematics of a back wheel drive bicycle (see Fig. 3.2) is given

by

dxA = vB(cos θ − tanϕ sin θ)dt (3.2)

dyA = vB(sin θ + tanϕ cos θ)dt (3.3)

dθ =
vB
L

tanϕdt (3.4)

dϕ = udt (3.5)

where the back wheel is driven by a constant velocity vB > 0. The bicycle body length

L > 0 is measured from A to B, θ is the heading angle of the bicycle, i.e., the bicycle

heading, and ϕ is the steering angle. Since π
2 corresponds to the singular configuration

of the bicycle kinematics in which the bicycle cannot move, then ϕ ∈ (−π
2 ,

π
2 ). The

control variable u is the steering rate.
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Relative coordinates: The coordinates are depicted in Fig. 3.2 and defined as

r2 = x2A + y2A, r ≥ 0 (3.6)

β = arctan

(
yA
xA

)
− θ, β, θ ∈ (−π, π] (3.7)

α = θR − θ, θR ∈ (−π, π] (3.8)

where r is the distance between the steering wheel A and the roadway R, β is the

bearing angle and α is the difference between the roadway and bicycle heading angles

θR and θ, respectively.

Basic problem: Define the steering control variable u so that the bicycle enters

the roadway. Entering the roadway corresponds to the roadway-bicycle relative position

which belongs to the target set T defined as

T = {(r, β, α, ϕ)|r ≤ Rmin,−βm ≤ β ≤ βm,−α ≤ α ≤ αm,−ϕm < ϕ < ϕm} (3.9)

The target set can be understood as a sector of a circle, where the circle has the center

in the point R (Fig. 3.2) and the radius Rmin. The sector starts with the angle −αm and

ends with αm, which means that the bicycle enters the target set only if the heading

θ is aligned with the heading of the roadway θR and the difference from it is in the

range [−αm,αm]. However, in addition to it the bearing angle β has to be in the range

[−βm,βm], so that the bicycle’s front wheel heads towards the roadway. Finally, at the

point at which the bicycle enters the roadway, the steering angle ϕ has to be bounded

to its range (−ϕm,ϕm).

However, while the control u steers the bicycle towards the target set, the
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bicycle should not enter the roadway from the wrong direction. Therefore, we also

define the set of configurations that should be avoided A as

A =
{
(r, β, α, ϕ)| − π

2
< ϕ ≤ −ϕm or ϕm ≤ ϕ <

π

2

}
∪ {(r, β, α, ϕ)|r ≤ Rmin, (−π < β < −βm or βm < β ≤ π),

(−π < α < −αm or αm < α ≤ π)} (3.10)

The avoidance set A is defined based on the same circle as the target set T , but its

angle ranges are complementary to those in the target set. Fig. 3.3(a)-(c) shows three

examples of the bicycle configurations which are not in the target set T and one (d)

which is in the set. In summary, the basic problem is to define the steering control

variable u, so that the bicycle enters the target set T and avoids the set A.

3.3 Stochastic Optimal Control To Enter A Single Road-

way

In this section, we formulate the basic problem as a minimum time stochastic

optimal control problem. This is adequate since we know that for this type of problems,

the optimal control solution is a state feedback controller and the time efficiency of

steering is preferred.

Applying Îto calculus [48] to (3.6)-(3.8) and taking into account (3.1)-(3.5)
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Figure 3.3: Illustration of the target set T . The radius Rmin is represented by the

circle around the center of the roadway, and the yellow sectors are defined by limit

angles αm and βm. If the bicycle (a) is not aligned with the roadway, (b) enters it from

the opposite side, or (c) has the steering angle that is too big, the bicycle is not in the

target set T . The configuration example (d) is in the target set T

yields the stochastic kinematics of the roadway-bicycle system

dr = brdt = −vB[cosβ + tanϕ sinβ]dt (3.11)

dβ = bβdt =
[vB
r
(sinβ − tanϕ cosβ)− vB

L
tanϕ

]
dt (3.12)

dα = bαdt+ σRdwR = −
(vB
L

tanϕ
)
dt+ σRdwR (3.13)

dϕ = bϕdt = udt (3.14)

which we use to define the optimal control with the state space vector x = (r, β, α, ϕ),

r > 0, β, α ∈ (−π, π], ϕ ∈ (−π
2 ,

π
2 ).
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Let us introduce a control u dependent cost function

J (u(t)) = E

{
g(x(tf )) +

∫ tf

0
1dt

}
(3.15)

where x(tf ) ∈ T ∪ A and E is the expectation operator and the evolution of x(t) is

constrained to (3.11)-(3.14). The symbol tf denotes a terminal time at which the state

x(t) enters the target set T or the avoidance set A and g(x(tf )) is the terminal cost

defined as

g(x(tf )) =


0, x(tf ) ∈ T

M, x(tf ) ∈ A

(3.16)

The terminal cost includes a large penaltyM >> 0 if the state x(tf ) enters the avoidance

set A and there is no penalty for entering the target set T . We formulate the steering

optimal control as the control u which minimizes the cost function (3.15). This control

steers the bicycle towards the target set T in the minimum expected time and avoids

the set A.

The optimal control u associated with minimizing the cost (3.15) can be found

as the solution of the Hamilton-Jacobi-Bellman (HJB) equation [34]

inf
u
[LuV (x) + 1] = 0, x /∈ T ∪ A (3.17)

with the boundary condition V (x) = g(x), x ∈ T ∪ A, where Lu is the second order

differential operator

LuV = br
∂V

∂r
+ bβ

∂V

∂β
+ bα

∂V

∂α
+ bϕ

∂V

∂ϕ
+
σ2R
2

∂2V

∂2α
(3.18)
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in which br, bβ, bα and bϕ are defined by (3.11)-(3.14), respectively. The HJB equation

is a second order partial differential equation and we propose to compute the steering

control using its numerical solution.

3.4 Numerical Stochastic Optimal Control

The numerical solution of (3.17) can be computed using a locally consistent

Markov chain discretization [34]. The discretization approximates the original optimal

control problem with an optimal control problem of a Markov chain with control depen-

dent transition probabilities. Therefore, the numerical solution of (3.17) is approximated

by a problem that can be solved over a discrete space using dynamic programming, i.e.,

the so-called value iterations [57]. In this case, the value iterations result in a discrete

approximation of the value function V h and optimal control u∗h, both of which are in

the form of a four-dimensional lookup table. The superscript h indicates that the value

function and control are computed for the discretized problem.

To discretize (3.17) in the state space, we use the discrete steps ∆r, ∆β, ∆α

and ∆ϕ for the discretization of r, β, α and ϕ, respectively. The discretization is based

on the upwind discrete approximation [34] of the derivatives of V in (3.17), and, for

the sake of brief expressions, we introduce xh = (rh, βh, αh, ϕh). The discrete derivative
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approximations are

∂V

∂r
≈
b+
rh

∆r

(
V h(xh +∆r)− V h(xh)

)
−
b−
rh

∆r

(
V h(xh)− V h(xh −∆r)

)
(3.19)

∂V

∂β
≈
b+
βh

∆β

(
V h(xh +∆β)− V h(xh)

)
−
b−
βh

∆β

(
V h(xh)− V h(xh −∆β)

)
(3.20)

∂V

∂α
≈
b+
αh

∆α

(
V h(xh +∆α)− V h(xh)

)
−
b−
αh

∆α

(
V h(xh)− V h(xh −∆α)

)
(3.21)

∂V

∂ϕ
≈
b+
ϕh

∆ϕ

(
V h(xh +∆ϕ)− V h(xh)

)
−
b−
ϕh

∆ϕ

(
V h(xh)− V h(xh −∆ϕ)

)
(3.22)

∂2V

∂α2
≈

σ2D
2∆α2

(
V h(xh +∆α)− V h(xh)

)
−

σ2D
2∆α2

(
V h(xh)− V h(xh −∆α)

)
(3.23)

where b+
rh

= max[0, brh ], b
−
rh

= max[0,−brh ] and b+
βh , b

−
βh , b

+
αh , b

−
αh , b

+
ϕh and b−

ϕh are

defined in the same way. The superscript h indicates terms that are evaluated at the

points of the discretized state space in which rh+1 − rh = ∆r, βh+1 − βh = ∆β,

αh+1 − αh = ∆α, ϕh+1 − ϕh = ∆ϕ. After the substitution of (3.18)-(3.23) in (3.17), we
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move all the terms that include V h(xh) to the left side of expression (3.17) to obtain

V h(xh) = infu
{
∆thu+

p+∆r,uV
h(xh +∆r) + p−∆r,uV

h(xh −∆r)+

p+∆β,uV
h(xh +∆β) + p−∆β,uV

h(xh −∆β)+

p+∆α,uV
h(xh +∆α) + p−∆α,uV

h(xh −∆α)+

p+∆ϕ,uV
h(xh +∆ϕ) + p−∆ϕ,uV

h(xh −∆ϕ)
}

(3.24)

where

p±∆r,u = ∆thu

(
b±
rh

∆r

)
, p±∆β,u = ∆thu

(
b±
βh

∆β

)

p±∆α,u = ∆thu

(
b±
αh

∆α
+

σ2R
2∆α

)
, p±∆ϕ,u = ∆thu

(
b±
ϕh

∆ϕ

)

can be interpreted as discrete Markov-chain transition probabilities from the points

(rh±∆r, βh±∆β, αh±∆α, ϕh±∆ϕ) of the discrete space to the point (rh, βh, αh, ϕh).

The symbol ∆thu is the interpolation time interval, which is locally consistent with the

transition probabilities [34] and can be expressed as

∆thu =

(
|bhr |
∆r

+
|bhβ|
∆β

+
|bhα|
∆α

+
|bhϕ|
∆ϕ

+
σ2R

(∆α)2

)−1

(3.25)

where |bhr | = b+
rh

+ b−
rh
, |bhβ| = b+

βh + b−
βh , |bhα| = b+

αh + b−
αh and |bhϕ| = b+

ϕh + b−
ϕh . To

summarize, expression (3.24) is the discrete version of (3.17) and the discrete approxi-

mation V h of the value function V can be solved numerically using the value iterations

[57] starting from an initial guess for the V h(xh) values.

