
UCSF
UC San Francisco Previously Published Works

Title
Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and 
DAF-16/FoxO regulation.

Permalink
https://escholarship.org/uc/item/3wd4m4xt

Journal
Aging Cell, 12(5)

Authors
Chen, Albert
Guo, Chunfang
Dumas, Kathleen
et al.

Publication Date
2013-10-01

DOI
10.1111/acel.12120
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wd4m4xt
https://escholarship.org/uc/item/3wd4m4xt#author
https://escholarship.org
http://www.cdlib.org/


Effects of Caenorhabditis elegans sgk-1 mutations on lifespan,
stress resistance, and DAF-16/FoxO regulation

Albert Tzong-Yang Chen,1 Chunfang Guo,1

Kathleen J. Dumas,1 Kaveh Ashrafi2 and Patrick J. Hu1,3

1Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
2Department of Physiology, University of California, San Francisco, California
3Departments of Internal Medicine and Cell and Developmental Biology,

University of Michigan Medical School, Ann Arbor, Michigan

Summary

The AGC family serine–threonine kinases Akt and Sgk are similar

in primary amino acid sequence and in vitro substrate specificity,

and both kinases are thought to directly phosphorylate and

inhibit FoxO transcription factors. In the nematode Caenorhabd-

itis elegans, it is well established that AKT-1 controls dauer arrest

and lifespan by regulating the subcellular localization of the

FoxO transcription factor DAF-16. SGK-1 is thought to act

similarly to AKT-1 in lifespan control by phosphorylating and

inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1

null and gain-of-function mutants, we now provide multiple lines

of evidence indicating that AKT-1 and SGK-1 influence C. elegans

lifespan, stress resistance, and DAF-16/FoxO activity in funda-

mentally different ways. Whereas AKT-1 shortens lifespan, SGK-1

promotes longevity in a DAF-16-/FoxO-dependent manner. In

contrast to AKT-1, which reduces resistance to multiple stresses,

SGK-1 promotes resistance to oxidative stress and ultraviolet

radiation but inhibits thermotolerance. Analysis of several

DAF-16/FoxO target genes that are repressed by AKT-1 reveals

that SGK-1 represses a subset of these genes while having little

influence on the expression of others. Accordingly, unlike AKT-1,

which promotes the cytoplasmic sequestration of DAF-16/FoxO,

SGK-1 does not influence DAF-16/FoxO subcellular localization.

Thus, in spite of their similar in vitro substrate specificities, Akt

and Sgk influence longevity, stress resistance, and FoxO activity

through distinct mechanisms in vivo. Our findings highlight the

need for a re-evaluation of current paradigms of FoxO regulation

by Sgk.

Key words: aging; C. elegans; FoxO; insulin-like growth

factor signaling; lifespan; Sgk.

Introduction

Akt/protein kinase B (PKB) and Sgk are two highly related members of

the AGC family of serine–threonine kinases that act in cellular signaling

pathways to modulate survival, growth, proliferation, metabolism, and

other processes (Pearce et al., 2010). Akt/PKB has evolutionarily

conserved functions in the control of development, growth, metabolism,

cell survival, and longevity, and dysregulation of Akt/PKB contributes to

the pathogenesis of common human diseases such as cancer and type 2

diabetes (Franke, 2008).

The mechanism of Akt/PKB activation is well established. In response

to growth factors, Akt/PKB is activated in a phosphoinositide 3-kinase

(PI3K)-dependent manner by phosphorylation at two critical regulatory

sites: T308 within its kinase domain and S473 within a C-terminal

hydrophobic motif (Alessi et al., 1996a). The 3-phosphoinositide-

dependent kinase PDK1 phosphorylates Akt/PKB at T308 (Alessi et al.,

1997; Stephens et al., 1998), and members of the PI3K-related kinase

(PIKK) family such as TOR complex 2 phosphorylate Akt/PKB at S473

(Feng et al., 2004; Sarbassov et al., 2005; Viniegra et al., 2005).

Activated Akt/PKB phosphorylates several substrates in vivo at sites

that lie within RxRxxS/T motifs (Alessi et al., 1996b; Manning & Cantley,

2007). Among these substrates are the FoxO family of transcription

factors that control development, metabolism, growth, and aging

(Accili & Arden, 2004). Akt/PKB-dependent phosphorylation of FoxO at

three conserved RxRxxS/T motifs inhibits FoxO activity by promoting its

export from the nucleus and sequestration in the cytoplasm (Brunet

et al., 1999). FoxO is a critical substrate of Akt/PKB in vivo, as its

disinhibition in mice with reduced hepatic Akt/PKB signaling impairs

metabolic homeostasis (Dong et al., 2008), and a null mutation in daf-

16, which encodes the sole FoxO transcription factor in the nematode

Caenorhabditis elegans, suppresses the dauer-constitutive and lifespan

extension phenotypes of animals with reduced Akt/PKB activity (Paradis

& Ruvkun, 1998; Kwon et al., 2010). Thus, Akt/PKB has an

evolutionarily conserved function as a direct inhibitor of FoxO

transcription factors.

