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A copula model for joint modeling of longitudinal and time
invariant mixed outcomes

Esra Kürüm1, Daniel R. Jeske1, Carolyn E. Behrendt2, Peter Lee3

1Department of Statistics, University of California, Riverside, CA

2Division of Biostatistics, Department of Information Sciences, Beckman Research Institute of the 
City of Hope, Duarte, CA

3Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA

Abstract

Motivated by a preclinical study in a mouse model of breast cancer, we suggest a joint modeling 

framework for outcomes of mixed type and measurement structures (longitudinal versus single 

time/time-invariant). We present an approach based on the time-varying copula models, which is 

used to jointly model longitudinal outcomes of mixed types via a time-varying copula, and extend 

the scope of these models to handle outcomes with mixed measurement structures. Our framework 

allows the parameters corresponding to the longitudinal outcome to be time varying and thereby 

enabling researchers to investigate how the response-predictor relationships change with time. We 

investigate the finite sample performance of this new approach via a Monte Carlo simulation study 

and illustrate its usefulness by an empirical analysis of the motivating preclinical study, comparing 

the effect of various treatments on tumor volume (longitudinal continuous response) and the 

number of days until tumor volume triples (time-invariant count response). Through the real-life 

application and the simulation study, we demonstrate that, compared with marginal modeling, the 

joint modeling framework offers more precision in the estimation of model parameters.

Keywords

joint model; local regression; varying coefficient model

1 | INTRODUCTION

Increasingly, studies are collecting data on multiple outcomes, usually of mixed 

measurement structures. That is, within a single study, some outcomes are measured 

at several time points (longitudinal), whereas other endpoints are time-invariant, that 

is, measured only at a single time point, either by definition or by lack of data 

collection resources. In this paper, our goal is to present a joint modeling approach 

that is flexible enough to model outcomes of mixed type with different measurement 
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structures (longitudinal versus single time), while taking full advantage of the longitudinal 

measurements by allowing parameters corresponding to the longitudinal outcome(s) to vary 

over time.

Our motivating data come from a longitudinal preclinical study performed on genetically

alike mice. Preclinical studies represent the phase of drug development before human 

testing, in which novel compounds are studied in relevant animal models of disease. 

Statistical analyses of preclinical studies are the primary basis for deciding whether 

to advance or abandon a therapeutic idea. In preclinical trials for cancer, a common 

longitudinal outcome is the growth of the primary tumor. For patients with cancer, 

controlling the primary tumor (that is, by surgical resection) may not suffice to achieve 

cure: preventing metastasis of the primary tumor to sites elsewhere in the body is key to 

extending survival and achieving cure. However, the onset of metastasis, being microscopic, 

is usually hard to recognize. The growth of the primary tumor increases dramatically when 

cells that have left the primary tumor grow elsewhere in the body (as “metastases”) and cells 

released from the metastasized tumors return to the primary tumor, enhancing its growth 

rate.1–5 Thus, we propose “number of days to tripling of tumor volume” as an additional 

outcome in preclinical cancer studies, as a potential proxy for time to metastasis, a clinically 

meaningful event.

The study that motivated our work was performed in a mouse model of breast cancer, and 

in this study, the primary tumor’s volume on each mouse was measured 2–3 times per week 

with the aim of comparing growth under five conditions (three active treatment arms and 

two control arms). The three treatment arms were EXP, an antiparasitic drug not previously 

used to treat cancer, STD, a widely used cytotoxic chemotherapy, and a combination of these 

two drugs. Typically, in literature, to study the effect of each treatment, the only longitudinal 

outcome (volume of the primary tumor) considered in the preclinical studies is first plotted 

graphically by treatment arm and growth curves under various treatments are then compared 

using mixed effects modeling. In these studies, the effect of treatment is likely to change 

over time, and if this effect has the same direction over time and is a monotone function 

of time, mixed effects models can be formulated to be flexible enough to capture this 

time-varying effect by including an interaction term between treatment and time. However, 

when the effect of treatment exhibits several fluctuations over time such as continuous 

changes in the direction and strength, it cannot be directly or efficiently estimated using 

mixed effects models. Moreover, as we mentioned above, we suggest a second correlated 

outcome with biological importance, that is, the number of days until tumor volume triples 

(a time-invariant count response), to be also recognized in preclinical studies. This outcome 

is related to the longitudinal outcome because it suggests that metastatic tumors have 

become established elsewhere and are contributing additional volume to the primary tumor 

(the longitudinal outcome). To analyze these two related outcomes that are of mixed type 

with different measurement structures, our new joint modeling approach, which has a higher 

statistical efficiency than marginal modeling and is able to recognize the dynamic nature of 

treatment effects, has been developed.