For the computational domain K of the numerical solution, we use

K = {[Rmin − δ,Rmax] × [−π, π − ∆β] × [−π, π − ∆α] × [−ϕm, ϕm]} (3.26)
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and, in our numerical example, we use Rmin = 1.4m, δ = 1.2m, Rmax = 30.2m and

ϕm = 27π/180. The value of δ defines the smallest value r that is taken into account for

the numerical solution, and in this case this value is 0.2m. In our problem formulation,

the angles β and α have a full (−π, π] range, which corresponds to the computational

domain being periodic along those states. Thus, all pairs of points (rh,−π, αh, ϕh) and

(rh, π−∆β, αh, ϕh), as well as (rh, βh,−π, ϕh) and (rh, βh, π−∆α, ϕh) are next to each

other, respectively. The discrete steps are ∆r = (Rmax − Rmin + δ)/100, ∆β = ∆α =

5π/180 and ∆ϕ = 9π/180. In our problem formulation, the car stops once it has reached

either the target set T or the avoidance set A defined in (3.9) and (3.10), respectively.

Therefore, for Rmin, we use the absorbing boundary condition V h(Rmin, β
h, αh, ϕh) = 0

or V h(Rmin, β
h, αh, ϕh) = M , which depends on the state (Rmin, β

h, αh, ϕh) belonging

to the target set T , or the avoidance set A, respectively. The boundary conditionM also

applies for any state with ϕh = ±ϕhm∓∆ϕ since that boundary belongs to the avoidance

set A. For this problem, we are free to choose the boundary condition for states with

Rmax and we choose the reflective boundary conditions, i.e., V h(Rmax, β
h, αh, ϕh) =

V h(Rmax − ∆r, βh, αh, ϕh). A general explanation of this method for the control of

nonholonomic vehicles is in [19]. This method was also used for target tracking problems

[4].

Result: Fig. 3.4 shows the result of a numerical simulation of the stochastic

optimal control for steering the bicycle (3.2)-(3.5) with the simulation step of 0.1 sec.

The bicycle back wheel velocity vB = 11.18m/s, the length L = 2.66m and the roadway

widthD = 2.8m. The uncertainty of the roadway heading is modeled with σR = 5π/180,
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Figure 3.4: Optimal steering to enter the roadway. Initially, the bicycle starts with the

front wheel at (5,−5), facing in the opposite direction of the roadway which has the

heading angle θR = −π/2. The motion of the bicycle and the roadway is captured in

the (a)-(h) panels.
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Figure 3.5: Plot showing the car’s steering (top) progression as the roadway changes in

its orientation (bottom) from −π/2 towards −π/3. This progression corresponds to the

motion captured in Fig. 3.4.

see expression (3.1). The target set T and the avoidance set A used in the simulation

are based on βm = 80π/180, αm = 60π/180 and the values used in the definition of the

computational domain K in expression (3.26). The value that is used to penalize for

the states that should be avoided is M = 104.

Fig. 3.4 shows that the bicycle that starts from the position in which it faces

the roadway from the opposite direction enters the roadway after τ = 6.6sec. While

the bicycle steers toward the roadway, the roadway heading changes stochastically in

periodic time intervals. Fig. 3.5 shows the time plots of the steering angle and the

roadway heading from the simulation.

3.5 Sequence of Roadways

Using the stochastic optimal control, computed in the previous section, we

showed that we were able to steer the back wheel drive bicycle in the minimum expected
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Figure 3.6: Bicycle following the sinusoidal road, sin(cx), c = 0.2. This figure depicts the

bicycle trajectory (solid line) and positions at different times as it reaches the roadways

in sequence. The road is depicted with the dashed line along its center.

Figure 3.7: Bicycle following the arctan(cx4) road, c = 10−4. This figure depicts the

bicycle trajectory (solid line) and positions at different times as it reaches the roadways

in sequence. The road is depicted with the dashed line along its center.

time to the roadway. To follow a sequence of roadways, we use the same controller in the

following way: we steer the bicycle to the nearest roadway and once it nearly enters the

roadway, we switch to steering to the next roadway in the sequence and Figs. 3.6 and

3.7. This steering is also implemented on a car in the high-fidelity real-time simulator

Anvel 3.0 and the simulation data are plotted in Fig. 3.8.

In the case of the sinusoidal (sin(cx), c = 0.2) and arctan(cx4), c = 10−4 roads,

the optimal controllers are computed for vB = 11.18 m/s. For the circular road shown

in Figs. 3.1 and 3.8, the optimal controller is computed for vB = 4 m/s. For these three

cases, all other parameters are the same as in Result of Section 3.3.
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Figure 3.8: The car trajectory generated in Anvel 3.0 is of entering and exiting a cul-

de-sac. The road begins at the coordinates (26, 83) and ends at the coordinates (6, 73)

after completing the U-turn.

Results: The sequence of roadways to which we apply the optimal steering

results in the trajectories shown in Figs. 3.6-3.8. The bicycle following the sequence of

roadways is depicted with the solid line and the center of the roads is depicted with the

dashed line. In Fig. 3.8, showing the result from the Anvel 3.0 simulation, the car is

depicted with the polygon.

As discussed in [2], the biggest overshoot or undershoot, i.e., the misalignment

of the vehicle’s position with respect to the center of the road occurs when the vehi-

cle steers along a curve. In our results, the biggest misalignment is observed for the

arctan(cx4) road, where the bicycle has to travel along steep curves located at approx-

imately x = −10 and x = 10 of Fig. 3.7. In the bicycle results, the speed is higher

and roadways are separated further apart (see Figs. 3.6 and 3.7) compared to that the
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car simulation in Anvel 3.0. The slower car speed with closer roadways diminishes the

misalignment of steering along curves as shown in Fig. 3.8.

3.6 Conclusions

In this work, we presented the stochastic optimal controller that steers the

back wheel drive bicycle to enter a fixed roadway with uncertainty in its heading. This

uncertainty was anticipated in the design of the bicycle steering control using the ran-

dom walk process for the roadway heading. Consequently, the roadway-bicycle system

kinematics is stochastic and we used it to design the minimum time stochastic optimal

controller for steering the bicycle. With the goal of following various types of roads, the

designed controller was implemented on the sequence of roadways, where each roadway

describes the beginning of a road segment. Finally, this algorithm was implemented for

steering the car in the high-fidelity car simulator Anvel 3.0. Future work will be in the

direction of an uncertainty anticipating control for both steering angle and velocity of

the car.
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Chapter 4

Metrics-only Training Neural Network

for Switching among an Array of

Feedback Controllers for Bicycle Model

Navigation
• M. A. Carmona, A. D. Milutinović, and A. Faust, “Metrics-only Training Neural

Network for Switching among an Array of Feedback Controllers for Bicycle Model

Navigation,” accepted to 2022 American Control Conference.

4.1 Introduction

We investigate in this paper a novel method for a neural network approach to

switching among an array of off-line computationally generated (CG) stochastic optimal

feedback controllers. These controllers can be computed off-line together with controller
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associated performances, i.e., metrics. The metrics account for all properties of control

problems solved by each CG controller, and our hypothesis is that the metrics alone can

be sufficient to train the neural network to implement a policy for switching among the

controllers.

Motivated by autonomous vehicles and mobile robot systems, our study is

based on a minimal bicycle kinematic model, in which the bicycle is tasked to follow a

road which is described by a sequence of gates, see Fig. 4.1. The discrete variable q, i.e.,

the mode, is associated with a current velocity vq of the bicycle, i.e., the corresponding

controller. The goal of the neural network training is to obtain a policy for switching

among the modes to safely traverse the gates and perform forward-backward motions

any time the safety of traverse is compromised due to a sharp turn.

The figure depicts that the neural network is trained based on the mode q

and a set of continuous variables, which can be either kinematic variables (KV), or

lookup-table metrics (LTM). The KV based training represents a standard approach to

the training and does not account for available controller performances. On the other

hand, the LTM approach uses solely the continuous variables coming from lookup-table

stored metrics of control performances.

The control architecture depicted in Fig. 4.1 is a version of hierarchical control

architectures that have been studied both in control and robotics [52]. This type of

systems is also an example of hybrid or supervisory control systems [33] because of the

presence of both continuous system dynamics and the discontinuous discrete switching

signal. It is well known that the switching among stable controllers can result in the
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instability of the overall system [38, 12, 36], but it can also contribute to performance

improvements [46, 37]. A performance signal based switching for mobile robots has been

considered in [26] and the optimality of switching has been considered in [7] and [41].

To switch between the navigation to a goal and obstacle avoidance in [58], the authors

used Lyapunov functions, while in [43], the authors considered a stochastic problem and

used a rule for the switching that is based on a probability inequality.

Figure 4.1: A bicycle following a road described by a sequence of gates. Each controller

CGi, i = 1, 2, ..., q̄ is designed to navigate the bicycle to the next gate with forward

velocity vi, and has its corresponding performance Pi lookup table. The controller CG0

navigates the bicycle in the reverse direction with velocity v0 and it does not have a

corresponding performance for reaching the gate. The update logic block in the figure

facilitates that modes q = i, i = 0, 1, 2, ..., q̄ can be only updated in a certain order. The

switch KV/LTM defines the inputs to be used by the neural network.

The work presented here is aligned with hierarchical approaches to mobile
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robot navigation that use learning [18, 22, 59] or stochastic control [45, 44], as well

as the emergence of data-driven approaches for learning rules for the switching among

multiple controllers [1, 27] or options [55, 56, 8]. The options in our work are CG

controllers computed using the numerical stochastic optimal control [34]. We use the

same numerical method to compute the optimal control metrics (LTM) for each option,

which are expected bicycle paths associated with each controller. Once we have obtained

CG feedback controllers, we use reinforcement learning and the actor-critic [53, 8] neural

network to learn the rule for switching among the controllers. The neural network

training is performed under the assumption that the rule is applied at every time step,

in other words, we deal with single-step options [55]. In the case when the training is

based on metrics, the switch in Fig. 4.1 is in the LTM position. If the training is based

on kinematic variables, similar to [56], the switch is in the KV position.

The contribution of the presented work is (1) that it shows that control perfor-

mance metrics are sufficient to learn a switching policy. Moreover, from the comparison

between the LTM and KV training approaches, (2) the LTM training has a faster con-

vergence with less variations than the KV based training.