The serum- and glucocorticoid-regulated kinase gene sgk encodes a

serine–threonine kinase highly homologous to Akt/PKB that was first

identified as a gene whose transcription is induced acutely by serum and

glucocorticoids in a rat mammary tumor cell line (Webster et al., 1993).

Like Akt/PKB activation, Sgk activation by growth factors is PI3K

dependent and involves the phosphorylation of a site in the kinase

domain (T256) by PDK1 (Kobayashi & Cohen, 1999; Park et al., 1999)

and a C-terminal site within a hydrophobic motif by TOR complex 2

(Garcia-Martinez & Alessi, 2008). Furthermore, Sgk also phosphorylates

sites that lie within RxRxxS/T motifs (Kobayashi & Cohen, 1999). In spite

of these similarities, some Akt/PKB substrates are poor substrates for Sgk

in vitro and vice versa (Murray et al., 2004a,b); this is likely due at least in

part to amino acids in the vicinity of the phosphoacceptor residue that

confer substrate specificity (Murray et al., 2005). The distinct substrate

specificities of Akt/PKB and Sgk are reflected in the observation that

although both mammalian Akt/PKB and Sgk can promote the phos-

phorylation of the FoxO3 transcription factor in cultured cells at sites

within all three conserved RxRxxS/T motifs, they do so with distinct

efficiencies within each motif (Brunet et al., 2001).

In mammalian cell culture, Sgk inhibits FoxO3 activity (Liu et al.,

2000; Brunet et al., 2001), and in C. elegans, SGK-1 is thought to limit

lifespan by inhibiting DAF-16/FoxO activity (Hertweck et al., 2004).

Taken together with the known role of Akt/PKB in FoxO regulation,

these studies have established a paradigm whereby Akt/PKB and Sgk are

thought to act via similar mechanisms to inhibit FoxO activity (Fielenbach

& Antebi, 2008; Bruhn et al., 2010; Pearce et al., 2010).
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We and others recently reported that in contrast to the lifespan

extension phenotype observed after RNAi knockdown of sgk-1 (Hert-

weck et al., 2004), sgk-1 null mutations shorten C. elegans lifespan

(Soukas et al., 2009; Alam et al., 2010; Kwon et al., 2010). This

phenotype is the opposite of that observed for akt-1 null mutations

(Soukas et al., 2009; Alam et al., 2010; Kwon et al., 2010) and is

inconsistent with prevailing models implicating Sgk as a FoxO inhibitor.

In light of these results, we have performed a detailed phenotypic

analysis of sgk-1 null and gain-of-function mutants. Our results indicate

that in C. elegans, Akt/PKB and Sgk influence lifespan, stress resistance,

and FoxO transcription factor activity through distinct mechanisms.

These surprising findings call into question current paradigms of FoxO

regulation by Sgk and reveal that the interaction between Sgk and FoxO

transcription factors may be more complex than previously appreciated.

Results

Effects of sgk-1 mutations on lifespan

We and others have shown that the sgk-1(mg455) mutation shortens

lifespan (Soukas et al., 2009; Alam et al., 2010). The mg455 allele is a

nonsensemutation that is predicted to result in truncation of SGK-1within

its kinase domain (Soukas et al., 2009); therefore, this is likely to be a null

mutation. A third group has shown that the sgk-1(ok538) deletion

mutation, which is predicted to remove half of the SGK-1 kinase domain

and is also probably a null mutation (Hertweck et al., 2004), also reduces

lifespan (Kwon et al., 2010). We confirmed these results by measuring the

lifespans of both sgk-1(ok538) and sgk-1(mg455) null mutants in the same

assay (Fig. 1BandTableS1). sgk-1(ok538) (heretofore referred toas ‘null #1’)

and sgk-1(mg455) (heretofore referred to as ‘null #2’) each shorten mean

lifespan by at least 27.5% and median lifespan by at least 19.0% and

33.3%, respectively (P < 0.0001 by the log-rank test). The observation

that two outcrossed strains harboring independently isolated sgk-1 null

mutations both have short lifespans compared with wild-type animals

strongly suggests that these short lifespan phenotypes are a consequence

of reduced SGK-1 activity. These results contrastwith the reported lifespan

extension induced by sgk-1 RNAi (Hertweck et al., 2004) and are

consistent with a model whereby SGK-1 promotes longevity.

One possible explanation for the discrepancy between the lifespans of

animals harboring sgk-1 loss-of-function mutations and animals sub-

jected to sgk-1 RNAi is that strong loss-of-function mutations could

cause developmental abnormalities that shorten adult lifespan by reduc-

ing general fitness; such abnormalities can be avoided by initiating RNAi

during late larval or early adult stages. To address this possibility,

we assayed the lifespans of animals harboring the sgk-1(ft15)

gain-of-function mutation.

