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Local delivery of hormonal therapy 
with silastic tubing for prevention 
and treatment of breast cancer
Jeenah Park1, Scott Thomas1, Allison Y. Zhong2, Alan R. Wolfe  3, Gregor Krings4,  
Manuela Terranova-Barberio1, Nela Pawlowska1, Leslie Z. Benet3 & Pamela N. Munster1

Broad use of germline testing has identified an increasing number of women at risk for breast cancer 
with a need for effective chemoprevention. We report a novel method to selectively deliver various anti-
estrogens at high drug levels to the breast tissue by implanting a device comprised of silastic tubing. 
Optimized tubing properties allow elution of otherwise poorly bioavailable anti-estrogens, such as 
fulvestrant, into mammary tissue in vitro and in vivo with levels sufficient to inhibit estrogen receptor 
activation and tumor cell proliferation. Implantable silastic tubing delivers fulvestrant selectively to 
mouse mammary fat tissue for one year with anti-tumor effects similar to those achieved with systemic 
fulvestrant exposure. Furthermore, local delivery of fulvestrant significantly decreases cell proliferation, 
as assessed by Ki67 expression, most effectively in tumor sections adjacent to tubing. This approach 
may thereby introduce a potential paradigm shift and offer a promising alternative to systemic therapy 
for prevention and early interception of breast cancer.

Breast cancer continues to impact the lives of many women. Over 250,000 women are diagnosed with breast can-
cer each year and more than 40,000 will die from the disease in 20171. About 5–10% of breast cancers are linked 
to hereditary mutations, of which those in BRCA1 and BRCA2 account for the great majority of families with 
inherited predisposition2. These deleterious mutations may convey lifetime risk of breast cancer as high as 85%3,4. 
BRCA carriers are also at higher risk for developing secondary breast cancers after initial diagnosis in either the 
same or contralateral breast5.

In addition to BRCA1/2, mutations in PALB2, ATM, CHEK2, and BRIP1 genes confer a 20–40% lifetime breast 
cancer risk6. Recommendation for risk reduction for these mutations is less clear and bilateral mastectomies are 
typically not recommended. Furthermore, a strong family history of breast cancer may compound the risks in 
known and unknown low penetrance gene mutations7. The affordability and increased awareness of germline 
testing has led to a substantial increase in women getting multigene germ line testing and now present with a 
definable breast cancer risk. Hence, there is a rapidly increasing number of young women with known elevated 
risk for breast cancer in need of prevention and early interception strategies.

Approved breast cancer prevention strategies are limited. They include risk-reducing surgery, such as bilat-
eral mastectomy and oophorectomy, or systemic treatment with anti-estrogens such as tamoxifen. In high risk 
patients, bilateral mastectomy with or without accompanying oophorectomy reduces the risk of breast cancer 
by more than 95%8,9. Although effective, the considerable physical and emotional impact renders this a diffi-
cult choice for many women. A pharmacological alternative is 5 years of systemic tamoxifen treatment. To date, 
tamoxifen has been the only approved drug for adjuvant therapy and breast cancer prevention in premenopau-
sal women. Despite a 50% risk reduction reported in a large randomized trial of over 13,000 patients, very few 
women are willing to consider tamoxifen for prevention10,11. The pro-estrogenic effects of tamoxifen in non-breast 
tissues, furthermore, present significant increased risk for endometrial cancer, and strokes are a discernible risk 
in older women. Raloxifene, a newer selective estrogen receptor modulator (SERM), with similar benefits to 
tamoxifen has also been approved for prevention but is limited to only postmenopausal women. The side effects 
associated with systemic exposure have similarly resulted in minimal acceptance even in women with high risk. 
Fulvestrant, a highly potent and active selective estrogen receptor downregulator (SERD), is currently approved 
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for metastatic breast cancer in postmenopausal women. Despite well-established activity in postmenopausal 
women, its poor bioavailability has made this agent less suitable in premenopausal women and has not been used 
for prevention12.

Thus, the limited acceptable choices for breast cancer prevention strategies in an increasing number of young 
women emphasize a strong need for other options. Anti-estrogens delivered locally to the breast would be a 
promising alternative to current breast cancer prevention measures with the hope of eliminating or delaying the 
need for surgical interventions, such as prophylactic mastectomies, or reduce the impact from adverse side effects 
of systemic treatment. The goal of localized treatment is to effectively deliver the active drug to the appropriate 
tissue and maintain the desired therapeutic spatial distribution of the drug while minimizing systemic exposure.

Here, we investigated the potential of an implantable device comprised of silastic tubing for long-term local 
delivery of anti-estrogens selectively to the breast. Silastic Rx (dimethylpolysiloxane; Dow Corning Corp.) is a 
biomedical grade platinum-cured elastomeric silicone tubing that is routinely used in medical devices, such as 
shunts and medical catheters, and for drug and nutritional infusion. Unlike other polymer membranes, the silas-
tic polymer has been shown to allow for the diffusion of various steroids13,14.

For this study, we tested various breast cancer drugs and metabolites to evaluate the broad application of 
silastic tubing implantable into mammary tissue as a depot for anti-cancer therapies selectively to the breast. We 
provide evidence that implantable silastic tubing can be used for long-term controlled release of fulvestrant at 
therapeutic concentrations sufficient to inhibit estrogen receptor signaling activation and induce apoptosis in 
breast cancer cells in vitro. Furthermore, silastic tubing delivers fulvestrant selectively to the mammary tissue and 
prevents cell proliferation (Ki-67) and tumor growth in mice comparable to systemic fulvestrant administration. 
Pharmacokinetic studies show a high drug concentration differential between the mammary tissue and other 
organs. Our study provides proof of concept for an implantable device comprised of silastic tubing as an effective 
long-term local drug delivery method for anti-estrogens selective to the breast tissue and hence an alternative for 
prevention and treatment of early stage breast cancer with minimal systemic exposure and toxicity.