In Section 4.2, we provide the problem formulation of switching among multiple

CG controllers for the motivating bicycle driving scenario. This is followed by the

description of kinematic variables in Section 4.3. Section 4.4 gives the actor-critic neural

network and its training process. The results are presented in Section 4.5 and conclusions

are given in Section 4.6.
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4.2 Problem Formulation

The problem formulation is based on an array of minimum time, stochastic

optimal steering rate feedback controllers ui = ui(x), i ∈ Q = {1, 2, ...q} presented

in Fig. 4.1 as CGi, where x = [r, α, β, ϕ] is a vector of kinematic variables defining

the relative position between the bicycle and a gate as depicted in Fig. 3.2. Each

controller is computed to navigate the front-wheel driven bicycle through a stochastic

gate with a constant forward velocity vi ∈ V = {v1, v2, v3, ...vq}, vi > 0, vi+1 > vi, i,

i+ 1 ∈ Q. Due to the limited space, we point the reader to our previous work on back-

wheel driven bicycle [15] which describes the computation of stochastic optimal control

ui(x) for a constant velocity vi, as well as to [43] which describes the use of the backward

Kolmogorov (BK) equation to compute the numerical approximations of minimum time

stochastic optimal controller expected times Ti to enter a target set, which in this case

corresponds to the gate. From the latter, we can compute the expected path Pi = viTi

for the bicycle to enter the gate. Under the problem formulation, we assume here that

both controllers ui = ui(x), i ∈ Q and the corresponding expected paths Pi = Pi(x) are

computed off-line using the numerical method in [34] and stored in lookup tables.

While each controller can navigate the bicycle through a next gate, if the next

gate is not positioned well for the safe traversal at a given speed, the corresponding

controller navigates the bicycle on a loop-like trajectory before safely traversing the

gate. This type of trajectory helps re-positioning the bicycle for the safe traversal of

the next gate, but is undesirable when a gate sequence is associated with a road. A
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much preferred approach to the safe traversal of the next gate is that the bicycle reduces

its speed, and if necessary performs forward-backward bicycle motions until the bicycle

can safely traverse the next gate. For this reason, we define the velocity for moving

backward v0 = −v1 and the set of all velocities is V+ = V ∪ {v0}.

For the backward motion i = 0, we define that the steering rate is u0 = uq,

but using a different steering rate definition is possible. It is because the control u0 for

moving backward cannot be formulated naturally as an optimal control to reach the

gate while the bicycle faces it with its front wheel. For the same reason, in Fig. 4.1 we

do not have the controller u0 corresponding metrics. We can now introduce an integer

signal q(t) ∈ Q+, Q+ = Q ∪ {0}. At any time t, the value of q(t) = i, i ∈ Q+ implies

that the velocity of the bicycle is vi and the steering control law is ui. The signal q(t)

updates with a sample time ∆t = tk − tk−1 as

q(tk) = q(tk−1) + sk, sk ∈



{0, 1}, q(tk−1) = 0

{−1, 0}, q(tk−1) = q

{−1, 0, 1}, otherwise

(4.1)

where sk is a switching control variable providing that any change of the velocity follows

the sequence of velocities and does not go over the lower v0 and upper vq bounds.

We consider here a problem of learning a feedback policy for sk providing that

the bicycle goes through the gate without any loops. The LTM training based policy

explicitly depends only on the vector of the lookup-table outputs L = LLTM and q(tk−1),

i.e.,

sk = sk(q(tk−1),L). (4.2)
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Figure 4.2: A bicycle-stochastically revolving gate R configuration: the center of the

front wheel is located at A with its perpendicular steering handle and the center of the

back wheel is at B with its perpendicular bicycle pegs. The velocity vector (shown as

the solid arrow) is associated with point A.

For the LTM base policy, the vector LLTM is composed of normalized values of lookup-

table stored expected paths Pi

LLTM =

[
P1

P1

,
P2

P2

, ...
Pq

Pq

]
, (4.3)

where P i is the maximal expected path in the lookup table associated with the controller

i, i.e., P i = maxx Pi(x). The use of normalized continuous variables is typical in the

training of neural networks.

For the purpose of comparison, in this work we also train a neural network to

find the policy that depends on kinematic variables. In that case, the policy is trained
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with L = LKV defined as

LKV =

[
r − r

r − r
,
α

π
,
β

π
,
ϕ

π

]
, (4.4)

which is composed of normalized values of the kinematic variables. The distance r ∈

[r, r] is normalized with the length of its range, while angular kinematic variables are

normalized with π.

4.3 Bicycle-Gate Kinematic Variables

The bicycle and the gate which is labeled with R are depicted in Fig. 4.2. The

bicycle kinematic describes the motion of the front-wheel pivot point A as depicted in

Fig. 4.2 and under the assumption that the current bicycle velocity vq(t) is associated

with the front-wheel velocity and aligned with the front-wheel heading. The kinematic

of such a front-wheel driven bicycle is

dx = vq(t) cos(ϕ+ θ)dt, dy = vq(t) sin(ϕ+ θ)dt (4.5)

dθ =
vq(t)

L
sinϕdt, dϕ = uq(t) dt, q(t) ∈ Q+, (4.6)

where q(t) is the integer signal (4.1) which is updated with the sample time ∆tk, ϕ is

the steering angle, and θ is the heading angle which is aligned with the bicycle frame as

depicted in Fig. 4.2. The steering angle is measured starting from the heading direction

and is bounded, i.e., ϕ ∈ (−π
2 ,

π
2 ), while θ ∈ (−π, π]. The variable L > 0 in (5.26) is

the distance between the front wheel A and back wheel B (see Fig. 4.2). The kinematic

model (4.5)-(4.6) has two control variables. The first one is q(t) and the second one is

uq(t) which is the steering rate control variable for the velocity vq(t).
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The bicycle navigates towards R, and the bicycle-gate relative coordinates are

the distance r, the bearing angle β and the misalignment angle α between the bicycle

heading and gate orientation θR defined as

r2 = x2 + y2, α = θR − θ, β = arctan2

(y
x

)
− θ. (4.7)

To address the uncertainty of gate orientation as perceived by the gate approaching

bicycle and obtain a robust navigation strategy, we model the gate orientation angle

as dθR = σRdwR, where dwR is the unit intensity Wiener process increment and σR

is a scaling factor. From this and the front-wheel driven bicycle kinematic (4.5)-(4.6),

Itô’s formula [48] yields the following stochastic kinematic for the front-wheel driven

bicycle-gate relative position

dr = −vq(t) cos(β − ϕ) dt (4.8)

dα = −
vq(t)

L
sinϕ dt+ σR dwR (4.9)

dβ =
vq(t)

r
sin(β − ϕ) dt−

vq(t)

L
sinϕ dt (4.10)

dϕ = uq(t) dt. (4.11)

Using the kinematic variables x = [r, α, β, ϕ], we can define a set G which is

the target set defined as

G = {x| r ≤ r, |β| ≤ β, |α| ≤ α, |ϕ| ≤ ϕ}, (4.12)

where | · | denotes absolute values and r < D. We assume that when x ∈ G, the

bicycle passes safely through the gate. We also introduce a set A which includes all
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configurations x in which the bicycle misses the gate defined as

A =
{
x | − π < ϕ ≤ −ϕ or ϕ ≤ ϕ ≤ π

}
(4.13)

∪
{
x |r ≤ r, (−π < β < −β or β < β ≤ π),

(−π < α < −α or α < α ≤ π)
}
.

Both set G and set A are in use for computations of the optimal controllers ui = ui(x)

corresponding to velocities vi, i ∈ Q. Finally, we define a set L = {x| r > r, |α| > α}.

This set is the one with a large misalignment angle at a large distance, which is an

indicator that the bicycle trajectory goes along a trajectory with a loop. The set L

together with sets G and A is in use for the neural network training to detect a successful

traversal of the gate x ∈ G, or unsuccessful traversal x ∈ A ∪ L.

In our example from Section 4.5, we use the following parameters

L = 1.0m, r = 0.3m, r = 10m,D = 1m

α = 50 π
180 , α = 135 π

180 , β = 80 π
180 ϕ = 50 π

180 ,

(4.14)

where the lengths are measured in m and angles in rad. The array defining the sequence

of bicycle velocities is

V+ = {−0.6, 0.6, 0.8, 1.0, 1.2, 1.4}(m/s), (4.15)

where v0 corresponds to the reverse velocity at the minimum forward velocity, i.e.,

v0 = −v1. The maximal velocity is 1.4m/s.
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4.4 Actor-Critic Neural Network

To learn the policy, we propose to use an actor-critic neural network. The

network learns the stochastic policy πs : {−1, 0, 1} × Q × R|L| → R which returns

probabilities for possible actions s ∈ {−1, 0, 1} for the current discrete state q and

vector of variables L used in the training. The symbol |L| denotes the size of the vector

L. The policy at the time step k can be also denoted as πs(s, qk−1,L(k)) with the

understanding that at the step k, the current discrete state is the one selected in the

previous time step. Once we find the optimal stochastic policy π∗s , we define the update

policy for the step k as sk = argmaxs π
∗
s(s, qk−1,L(k)), where s ∈ {−1, 0, 1} denotes

available actions and qk−1 is the discrete state at the time step k before the action

is taken. For the KV based training, L = LKV (k) and for the LTM based training,

L = LLTM (k).

The stochastic policy that we learn is based on the maximization

π∗s = argmax
πs

E{γKR(x(tK)}), γ = e−c∆t, c > 0, (4.16)

where tK is the discrete time point K at which x(tK) enters the terminal set T = G ∪L

and R(x(tK)) is the terminal reward

R(x) =


M, x ∈ G

−M, x ∈ L.
(4.17)

The subset G corresponds to the bicycle poses at which it reaches the gate and the set

L corresponds to the poses at which the bicycle enters a loop trajectory. The overall

term under the expectation E is maximized when the policy navigates the bicycle to go
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through the gate and the term γK favors shorter trajectories for entering the gate.

A. Training Data Collection: The neural network training is based on the

numerical simulations of (4.5)-(4.6). Each episode of the training starts with a ran-

dom selection of the initial relative position between the bicycle and the gate x0 =

[r0, β0, α0, ϕ0]. The initial values are defined as

β0 = ψ0 − θ0, α0 = ξR − θ0, ϕ0 = 0. (4.18)

r0 and the variables on the right side of the expressions above are independent random

variables

r0 ∼ U(0, p/2), ψ0 ∼ U
(
−π

4 ,
π
4

)
,

θ0 ∼ U
(
−50π

180 ,
50π
180

)
, ξR ∼ N

(
0,
(
0.1π
180

)2)
,

(4.19)

where U(a, b) denotes a uniform random variable distribution in the range [a, b], and

N (µ, σ2) denotes a Gaussian distribution with a mean value µ and variance σ2. For

the distribution of r0, the upper bound includes p = 2πL/ tan(ϕmax), ϕmax = 50π/180,

which is the turning radius of the back wheel for the maximal steering angle ϕ. The

specific value is not of critical importance, but we select a value compatible to the scale

and the turning radius of the bicycle.