(A)

(B) (C)

(D)

(F)

(E)

Fig. 1 Effects of sgk-1 mutations on

lifespan. (A) Schematic of the sgk-1

genomic locus (not to scale). Locations of

the ft15 missense gain-of-function, ok538

deletion, and mg455 nonsense mutations

are shown. Exons encoding the kinase

domain are colored red. (B) Lifespans of

sgk-1 mutants ft15 (gf), ok538 (null #1),

and mg455 (null #2). (C) Effect of the daf-

16(mu86) null mutation on the lifespans of

sgk-1(gf) animals. (D) Effect of sgk-1(gf) on

the lifespan of akt-1(mg306) null mutant

animals. (E) Effect of sgk-1(gf) on the

lifespan of hcf-1(pk924) null mutant

animals. Raw data and statistics are

presented in Table S1.
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sgk-1(ft15) emerged from a genetic screen for suppressors of the

developmental delay phenotype of animals harboring a loss-of-function

mutation in lpo-6/rict-1, which encodes the C. elegans ortholog of the

TOR complex 2 component Rictor (Jones et al., 2009; Soukas et al.,

2009). sgk-1(ft15) suppresses both the developmental delay and small

body size phenotypes of lpo-6/rict-1 loss-of-function mutants, and this

suppression is abrogated by sgk-1 RNAi (Jones et al., 2009). Taken

together with the observations that lpo-6/rict-1 and sgk-1 act in the

same genetic pathway (Jones et al., 2009; Soukas et al., 2009) and

mammalian TOR complex 2 activates Sgk by promoting its phosphor-

ylation (Garcia-Martinez & Alessi, 2008), these data strongly suggest that

sgk-1(ft15) is a gain-of-function allele.

We reasoned that if sgk-1 null mutants are short-lived because SGK-1

plays a role in promoting longevity, then animals harboring sgk-1(ft15)

(heretofore referred to as ‘sgk-1(gf)’) should live longer than animals

with wild-type sgk-1. However, if sgk-1 null mutants are short-lived

because they are sick, then sgk-1(gf) animals would not be expected to

live long. sgk-1(gf) animals consistently lived ~ 15–20% longer than

nonsibling wild-type animals (Table S1B). When siblings harboring wild-

type sgk-1 were used as controls, sgk-1(gf) animals exhibited a more

modest but statistically significant extension in median and mean

lifespan in eight of ten experimental trials (Fig. 1B–E and Tables S1A,C).

In Fig. 1B, sgk-1(gf) increased mean and median lifespan by 17.5% and

9.5%, respectively, compared with wild-type siblings (P = 0.0008). This

lifespan extension was suppressed by a null mutation in daf-16/FoxO

(Fig. 1C and Table S1A).

In C. elegans, DAF-16/FoxO activity is regulated through at least two

mechanisms. Phosphorylation of DAF-16/FoxO by kinases such as

AKT-1 inhibits DAF-16/FoxO by promoting its export from the nucleus

(Lin et al., 2001; Zhang et al., 2008; Alam et al., 2010; Dumas et al.,

2010; Kwon et al., 2010). Other regulatory proteins such as HCF-1 and

EAK-7 inhibit DAF-16/FoxO activity without influencing its subcellular

localization (Li et al., 2008; Alam et al., 2010). To determine whether

SGK-1 acts specifically in either of these pathways to promote

longevity, we tested the effect of sgk-1 mutations on the lifespans

of akt-1 and hcf-1 null mutants. We previously reported that SGK-1 is

required for the longevity of akt-1 mutants (Alam et al., 2010). sgk-1

(gf) did not extend the lifespan of akt-1(null) animals (Fig. 1D and

Table S1A). Similarly, in hcf-1(null) animals, sgk-1 was required for

lifespan extension, but sgk-1(gf) did not further increase lifespan

(Fig. 1E and Table S1A). Based on these data, whether SGK-1 acts

specifically with AKT-1 or HCF-1 to influence lifespan is not clear. It is

possible that DAF-16/FoxO activation by SGK-1 is attenuated in

backgrounds such as akt-1(null) and hcf-1(null) in which DAF-16/FoxO

is already activated.

As the Escherichia coli HB101-derived HT115 strain used in experi-

ments demonstrating that sgk-1 RNAi extends lifespan (Hertweck et al.,

2004) differs from the OP50 strain used in our experiments (Fig. 1B–E),

we sought to determine the influence of E. coli strain differences on the

lifespans of sgk-1 mutants. Therefore, we assayed the lifespans of sgk-1

(null) and sgk-1(gf) mutants grown on HT115. As observed in experi-

ments using OP50 as a food source, sgk-1(null) shortened and sgk-1(gf)

extended lifespan in animals feeding on either HT115 or HB101 (Fig. 1F

and Table S1C). Therefore, the prolongevity activity of SGK-1 is not

significantly influenced by differences between E. coli OP50 and HT115/

HB101.

Taken together, these results suggest that in contrast to existing

paradigms of FoxO inhibition by Sgk (Brunet et al., 2001; Hertweck

et al., 2004), SGK-1 promotes C. elegans longevity in a DAF-16/FoxO-

dependent manner.