In the literature, a number of joint modeling approaches, primarily focusing on longitudinal 

binary and continuous outcomes, have been established (see, for example, other works6–14). 
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The main difficulty in joint modeling outcomes of mixed types is the lack of a natural 

multivariate distribution. One solution to this challenge is to introduce a continuous 

latent variable underlying the binary response and assume that this latent variable and 

the continuous outcome follow a joint normal distribution. This joint distribution is then 

factorized in one of two ways into two components that can be modeled separately: 

(i) a marginal distribution for the continuous response and a conditional distribution for 

the binary response given the continuous response or (ii) a marginal distribution for the 

binary response and a conditional distribution for the continuous response given the binary 

response.

Joint mixed effects models represent another solution to the lack of a natural multivariate 

distribution for mixed outcomes.12,15 In these models, a random effect is assumed for each 

outcome and the association between the outcomes is defined through a joint distribution 

for these random effects. One drawback of these models, as pointed out by Verbeke et al,16 

is that the maximum-likelihood estimation is only possible when strong assumptions are 

made. For example, Roy and Lin17 assumed that the random effects for various outcomes 

are perfectly correlated. In addition, Hodges and Reich18 discussed that a mixed-effects 

model may be confounded. This may inflate the variance of fixed-effects estimators and thus 

prevent the discovery of important response–predictor relationships.

Copula-based approaches are another solution to the aforementioned problem. (see the 

work of Nelsen19 for an introduction to copulas and other works20–26 for information on 

copula-based regression models.) In this paper, we follow this solution.

In longitudinal studies, the response-predictor relationships may vary over time, and 

ordinary regression models cannot capture these dynamic patterns. Time-varying coefficient 

models overcome this limitation by allowing regression coefficients to vary over time. 

Kürüm et al27 built time-varying copula models using time-varying coefficient models and 

allowed all parameters, including regression coefficients and dependence parameters, to vary 

over time. In addition, unlike previous approaches14 that allow time-varying parameters in 

a joint-modeling framework but are limited to binary–continuous responses, time-varying 

copula models can be used to jointly model arbitrary response types and dimensions. 

Although Kürüm et al27 introduced a flexible model that allows all parameters to be time 

varying and applied this method to outcomes that are all measured longitudinally, in practice 

(for example, the preclinical study that motivates this work), it may be desirable to model 

time-invariant outcomes jointly with longitudinal ones.

Therefore, in this paper, we introduce a new statistical framework to joint modeling. Our 

main contribution is twofold. First, our method brings arbitrary response type with different 

measurement structures (longitudinal versus single time/time-invariant) to joint modeling. 

For instance, for the aforementioned preclinical study, our method will be used to jointly 

model the tumor volume, longitudinal continuous outcome, and the number of days until 

the tumor volume triples, the time-invariant count outcome. Second, for the longitudinal 

outcome, our methodology includes time-varying parameters, which will allow researchers 

to uncover complex dynamic patterns of response-predictor relationships. This method will 

lead to more efficient estimators for both time-varying and time-invariant response-predictor 
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relationships because, in the presence of dependence among outcomes, joint modeling 

leads to more precise estimators than marginal modeling.15,27,28 This gain in efficiency 

increases as the strength of dependence increases, especially for smaller samples. To achieve 

our goal, we employ time-varying copula models and broaden the applicability of this 

framework to joint modeling of responses with different measurement structures in addition 

to joint modeling of arbitrary response types and dimensions, and we also provide a novel 

application of our approach.

The remainder of this paper is organized as follows. Section 2 describes our joint modeling 

framework for outcomes of mixed type with different measurement structures. In this 

section, we also describe the estimation procedure and address issues that might arise in 

practice. Section 3 illustrates the proposed approach by analyzing data from motivating 

preclinical study. Section 4 presents our simulation study, which shows the finite sample 

behavior of our approach. Section 5 includes our concluding remarks.