From the initial position, the bicycle follows the current policy π. We perform

the simulation with the time step ∆t = 0.1s. Each episode lasts until the bicycle reaches

the gate, which is a successful episode, or until we detect that the bicycle starts going

on a loop, which is an unsuccessful episode. If KT is the time step in which the episode

terminated, then the successful episode corresponds to xKT
∈ G and the unsuccessful

one corresponds to xKT
∈ L. In the second case, we allow for up to a maximum of 35
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new episodes until we obtain a successful episode. In our training, we define an epoch

as a set with 25 successful episodes. Therefore, the number of episodes in an epoch can

be between 25 and 25 ·35 = 875 episodes. During each episode e, e = 1, 2, ..., e ≤ 875 of

an epoch h, h = 1, 2, ..., we record all data necessary for the training and one per epoch

update of neural networks.

B. Neural Network Training : The training is based on the actor-critic approach

implemented by two neural networks. Both actor and critic networks have |L| + 1

number of input neurons and 2 hidden layers, each with 256 neurons. Inputs of each

hidden layer have parametric rectified linear units (PReLUs). The actor network has

3 output neurons for the log-probability σa of the three possible actions a ∈ {−1, 0, 1}

and the critic network has 1 output neuron for Ŝ, which is the estimate of the state

value S.

During the training, after each episode, we compute the sequence of advantages

A(k) = Gk:k+n − Ŝ(k), (4.20)

where Ŝ(k) = Ŝ(qk−1,L(k)) and Gk:k+n is the predictor of the state value S which

is computed over the time horizon n using the sequence of recorded rewards R(k),

therefore,

Gk:k+n =


γnŜ(k + n), k + n < KT

γKT−kR(KT ), k + n ≥ KT ,

(4.21)

where R(KT ) is the terminal reward at the end of the episode and Ŝ(k+n) is the critic

network estimation of the state value after the horizon of n steps. In our computations,

we use the horizon of n = 20 time steps. Finally, after each episode, we compute the
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Figure 4.3: Actor-critic neural networks that replace the NN block in Fig. 1 during

the training. The KV/LTM switch defines if the learning is based on the kinematic

variables (KV) or the vector of metrics P (LTM).

sequence of σa(k)A(k) values where

σa(k) = log

(
eλ

h
s (a,q(k),L(k)))∑

s e
λh
s (s,q(k),L(k))

)
(4.22)

in which λhs (s, q(k),L(k)) is the so-called logit and is in a one-to-one relation with the

stochastic policy of the epoch h, h = 1, 2, ... as πhs (a, q(k),L(k)) = eλ
h
s (a,q(k),L(k)))∑

s e
λhs (s,q(k),L(k))

.

From the sequence of σa(k)A(k) values from all episodes, we compute the policy loss

estimation after each epoch h as

Π̂loss
h (ϕa) = − 1∑

eK
e
T

∑
e K

e
T∑

k=1

σa(k)A(k), (4.23)

where Ke
T denotes the length KT of the episode e and ϕa denotes that the policy loss is

dependent on the actor network parameters.

The actor neural network parameters ϕa are updated to minimize the policy

losses given by (4.23). The critic neural network parameters are updated to minimize
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the mean square error of state value estimations, i.e.,

L(ϕc) =
∑(

Gk:k+n − Ŝ(qk−1,L(k))
)2
. (4.24)

All presented computations of the training are implemented in PyTorch. After we have

obtained the convergence of training results, we substitute the learned actor network in

the NN block in Fig. 4.1. In this case, the stochastic policy is replaced with the action

with the highest probability, i.e.,

sk = argmax
a

σa(qk−1,L(k)) (4.25)

and this action is used to navigate the bicycle at the time step k.

4.5 Results

The numerical results of this section are based on the bicycle kinematic model

(4.5)-(4.6). In our results, we used the parameters (4.14), the sequence of velocity

(4.15) and the initial state defined by (4.18)-(4.19). We computed stochastic optimal

controllers ui and tables Pi for each forward velocity vi, i > 0 and for the backward

velocity v0, we navigated by setting u0 = u5. The computed lookup tables have the

size of 72 × 72 × 100 × 21 which is associated with the discretization of α, β, r and ϕ

variables, respectively.

We compared the KV and LTM training approaches based on their learning

performances. For that, we ran each training 20 times for 5000 epochs, then computed

averages and standard deviations for each epoch across the 20 runs. The computed
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averages are plotted in Figs. 4.4-4.6. Figure 4.4 shows that both KV and LTM training

average rewards converge to the maximal possible reward M = 100, but the conver-

gence of the LTM is faster and its standard deviation is lower than the one from the

KV training after about 200 epochs. The second evidence of the LTM based learning

efficiency is given in Fig. 4.5 showing the average loss which measures the error of state

value estimation L(ϕc). For the LTM training, the average critic loss drops close to

zero after less than 1000 epochs and has less variations than the plot for the KV based

method. The final evidence illustrating the LTM based training efficiency are plots in

Fig. 4.6. Both the KV and LTM plots start at ln 3 ≈ 1.1, which is the maximal possible

value of mean entropy and corresponds to the 3 equally probable actions a = {−1, 0, 1}.

The plots show clearly that in comparison to the KV training, the LTM training con-

verges closer to zero with slightly less variations over the 5000 epochs, therefore, the

convergence is to a better defined policy with a narrower distribution of actions.

To illustrate the work of the LTM trained neural network, Fig. 4.7(top) depicts

the bicycle navigating gates (a) to (h) in the alphabetical order and coming back to gate

(a). The bicycle starts at the initial pose (0, 0, 90π/180), which is aligned with the pose

of gate (a). Since we depict the pose at gate (a) at the end of the bicycle trajectory,

the initial pose is not depicted in the figure. The trajectory shows that anytime that

reaching the next gate requires a sharp turn, the bicycle uses backward motion to re-

position itself with respect to the next gate. The backward motion can be also observed

in the time plot of the bicycle velocity in Fig. 4.7(bottom).

In Fig. 4.8, we have the bicycle navigating a road described by a sequence of
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gates. We depicted only 6 out of 17 gates representing the road and separated by the

distance that is p/12 ≈ 0.44m, which is a fraction of the circle perimeter with the radius

p from (4.19). The bicycle trajectory in Fig. 4.8(top) shows that the road is problematic

to navigate since the rate of change of the road curvature, i.e., gate orientation, is fast

and the bicycle cannot keep up with it due to the sample time ∆t = 0.1s used in the

control update. The sample time is long and does not allow the bicycle enough update

steps to steer through the gates, i.e., the bicycle misses gates. Because of that, the neural

network dictates the bicycle to reverse the motion direction to pass the gates. Once

we have decreased the sample time to ∆t = 0.01s, we see that the bicycle navigation

strategy can follow the road without reversing the motion direction. In summary, when

the rate of change of the road is fast, the control strategy infers correctly that it should

reverse the moving direction of the bicycle.

After an inspection of values Pi in the proximity of a gate, we have found

that P1 has the smallest value. However, the policy did not switch to the velocity v1

in the proximity of gate. Therefore, as expected we conclude that the neural network

implemented policy is not greedy, i.e., it does not switch always to the velocity with the

shortest expected paths.

4.6 Conclusions

The paper describes the approach to the actor-critic neural network training

for switching among an array of CG stochastic optimal controllers. The novelty of the
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method is that instead of observable variables of the problem, the training inputs to the

neural network are the off-line computed metrics that are stored in lookup tables for

each controller, hence, we denominate it as the lookup table metric (LTM) training.

The LTM training takes advantage of information about the performance of

each controller. Associated with it is the feature that the number of inputs to the neural

network increases with the number of controllers. This may be of particular importance

for practical applications requiring a large number of controller. Moreover, our results

show that under the same conditions, the LTM training approach converges faster and

with less variations than the more traditional KV approach. These results show the

benefit of hierarchical control architecture design by the synergistic use of control theory

and artificial intelligence computational methods, which gives us an interesting future

research direction as a follow-up to this work.
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Figure 4.4: Average rewards and their standard deviations (STD) for the kinematic

variable (KV) and lookup table metric (LTM) based trainings.

Figure 4.5: Average critic losses and their standard deviations (STD) quantifying the

error of value function approximation. The plots are for the kinematic variable (KV)

and lookup table metric (LTM) based trainings.

Figure 4.6: Mean action entropies and their standard deviations (STD). The plots are

for the kinematic variable (KV) and lookup table metric (LTM) based trainings.
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Figure 4.7: A bicycle navigating multiple gates: (top) the trajectory of the bicycle

that goes through the gates in the alphabetical order from (a) to (h) and back to (a);

(bottom) the velocity profile along the trajectory; the time instants of going through

the gate are indicated by the dashed lines.

Figure 4.8: The bicycle navigates a road, ∆t = 0.1s: (top) the bicycle trajectory with

depicted 6 out of 17 gates separated by 0.44m; (bottom) the velocity profile with the

dashed line indicating time points of passing through each gate.
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Figure 4.9: The bicycle navigates a road, ∆t = 0.01s: (top) the bicycle trajectory with

depicted 6 out of 17 gates separated by 0.44m; (bottom) the velocity profile with the

dashed line indicating time points of passing through each gate.
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Chapter 5

Metrics-only Training of Neural

Networks for Switching among an Array

of Feedback Controllers
• M. A. Carmona, A. Faust, and D. Milutinović, “Metrics-only Training of Neural

Networks for Switching among an Array of Feedback Controllers,” was submitted

to 2022 Robotic Automation Letters

5.1 Introduction

We investigate in this paper a training method for neural networks to switch

among an array of feedback controllers. Each feedback controller (FC) is verified for the

operation mode, which means that there is a metric that measures the distance from

the current state to a desired state (or states) under the action of the controller. In

nonlinear control, these measures can be associated to the so-called Lyapunov functions
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Figure 5.1: Neural network that implements a policy for switching among an array of

feedback controllers (FCs). Each of these controllers is designed to control the plant in

one of the operation modes q = 0, 1, 2, ...q̄. Each FCq, q = 0, 1, ...q̄, takes the kinematic

variables (KV) and outputs the control uq while the neural network outputs the variable

s, which updates q. The update logic block in the figure facilitates that modes q can

be only updated in a certain order. The block is depicted with the dashed line since it

may not exist for some control problems. Similarly, the dotted line towards the neural

network input vector L and the mode input of the plant depicts that q can be used in

the training and to set parameters of the plant, when applicable. The switch KV/MO

at the input of the block L illustrates that the neural network can be trained based on

KV, or based on the set of available Pm, m = 1, 2...m metrics, which we denominate as

the metrics-only (MO) training, m+ 1 ≤ q.
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[30], while in optimal control [6], stochastic control [34] and reinforcement learning [54],

the measures can be associated to the value functions.