Effects of sgk-1 mutations on dauer arrest

Because DAF-16/FoxO promotes developmental arrest in the dauer larval

stage in animals with reduced DAF-2 insulin-like signaling (Vowels &

Thomas, 1992; Gottlieb & Ruvkun, 1994), we tested the effect of sgk-1

(null) and sgk-1(gf) on dauer arrest. In agreement with a previous report

(Hertweck et al., 2004), neither sgk-1(null) nor sgk-1(gf) had significant

effects on dauer arrest at 27°C (Table 1A). Although a significant

percentage of sgk-1(null) animals arrested during larval development

(Table 1A), analysis of these animals using Nomarski microscopy revealed

no evidence of dauer alae or pharyngeal constriction (Fig. S3), indicating

that these animals were nondauer larvae. In contrast and as previously

reported (Hu et al., 2006), an akt-1 null mutation had a strongly

penetrant DAF-16/FoxO-dependent dauer-constitutive phenotype

under the same assay conditions. Neither sgk-1(null) nor sgk-1(gf)

significantly influenced the dauer-constitutive phenotype of daf-2

(e1368) (Table 1B). Therefore, SGK-1 does not function in dauer

regulation.

Effects of sgk-1 mutations on stress resistance

In light of our observations on the effects of sgk-1 mutations on lifespan

(Fig. 1), we tested sgk-1(null) and sgk-1(gf) for their sensitivity to

oxidative stress, ultraviolet radiation (UVR), and heat. akt-1 null mutants

were slightly more resistant to hydrogen peroxide than wild-type

animals, although this difference was only statistically significant in

one of four assays (Fig. 2A,B and Table S2). akt-1 null mutants were

significantly more resistant to UVR and heat than wild-type animals

(Fig. 2C–F and Tables S3 and S4). In contrast, both sgk-1 null mutants

were more sensitive to hydrogen peroxide (statistically significant in 2 of

3 trials for each mutant) and UVR (statistically significant in 3 of 3 trials)

than wild-type animals (Fig. 2A,C and Tables S3–4), consistent with their

short lifespans (Fig. 1B and Table S1). sgk-1(gf) did not significantly

influence sensitivity to any of the three stressors tested (Fig. 2B,D,F and

Tables S3–5).

Both sgk-1 null mutations enhanced thermotolerance to at least the

same extent that an akt-1 null mutation did (Fig. 2E and Table S4). This

result is consistent with a previous report examining thermotolerance of

the sgk-1(ok538) null mutant (Hertweck et al., 2004). Taken together

with our observation that the sgk-1(gf) mutation extends lifespan (Fig. 1

and Table S1), this enhanced thermotolerance phenotype of sgk-1 null

mutants strengthens the argument that the short-lived phenotype of

sgk-1 null mutants is not simply a consequence of frailty secondary to

developmental abnormalities. In contrast to AKT-1, which promotes

general sensitivity to environmental stress, SGK-1 is protective against

oxidative stress and UVR but enhances sensitivity to heat.

As the thermotolerance of sgk-1(ok538) is thought to require DAF-16/

FoxO (Hertweck et al., 2004), we tested the effect of a daf-16 null

mutation on the thermotolerance of both sgk-1 null mutants. Surpris-

ingly, daf-16 null mutation did not significantly influence the thermotol-

erance of either sgk-1 null mutant (Fig. 2G and Table S4). Therefore, our

results suggest that SGK-1 promotes sensitivity to heat in a DAF-16/

FoxO-independent manner.

Effects of sgk-1 mutations on DAF-16A::GFP subcellular

localization

As our lifespan data are consistent with a model in which SGK-1

promotes longevity by activating DAF-16/FoxO, we sought to determine

the influence of sgk-1 mutations on the subcellular localization of

sgk-1 mutations and C. elegans lifespan control, A. T.-Y. Chen et al.934
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DAF-16/FoxO. Sgk promotes the nuclear export and cytoplasmic

sequestration of FoxO in mammalian cells (Brunet et al., 2001);

however, based on conflicting reports in the literature (Hertweck et al.,

2004; Kwon et al., 2010), the role of C. elegans SGK-1 in regulating

DAF-16/FoxO localization remains unclear. We constructed sgk-1(null)

and sgk-1(gf) strains expressing a functional DAF-16A::GFP fusion

protein as the sole source of DAF-16/FoxO in the animal and determined

DAF-16A::GFP subcellular localization in young adult animals raised in

the same conditions used for lifespan assays (Fig. 3A and Table S5).

Under these conditions, akt-1 null mutation promoted the translocation

of DAF-16A::GFP from the cytoplasm to the nucleus, as previously

shown (Zhang et al., 2008; Alam et al., 2010; Dumas et al., 2010).

Neither the sgk-1(ok538) null mutation nor sgk-1(gf) had a significant

influence on the nucleocytoplasmic distribution of DAF-16A::GFP. These

data suggest that unlike AKT-1, SGK-1 does not control DAF-16/FoxO

activity in vivo by regulating its subcellular localization.