2 | TIME-VARYING COPULA MODELS

In this section, we introduce the statistical methodology to jointly model responses of mixed 

type and measurement structures. To achieve this goal, we employ the time-varying copula 

models27 and extend the applicability of these models to joint modeling of longitudinal and 

time-invariant outcomes. These models were built on varying coefficient models.29,30

In longitudinal studies, the relationship between response and predictor(s) may change with 

time. Ordinary regression models cannot capture these dynamic features that might exist in 

the data. To address the inability of ordinary regression models to capture these dynamic 

relationships, time-varying coefficient models were developed to allow the regression 

coefficients to vary over time. A linear time-varying coefficient model takes the form

Y (t) = xT(t)β(t) + ε(t),

where Y(t) is the response variable and x(t) = {x1(t), …, xp(t)}T is a vector of predictors 

collected at time t, β(t) = {β1(t), …, βp(t)}T are unknown coefficient functions, and ε(t) is 

an error such that E(ε ∣ x, t) = 0. A brief summary of the utilization of varying coefficient 

models in time-varying copula model framework is given below.

For subject i, i = 1, …, n, the outcomes measured at time point tij are denoted as a d-variate 

process Yi(tij) = {Yi1(tij), …, Yid(tij)}T, some of which may be time-invariant outcomes and j 
= 1, …, ni. In this framework, longitudinal data could be collected at irregular time points; in 

other words, the number of observations and the observation times may vary from subject to 

subject. The marginal distribution and density/mass function of the kth outcome are assumed 

to be Fik and fik, respectively, both of which may depend on time-varying parameters θk(t) 
and some of which may be regression coefficients βk(t). For instance, in the aforementioned 

mouse cancer study, for the bivariate continuous–count outcomes, we might use normal 

linear and poisson models
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Yi1(t) N xi1(t)Tβ1(t), σ2(t)    and   Yi2(t) P exp  −xi2(t)Tβ2(t) ,

where P(λ) denotes a Poisson random variable with mean λ, and xi1(t) and xi2(t) are vectors 

of predictors for subject i, measured at time t.

In time-varying copula models, the dependence between the outcomes is modeled using 

a time-varying Gaussian d-copula Cη(t){u1(t), …, ud(t)},31,32 with η(t) as the copula 

parameters,19

ΦQ(t) Φ−1 u1(t) , …, Φ−1 ud(t) ,

where ui(t) = Fi{yi(t)}, ΦQ(t) is the CDF of a d-variate multinormal random variable with 

mean vector 0 and correlation matrix Q(t), and Φ−1 is the univariate standard normal 

quantile function.

The estimation of the parameters θ(t) = θ1
T(t), …, θd

T(t), ηT(t) T
 at time t0 are performed 

via using local constant fitting techniques, that is, θ(t0) is assumed to be constant on 

a neighborhood of t0. It is straightforward to adopt the estimation to employ a higher

order polynomial approximation to θ(t0), but even a linear approximation increases the 

computational burden quite a bit while reducing bias only slightly.

2.1 | Estimation in time-invariant Gaussian copula models

Before we proceed to the estimation in the proposed copula-based models, in this 

subsection, we will briefly describe the estimation procedure in time-invariant Gaussian 

copula models. This will allow us to introduce the notation and motivate our approach in the 

next section more clearly. The density for the Gaussian d-copula is given as

cQ(u) =
ϕQ Φ−1 u1 , …, Φ−1 ud

∏i = 1
d ϕ Φ−1 ui

∝ |Q |−1/2exp  − 1
2w′ Q−1 − I w ,

where u = (u1, …, ud)T, w = (w1, …, wd)T = {Φ−1(u1), …, Φ−1(ud)}T, Q is the correlation 

matrix and I is the d × d identity matrix. Let fi be the density function corresponding to 

the marginal distribution Fi with i = 1, …, d. If the marginal distributions F1, …, Fd are all 

continuous, the likelihood of the parameters θ is

L(θ ∣ y) ∝ cQ F1 y1 , …, Fd yd ∏
i = 1

d
fi yi .

This leads to the following the log likelihood:
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ℓ (θ ∣ y) = − 1
2log  Q − 1

2w′ Q−1 − I w + ∑
i = 1

d
log fi yi , (1)

where wi = Φ−1{Fi(yi)}. The optimization of this log likelihood will give us the maximum 

likelihood estimate of θ.