A. Motivation: The hierarchical control architecture in Fig. 5.1 is inspired by

autonomous vehicles, or mobile robot systems. The figure shows a plant which outputs

kinematic variables (KV) and illustrates a typical scenario in which we deal with a

number of controllers, each carefully designed using control theory methods and under

certain assumptions, i.e., for certain modes q. However, there is a challenge in how

to switch among these controllers, i.e., how to update control modes q and achieve a

certain control performance. Since the rule for updating the modes q can be complex,

we propose to train a neural network to learn the update rule.

The kinematic variable (KV) training is a standard approach to training a

neural network to perform an update rule for the mode q and scenario depicted in

Fig. 5.1. In the figure, the KV training feeds the neural network with the variable q

and KV. The problem with the KV training approach is (P1) that it does not account

explicitly for the performance of FCs, i.e., their sophisticated design or training. Another

problem is (P2) that independently of the number of FCs with which we are dealing, the

KV training is always based on the same number of variables. Due to (P2), the KV

training does not take an explicit advantage of increasing the number of modes, which

is related to the refinement of FCs, i.e., increase of their number and their known

performances. This is a disadvantage for trainings with a large number of FCs, which

is required for practical applications. Overall, due to (P1) and (P2), the KV training

approach lacks an explicit account for an effort in a careful selection of modes and the
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design, or training of the corresponding FCs. Motivated by the disadvantages of the KV

training, we propose the metrics-only (MO) training and compare the two approaches

using the hierarchical structure in Fig. 5.1.

In the MO training, we feed the neural network with the vector L of variables,

including Pm metrics, which addresses (P1). As depicted in Fig. 5.1, the MO training

feeds the neural network withm variables, therefore, the number of neural network input

variables depends on the number of used controllers, i.e., the number of their available

performances, which addresses (P2). Overall, the MO training explicitly accounts for

an effort in a careful mode selection and the design, or training of individual FCs.

An important feature of the MO training is that it does not use KV values.

They belong to the physical layer of the system and are considered by the design, or

training of individual FCs. The updates of modes q generated by the neural network

depend on higher-level information about controller performances P1, P2,...Pm̄. If nec-

essary, the updates can also be based on the current mode q and that variable can

also be used to set a mode for the plant, which is represented by the dotted line in

Fig. 5.1. Without the need to access KV values for the updates, the trained neural

network complies fully with the hierarchical structure of the control architecture.

B. Related work : The control architecture in Fig. 5.1 is a version of hierarchical

control architectures that have been studied both in control and robotics [52]. Due to

the continuous dynamics of the system under control and the switching among multiple

controllers, this system is also an example of hybrid or supervisory control systems

[33]. While the switching may result in instability [38, 12, 36], it can also contribute to
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performance improvements [46, 37]. A performance signal-based switching for mobile

robots has been considered in [26] and the optimality of switching has been considered

in [7]. To switch between the navigation to goal and obstacle avoidance in [58], the

authors used Lyapunov functions, while in [43], the authors considered a stochastic

problem and used a rule for switching based on a probability inequality. This use

of probabilistic inference to implement switching inspired our work on learning a safe

switching policy. The work presented here is aligned with hierarchical approaches to

mobile robot navigation which use learning [18, 22, 59] or stochastic control [45, 44], as

well as the emergence of data-driven approaches for learning rules for switching among

multiple controllers [1, 27] or options [55, 56, 8].

The options in our work are FCs that can be defined analytically based on

control theory or can be computed, e.g., using the numerical stochastic optimal control

[34]. Once we have obtained the FCs, we use the reinforcement learning and the actor-

critic [53, 8] neural network to learn the rule for switching among the controllers. The

neural network training is performed under the assumption that the rule is applied

at every time step; in other words, we deal with single-step options [55]. A way to

formulate the training is to use data associated with the original problem formulation

as in [56]. In that case, the KV/MO switch in Fig. 5.1 would be in the position KV,

indicating that the learning is based on the KV.

C. Contribution: The novelty of our work is that the training of the neural

network accounts for the controller performances by using the MO values. This perfor-

mance aware training corresponds to the MO position of the MO/KV switch in Fig. 5.1.
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It is expected that the MO training is more efficient than the KV based one since the

latter does not take into account any performance information about the controllers. We

compare convergences of the KV and MO data based trainings under identical condi-

tions for a pendulum control problem and a tricycle navigation one. For both problems,

our results confirm that the MO based training is faster and less noisy than the KV

based training. Furthermore, for the tricycle navigation problem, we provide results

showing that the trained neural network can be used beyond numerically simulated

control problems.

D. Paper layout : In Section 5.2, we formulate the maximization of a reward

function returning a stochastic policy for the KV and MO training approaches. This is

followed by the description of the actor-critic neural network training in Section 5.3 and

KV/MO training comparison for the pendulum control problem from [56] in Section 5.4.

In Section 5.5, we compare the KV/MO for an array of stochastic controllers and the

tricycle navigation problem that motivated this work. We present our conclusions in

Section 5.6.

5.2 Problem Formulation

To learn the policy, we propose to use an actor-critic neural network. The

network learns the stochastic policy πs : S ×R|L| → R, which returns probabilities for

possible actions s ∈ S for the current vector of variables L used in the training. The

symbol |L| denotes the size of the vector L. The policy at the time step k can be also
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denoted as πs(s,L(k)).

In the case of the KV based learning, the vector L has components that are

normalized values of KVs. The normalization of each variable is based on its upper

and lower bounds and, in general, these values can be positive or negative. The MO

based learning uses the vector L composed of normalized non-negative metrics Pi, i =

1, 2, .... The normalization of each metric Pi is based on its upper bound and the

normalized values are always positive. In both KV and MO training methods, L(k) at

time step k can also include the normalized value of the current discrete state q with

the understanding that at the step k, the current value of q is the one selected in the

previous time step, i.e., qk−1.

The stochastic policy πs that we learn is based on the maximization of the

expected reward J as

π∗s = argmax
πs

E {J} (5.1)

with the reward J defined as

J = gT (xKT
) +

KT∑
k=1

γk−1rk, (5.2)

where rk is the reward following the decision sk−1 in the discrete step k − 1, KT is the

number of discrete steps after which the state xKT
enters the terminal set T = G ∪ L

and gT (xKT
) is the terminal reward. The terminal set T is composed of two disjoint

sets (G ∩ L = ∅), where the set G denotes a desired target set or a goal set for the

optimal policy π∗s . The set L denotes a set of states that should be avoided by the

policy π∗s . These two sets are associated with different values of the terminal reward
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function gT (x). Since not all of the problems we consider have the avoidance set, we

can state that G ⊆ T and G = T ⇔ L = ∅.

Once we have found the optimal stochastic policy π∗s , we define the update

policy for the step k as

sk = argmax
s
π∗s(s,L(k)), (5.3)

where s ∈ S denotes available actions and L(k) is composed either of the normalized

KVs, or the normalized metric values for the policy learned from the KV or the MO

training, respectively. In both cases, the vector L can also include the normalized value

of the discrete state qk−1 at the time step k before the action sk is taken.

5.3 Actor-Critic Neural Network

The neural network training is based on the numerical simulations of the sys-

tem under control. In general, each episode e, e = 1, 2, ... of the training starts with a

random selection of the initial state. From the initial position, we perform the simula-

tion with the time step Ts. Each episode lasts until the system reaches the terminal set,

otherwise the episode stops if it is too long. A sequence of multiple episode runs is an

epoch h, h = 1, 2, .... During each episode e of an epoch h, we store the following data

Deh(k) = (σa(k),Σπ(k), R(k), Ŝ(k)), (5.4)

where σa(k) is the log-probability of the selected action a(k) ∈ S from the step k

computed as

σa(k) = log

(
eλ

h
s (a,L(k)))∑

s e
λh
s (s,L(k))

)
. (5.5)
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Figure 5.2: Actor-critic neural networks that replace the NN block in Fig. 1 during the

training: the vector Deh depicts the data collected during each episode e of the training

epoch h, see expression (5.4). The light gray arrows across the network indicate that

the data Deh are used for network updates. The output of the critic network is the

estimation of the value function and the output of the actor one are probabilities σa of

actions a ∈ S that result in the switching of the controllers.

Σπ is the vector of log-probabilities of possible actions at the step k and λhs (s,L(k))

is the so-called logit, which is in a one-to-one relation with the stochastic policy of the

epoch h, h = 1, 2, ... as

πhs (a, q(k),L(k)) =
eλ

h
s (a,L(k)))∑

s e
λh
s (s,L(k))

. (5.6)

The third variable R(k) in Deh(k) that we store is the reward rk at each time

step, including the terminal reward g(xKT
). The last variable that we store in Deh(k)

is Ŝ(k), which is the estimated value S(k) of the state L(k), i.e.,

Ŝ(k) = Ŝ(L(k)). (5.7)

This variable is the output of the critic neural network that we use in our neural network
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training. In addition to the data Deh that are stored for each time step k, at the end of

each episode we also store the total reward J , see expression (5.2)

The training is based on the actor-critic approach implemented by two neural

networks. The learning in both neural networks is based on the state L(k). The critic

network takes the state as the input and outputs Ŝ, which is the estimate of the state

values S. Therefore, after each episode, we can compute the sequence of advantages

A(k) = Gk:k+n − Ŝ(k), (5.8)

where Ŝ(k) = Ŝ(L(k)) and Gk:k+n is the predictor of the state value S, which is com-

puted over the time horizon n using the sequence of recorded rewards rk. Therefore, for

k + n < KT ,

Gk:k+n = γnŜ(k + n) +

n∑
i=1

γi−1rk+i (5.9)

and for k + n ≥ KT ,

Gk:k+n = γKT−ng(xKT
) +

KT−n∑
i=1

γi−1rk+i, (5.10)

where g(xKT
) is the terminal reward at the end of the episode and Ŝ(k+n) is the critic

network estimation of the state value after the horizon of n steps. Finally, after each

episode, we compute the sequence σa(k)A(k), then we concatenate these sequences and

after each epoch h, compute the policy loss as

Π̂loss
h = − 1∑

eK
e
T

∑
e K

e
T∑

k=1

σa(k)A(k), (5.11)

where Ke
T denotes the length KT of the episode e and the expression is a numerical
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estimation of the policy loss

Πloss = −Eτ

{
KT∑
k=1

σa(L(k))A(L(k))

}
(5.12)

with Eτ denoting the expectation operator with respect to the episode trajectories.