Effects of sgk-1 mutations on DAF-16/FoxO target gene

expression

The dependence of sgk-1(gf) lifespan extension on daf-16/FoxO (Fig. 1C)

suggests that SGK-1 may increase lifespan by activating DAF-16/FoxO,

even in the absence of a significant effect on DAF-16A::GFP localization

(Fig. 3A). Therefore, we quantified the expression of five DAF-16/FoxO

target genes (Murphy et al., 2003; Oh et al., 2006; Alam et al., 2010;

Dumas et al., 2010; Kwon et al., 2010) in young adult sgk-1(null) and

sgk-1(gf) animals (Fig. 3B–F and Table S6).

As expected for bona fide DAF-16/FoxO target genes, the expression

of all five of these genes is increased in a DAF-16/FoxO-dependent

manner in the context of akt-1 null mutation (Fig. 3B–F and Table S6)

(Alam et al., 2010; Dumas et al., 2010). In contrast, sgk-1mutations had

varying influences on the expression of these five genes. sod-3 expression

was not influenced by sgk-1(gf) but was reduced in sgk-1 null mutants

(Fig. 3B and Table S6). Thus, null mutations in sgk-1 and akt-1

have opposite effects on sod-3 expression. Neither sgk-1 null mutation

nor sgk-1(gf) reproducibly influenced the expression of nnt-1 and sip-1

(Fig. 3C,D and Table S6). Expression of both dod-3 andmtl-1was elevated

in a DAF-16/FoxO-dependentmanner in the context of sgk-1 null mutation

infiveof six trials (Fig. 3E,F andTable S6), suggesting that SGK-1andAKT-1

may act similarly to regulate these two DAF-16/FoxO target genes.

Inaggregate, thesedata indicate thatAKT-1andSGK-1controlDAF-16/

FoxO target gene expression through distinct mechanisms. The heteroge-

neity of the influence of sgk-1 mutations on DAF-16/FoxO target gene

expression suggests that the molecular basis for SGK-1 regulation of

DAF-16/FoxO activity is significantly more complex than has been

appreciated.

Discussion

Akt/PKB inhibits FoxO transcription factors via a well-established and

evolutionarily conserved mechanism involving phosphorylation of FoxO

at three sites that lie within conserved RxRxxS/T motifs (Manning &

Cantley, 2007; Franke, 2008). Based on both its similarity in primary

structure (Webster et al., 1993) and substrate specificity (Kobayashi &

Table 1 Effects of sgk-1mutations on dauer arrest. (A) Dauer formation of sgk-1 and akt-1mutants at 27°C. (B) Effect of sgk-1mutations on daf-2(e1368) dauer formation

at 25°C. Siblings were used in each experiment

Genotype

Trial 1 Trial 2 Trial 3 Average (SD)

N% Dauer

% Non-dauer

larvae % Dauer

% Non-dauer

larvae % Dauer

% Non-dauer

larvae % Dauer

% Non-dauer

larvae

(A) Effects of sgk-1 and akt-1 mutations on dauer formation at 27°C

Wild-type 0.0 0.0 0.0 0.0 0.0 2.3 0 (0) 0.8 (1.3) 991

akt-1(null) 97.7 0.6 94.5 5.0 89.1 10.9 93.8 (4.3) 5.5 (5.2) 705

daf-16(null);akt-l 0.0 1.8 0.0 9.3 0.0 15.2 0 (0) 8.8 (6.7) 811

sgk-l(gf) 0.0 0.0 0.0 0.0 0.0 10.3 0 (0) 3.4 (5.9) 968

daf-16;sgk-1(gf) 0.0 0.3 0.0 1.9 0.0 23.6 0 (0) 8.6 (13.0) 893

sgk-l(null) #1 0.0 26.7 0.0 52.8 0.0 90.0 0 (0) 56.5 (31.8) 1144

sgk-l(null) #2 0.0 67.5 0.0 46.5 0.0 91.8 0 (0) 68.6 (22.6) 1087

Genotype

Trial 1

% Dauer

Trial 2

% Dauer

Trial 3

% Dauer Average (SD) N

(B) Effects of sgk-1 mutations on daf-2(e1368) dauer formation at 25°C

Wild-type 0.0 0.0 0.0 0 (0) 768

sgk-i(gf) 0.0 0.0 0.0 0 (0) 1007

daf-2(e1368) 81.2 90.7 46.8 72.9 (23.1) 882

daf-2;sgk-1(gf) 83.1 86.8 50.3 73.1 (20.1) 596

Wild-type 0.0 0.0 0.0 0 (0) 1018

sgk-1(null) #1 0.0 0.0 0.0 0 (0) 1498

daf-2(e1368) 87.0 90.8 87.1 88.3 (2.2) 1128

daf-2;sgk-1(null) #1 89.8 95.6 94.3 93.2 (3.0) 1016

Wild-type 0.0 0.0 0.0 0 (0) 861

sgk-1(null) #2 0.0 0.0 0.0 0 (0) 1508

daf-2(e1368) 93.5 90.6 83.2 89.1 (5.3) 1064

daf-2;sgk-1(null) #2 93.2 89.5 88.9 90.5 (2.3) 958
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Cohen, 1999) to Akt/PKB as well as data from mammalian cell culture

(Liu et al., 2000; Brunet et al., 2001) and C. elegans (Hertweck et al.,

2004), Sgk is also thought to inhibit FoxO by promoting its phosphor-

ylation at RxRxxS/T motifs. Our data challenge this model of FoxO

regulation by Sgk and support the notion that in C. elegans, Akt/PKB

and Sgk regulate FoxO activity in fundamentally different ways.