The likelihood has the simple form given above only when all the marginal distributions 

are continuous; however, when some of the marginal distributions are discrete, the true 

likelihood has a more complicated form25,33 because wi = Φ−1{Fi(yi)} is not standard 

normal (since Fi(yi) is not standard uniform if Fi has jumps). In addition, it becomes 

cumbersome to use the true likelihood as the number of discrete responses increases and the 

distributional transform can be used to approximate the true likelihood in these cases (see 

other works34–36 for detailed information on this transformation).

2.2 | Estimation in time-varying copula models

In this section, we present the estimation in time-varying copula models. Although, these 

models have been introduced in a completely time-varying manner, these models are flexible 

enough to accommodate time-varying and time-invariant parameters simultaneously. More 

specifically, when one or more of the outcomes are time invariant, in this approach, 

parameters corresponding to these outcomes in θ(t) can be assumed to be time invariant 

and estimated accordingly.

The parameters θ t0 = θ1
T t0 , …, θd

T t0 , ηT t0
T
 are estimated via maximizing the local 

kernel-weighted log likelihood

ℓ θ t0 ∣ T = ∑
i = 1

m
∑

j = 1

ni
ℓ θ t0 ∣ yij Kℎ t0 − tij ,

where T = (t1 ⋯ tm) with ti = ti1, …, tini
T, ℓ{θ(t0) | yi j} is the log likelihood of θ(t0) given 

the outcomes for subject i at time point ti j, Kh(t) = h−1K(t/h) is the scaled kernel function 

K(·) with bandwidth h. The response vector is partitioned so that the first d1 coordinates are 

continuous and the remaining coordinates are discrete,

ℓ θ t0 ∣ yij = − 1
2log  Q

− 1
2 wijT, wij*T Q−1 − I wijT, wij*T T

+ ∑
k = 1

d
log fik yik tij ,

where

wij = Φ−1 Fi1 yi1 tij , …, Φ−1 Fid1 yid1 tij
T,
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wij* = Φ−1 ui d1 + 1 tij , …, Φ−1 uid tij
T .

The computation of uik(tij)(k = d1 + 1, …, d) is performed through the following 

distributional transform approximation34–36:

uik tij =
Fik yik− tij + Fik yik tij

2 .

The quasi-Newton method37 is employed to obtain θ(t0) to ensure that estimated dependence 

and scale parameters can be appropriately constrained.

In order to construct pointwise confidence intervals, the variance of θ t0  is estimated using 

the results obtained by Fan et al.38 The conditional variance has a sandwich form

Σ t0 = V θ t0 ∣ T
≈ κ t0 ℋ−1 t0 J t0 ℋ−1 t0
= κ t0 ℓ″ θ t0 ∣ T −1V ℓ′ θ t0 ∣ T ℓ″ θ t0 ∣ T −1,

where κ t0 = ∑i = 1
m ∑j = 1

ni K2 t0 − tij /ℎ /ℎ2, ℋ t0 = ℓ″ θ t0 ∣ T  is the Hessian matrix, 

which can be estimated by ℓ″ θ t0 ∣ T , and the variance of the score, J t0 , can be 

estimated by

∑i = 1
m ∑j = 1

ni ∇ ∇T ℓ θ t0 ∣ yij Kℎ t0 − tij

∑i = 1
m ∑j = 1

ni Kℎ t0 − tij
,

where ∇ denotes the gradient.

Based on the asymptotic normality results shown in the works of Hall and Tajvidi39 and De 

Melo and Mendes,40 the asymptotic pointwise (1 − α)100% confidence interval for the kth 

element of θ(t0) can be given as follows:

θk t0 ± Φ−1 1 − α/2 Σk t0 ,

where Σk t0  is the kth diagonal element of Σ t0 .

Although the procedure described above does not account for intrasubject dependence, 

theory suggests that this type of dependence can safely be ignored (for estimation of θ(t)). 
More specifically, it is shown that regardless of the working correlation structure, the 

method of kernel generalized estimation equations (kernel GEE) yields a root-n consistent 

estimator.41 Moreover, kernel GEE with working independence correlation matrix leads 

to the most efficient estimator for the nonparametric regression function in a longitudinal 
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setting. As the procedure used in this article shares the spirit of kernel GEE, we suspect 

that our estimator for θ(t) is root-n consistent and is likely the most efficient. Theoretical 

justification is beyond the scope of this paper and is left to a future investigation.