Results
The properties of silastic tubing suggest that steroid-based compounds can be delivered and sustained at high 
concentrations in its local surrounding. A device that incorporates optimized tubing diameter and wall thickness 
can serve as an ideal local reservoir for prolonged tissue-specific administration of an anti-cancer agent. The slow 
release of anti-estrogens from silastic tubing is expected to result in clinically effective local concentration within 
the breast parenchyma with low to minimal plasma concentrations. The high affinity of SERMs and SERDs to an 
estrogen-rich environment further provides a tissue advantage. We therefore sought to determine whether fulves-
trant released from silastic tubing selectively to mammary tissue could prevent tumor growth.

In vitro delivery of anti-estrogens to cancer cells using silastic tubing. We developed several device 
prototypes comprised of Silastic® Rx-50 Medical Grade tubing (0.76 mm inside diameter, 1.65 mm outside diam-
eter) to test the elution characteristics of various cancer drugs and metabolites (Fig. 1A). The elution properties 
of fulvestrant (SERD) were compared to that of the SERMs, 4-hydroxytamoxifen (4-OHT) and raloxifene. While 
fulvestrant is more efficacious than other SERMs, its poor bioavailability in young women with high estrogen 
levels has limited its use to metastatic breast cancer in postmenopausal women12.

All drugs were reconstituted in ethanol at maximum solubility before they were loaded into silastic tubing of 
10 cm length. After the tubing ends were sealed with Silastic® Medical Adhesive Silicone Type A (Dow Corning), 
devices were immersed in complete cell culture media and incubated at 37 °C. The media containing tubing was 
collected and replaced with fresh media twice a week (q 3.5 days). MCF-7 cells were incubated for 3 days with 
the collected media in which the drug was released from the tubing and compared to media in which drug was 
directly added (Fig. 1B).

Fulvestrant released from tubing was sufficient to downregulate estrogen receptor (ERα), progesterone 
receptor (PRb) and cyclin D1 expression (Fig. 1C). Similarly, 4-OHT transfer from tubing to media decreased 
PRb and cyclin D1 expression, and was comparable to drug directly added to media. Media incubated with 
raloxifene-loaded tubing for 3.5 days, or as long as 2 weeks, did not affect ER expression or activity (Fig. 1D), sug-
gesting that fulvestrant and 4-OHT, but not raloxifene, were released at a concentration high enough to inhibit ER 
signaling. Since fulvestrant does not require metabolism to an active metabolite and has no pro-estrogenic activ-
ity like tamoxifen, it was therefore chosen as the lead anti-estrogen for subsequent evaluation and optimization.

Duration of drug delivery in vitro using silastic tubing. Clinical data suggests that breast cancer pre-
vention and adjuvant therapy requires sustained delivery of anti-estrogen for 5 to 10 years for optimal benefit. To 
determine the rate and duration of release, fulvestrant-loaded silastic tubing was incubated in media and replaced 
twice weekly (q3.5d) for one year. Media from each time point was transferred to cultured MCF-7 and T47D 
cells for 3 days. Our data suggested that fulvestrant was released from silastic tubing for up to a year at sufficient 
concentration to inhibit ERα and PRb expression (Fig. 1E). The observed effects were comparable to the effects 
seen on MCF-7 cells where fulvestrant (100 nM) was added directly to the media. Similarly, a 10-day exposure of 
MCF-7 cells to tubing media collected over the duration of a year caused significant cell death (Fig. 1F). Steady 
drug release was maintained over the course of one year without diminishing effects. Measurement of drug resid-
uals in tubing after 52 weeks suggested that remaining drug levels would allow delivery of fulvestrant for a sug-
gested period of 5–10 years.

In addition to determining the biological activity of fulvestrant released from silastic tubing, its concentration 
was quantified by liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) and the release rate 
was calculated. Steady-state fulvestrant release was reached after about 5 weeks at a rate of 1.758 μg per 10 cm tub-
ing per 3.5 days for the entire year (min – max: 0.829–2.794 μg) (Fig. 1G). To evaluate the effect of wall thickness 
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Figure 1. In vitro delivery of anti-estrogens to breast cancer cells using silastic tubing. (A) Silastic Rx-50 
medical grade tubing with an inner diameter of 0.76 mm, an outer diameter of 1.65 mm, and a wall thickness 
of 0.445 mm was used for the study. (B) Diagram of the in vitro experiment to test the release of drug from 
silastic tubing. (C) Fulvestrant and 4-OHT released from silastic tubing reduced the expression of progesterone 
receptor (PRb) and cyclin D1 in MCF-7 cells. 100 nM and 1 μM 4-OHT were the concentrations of drug used to 
directly treat cells. Lanes 1–4 represent biological replicates. (D) When raloxifene-loaded tubing was incubated 
in media for 3.5 days or 2 weeks, it was not released at a concentration high enough to inhibit the ER signaling 
pathway. 1 μM and 10 μM raloxifene concentrations were used to directly treat cells. (E) MCF-7 and T47D cells 
were treated with media that was previously incubated with fulvestrant-loaded silastic tubing and collected in 
weeks 10, 20, 30, 40 and 50. The effect on estrogen receptor (ER) and PRb expression was assessed by Western 
blot. β-actin was used as a loading control. (F) The MTS assay revealed that culturing MCF-7 cells in tubing 
media for 10 days causes significant cell death. (G) LC-MS/MS confirmed a steady release of fulvestrant in tissue 
culture media collected twice a week for a year (n = 4). Error bars are mean ± SEM.
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and surface area on the release rate, we loaded tubing of different size with fulvestrant and replaced media twice a 
week (Table S1). The results revealed that the wall thickness and surface area, as determined by outside diameter, 
have a statistically significant effect on the amount of drug released (Table S2). More specifically, wall thickness is 
inversely related to the release rate whereas surface area is directly related.