Our conclusions are at oddswith those of the only study in the literature

that has focused on Sgk action in C. elegans lifespan control and FoxO

regulation (Hertweck et al., 2004). This study showed that sgk-1 RNAi

extends lifespan in a DAF-16-/FoxO-dependent manner. One possible

explanation for this discrepancy is that the E. coli strain used for RNAi (the

HB101-related strain HT115) is different from the standard strain used for

growth and maintenance of C. elegans (the E. coli B-related OP50) that

we used in our experiments. Indeed, wild-type C. elegans grown on

HT115 live nearly 20% longer than wild-type animals grown on OP50

(Maier et al., 2010). However, we have shown that sgk-1(null) and sgk-1

(gf) animals are respectively short-lived and long-lived when cultured on

E. coli OP50, HT115, or HB101 (Fig. 1 and Table S1), indicating that the

lifespan phenotypes of sgk-1(null) and sgk-1(gf) are not significantly

influenced by differences between OP50 and HT115/HB101 per se.

We did confirm the previously reported finding that sgk-1 null mutant

animals are thermotolerant compared with wild-type animals (Hertweck

et al., 2004). This suggests that sgk-1 null mutant animals are not

short-lived due to general frailty or sickness, as such animals would be

expected to be generally hypersensitive to environmental stresses.

Intriguingly, daf-16/FoxO was not required for thermotolerance in

sgk-1(null) animals, suggesting that although AKT-1 and SGK-1 both

promote thermosensitivity, they likely do so through distinct mecha-

nisms. Our results dissociate thermotolerance from longevity and

suggest that divergent molecular pathways act downstream of SGK-1

to influence lifespan and responses to increased ambient temperature.

Our results also contrast with a detailed analysis of mammalian FoxO3

regulation demonstrating that both Sgk and Akt/PKB can inhibit FoxO3

activity in cell culture by promoting the phosphorylation of all three

(A) (B)

(C) (D)

(E)

(G)

(F)

Fig. 2 Effects of sgk-1mutations on stress

resistance. (A–F) Stress resistance assays
exposinganimals tohydrogenperoxide (A,B),

UV radiation (C,D), and heat (E,F). Assays

were performed on sgk-1(ok538) (null #1),

sgk-1(mg455) (null #2) (A,C,E), and sgk-1

(ft15) (gf) (B,D,F). (G) Effect of daf-16

(mu86) null mutation on the

thermotolerance of sgk-1 null mutants.

Raw data and statistics are presented in

Tables S2–S4.
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conserved sites that lie within RxRxxS/T motifs (Brunet et al., 2001). This

discrepancy may be due in part to differences in experimental context;

these experiments were performed in cell culture, where growth factors

are frequently added in excess of physiologic concentrations, and

overexpressed proteins may exhibit activities that are not discernible

when they are expressed at endogenous levels. The effect of Sgk

knockdown or deletion on the activity of endogenous FoxO transcription

factors has not been investigated in mammals. Although it is conceivable

that Sgk regulates FoxO activity through distinct mechanisms in

mammals and C. elegans, this is unlikely in light of the conservation of

mechanisms of FoxO regulation by insulin-like growth factor signaling

pathways (Kenyon, 2010).

(A)

(D)

(G)

(B)

(E)

(C)

(F)

Fig. 3 Effects of sgk-1 mutations on DAF-16A::GFP subcellular localization and DAF-16/FoxO target gene expression. (A) Subcellular localization of DAF-16A::GFP in akt-1

and sgk-1 mutants. Nuclear localization is increased by akt-1(mg306) null mutation (two-way ANOVA, F = 14.47, P < 0.0001), but not by sgk-1(ok538) null mutation

(F = 1.825, P = 0.1733) or by sgk-1(ft15) gain-of-function mutation (F = 0.869, P = 0.5037). Error bars represent SEM for 3 cohorts of 20–30 animals per genotype

imaged separately. All animals also harbored the daf-16(mu86) null allele, so no endogenous DAF-16/FoxO is present. Representative images are shown in Figure S2. Raw

data and statistics are presented in Table S5. (B,F) Representative experiments measuring sod-3 (B), nnt-1 (C), sip-1 (D), dod-3 (E), and mtl-1 (F) transcript levels using

quantitative RT–PCR on total RNA isolated from young adult animals. Values are normalized to expression levels in wild-type animals. Columns represent mean � SEM of

three technical replicates. Raw data and statistics for biological replicates are summarized in Table S6. (G) Summary of statistically significant gene expression changes