In practical application of methods based on kernel smoothing, selection of the kernel 

function and the bandwidth are important issues. In terms of kernel functions, we suggest 

employing a bimodal kernel42 as using this kernel results in more accurate estimates in 

the presence of intra-subject dependence. We recommend using a member of the so called 

ε-optimal class of bimodal kernels.42 Specifically,

Kε(t) = 4
4 − 3ε − ε2

3
4 1 − t2 1 t ≤ 1 if  t ≥ ε

3
4

1 − ε2
ε t if  t < ε

with ε = 0.1, where 1{·} denotes the indicator function.

For the bandwidth selection, we suggest using the following leave-one-subject-out cross 

validation score, which is a form of the cross-validation approach proposed by Fan and 

Zhang,43

CV(ℎ) = − ∑
i = 1

m
∑

j = 1

ni
ℓ θ ∖ i tij ∣ yij, ℎ ,

where θ ∖ i tij  is the leave-i-out estimate for time tij. We compute this cross-validation score 

for a range of bandwidths and select the bandwidth that minimizes the score.

3 | A NOVEL APPLICATION TO PRECLINICAL STUDY

In this section, we apply our joint modeling method to the preclinical study mentioned in 

the introduction. To induce a primary breast tumor per subject, breast cancer cells were 

injected into the mammary fat pad of 68 mice on day zero. Tumors became measurable on 

day four, from which point tumor volume ((Length * Width2)/2) was measured 2–3 times 

per week, yielding 14 measurements per mouse over the course of 34 days. Starting on day 

four, groups of 12 mice received either: standard drug alone (STD), experimental drug alone 

(EXP), both drugs together (EXP+STD), or only the vehicle in which the experimental drug 

was administered (Vehicle). A further 20 mice served as controls, receiving no treatment. In 

our analysis, we evaluate the four treatments relative to control using (1) tumor volume over 

time and (2) number of days until tumor volume triples. Traditionally, only tumor volume 

is recognized as an endpoint to be analyzed using longitudinal mixed effects modeling. 

Our recognition of a second, correlated outcome (the number of days until the tumor 

volume triples), creates the need for a joint modeling framework capable of accommodating 

outcomes of mixed type and measurement structure. Figure S1 presents the density plot 

of this second outcome, the number of days until the tumor volume triples, for each 

group. Although this figure indicates that the three drug treatment groups (STD, EXP, and 
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EXP+STD) exhibit multimodal distributions with long tails, all groups have a concentration 

of mass around day six.

In our analysis, the natural logarithm of the tumor volume, Yi1(t), is assumed to follow a 

normal distribution with mean xiTβ1(t) and variance σ2(t), and number of days until tumor 

volume triples, Yi2, is assumed to follow a Poisson distribution with mean exp −xiTβ2 , 

where xi1
T = 1, xi1, xi2, xi3, xi4 , β1(t) = {β10(t), β11(t), β12(t), β13(t), β14(t)}T, and β2 = (β20, 

β21, β22, β23, β24)T with

xi1 = 1, if subject i is in the vehicle alone group
0, otherwise

xi2 = 1, if subject i is in the STD group
0, otherwise

xi3 = 1, if subject i is in the EXP group
0, otherwise

xi3 = 1, if subject i is in the EXP+STD group
0, otherwise.

The reason we only include the treatment indicators as predictors in our model is that the 

mice included in the study were bred to be genetically identical, so the only difference 

between each mouse was the treatment they received. In addition, as we created dummy 

variables corresponding to vehicle and treatment groups, the intercept term corresponding to 

the longitudinal outcome describes the natural logarithm of the tumor volume for subjects in 

the no treatment group.

In this application, we chose a bandwidth of h = 3 by using the leave-one-out cross

validation method described in Section 2, and we used a bimodal kernel. The estimated 

time-varying regression coefficient functions along with their confidence intervals for the 

natural logarithm of the longitudinal continuous outcome (tumor volume) are presented in 

Figure 1.

• The plot in panel A shows that the intercept function is time varying and 

increases with time, describing how tumor volume grows among subjects in the 

control group.