Biodistribution evaluation of locally delivered fulvestrant. Despite being one of the most active 
agents for breast cancer, fulvestrant has poor bioavailability12. This has limited its systemic administration in 
premenopausal women. The lipophilic nature of fulvestrant (log P ≈ 7.7)15, however, renders an ideal choice to 
deliver through silastic tubing and then be preferentially taken up by the adipose-rich tissue of the breast, thereby 
creating a high tissue-to-plasma drug differential. To determine if fulvestrant released from silastic tubing pref-
erentially accumulates in the mammary tissue, a 2 cm piece of fulvestrant-loaded tubing was implanted in 4–6 
week old female CD-1 mice proximal to the inguinal mammary fat pad (Fig. 2). Tubing length was adjusted to the 
width of the inguinal mammary fat pad in these mice. Drug concentrations were determined in tubing adjacent 
mammary fat pads (inguinal), fat pads near but not touching the tubing (abdominal), and fat pads far from the 
tubing (thoracic). Drug concentrations were further determined in major organs and plasma. Fulvestrant con-
centrations in these tissues were determined at various time points post implantation, from 1 week to 52 weeks 
(Table 1). Using LC-MS/MS, we determined that fulvestrant preferentially accumulates in the inguinal mammary 
fat pad with minimal to no detection in other organs (>300-fold difference). The concentration of fulvestrant in 
the inguinal mammary fat pad was >20-fold greater than those of the distant mammary fat pads (abdominal and 
thoracic). No gross tissue pathology was observed in the mouse during necropsy in the region surrounding the 
tubing or in the harvested organ (data not shown). Furthermore, body weights were measured over the 52-week 
study period (Figure S1) and there was no evidence of any changes in body weight patterns.

To evaluate drug clearance at the in vivo level, we measured the level of fulvestrant in the fat pads six days 
after removing drug-loaded tubing that had been implanted for over three months. Within six days, fulvestrant 
concentrations in inguinal, abdominal and thoracic fat pads were below the limit of detection (n = 3 mice), sug-
gesting the need for continued presence of drug-loaded tubing. These biodistribution experiments suggest that 
silastic tubing can locally deliver fulvestrant to mouse mammary tissue with minimal systemic exposure and the 
drug can be quickly cleared upon removal of the tubing.

In vivo anti-tumor effects of systemically delivered fulvestrant. Biodistribution profiling and 
anti-tumor effects of systemically delivered fulvestrant were confirmed using NSG mice. The mice were ran-
domly chosen to receive vehicle (peanut oil), 1 mg or 5 mg fulvestrant in vehicle subcutaneously once a week for 
five weeks. The higher weekly dose of 5 mg was chosen based on a previous study in which dramatic inhibitory 
effects were observed with 5 and 10 mg doses that were systemically delivered to mice once a week16. Fulvestrant 
was extracted from tissues and quantified by LC-MS/MS. The results demonstrated a lack of preferential accumu-
lation of fulvestrant in the mammary fat pad of mice when administered via subcutaneous injection (Table 2). The 
weekly dose of 5 mg fulvestrant resulted in excessive drug levels in all evaluated tissues. Previous studies using a 
single-dose intramuscular injection of clinical fulvestrant at 250 mg in healthy female postmenopausal volunteers 
demonstrated that maximum plasma concentrations were approximately 11.4 ng/mL17. In comparison, the drug 
concentration detected in mouse plasma following 5 mg weekly dose was more than 100 ng/mL. At 1 mg dose per 
week, a significant amount of drug was found in all organs except the plasma in which it was found to be below 
the limit of detection. Despite the accumulation of drug in all major organs, the concentration of drug in the 
mammary fat pad was lower than that of the heart, lung, liver and kidney.

Given that 5 mg weekly dosing with fulvestrant led to excessive organ drug levels in our mice, we compared 
the anti-tumor effect of 1 mg weekly subcutaneous dosing with fulvestrant to vehicle. This fulvestrant dose inhib-
ited estrogen-induced tumorigenesis of MCF-7 cells orthotopically implanted in the abdominal mammary fat 
pads (Fig. 3A). Subcutaneous fulvestrant injections beginning on the day of tumor cell inoculation significantly 
reduced tumor formation, decreasing tumor volumes by 45%.

Figure 2. Diagram of the biodistribution experiment in CD-1 mice in which fulvestrant-loaded tubing was 
implanted in the mammary fat pad for various length of time.
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In vivo anti-tumor effects of drug-loaded silastic tubing. The goal of local delivery is to enhance local 
drug concentrations while minimizing systemic exposure. As shown in Table 2, systemic administration of fulves-
trant resulted in low mammary fat pad exposure with high systemic concentrations and considerable organ expo-
sure. We therefore examined the efficacy of fulvestrant locally delivered by silastic tubing. We surgically placed 
two pieces of tubing that were either loaded with ethanol or fulvestrant on each side of the abdominal mammary 
fat pads. Given that implantation of drug-loaded tubing in CD-1 mice resulted in minimal to no detectable drug 
in the plasma, we expected that the drug released from the tubing on one side of the mouse would not affect the 
tumor implanted on the other side of the mouse. As such, we engrafted two tumors per mouse to preserve tumor 
heterogeneity (n = 8 mice per cohort). MCF-7 cells were orthotopically injected adjacent to the implanted tubing 
a week following tubing implantation (Fig. 3B). Tubing was introduced before the tumor cells in order to allow 
the drug to begin eluting and concentrating in mammary tissue to better model tumor prevention. The mice were 
dosed weekly with vehicle to mimic the previous experiment. Tumor growth was monitored twice a week for five 
weeks, and tumors and organs were harvested at the end of the study. There was no statistical difference in the 
body weight of mice between each cohort throughout the duration of the study (Figure S2).

Throughout the study, significant inhibition of tumor growth was observed in the group with fulvestrant-loaded 
tubing compared to ethanol-loaded tubing (Fig. 3A). At the end of the experiment, drug delivered by silastic tub-
ing prevented tumor growth by 40%, akin to 1 mg/week systemic dosing. Furthermore, results from the biodistri-
bution studies indicated that fulvestrant was undetectable in all major organs evaluated (Table 2).