(P < 0.05; Table S6; unpaired two-tailed t-test with Welch’s correction) in akt-1 and sgk-1 mutants and their dependence on DAF-16/FoxO. The asterisk indicates that dod-3

expression was increased significantly in eight of twelve trials. The number sign indicates that daf-16(null) significantly reduced expression of dod-3 and mtl-1 in sgk-1(null)

mutants in five of six trials. See Table S6 for details.
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Although the increased lifespan phenotypes caused by akt-1 null

mutation and the sgk-1(gf) both require daf-16/FoxO (Fig. 1C and Table

S1), the expression of DAF-16/FoxO target genes was influenced by

these two mutations in starkly discordant ways (Fig. 3B–F). Whereas the

expression of five DAF-16/FoxO target genes is induced in a DAF-16/

FoxO-dependent manner in akt-1 null mutants, sgk-1(null) and sgk-1(gf)

mutations had distinct and varying influences on the expression of

specific DAF-16/FoxO target genes. This difference is likely a reflection of

underlying differences in the molecular basis for DAF-16/FoxO regulation

by AKT-1 and SGK-1.

These observations suggest that the underlying mechanisms of

lifespan control by AKT-1 and SGK-1 are fundamentally different. In

contrast to AKT-1, which inhibits DAF-16/FoxO by promoting its

nuclear export and cytoplasmic retention (Hertweck et al., 2004; Zhang

et al., 2008; Alam et al., 2010; Dumas et al., 2010), SGK-1 may

promote longevity by regulating other proteins that functionally and/or

physically interact with DAF-16/FoxO, such as SKN-1 (Tullet et al.,

2008), HSF-1 (Hsu et al., 2003), or HCF-1 (Li et al., 2008). In this

regard, DAF-16/FoxO may play a permissive role in lifespan control by

SGK-1 without being directly regulated by SGK-1. Alternatively, SGK-1

may directly regulate DAF-16/FoxO activity in a small number of cells,

which in turn could control lifespan by influencing other cells in a

DAF-16/FoxO-independent manner.

In summary, we have shown that the AGC kinase family members

Akt/PKB and Sgk control C. elegans lifespan and stress resistance in

fundamentally different ways, and they likely influence FoxO transcrip-

tion factor activity through distinct mechanisms in vivo. Our findings

challenge existing paradigms of FoxO regulation by Sgk and should

engender a reassessment of the role of Sgk in FoxO transcription factor

regulation.

Experimental procedures

Strains and reagents

The following strains were used: N2 Bristol (wild-type), sgk-1(ft15)

(Jones et al., 2009), akt-1(mg306) (Hu et al., 2006), sgk-1(ok538)

(Hertweck et al., 2004), sgk-1(mg455) (Soukas et al., 2009), daf-16

(mu86) (Lin et al., 1997), hcf-1(pk924) (Li et al., 2008), and TJ356

(zIs356) (Henderson & Johnson, 2001). Because sgk-1(ft15) was isolated

after mutagenesis of animals harboring the linked akt-2(tm812) muta-

tion (Jones et al., 2009), we confirmed the absence of akt-2(tm812)

prior to further analysis. Throughout the manuscript, sgk-1(ft15) is

referred to as ‘sgk-1(gf)’, akt-1(mg306) as ‘akt-1(null)’, sgk-1(ok538) as

‘sgk-1(null) #1’, and sgk-1(mg455) as ‘sgk-1(null) #2’. sgk-1 mutant

strains were outcrossed with N2 at least seven times prior to phenotypic

analysis. Wild-type siblings of sgk-1(ft15) from the seventh outcross with

N2 Bristol were used as controls for phenotypic comparison to sgk-1

(ft15). This sibling is labeled ‘wild-type’ in all figures, in contrast to ‘N2

wild-type’. Double and triple mutants were generated using standard

genetic techniques. For maintenance and all assays, animals were grown

in Percival I-30NL or I-36NL incubators (Percival Scientific, Inc., Perry, IA,

USA).

Lifespan assays

Lifespan assays were performed at 20°C as described (Alam et al., 2010;

Dumas et al., 2010). Briefly, animals were treated with alkaline

hypochlorite and grown for at least three generations at 15°C. A

synchronized egg lay was then performed to yield animals for the

lifespan assay. These were grown at 20°C until the L4 larval stage, at

which time they were picked to separate plates and grown until they

were day 2 adults. They were then transferred to NGM plates (10–15

animals per plate) containing 25 lg/mL (100 lM) 5-fluoro-2′-deoxyuri-

dine (FUDR; Sigma-Aldrich, St. Louis, MO, USA) and 10 lg/mL nystatin

(Sigma-Aldrich) and seeded with 209 concentrated OP50. Animals were

incubated at 20°C and scored every 1–2 days. Animals that were not

moving, did not respond to prodding, and did not exhibit pharyngeal

pumping were scored as dead and removed. Animals that died due to

desiccation on the side of the plate, a compromise in vulval integrity, or

bagging were censored. Statistical significance was assessed using the

standard chi-square-based log-rank test in GRAPHPAD PRISM (GraphPad

Software, La Jolla, CA, USA).