In the above listed computations, Ŝ(k) are outputs of the critic neural network

and σa are outputs of the actor neural network. Therefore, during the training, the

dashed NN block in Fig. 5.1 is replaced by the one presented in Fig. 5.2, which is

composed of the actor and critic neural networks.

The actor neural network parameters ϕa are updated to minimize the policy

losses given by (5.11). The critic neural network parameters are updated to minimize

the mean square error of state value estimations, i.e.,

M(ϕc) =
∑(

Gk:k+n − Ŝ(L(k))
)2
, (5.13)

where Ŝ depends on the critic network parameters ϕc.

All presented computations of the training are implemented in PyTorch. After

we have obtained the convergence of training results, we substitute the learned actor

network in the NN block in Fig. 5.1. In this case, the stochastic policy is replaced with

the action with the highest probability, i.e.,

sk = argmax
a

σa(L(k)). (5.14)
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5.4 Pendulum Control

Figure 5.3 depicts a pendulum with the dynamics

θ̇ = ω, (5.15)

ω̇ = g sin θ + u, (5.16)

where θ ∈ (−π, π] is the pendulum angular position and ω ∈ R is the pendulum angular

velocity ω = θ̇. The model and all parameters are from [56], including that the pendulum

control variable is a bounded torque u ∈ [−umax, umax], umax = 0.224. In [56], the

mechanical energy (ME) of the pendulum for the state x = (θ, ω) is defined as

ME(x) = 1 + cos θ +
1

2
ω2. (5.17)

Therefore, in the initial state x0 = (π, 0) in which the pendulum does not move, the

mechanical energy ME(x0) = 0. As described in [56], the goal of pendulum control is

to learn a feedback control policy for u such that the pendulum reaches the target state

xT = (0, 0). In that target state, the pendulum is vertically up, it stays motionless in

Figure 5.3: Pendulum mechanism: angular position θ, torque u, the direction of gravi-

tation g and orthogonal unit vectors i⃗ and j⃗.
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that position and ME(xT ) = 2.

Let us introduce the state of the pendulum as x = (θ, ω). In [56], the authors

used the mechanical energy to introduce a Lyapunov function L(x) as

L(x) = 2−ME(x). (5.18)

In the initial state L(x0) = 2 and in the target state L(xT ) = 0. Using the analysis of

Lyapunov function L and ME, the authors in [56] formulated four control actions:

u0 = umax, u1 = −umax, (5.19)

u2 = EA(umax, θ, ω), u3 = EA(
1

2
umax, θ, ω), (5.20)

where

EA(u, θ, ω) =



sgn(θ)u if ω = 0

1
2sgn(ω)u if (0 < ω ≤ δω and

(θ ∈ [θ3 − δθ, θ3) or

θ ∈ [θ4 − δθ, θ4)))

or (−δω < ω < 0 and

(θ ∈ (θ1, θ1 + δθ] or

θ ∈ (θ2, θ2 + δθ]))

sgn(ω)u otherwise

(5.21)

with sgn(x) = 1 if x ≥ 0 and -1 otherwise. The values δθ = 0.1, δω = 0.1 and θ1, · · · , θ4

are the equilibrium points with ω̇ = 0, thus, θ1 = sin−1(u), θ2 = π − θ1, θ3 = θ1 − π,

θ4 = −θ1. The reasoning behind these controllers is provided in Appendix A.1.

In [56], the authors used reinforcement learning to learn the policy for switching
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among the controllers u0, u1, u2 and u3 with the goal to reach the terminal state xT

from the initial state x0. Since ME = 2 allows for reaching xT , once the pendulum

reaches ME ≥ 2, there is a mandatory switch to the u4 controller (Section 4.2 in [56])

that “shaves out” the energy excess above ME = 2 and keeps the energy at that level

until the terminal state xT is reached. To accommodate for numerical imprecision, the

reaching of the terminal state xT is detected by the criterion
√
θ2 + ω2 < 0.1.

In the work presented here, we use the controllers u0, u1,u2 and u3 from (5.19)-

(5.20) and an improved energy “shave out” controller u4

u4 =



umax, −Kω(ME(x)− 2) ≥ umax

−Kω(ME(x)− 2), otherwise

−umax, −Kω(ME(x)− 2) ≤ −umax

(5.22)

with the gainK = 6.0. The improved controller u4 alleviates the irregular motion due to

a large torque gain in the controller and guarantees that the control torque is bounded

to the magnitude of umax. The bound of the torque is such that a single controller

cannot be used to reachM(x) = 2 (L(x) = 0) and ultimately the state xT . For that, we

need to learn a switching policy for the four controllers (5.19)-(5.20) which will swing

the pendulum back and forth until the final state xT is reached or ME(x) ≥ 2. In the

latter case, we apply the control u4 until the final state xT is reached.

5.4.1 KV vs. MO Training of the Actor-Critic Neural Network

For both the KV and MO training methods, we use episodes that start at the

initial state x0. The episode time step is Ts = 0.1. The reward J that is maximized is
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Figure 5.4: The average reward for the kinematic variable (KV) training and metrics-

only (MO) training. The shaded region depicts one-standard deviation bands.

given by (5.2) in which γ = 1, rk = −1 and gT (xKT
) = 0. The target set of the criterion

G = {(θ, ω)|
√
θ2 + ω2 < 0.1} and L is an empty set. The maximization of this reward

minimizes the total time it takes from the initial state x0 to the final state xT in which

the pendulum is vertically up.

We use θ and ω as kinematic variables (KV) for the training of the actor-critic

neural network to switch among four controllers (5.19)-(5.20), i.e., q = 3 in Fig. 5.1.

The metrics-only (MO) training is based on the single metric L(x) from (5.18), i.e.,

m = 1 in Fig. 5.1.

Figures 5.4 and 5.5 show plots of the KV and MO training results. The plots

are averaged over 5 independent training runs for each type of the training. The averages

are depicted by the solid lines and one-standard deviation bands are depicted by the

shaded regions.
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Figure 5.5: The training average critic loss and its standard deviation for swinging a

pendulum to the upright position with the initial pose (π, 0). KV denotes the kinematic

variable and MO the metrics-only training results.

The plot in Fig. 5.4 shows that the MO training is faster and it results in

a higher performance after 15k epochs of the training. The KV training improves its

updates after 7.5k epochs, which coincides with the positive slope in Fig. 5.4 and the

decline in Fig. 5.5. Yet, even in the latter figure, the MO training shows a faster

convergence with less variability. Therefore, the MO training is not only faster, but also

more reliable.

5.4.2 Validation of the Trained Switching Policy

After 30k epochs of the KV training and 15k epochs of the MO training, we

obtained the switching policies that can be used to control the pendulum from the initial

state x0 to the final state xT . As a benchmark, we also computed an optimal feedback
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Figure 5.6: Plots of the angle θ, angular velocity ω, control torque and the index q of

the currently active controller. The index q = 0, 1, 2, 3 corresponds to the controllers

(5.19)-(5.20). The index q = 4 is active after ME ≥ 2.

control for the torque u = u(θ, ω) that takes the pendulum from the initial to the final

state in the minimum time, see Appendix A.2.

Figure 5.6 shows the results for the KV and MO trained switching policies, as

well as for the numerically computed optimal controller. From these, we can see that

the KV trained policy takes more than 200 steps to reach the final state. The time for

the MO trained policy is shorter (199 steps) and comparable to the time (192 steps)

resulting from the optimal controller (OPT).
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5.5 Tricycle Navigation

We consider below a problem of tricycle navigation through a gate as depicted

in Fig. 5.7. The tricycle is a front-wheel drive (FWD) tricycle with the kinematics

dxA = vi cos(ϕ+ θ)dt, (5.23)

dyA = vi sin(ϕ+ θ)dt, (5.24)

dθ =
vi
L

sinϕdt, (5.25)

dϕ = ui dt, (5.26)

where (xA, yA) denotes position coordinates of the steering wheel pivot point A, θ ∈

(−π, π] is the heading angle, ϕ ∈ (−π
2 ,

π
2 ) is the steering angle, L = 1.0m is the tricycle

length and ui ∈ [−1, 1] is the bounded steering rate control variable. The kinematics

describes the motion of the tricycle for a constant velocity vi of the front wheel, i.e., of

the pivot point A. The set of forward velocities is vi = 0.6 + 0.2(i − 1), i = 1, ...5 and

the single backward velocity is v0 = −v1 = −0.6. All velocities are in units of m/s.

Forward velocity controllers u1 to u5: For each constant forward velocity vi,

i = 1, ...5, we solve numerically a minimum time optimal control ui for steering the

tricycle through a gate G positioned at (xG, yG), see Fig. 5.7. In our solution, we address

the uncertainty of gate orientation as perceived by the gate approaching tricycle by

describing the gate orientation angle as dθG = σGdwG, where dwG is the unit intensity

Wiener process increment and σG is a scaling factor. From this and the FWD tricycle

kinematics (5.23)-(5.26), Itô’s formula [48] yields the following stochastic kinematics for

75



the FWD tricycle-gate relative position

dr = brdt = −vi cos(β − ϕ) dt, (5.27)

dβ = bβdt =
vi
r
sin(β − ϕ) dt− vi

L
sinϕ dt, (5.28)

dα = bαdt+ σGdwG = −vi
L

sinϕ dt+ σG dwG, (5.29)

dϕ = bϕdt = ui dt, (5.30)

where r =
√

(xG − xA)2 + (yG − yA)2 is the tricycle-gate distance, β = −θ+arctan( yG−yA
xG−xA

)

is the bearing angle, and α = θG − θ is the misalignment angle between the tricycle

heading and the gate orientation. By defining the state x = (r, β, α, ϕ), x ∈ R4, we

use the same approach as in [15] to solve numerically optimal feedback control policies

ui = ui(x). For that reason, we define a target set GT , which should be reached within

the minimum time as

GT = {x| r ≤ r, |β| ≤ β, |α| ≤ α, |ϕ| ≤ ϕ}, (5.31)

where | · | denotes absolute values and r < D, where D is the gate width. We assume

that when x ∈ GT , the tricycle passes safely through the gate. The specific values that

we use to define this set are r = 0.3m, D = 1m, β = 80 π
180 , α = 50 π

180 , and ϕ = 50 π
180 .