Representative images of MCF-7 tumor xenografts that have grown next to ethanol-loaded tubing versus 
drug-loaded tubing are shown, demonstrating the difference in tumor size (Fig. 3C). MCF-7 xenograft adjoined 
the tubing but did not encase them (Fig. 3D). The orientation of the tumor to drug-loaded tubing was noted at 
the time of harvest to evaluate the effect of drug penetration through the tumor. In particular, one tumor of 5 mm 
in diameter harvested from a mouse implanted with drug-loaded tubing was cut into three ~1.5 mm sections 
parallel to the tubing: adjacent, intermediate, and distal (Fig. 3E). LC-MS/MS was performed on these sections to 
quantify fulvestrant penetrance. Fulvestrant was detected in all sections of tumor, with the highest concentration 

ng 
fulvestrant 
per g organ

Week

Average1 2 3 4 6 8 40 52

IMFP 146.49 ± 52.68 208.42 ± 72.90 219.86 ± 59.10 113.26 ± 9.61 110.64 ± 17.67 140.40 ± 30.55 91.31 ± 9.96 152.87 ± 90.95 147.23 ± 16.19

AMFP 6.11 ± 0.72 5.77 ± 2.24 3.52 ± 1.05 3.37 ± 0.38 2.53 ± 0.11 3.63 ± 1.04 16.47 ± 1.48 19.29 ± 3.53 7.05 ± 1.21

TMFP 12.77 ± 7.81 5.41 ± 3.13 5.86 ± 1.66 2.28 ± 1.07 2.47 ± 0.55 2.93 ± 0.39 22.85 ± 9.72 18.17 ± 3.82 8.46 ± 1.90

heart N.D. 0.83 ± 0.96 0.56 ± 0.56 N.D. N.D. N.D. N.A. N.A. 0.23 ± 0.17

lung 0.44 ± 0.44 0.15 ± 0.17 N.D. N.D. N.D. N.D. N.A. N.A. 0.09 ± 0.06

liver N.D. N.D. 1.12 ± 1.12 5.25 ± 6.06 N.D. N.D. N.A. N.A. 1.11 ± 0.96

kidney N.D. 0.23 ± 0.26 0.02 ± 0.02 N.D. 2.33 ± 2.69 N.D. N.A. N.A. 0.49 ± 0.44

plasma* 1.68 ± 1.03 0.50 ± 0.19 0.68 ± 0.07 0.54 ± 0.11 0.23 ± 0.04 0.70 ± 0.29 N.A. N.A. 0.68 ± 0.16

Table 1. LC-MS/MS revealed that there was a preferential accumulation of fulvestrant in the inguinal 
mammary fat pad with minimal to no detection in other organs (n = 3 or 4 mice per time point). Abbreviations: 
IMFP = inguinal mammary fat pad, *plasma = ng fulvestrant/ml plasma, AMFP = abdominal mammary fat 
pad, N.A. = not available, TMFP = thoracic mammary fat pad, N.D. = not detectable (<0.06 ng fulvestrant per 
g organ).

ng fulvestrant per 
gram of organ

Treatment

5 mg/week SQ 
injection

1 mg/week SQ 
injection

fulvestrant-
loaded tubing

(systemic) (systemic) (local)

IMFP 3,945 ± 1,134 2.93 ± 2.93 N.A.

heart 2,896 ± 2,478 152.90 ± 31.43 N.D.

lung 5,793 ± 3,651 120.80 ± 39.61 N.D.

liver 1,247 ± 929 41.95 ± 13.90 N.D.

kidney 1,389 ± 798 170.70 ± 21.31 N.D.

plasma* 128 ± 13 <3.64 ng/ml <3.64 ng/ml

Table 2. Study of biodistribution revealed that weekly systemic delivery of fulvestrant at 5 mg dose results in 
excessive level of drug in every major organ. Similarly, a significant amount of drug was found in all organs 
but not in the plasma when mice were systemically treated with 1 mg dose per week. In contrast, the level of 
fulvestrant in major organs was below the limit of detection when delivered locally via silastic tubing. The IMFP 
could not be collected in mice that were implanted with fulvestrant-loaded tubings because it was difficult to 
determine where the tubings touched the fat pad once the tumors, adjoined with the tubings, were removed. 
Abbreviations:*plasma = ng fulvestrant / ml plasma, IMFP = inguinal mammary fat pad, N.A. = not available, 
SQ = subcutaneous, N.D. = not detectable (<0.06 ng fulvestrant per g organ).
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found in the section adjacent to the tubing (342 ng/g of tumor). The concentration of fulvestrant was comparably 
reduced in the intermediate (131 ng/g of tumor) and distal (135 ng/g of tumor) sections.

Local delivery of fulvestrant reduces cell proliferation in vivo. To determine the biological effects of 
local fulvestrant delivery, tumors were subjected to immunohistochemical staining analysis for Ki67 expression 
(Fig. 4A–M). There was a statistically significant decrease in Ki76 expression in tumors from fulvestrant-treated 
cohorts either delivered locally by silastic tubing or systemically compared to vehicle control (p < 0.005, Fig. 4M). 
For tumors that arose adjacent to fulvestrant-loaded tubing, Ki67 expression in sections far from the tubing 
(Fig. 4C,G, and K) was evaluated separately from sections near the tubing (Fig. 4D,H, and L), as a gradient of 
fulvestrant tumor penetrance had been previously found (Fig. 3E). There was a marked reduction in Ki67 expres-
sion in tumor regions close to fulvestrant-loaded tubing compared to more distant regions (p < 0.05; Fig. 4K–M). 
Tumors receiving systemically delivered fulvestrant (1 mg/week) demonstrated Ki67 expression similar to tumor 
sections far from fulvestrant-loaded tubing, suggesting that tubing elution is comparable to systemically deliv-
ered exposure with the exception of the very high drug concentrations seen immediately adjacent to the tubing 
(Fig. 4M). Collectively, these data support the hypothesis that local fulvestrant delivery reduces cell proliferation 
as effectively as systemic delivery and may provide a boost to an area of concern if used for local delivery for early 
stage breast cancer.