Dauer assays

Dauer assays were performed at 25° or 27°C as previously described

(Hu et al., 2006). Briefly, animals were synchronized in a 4- to 6-h egg

lay and grown at 25° or 27°C on NGM plates. Dauers were scored

when wild-type animals were gravid adults and daf-2(e1368) or akt-1

(mg306) mutant animals were arrested as dauers (approximately

60–84 h after egg lay). sgk-1 null mutant animals were plated twelve

hours prior to other strains to compensate for developmental delay.

Plates were observed for two additional days after initial scoring to

account for possible dauer arrest in animals with severe developmental

delay.

Stress resistance assays

Animals were grown at 20°C for 48 hours after a 4- to 6-h egg lay until

most animals were L4 larvae. sgk-1(null) animals were grown starting

12 h earlier than other strains for L4 synchronization due to develop-

mental delay (Hertweck et al., 2004; Jones et al., 2009; Soukas et al.,

2009). Young adults, L3 larvae, and males were removed by suction.

Cohorts were sufficiently large to allow for thermotolerance, oxidative

stress, and UV assays to be performed in parallel. All assays were

performed in triplicate.

For oxidative stress assays, L4 larvae were transferred to fresh seeded

NGM plates, grown for an additional 18 h, washed two or three times

with M9 buffer, and diluted to a concentration of ~ 50 animals mL�1 of

M9. 0.5 mL of animals was dispensed to Eppendorf tubes and rocked for

~ 20 min to allow animals to digest E. coli. Four tubes were used per

genotype per concentration of H2O2. 0.5 mL of H2O2 dissolved in M9

was then added to each tube to the final concentration, followed by

rocking for 2 h protected from light. The H2O2 solution was then

removed, and the animals were washed with M9. Animals were then

pipetted back onto fresh NGM plates and scored after an 18-h recovery

period at 20°C. Two-way ANOVA was conducted using GraphPad Prism,

with survival of animals on each plate as the dependent variable and

H2O2 dose and genotype as independent variables.

UV stress assays were performed as described (Wolff et al., 2006).

Briefly, animals were transferred to plates containing 25 lg mL�1 FUDR

on day 1 of adulthood. After four days, they were transferred to plates

lacking bacteria and irradiated with 1200 J m�2 UV-C using a Strata-

linker 2400 UV crosslinker (Stratagene, La Jolla, CA, USA). They were

then transferred onto NGM plates with food and scored daily for

survival. Statistical significance was assessed using the standard

chi-square-based log-rank test.

Thermotolerance assays were performed essentially as described

(Kwon et al., 2010). Briefly, L4 larvae were transferred to fresh seeded
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NGM plates (~20 per plate) and then grown for an additional 18 h

prior to shifting them to an incubator set at 35°C. Four plates were

used per genotype per time point. At each time point, plates to be

scored were removed and incubated further for 18 h at 20°C, after

which living and dead animals were scored. Two-way ANOVA was

conducted using GRAPHPAD PRISM, with survival of animals on each

plate as the dependent variable and time at 35°C and genotype as

independent variables.

DAF-16A::GFP localization assays

Animals were mounted onto slides in M9 with 10 mM sodium azide.

Approximately ten young adults were picked to each slide, and the

anterior segment of each animal was imaged within five minutes after

mounting. Images were scored according to the criteria shown in

Figure S1. Both imaging and scoring were performed in a blinded

fashion. Two-way ANOVA was used to assess statistical significance in

GRAPHPAD PRISM.

Quantitative RT–PCR

Animals from a 4.5-h egg lay were grown at 20°C for 48 h until most

animals were L4 larvae. sgk-1(null) animals were grown starting 12 h

earlier than other strains for L4 synchronization due to developmental

delay (Hertweck et al., 2004; Jones et al., 2009; Soukas et al., 2009).

Young adults and L3 larvae were removed by suction, and the remaining

animals were grown for an additional 12 h. Total RNA was isolated from

600–1000 young adults per strain per biological replicate using TRIzol

(Invitrogen, Carlsbad, CA, USA) and purified using an RNeasy Kit

(QIAGEN Inc., Valencia, CA, USA). cDNA was synthesized using a

Superscript III Reverse Transcriptase Kit (Invitrogen). SYBR Green (Applied

Biosystems, Warrington, UK) Real-Time PCR was then performed using

primers corresponding to the DAF-16/FoxO target genes sod-3, nnt-1,

sip-1, dod-3, and mtl-1. act-1 was used as an internal control.

Quantitative PCR primer sequences are listed in Table S7. Statistical

analysis was performed in GraphPad Prism by unpaired two-tailed t-test

with Welch’s correction.
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