• From panel B, we observe that the coefficient for vehicle alone group may be 

time invariant. Moreover, the effect of Vehicle is significantly different from no 

treatment group and positive between days 10 and 20, indicating that the Vehicle 

is able to promote tumor growth when administered alone.
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• The confidence bands in panels C-E suggest that the three treatments (EXP, 

STD, and EXP+STD) have effects almost always significantly different from 

no treatment group but that only combination treatment (EXP+STD) has a time

varying effect. In other words, we can draw a straight line through all confidence 

band, indicating the coefficient could be a constant, except for the confidence 

band for the EXP+STD group. In addition, the regression coefficients in these 

panels are always negative, which suggests that throughout the study, these drug 

treatments have greater efficacy than Vehicle alone and no treatment.

• According to the plot in panel F, we see that the standard deviation of the 

longitudinal outcome is time varying and increases after day 13.

Although observing the behavior of regression coefficient functions over time is informative, 

observing differences between regression coefficients would be more useful in interpreting 

and comparing treatment effects. Figure 2 demonstrates the comparison of regression 

coefficients.

• In panel A, we see that the difference between the regression coefficients for 

STD and Vehicle alone β12(t) − β11(t)  is negative and is statistically significant 

after day seven. The negative difference indicates that the STD drug controls 

growth in tumor volume better than Vehicle alone does.

• Panel B demonstrates the difference between the regression coefficients for EXP 

and STD treatments β13(t) − β12(t) . The confidence band in this plot shows that 

there is no difference between these treatments in terms of their effects on the 

tumor volume.

• The plot in panel C compares the EXP+STD and EXP treatments. The 

difference between the regression coefficients for these groups β14(t) − β13(t)
is statistically significant and negative, indicating greater efficacy for EXP+STD 

than for EXP alone.

Figure S2 presents the fitted response values for the tumor volume along with their 

corresponding confidence bands. The results we conclude from this Figure are similar to the 

ones we obtained from the contrasts presented in Figure 2. More specifically, although the 

tumor volume increases in each group, EXP+STD treatment achieves the greatest efficacy 

compared to other treatments and the control group.

The results of the analysis for the time-invariant outcome (number of days until tumor 

volume triples) are depicted in Table 1. According to this Table, there is no difference 

between the four treatments compared to no treatment group in their ability to delay the 

tripling of tumor volume. This result agrees with the distributions presented in Figure S1.

In the introduction, we stated that, in the presence of dependence among outcomes, joint 

modeling methods may lead to more precise estimators of marginal parameters than 

marginal modeling approaches, especially for smaller sample sizes. In order to investigate 

this statement using the preclinical study in mice, we fitted a univariate time-varying model 

to the natural logarithm of the longitudinal outcome, which is assumed to follow a normal 
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distribution, and a traditional generalized linear model to the time-invariant outcome. Figure 

3 and Table 1 depict a comparison of standard errors obtained from the joint model to 

the marginal models. In Figure 3, we observe that, for selected parameters, joint modeling 

has a considerable gain in efficiency compared to the univariate time-varying model for all 

days except at the beginning of the study. Table 1 shows a similar efficiency gain in joint 

modeling when compared with the generalized linear model except for a slight loss in the 

coefficient of EXP treatment. In summary, our joint modeling method exhibits efficiency 

gain compared to marginal modeling for parameters corresponding to both longitudinal and 

time-invariant outcomes.

4 | SIMULATED APPLICATION

In this section, we demonstrate the finite sample performance of our proposed methodology 

via a Monte Carlo simulation study that resembles the preclinical study presented in Section 

3. In this simulation study, we used the K0.1 bimodal kernel and a set of equidistant 

grid points {tk, k = 1, …, ngrid} between 0 and 1 with ngrid = 200. Since each subject 

in the preclinical study is measured at 14 time points, for the ith subject, we chose 14 

equidistant measurement times between [0, 1]. Note that we used this interval for the ease 

of construction of this simulation study, other intervals or discrete time points could also be 

chosen. We used a sample size of n = 68 and generated 500 data sets. Figure S3 displays a 

few of the generated data sets.

The outcomes in our simulation study are longitudinal continuous and time-invariant count 

variables. Therefore, we let Yi1(t) be a Gaussian variable with mean xi1
T β1(t) and variance 

σ2(t) = 0.25 cos(2.3πt)+ 0.5 and Yi2 be a Poisson variable with mean exp −xi2
T β2 , where 

β1(t) = {β10(t), β11(t)}T = {1 + sin(2.5πt), sin(0.75πt)}T and β2 = (β20, β21)T = (0.9, 0.4)T, 

with β10(t) and β20 as the intercepts. In the preclinical study, there were treatment groups, 

and the dummy variables corresponding to these treatment groups were the only predictors. 