Discussion
Most prevention strategies for cancer include removal of the respective organ or exposure to systemic anti-cancer 
therapy. Unlike other disease settings, cancer prevention is fraught with uncertainties in individual risk assess-
ment and typically lacks early surrogate markers to predict efficacy. Hence, cancer prevention studies require very 
large numbers of patients, are performed in an unselected population without clearly defined risk and the benefits 
are often small or diluted. Thus far, very few cancer prevention strategies have been successful and even those 
with documented benefit, such as tamoxifen in breast cancer and finasteride for prostate cancer, have found very 
poor uptake in the respective at-risk population due to the undesirable systemic side effects and small magnitude 
of risk reduction. The opportunity to selectively treat the target organ would remove the need for surgery and 
circumvent systemic exposure. Local drug delivery strategies have already been successfully introduced in many 
non-cancer related diseases, such as cardiology.

Here, we show that silastic tubing can deliver anti-estrogens to breast tissue for a sustained period, allowing 
it to be used as a prevention and local therapy strategy with minimal systemic exposure. Our data demonstrate 
sustained and consistent release of active fulvestrant through the 52 weeks evaluated in this study. Extrapolating 
from the amount of residual drug left in the tubing at the end of the examined year suggests that drug release can 
be maintained for over 9 years. Silastic tubing released fulvestrant at therapeutic concentrations that were suffi-
cient to inhibit ER signaling activation and tumor growth in vitro and in vivo models, with effects comparable to 
similar concentrations given by systemic administration of the anti-estrogen. Varying tubing sizes and wall diam-
eters can tailor delivery to select anatomical areas, such as the outer upper quadrant of the breast that typically 
harbors more than 50% of tumors.

Figure 3. In vivo anti-tumor effects of systemically or locally delivered fulvestrant. (A) NSG mice were treated 
with vehicle (peanut oil), weekly subcutaneous injection of 1 mg fulvestrant or fulvestrant-loaded tubing. 
Drug-loaded tubing inhibited growth of MCF-7 tumors orthotopically implanted in the abdominal mammary 
fat pads comparable to systemically delivered fulvestrant. Error bars are mean ± SEM. (B) Schedule of the in 
vivo experiment to test the efficacy of local drug delivery in reducing tumor volume. (C) Representative images 
of MCF-7 xenografts treated with vehicle-loaded tubings or fulvestrant-loaded tubings in the abdominal 
mammary fat pads. (D) Representative image of MCF-7 xenograft and its adjoining tubings removed from 
a mouse. (E) LC-MS/MS confirmed the presence of fulvestrant across an entire tumor, with the highest 
concentration found in the section closest to the drug-loaded tubings.
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Figure 4. Ki67 immunohistochemical analysis of MCF-7 xenografts from NSG mice treated with local or 
systemic fulvestrant. Analysis was performed in tumors implanted adjacent to ethanol-loaded tubing and 
vehicle (negative control; A, E and I), ethanol-loaded tubing and weekly subcutaneous injection of 1 mg 
fulvestrant (positive control; B, F and J), or fulvestrant-loaded tubing and vehicle. For the tumors that were 
implanted next to fulvestrant-loaded tubings, cell proliferation in the regions of the tumor far from the tubing 
(C,G and K) was assessed separately from the region of the tumor next to the tubing (D,H and L).  
(A–D) Representative tissue sections of analyzed tumors (hematoxylin and eosin, 20x magnification). 
(E–H) Representative images of tumor tissue sections immunostained with Ki67, 200x magnification. (I–L) 
Representative images of tumor tissue sections immunostained with Ki67, 400x magnification. (M) Quantitative 
analysis of percentage of tumor cells with positive Ki67 staining. *p < 0.05, **p < 0.005; n = 8 mice per cohort. 
Error bars are mean ± SEM.
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In vivo data suggest that silastic tubing preferentially delivers drug to mammary tissue with minimal accumu-
lation in major organs and 20-fold lower concentrations in adjacent (abdominal) and distant fat (thoracic) pads. 
The ability of fulvestrant to accumulate in human fat tissue and be transferred to breast cancer cells has been 
recently reported18. These findings support the use of local drug delivery through the human breast tissue and 
surrounding fatty tissue. While fat pads allow for the accumulation of fulvestrant supporting the long-term use 
of an implanted device, the tissue rapidly cleared fulvestrant upon removal of the drug-loaded tubing. This will 
allow the design of devices that can be flushed to remove drug from the breast tissue and be refilled according 
to therapeutic needs. Consistent with fulvestrant penetrance through tumors, local delivery was more effective 
in reducing Ki-67 expression immediately adjacent to the tubing but maintained concentrations comparable to 
systemic therapy throughout the entire tumors. Our preclinical results demonstrating that silastic tubing delivery 
of fulvestrant can inhibit orthotopic tumor growth in a breast cancer model further support the hypothesis that 
this approach merits investigation with other cancer drugs.

Local drug delivery is ideally suited in a setting of local disease or recurrence with minimal risk for systemic 
metastases with the goal of producing high concentrations without systemic application of the drug. Our data 
support the use of silastic tubing as an implanted device in three major applications: early interventions for local-
ized tumors, such as ductal carcinoma in situ (DCIS) or early stage breast cancer with low metastatic potential, 
prevention of breast cancer in women at high risk for breast cancer due genetic or hereditary predisposition, or 
used in concert with systemic therapy to provide a localized therapeutic boost. The current standard of care in 
the management of patients with DCIS is breast conservation surgery followed by adjuvant radiation therapy19 
and systemic tamoxifen to reduce the risk for further disease in the same or contralateral breast20–22. Undesirable 
side effects and long-term sequelae, like strokes and endometrial cancer, unfortunately result in compliance rates 
as low as 50%11,23. There has been a trend for increased rates of mastectomy over lumpectomy for DCIS and low 
grade breast cancer in recent years even though most cases can be effectively managed with breast conserving 
surgery24. Nonetheless, perceived risk, additional screening, and the need for breast irradiation and systemic 
tamoxifen renders this unattractive25.