To describe the configurations in which the tricycle misses the gate, i.e., the set of states

x that should be avoided, we introduce set AT as

AT =
{
x | − π < ϕ ≤ −ϕ or ϕ ≤ ϕ ≤ π

}
(5.32)

∪
{
x |r ≤ r, (−π < β < −β or β < β ≤ π),

(−π < α < −α or α < α ≤ π)
}
,
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where the bounds r, β, α, ϕ are the same as in (5.31). Given the kinematics (5.27)-

(5.30), the sets GT and AT , and the cost, which is the time to reach the target set GT ,

as in [15] we solve numerically the Hamilton-Jacobi-Bellman equation (HJB) for each

velocity vi, i = 1, ...5. With each solution, we obtain the optimal control ui = ui(x),

as well as the corresponding value function with the expected time Ti = Ti(x). By

multiplying the expected times with their corresponding velocities, we obtain expected

paths Pi = Pi(x) = viTi(x). All of these values are computed on a grid 72×72×100×21

associated with the discretization of α ∈ (−π, π], β, r, and ϕ ∈ (−π
2 ,

π
2 ) variables.

Backward velocity controller u0: When the forward moving tricycle has to

navigate towards a gate with a sharp turn, there may not be a fixed speed vi feedback

controller ui, i = 1, ...5 that can navigate the tricycle to go on a trajectory with a loop

before passing through the gate. The loop provides the re-positioning of the tricycle

relative to the gate, but turning away from the gate can be undesirable, for example,

when the sequence of the gates describes a road and the tricycle should stay on the

road all the time. To allow for the re-positioning of the tricycle with a sequence of

forward-backward motions, we use the velocity v0 = −0.6 < 0. With the negative

velocity, the gate approaching tricycle moves away from the gate. Under this condition,

we cannot define the optimal control for reaching the target set G. Therefore, we select

that u0 = u5 and let the metrics for the controller u0 be undefined.

Switching Policy Training : In this example, we train the actor-critic neural

network to switch among the array of six controllers ui and the FWD tricycle velocities

vi, i = 0, 1, ...5, (q = 5 in Fig. 5.1). To prevent an abrupt change of the velocity, we
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Figure 5.7: Tricycle-gate relative position: gate G is positioned at (xG, yG), θG is the

heading angle of the gate and D is the width of the gate. The tricycle of length L and

width w is depicted with the heading angle θ, steering angle ϕ, distance to the gate

r, and bearing angle β. For the front-wheel drive (FWD) tricycle, the velocity vector

(shown as the solid orange arrow) is associated with the pivot point A.

introduce a constraint that if q(t) is the index of a currently active controller uq(t), then

the index in the next time step q(t + Ts) has to satisfy |q(t + Ts) − q(t)| ≤ 1, where

Ts = 0.1s is the discrete time step of the controller execution.

For both the KV and MO training methods, the reward J that is maximized

is given by (5.2) in which γ = 0.99, rk = 0 and gT (xKT
) = 100 for the tricycle that

reaches the target set xKT
∈ G, which is the gate, i.e., G = GT , see expression (5.31). The

avoidance L set for the reward (5.2) maximization is defined as L = {x| r > r, |α| > α}
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with α = 135 π
180 , which is the set of states x with a large misalignment angle at a

large distance. This is an indicator that the tricycle goes along a trajectory with a loop.

Consequently, if the tricycle starts going on a loop, i.e., xKT
∈ L, then the terminal cost

is gT (xKT
) = −100. The maximization of the reward J that is discussed here minimizes

the number of time steps to the gate while penalizes the tricycle for going on a loop

trajectory. Regardless of whether we train the actor-critic neural network using the KV

or the MO training method, the training begins with no prior knowledge of the value

function Ŝ, see Fig. 5.2.

For the KV training, the input vector L to the actor-critic neural network is

composed of normalized values of q and KV, x = (r, β, α, ϕ). For the MO training,

the input L to the network is composed of normalized values of q and the metrics

(P1, P2, P3, P4, P5), where Pi, i = 1, ...5, are expected paths corresponding to controllers

ui. Note that the metric for the controller u0 is unavailable. Other details related to

both KV and MO training methods are provided in Appendix A.3.

5.5.1 KV vs. MO Training of the Actor-Critic Neural Network

We compare here the KV and MO training approaches based on the average

reward and critic loss performance measures. The performances were computed for each

epoch of the trainings. We ran 20 trainings of 5000 epochs and computed average and

standard deviation values across the runs that are plotted in Figs. 5.8 and 5.9.

Fig. 5.8 shows average rewards for the MO and KV based trainings. From the

figure, we see that both KV and MO trainings converge to the maximal reward 100,
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Figure 5.8: Average rewards and their standard deviations for the kinematic variables

(KV) and metrics-only (MO) based trainings.

therefore, we conclude that in both trainings, the neural networks learn update rules,

which yield that the tricycle converges to the gate. The figure also shows that the MO

based training is faster in reaching the maximal value and that the standard deviation

from the MO training is lower after about 200 epochs.

The second evidence of the MO based learning efficiency is given in Fig. 5.9

showing the average loss that measures the error of state value estimation M(ϕc). For

the MO training, the average critic loss drops close to zero after less than 1000 epochs

and has less variations than the plot for the KV based method.

5.5.2 Validation of the FWD Tricycle MO Trained Switching Policy

We validate the trained FWD switching policy using a right back-wheel drive

(RBWD) tricycle in the virtual robot experimentation platform CoppeliaSim (previously
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Figure 5.9: Average critic losses and their standard deviations quantifying the error

of value function approximation. The plots are for the kinematic variable (KV) and

metrics-only (MO) based trainings.

V-REP). We do that to illustrate that our results can be applied beyond the control of

ordinary differential equation-simulated mathematical models. First, the wheels of the

RBWD tricycle in CoppeliaSim can slip on the ground (see Appendix B.1). Second,

the kinematics of the RBWD tricycle is different from the FWD tricycle kinematics

(5.23)-(5.26), which was used in the policy training.

The mathematical model for the motion of the pivot point A for the RBWD
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Figure 5.10: The blue tricycle navigates a course in the CoppeliaSim Simulator. The

orange cuboids mark each gate towards which the bicycle must navigate and the black

line marks the path towards each gate. The experiment panels are in Appendix B.2

tricycle is

dxA =
LvR/ cosϕ

L+ w
2 tanϕ

cos(ϕ+ θ)dt, (5.33)

dyA =
LvR/ cosϕ

L+ w
2 tanϕ

sin(ϕ+ θ)dt, (5.34)

dθ =
tanϕ

L+ w
2 tanϕ

vRdt, (5.35)

dϕ = ui dt, (5.36)

where vR is the velocity of the right back wheel and w is the tricycle width. All other

variables have the same definition as in (5.23)-(5.26). For the RBWD tricycle, the

control variables are the right back-wheel velocity vR and the steering rate ui. However,

the FWD trained policy is trained under the assumption that we can control the front-

wheel velocity vi, i = 0, ...5, (5.23)-(5.26). Therefore, we introduce a PI feedback

controller for the velocity vR. For that, we measure the velocity of the front wheel
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V CSim
A from CoppeliaSim to compute the error e = V CSim−vi between the velocity and

the velocity vi requested by the FWD tricycle policy and control VR by the PI controller

as vR = Kpe+Ki

∫
edt. The implementation details are provided in Appendix A.4.

Figure 5.11: RBWD and FWD tricycle trajectories using data retrieved from the Cop-

peliaSim simulator. The experiment slide panels are in Appendix B.2 and B.3, respec-

tively.

Figure 5.10 shows the RBWD tricycle at its initial position in CoppeliaSim.

The tricycle is set to go through a sequence of 9 gates, Gi, i = 1, ...9, and in its initial

position the tricycle is heading away from the first gate G1 as shown in Fig. 5.10. In

going through the gates, the tricycle accounts only for its relative position to the next

gate. To go through G1, the switching policy navigates the tricycle to go in reverse and

adjusts its heading as shown in Fig. 5.11. Then, the tricycle goes forward to gate G1 at

(x = 2, y = 3). Following G1, the tricycle moves forward through gates G2, G3, G4 and

G5 as shown in Fig. 5.11. After it passes G5, to go through gate G6 at (x = −3, y = −1),
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the switching policy navigates the tricycle to go forward-backward to adjust the tricycle

heading for a safe passage through gate G6. The same happens after gate G7 when

the tricycle heading is adjusted for a safe passage through gate G8. After gate G8, the

tricycle moves forward and reaches gate G9 at (x = −1.5, y = 5).

Fig. 5.11 shows the whole path of the RBWD tricycle while going through the

9 gates. For a reference, we also provide the path that is the result of the FWD tricycle

navigated by the same switching policy (for the slide panels, see Appendix B.3). While

both types of tricycle can go through all 9 gates, the way they do that is different due to

the significant difference in their kinematics. Overall, we show that the switching policy

and the array of controllers for the FWD tricycle can be implemented on the RBWD

tricycle with the kinematics that was not anticipated in the policy training.

5.6 Conclusions

In this chapter, we presented the metrics-only (MO) training of the actor-critic

neural network for switching among the array of feedback controllers. The main benefit

of using the MO training is that the number of variables that is in use for the neural

network training depends on the number of available feedback controller performances.