Fulvestrant (Faslodex®) is administered as two gluteal intramuscular injections of 250 mg each every month. 
Although a considerable amount is repeatedly delivered, fulvestrant elicits only mild injection site discomfort. 
Likewise, mice receiving localized fulvestrant for one year exhibited no gross pathology surrounding the implant. 
In addition, body weight of the mice steadily increased over time while relative behavior and socialization 
remained unchanged, together indicating the general safety of this approach.

Local delivery of drugs for breast diseases or breast cancer has been evaluated using topical adminstrations 
of such agents. Many of these are hormonal agents including estrogen, progestins, and active tamoxifen metab-
olites26–29. Delivered transdermally, tamoxifen may have longer retention in the local tissue26, but only relatively 
small molecules can be effectively transported through the stratum corneum in the skin30. A randomized study 
of percutaneous 4-OHT versus oral tamoxifen in women with breast cancer reported that application of gel to the 
skin of the breast produced consistent tumor concentrations of 4-OHT but with much lower plasma concentra-
tions27. Similarly, another randomized trial showed that percutaneous administration of 4-OHT reduced tumor 
tissue proliferation index comparably to oral tamoxifen treatment but with a 9-fold lower systemic exposure31. 
Most recently, a randomized phase II presurgical trial concluded that the anti-proliferative effect of 4-OHT gel 
applied to breast skin is similar to that of oral tamoxifen in women with DCIS29. While topical administration 
of 4-OHT may eliminate first pass effects, this is not a direct local administration of the drug selectively to the 
breast but local absorption of a systemic drug. The feasibility and safety of direct tissue administration of pro-
gestins have been demonstrated with the use of a levonorgestrel-releasing intrauterine system approved for birth 
control. Mirena® provides local hormone levels at a plasma differential of > 1000 fold for up to 5 years32, sug-
gesting that the proximity of the device and proclivity of the tissue for hormonal steroid uptake promote a high 
tissue-to-plasma differential. Our method will provide the first application of truly local drug delivery in breast 
cancer.

Silastic tubing may be used to deliver a variety of anti-cancer drugs to treat other types of cancers, including 
prostate cancer. While men with defined high risk, non-metastatic prostate cancer can benefit from prostatec-
tomy, it carries sizable risk for impotence and incontinence33. Adjuvant androgen deprivation therapy (ADT) has 
detrimental effects on the quality of life and increases the risk for diabetes, cardiovascular disease and cognitive 
dysfunction34,35. For men with high risk for recurrence who are unwilling or unable to undergo prostatectomy or 
ADT, locally implanting drug-loaded silastic tubing may be as a feasible alternative to current treatments. Local 
androgen deprivation via silastic tubing could reduce the burden of systemic hormonal therapy while preserving 
the benefits of ADT. Moverover, an increasing focus on immunotherapy and DNA repair inhibition agents has 
provided great promise for patients with cancer36,37. Immunotherapy and DNA repair agents can result in rare but 
considerable systemic side effects, such as multi-organ inflammation from immunotherapy38 and acute leukemia 
from PARP inhibitors39. Such serious adverse events could potentially be resolved by a local adminstration of the 
agents.

There are several considerations that must be further investigated in order to maximize the benefits of local 
drug therapy. Efficacy of local delivery depends on the accessibility of the delivered drug to the tumor and the 
adjacent tissue. Thus, a thorough understanding of how a drug penetrates at the site of disease in a large animal 
model and then in women will be the next steps. The process is most likely dependent upon both tissue com-
position as well as drug characteristics. Additionally, drug formulation as well as the configuration of silastic 
tubing may play an integral role in altering the rate of release. Lastly, characterizing the healing and inflammatory 
response caused by the placement of silastic tubing and the accumulation of the drug at the site of implanta-
tion would advance this approach towards clinical practice. Further steps including large animal studies will be 
needed to better understand pharmacokinetic and pharmacodynamic parameters and to test device protoypes in 
a more size-appropriate environment. To this end, female alpine goats will most likely be used due to the udders’ 
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similarity in size and physiology to the human breast. Using an alpine goat model may be a tool to understand 
the diffusion of drug through mammary tissue over time, the biodistribution of released drug in major organs, 
fibrotic capsule formation in proximity to the implant, as well as resultant organ pathology and toxicity prior to 
clinical testing. The long standing safety data on silastic tubing, on the other hand, will allow rapid clinical transla-
tion. In summary, a localized and sustained delivery of approved anti-cancer agents could allow novel approaches 
to cancer prevention and local therapy in breast and other tissues.

Methods
Materials. Dulbecco’s Modified Eagle Medium (DMEM) was purchased from Mediatech (Tewksbury, MA). 
Fetal bovine serum (FBS) was purchased from GE Healthcare (Logan, UT). Penicillin-streptomycin was pur-
chased from UCSF Cell Culture Facility (San Francisco, CA). Fulvestrant was purchased from Sigma (St. Louis, 
MO). Raloxifene was purchased from Santa Cruz Biotechnology (Dallas, TX). 4-hydroxytamoxifen (4-OHT) was 
purchased from Calbiochem (San Diego, CA). Antibody against β-actin was purchased from Sigma (St. Louis, 
MO). Antibodies against ERα and cyclin D1 were purchased from Santa Cruz Biotechnology (Dallas, TX). 3-mm 
pellets containing 0.36 mg of 17β-estradiol was purchased from Innovative Research of America (Sarasota, FL).

Silastic Rx-50 medical grade tubing and silastic medical adhesive silicone type A were purchased from Dow 
Corning (Auburn, MI). We used silastic Rx-50 tubing that has an inner diameter of 0.76 mm and an outer diam-
eter of 1.65 mm with a wall thickness of 0.445 mm. The ends of the tubing were sealed with Silastic® Medical 
Adhesive Silicone Type A (Dow Corning). This adhesive contains no solvent and cures at room temperature upon 
exposure to atmospheric moisture. Once fully cured, the resulting silicone elastomer is known to have the general 
composition of conventional silicone elastomer.

Cell Culture. MCF-7 and T47D cells were obtained from the American Type Culture Collection (Manassas, 
VA). Cell lines used in this study were authenticated by short tandem repeat (STR) profiling on Promega 
PowerPlex16HS Assay at University of Arizona Genetics Core (Tucson, AZ). Cells were grown in DMEM sup-
plemented with 10% FBS and 1% penicillin-streptomycin. They were maintained in a humidified incubator with 
5% CO2 atmosphere at 37 °C.

Silastic tubing preparation for in vitro release analysis. After silastic tubing was cut in the appro-
priate length, it was loaded with fulvestrant that was reconstituted at maximum soluble concentration in 100% 
ethanol (27.5 mM). The ends of the tubing were sealed with silastic medical adhesive silicone type A and cured 
for 3 days at room temperature. The tubing was incubated in 5 ml of DMEM supplemented with 10% FBS and 1% 
penicillin-streptomycin on a rocker at 37 °C. Every 3.5 days, old media was collected and fresh media was added. 
The media samples were kept at −20 °C until ready to use. MCF-7 and T47D cells were treated with the tubing 
media for 3 days, unless otherwise stated.

Western Blot. Cells were lysed in RIPA buffer (Sigma) containing 1% Halt phosphatase and protease inhib-
itor cocktail (Thermo). Total protein was estimated using Pierce BCA Protein Assay Kit (Thermo). Samples were 
denatured at 100 °C for 5 min. Equal amounts of proteins were loaded on Bolt Bis-Tris Plus 4–12% gel (Invitrogen) 
and transferred to PVDF membranes (Millipore). The membranes were blocked with 5% non-fat milk for 1 hour 
and incubated overnight at 4 °C with primary antibodies diluted accordingly in 0.1% TBST: PRb at 1:1000, ERα 
at 1:5000, cyclin D1 at 1:2500, and β-actin at 1:20000. They were washed 6 times for 5 min each with 0.1% TBST 
and incubated for 1 hour at room temperature with appropriate HRP-conjugated secondary antibodies diluted 
1:20000. After washing the membrane 6 times for 5 min with 0.1% TBST, the signal was detected by Amersham 
ECL Prime Western Blotting Detection Reagents (GE Healthcare). Quantitative comparisons between samples 
have been done on the same blot. ImageJ software was used to quantify the bands.

Cell viability assay. To assess viability of MCF-7 cells, an MTS assay was performed using CellTiter 96 
AQueous one solution (Promega). A 96-well tissue culture plate was seeded with 2000 cells per well and allowed 
to adhere for two nights. Cells were then treated with 200 μl media (100 μl of tubing media diluted in 100 μl fresh 
complete media) for 10 days. The media was then removed and cells were incubated with 100 μl assay reagent 
(1:5, CellTiter reagent to PBS (v/v)) at 37 °C for 2–3 hours. Absorbance at 492 nm was measured as readout for 
cellular activity.

LC-MS/MS. Fulvestrant concentrations were determined by a liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) method using fulvestrant-d3 as the internal standard. To quantify the level of fulvestrant 
in tissue culture media and mouse plasma, frozen samples were thawed at ambient temperature and 100 μl of 
each sample was used for analysis. The samples were purified by protein precipitation using 200 μl 100% meth-
anol/0.1% formic acid. They were incubated at −20 °C for 30 min and then centrifuged at 16,000xg for 10 min. 
The supernatants were transferred to a vial and 10 μl aliquot was analyzed. Liquid chromatography was car-
ried out with a Shimadzu Prominence HPLC and a 4.6 × 50 mm, 5 μm, 100 Å Kinetex core-shell C18 column 
(Phenomenex). An isocratic mobile phase (94% methanol:water, 0.1% acetonitrile, 0.1% formic acid, 160 mg/L 
ammonium acetate) was pumped at 0.5 mL/min. The run time was 3 min and analyte retention was 1.43 min, with 
a diverter valve only open to the MS/MS from 1.3 to 2.0 min. Detection was performed with a Sciex API-4000 
mass spectrometer with electrospray ionization in the positive ion mode operated by Analyst 1.6 software (AB 
Sciex). The transitions used were m/z 607.6 → 467.2 and 610.6 → 468.5 for the analyte and internal standard, 
respectively. The MS/MS was set to 37 and 39 eV for EC (collision energy), respectively. Settings in common for 
both molecules were DP (declustering potential) = 81 V, CXP (collision cell exit potential) = 22 V, EP (entrance 
potential) = 10.5 V, IS (ion spray voltage) = 5,500 V, temperature = 600 °C, CAD (collision gas) = 12 lbf in−2, CUR 
(curtain gas) = 35 lbf in−2 and GS1 (ion source nebulizer gas) = GS2 (ion source heater gas) = 50 lbf in−2.
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The fulvestrant standard curve went from 4 to 600 nM and samples were spiked during the protein precipita-
tion step with 10 μl of 10 μM deuterated fulvestrant in Analyst software. Fulvestrant peak areas were normalized 
to the internal standard and plotted against concentration (r > 0.99). The limit of detection for fulvestrant in 
tissue culture media and mouse plasma was 4–6 nM. The intraday and interday precisions were within 3% and 
10%, respectively.