Therefore, the training depends on the number of feedback controllers. We compared

the method with the more classical approach in which the training is based on kine-

matic variables (KV). Therefore, the number of variables that is used in the training

is independent on the number of feedback controllers in the array. We showed that for
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both pendulum control and tricycle navigation problems, the MO training method is

more efficient and converges with less variability than the KV one. Furthermore, for

the tricycle navigation problem, we showed that the MO trained neural network can be

applied beyond numerically-simulated control problems. This work shows the benefit of

using control theory method designed feedback controllers and exploiting their known

performance metrics to achieve their synergistic work using the methods of artificial

intelligence.
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Chapter 6

Conclusions

We presented a hierarchical control architecture for the switching among multi-

ple feedback controllers. The architecture is composed of an array of feedback controllers

and a neural network which is trained to switch among them. In this work, we used

the architecture for bicycle and tricycle navigation problems, as well as for the control

of a pendulum mechanism. In the navigation problems, the feedback controllers were

computationally generated, while in the pendulum case, the controllers were defined an-

alytically. The neural network was implemented as an actor-critic network in PyTorch

and was trained using reinforcement learning. In this thesis, we specifically tested two

approaches to training the neural-network for switching. In one approach, which we

denoted as KV, we fed to the neural network the variables describing the motion of the

system we controlled. In the other, i.e., the MO approach, we fed the variables related

to the feedback control performances.

In this thesis we found experimentally that in all examples the MO training
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approach was more efficient and converged with less variability than the KV training

approach. We find these results meaningful since the MO training not only takes into

account controller performances, but also their number, which is important for practical

applications requiring a large number of controllers.

Future work can be related to a mathematical analysis of the proposed archi-

tecture, its properties and performance in learning. Related works in this direction are

using Koopman operators for Dynamic Mode Decomposition [23],[20] Perron-Frobenius

theory for the analysis on a graph neural network [25], or results related to stochastic

switching diffusion [60].
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Appendix A

A.1 Pendulum Control: Neural Network Training

Controllers: In the case of the pendulum control problem from Section IV, we train the

actor-critic neural networks for switching among four controllers u0, i = 0, 1, 2, 3, from

[56], which are given by (5.19)-(5.21) in the paper. From (5.16) and (5.18) of the paper

we can find

d

dt
(L(x)) = ω sin θ − ωω̇ = ω sin θ − gω sin θ − ωu (A.1)

This yield that a rapid decrease of the Lyapunov function L(x) can be achieved by

u = umax for ω > 0 and u = −umax for ω < 0. Because of that we have controllers u0

and u1 given by (5.19) in the paper. However, difficulties arise for ω̇ = 0 and θ ̸= 0,

i.e., when the pendulum is not in the desired θ = 0 position. Then the expression

EA(u, θ, ω) used in the formulation for u2 and u3 helps avoid reaching these equilib-

rium points by checking for low angular velocities and reducing the torque by 1
2 when

using the u3 controller or by 1
4 when using the u4 controller. Even by using these four

controllers, it can take a long time to reach the upright position. During the training, if
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an episode lasts longer than 1000 steps the episode has timed out and we set the reward

r1000 = −104 and finish the episode.

Training : The pendulum training of the actor-critic networks uses the prediction hori-

zon value n = 30 in (5.9)-(5.10) of the paper. Both networks consist of 2 hidden layers

with each layer having 256 neurons and each neuron activates according to the PReLU

activation function. The neuron weight parameters are optimized with the Adam algo-

rithm, their gradients are clipped to a value of 0.1 and are updated after each epoch

with a learning rate of 0.0003. All training is coded in PyTorch.

A.2 Pendulum Control: Stochastic Optimal Controller

To get an insight into control performances obtained from the KV and MO

training methods, we computed a minimum-time stochastic optimal feedback control

policy uOPT (x), x = (θ, ω). The policy minimizes expected time to reach the set of

states
√
θ2 + ω2 < 0.1 of a pendulum dynamics defined as

dθ = ωdt+ 0.01dw (A.2)

dω = g sin θdt+ udt (A.3)

The dynamics is identical to the one from (5.15)-(5.16) of the paper, except for the unit

intensity Wiener process dw multiplied by 0.01. This small intensity stochastic term

allows us to solve the minimum time optimal control problem using locally consistent

Markov chain approximation method from [34]. Using the method we computed the
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value function of the policy uOPT (see Fig. A.1a)

V (x) = min
u∈U

E

{∫ τ

0
1dt

}
(A.4)

where E is the expectation operator and τ is the terminal time the pendulum reaches

the desired upright position. The corresponding optimal policy uOPT is depicted in

Fig. A.1b.

(a) (b)

Figure A.1: Minimum time stochastic optimal control: (a) Level curves of the minimum

time-to-go value function V (x); (b) Stochastic optimal feedback control uOPT .

A.3 FWD Tricycle Navigation: Neural Network Training

The training of the actor-critic neural networks for the front-wheel drive (FWD)

navigation is based on the prediction horizon n = 20 in expressions (5.9)-(5.10) of the

paper. Both actor and critic networks consist of 2 hidden layers with each layer having

256 neurons. Each neuron activates according to the PReLU activation function. The
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neuron weight parameters are optimized with the Adam algorithm, their gradients are

clipped to a value of 0.1 and are updated after each epoch with a learning rate of 0.0005.

All training is coded in PyTorch.

For both the KV and MO training methods we use episodes in which the initial

FWD tricycle-gate relative positions x0 = (r0, β0, α0, ϕ0) are defined as

β0 = ψ0 − θ0, α0 = ξG − θ0, ϕ0 = 0 (A.5)

where r0, ψ0, θ0 and ξG are independent random variables sampled as

r0 ∼ U(0, p/2), ψ0 ∼ U
(
−π

4 ,
π
4

)
,

θ0 ∼ U
(
−50π

180 ,
50π
180

)
, ξG ∼ N

(
0,
(
0.1π
180

)2)
,

(A.6)

In this expression, U(a, b) denotes a uniform random variable distribution in the range

[a, b], and N (µ, σ2) denotes a Gaussian distribution with a mean value µ and variance

σ2. For the distribution of r0, the upper bound includes p = 2πL/ tan(ϕmax), ϕmax =

50π/180, which is the turning radius of the back wheel for the maximal steering angle

ϕ. With this we select a value compatible to the scale, i.e., the turning radius of the

tricycle. The episode time step is Ts = 0.1s.

A.4 RBWD Tricycle Navigation: Controller Implementa-

tion

After the training for the front-wheel drive (FWD) tricycle switching policy,

we used the trained switching policy and validated using the right-back-wheel drive

(RBWD) tricycle. To achieve that we used front wheel velocities used during the training
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as vrefA inputs for the PI controller of the front wheel velocity vA of the RBWD tricycle,

as depicted in Fig. A.2. The PI controller uses the the difference e = vrefA − vA and

computes the control action vR = Kpe+Ki

∫
edt, which is the velocity of the right-back

wheel drive of the RBWD tricycle. We use the discrete time implementation of the

controller as

e = vrefA (k)− vA(k) (A.7)

up(k) = Kpe (A.8)

ui(k) = ui(k − 1) +KiTse (A.9)

vR(k) = up(k) + ui(k) (A.10)

(A.11)

where up and ui are proportional and integral part of the PI controller output. k

indicates the discrete time step and Ts = 50ms the sample time of the feedback control

loop. In our work the PI control parameters are Kp = 0.1 and KiTs = 0.3. This

controller was implemented in a Python script that takes vA measurements from the

RBWD tricycle created in the CoppeliaSim environment, and send the control actions

vR back to the CoppeliaSim environment.

Fig. A.3 shows the plots of the vrefA , vA and vR during the experiment depicted

in Fig. 5.10 and Fig. 5.11. For the slide panels of the experiment see, Appendix B. The

plots in Fig. A.3 show the discrepancy between vrefA from switching policy for the FWD

tricycle and actual front-wheel velocity vA of the RBWD tricycle in the CoppeliaSim

environment. This discrepancy is due to the more complex dynamics of the RBWD
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tricycle.

Figure A.2: Controller implementation for RBWD tricycle navigation: The neural net-

work (actor) switches among the array of controllers that steer the tricycle. The network

is trained based on the FWD tricycle kinematics model, while the tricycle in the exper-

iment is the right-back wheel drive (RBWD) tricycle. The proportional-integral (PI)

controller takes vrefA = v(q) values generated by the switching policy and controls the

front wheel velocity vA of the RBWD tricycle, v(0) = −0.6, v(q) = 0.6+0.2 · (q− 1) for

q = 1, 2, ...5.
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Figure A.3: The tricycle must first reverse and then navigate forward to reach the 1st

gate G1 at 8.2 s. Navigating at maximum velocity the tricycle goes through G2 − G4

gates and on the G5 gate at 18.9 s the tricycle must reverse and adjust towards the

next gate. Going towards the G6 gate it adjusted a second time navigating forward and

backward at about 25.0 s and finally position itself to be able to reach the G6 gate at

29.6 s going forward. To reach the G8 gate the tricycle has to readjust after reaching the

G7 at 31.0 s. The last two gates G8 −G9 are reached as the tricycle navigates forward

at maximum forward velocity at 39.4 s and 42.0 s, respectively.
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Appendix B

B.1 Vehicle Wheel-Ground Interaction in CoppeliaSim

Figure B.1: Panels A-F show the tricycle’s interaction (slipping) with the ground where

the red line depicted is used as a reference line. This is the right back-wheel drive

(RBWD) tricycle with the steering that makes the vertical axis of the tricycle body

rotation go through the center of the driving right back wheel. Consequently, the front

wheel slips on the ground and the tricycle motion does not correspond to the steering

of the front wheel.
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B.2 Right Back-Wheel Drive (RBWD) Tricycle Naviga-

tion

Figure B.2: The trajectory corresponds to the RBWD tricycle trajectories of Fig. 5.10-

5.11. Panel A shows the tricycle at an initial pose facing away from its first gate (G1).

It reverses and adjusts to navigate forward in panel B. Going forward it reaches G5 and

G6 is too steep of a turn towards it as shown in panel C. The tricycle must reverse and

adjust to navigate forward again as depicted in panels D-E. The same occurs in panels

F-G going from G7 to G8. Finally, it reach G9 in panel H.

B.3 Front-Wheel Drive (FWD) Tricycle Navigation
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Figure B.3: The trajectory corresponds to the FWD tricycle trajectory of Fig. 5.11.

Panel A shows the tricycle at an initial pose facing away from its first gate (G1). It

reverses and adjusts to navigate forward in panel B. In panels C-D the tricycle navigates

forward. Upon reaching G5, the gate G6 is too steep to reach. So in panels D-F, the

tricycle navigates backwards and forwards adjusting its way to reach G7 depicted in

panel G. One final backward and forward adjustment in panels G-H and the tricycle

successfully navigates towards G9 in panel I.
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