To assess the level of fulvestrant in mouse tissues from the biodistribution study, samples (100–300 mg) were 
homogenized in 450 μl PBS using a TissueLyser (Qiagen) for 5 min. As an internal control, 50 μl of 1 μM deuter-
ated fulvestrant was added to each sample. Then 1 ml 80% methanol/20% 0.2 M ZnSO4 protein precipitant was 
added to the tissue homogenates and immediately vortexed. Samples were incubated at −20 °C for 30 min and 
then centrifuged at 16,000 × g for 10 minutes. The supernatant was diluted 1:2 in distilled water and loaded onto 
a 3 ml Oasis HLB cartridge (Waters) that had been pre-conditioned with 2.5 ml methanol followed by 2.5 ml 20% 
methanol/water. The cartridge was rinsed with 2.5 ml 60% methanol/1 mM NaOH, 2.5 ml 70% methanol/0.01 M 
HCl, followed by 2.5 ml 80% methanol, followed by 150 μl of 90% methanol. Fulvestrant was eluted with 2 ml of 
90% methanol. The solvent was evaporated using a Speedvac and fulvestrant was reconstituted with 100 μl of 
mobile phase. Reconstituted fulvestrant was transferred to a vial and 10 μl aliquot was analyzed by LC-MS/MS. 
The column, flow setting, instrumentation and MS/MS settings were as above. However, the LC method was 
altered to better wash the column after each sample, as follows: 0.1 to 1.8 min, 94% methanol:water; 1.8 to 2.1 min, 
linear ramp to 100% methanol; 2.1 to 2.6 min, 100% methanol; 2.6 to 2.75 min, linear ramp to 94% methanol; 
2.75 to 3.7 min, 94% methanol. The same mobile phase additives as above were continually present, and retention 
and diverter valve settings were unchanged. Fulvestrant peak areas were normalized to the internal standard and 
plotted against concentration (r > 0.98). The limit of detection for fulvestrant in mouse tissues was 20–40 nM.

In vivo mouse studies. For the biodistribution study, 4–6 week old female CD-1 mice were obtained from 
the UCSF Breeding Core. After fulvestrant was reconstituted in 100% ethanol, it was loaded in 2 cm piece of 
medical grade silastic tubing. Once the ends of the tubing were sealed, fulvestrant-loaded silastic tubing was 
surgically implanted proximal to the inguinal mammary fat pad. At each time point post-implantation, blood 
samples from 3–4 anaesthetized mice were collected in heparinized tubes via cardiac puncture and plasma was 
separated by centrifugation. In addition, various organs were harvested and stored in −80 °C until required for 
analysis. Fulvestrant was extracted from plasma and tissues with a protein precipitation method and analyzed by 
LC-MS/MS.

For the efficacy study, 4–5 week old female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were obtained from 
the UCSF Breeding Core. Two pieces of 1.6 cm tubing that were loaded with either ethanol or fulvestrant within 
the 1 cm center lumen were implanted on each side of the abdominal mammary fat pads. Tubing length was cho-
sen based on the size of NSG mice. Four days afterwards, a 60-day release 0.36 mg estradiol pellet was implanted 
subcutaneously in the dorsal posterior region. Three days later, exponentially growing MCF-7 cells were ortho-
topically implanted in the left and right mammary fat pad (5 × 106 cells per graft) to mimic the microenvironment 
of breast cancer. MCF-7 cells were prepared by the addition of trypsin-EDTA, washed with complete media, 
collected, and resuspended in 50% DMEM and 50% Matrigel. For systemic delivery, mice were subcutaneously 
injected with 1 mg or 5 mg of fulvestrant suspended in vehicle (peanut oil) every week for five weeks starting from 
the day of tumor cell implantation. For local delivery, mice were injected with vehicle only every week for five 
weeks starting from the day of tumor cell implantation. Tumor growth (width2 × length/2) and body weight were 
monitored twice a week with a digital caliper. At the end of the treatment period or when tumor volume exceeded 
1,000 mm3, tumors and tissue samples were harvested for analysis. Animal studies were conducted according to a 
UCSF Laboratory Animal Resource Center approved protocol (AN090303).

Histology and immunohistochemistry. After the tissues were fixed in 4% formalin for 24 hours and 
embedded in paraffin, 5 μm sections were cut and mounted on plus glass slides. Slides were stained with hematox-
ylin and eosin (H&E) by the UCSF Helen Diller Family Comprehensive Cancer Center Tissue Core Laboratory 
for morphologic analysis of the tumors. The proliferative index of MCF-7 tumor xenografts was determined 
by immunohistochemical detection of Ki67 expression. Specifically, sections were deparaffinized in xylene and 
then hydrated through exposure with graded alcohols (100%, 95%, 70%, 50%, water). The slides were immersed 
in antigen retrieval solution (Vector Lab) and heated for 10 min. After cooling to room temperature, the slides 
were permeabilized in TBST for 15 min, rinsed in water, and subsequently incubated with 3% hydrogen peroxide 
for 10 min to quench endogenous peroxidase activity (Sigma). To block non-specific binding, the slides were 
incubated with blocking solution (Vector Lab) for 30 min. They were incubated with Ki67 primary antibodies 
(Invitrogen 180191Z, 1:100) overnight at 4 °C. As negative controls, the primary antibodies were replaced with 
blocking solution. After washing the primary antibodies with TBST, peroxidase-labeled polymer conjugated to 
goat anti-rabbit immunoglobulins (Santa Cruz) were added for 30 min. For signal detection, the slides were incu-
bated with Elite ABC-chromogen Reagent (Vectastain) for 30 min and diaminobenzidine mixture (Vector Lab) 
for up to 5 min. Slides were counterstained with hematoxylin (Sigma), dehydrated in graded alcohols, and subse-
quently mounted in mounting media (Dako). Whole slide images of H&E and Ki67 immunostained tumor sec-
tions were scanned using an Aperio ScanScope XT whole slide scanner (Aperio) and visualized using ImageScope 
software (Leica). Ki67 proliferation index was scored and quantitated as the average percentage of Ki67+ tumor 
cell nuclei per total tumor cell nuclei in 2–3 captured fields per sample using Immunoratio software. At least 200 
cells were counted per field.

Statistical analysis. Data are expressed as averages with the standard error of the mean (±SEM) indicated. 
Graphs were created with Prism software. Two-sided non-paired Student’s t test was used to determine differences 
between two groups, with p < 0.05 considered statistically significant.
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