In order to create a resemblance of that in this simulation, we assumed that there is one 

treatment group and simulated the corresponding predictor from a binomial distribution 

with success probability 0.6. In other words, each subject has a 60% chance to be in the 

treatment group. Therefore, xi1
T = xi2

T = 1, xi
T with xi as the predictor that is generated from 

a binomial distribution with success probability 0.6. The correlation between continuous 

outcomes measured at different time points is defined as 0.2 tj − tj′ . A brief description of our 

simulation procedure is presented below. For subject i with ni = 14 and ti = (ti1, …, ti14)T,

1. construct the 2 × 2 correlation matrix with off-diagonal entries that correspond to 

the correlation between the responses and apply the Cholesky decomposition to 

impose this correlation on Zi1 tij , Zi2
T N(0, I) with j = 1, …, 14 and I as the 

identity matrix;

2. similarly, construct the correlation matrix for the longitudinal outcome using 

the correlation structure defined above and use the Cholesky decomposition to 

impose the correlation structure on {Zi1(ti1), …, Zi1(ti14)}T;
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3. apply the probability integral transformation to each Zi.U = {Ui1(ti1), …, Ui2}T = 

[Φ−1{Zi1(ti1)}, …, Φ−1(Zi2)]T;

4. finally, apply the inverse probability integral transformation and obtain the 

responses Y i1 tij , Y i2
T = Fi1

−1 Ui1 tij , Fi2
−1 Ui2

T
,

where Fi1 and Fi2 are the cdfs corresponding to the Gaussian and Poisson distributions 

described above.

We used the leave-one-out cross-validation bandwidth selector defined in Section 2 to obtain 

the optimal bandwidth. Figure 4 shows the results for h = 0.1: the bandwidth that minimized 

the cross-validation score. According to this Figure, our estimation procedure performed 

well with respect to bias. We see from the plots in Figure 4 that the empirical pointwise 

confidence bands for all time-varying functions were close to their corresponding mean 

theoretical confidence band, and they all cover the true function. Therefore, the standard 

errors obtained using our procedure were accurate for all time-varying functions. Figure S4 

demonstrates that the coverage rates, that is, the percentage of confidence bands that covered 

the true value of the regression coefficient at time t based on 500 Monte Carlo simulation 

runs, were close to the desired 95%.

The results for the time-invariant outcome are displayed in Table 2. In this Table, we 

present the bias and mean-squared errors for β2j(j = 0, 1) obtained using our joint modeling 

approach. According to this Table, we estimated time-invariant components β2j (j = 0, 1) 

with small biases and mean-squared errors.

We present the comparison of standard errors obtained from the joint model to the marginal 

model for the longitudinal outcome, that is, a univariate time-varying coefficient model in 

Figure 5. Note that although the estimated standard errors for β10(t) and β11(t) exhibit a 

similar pattern over time, the magnitudes are different. According to this Figure, for both 

regression coefficients, joint modeling leads to an apparent efficiency gain. The efficiency 

gain is slightly less pronounced between time points 0.6 and 0.8. In Table 2, we present 

the 2.5% and 97.5% percentiles of the estimated standard errors for β2.(j = 0, 1) obtained 

from the joint model and the marginal model, that is, a generalized linear model, for 

the time-invariant outcome. Table 2 shows that the 2.5% and 97.5% percentiles of the 

estimated standard errors for β20 in the marginal model were (0.176, 0.236), whereas these 

percentiles for the joint models were calculated as (0.113, 0.170). Similarly, the 2.5% and 

97.5% percentiles of the estimated standard errors for β21 were (0.065, 0.086) and (0.044, 

0.060) for the marginal and joint models, respectively. These values clearly indicate a 

considerable efficiency gain in joint modeling as the estimated standard errors obtained from 

joint modeling are less than the ones calculated from marginal modeling.

5 | CONCLUSION

In this article, we employed the time-varying copula procedure to jointly model outcomes 

of mixed type with different measurement structures (longitudinal versus single time/time

invariant). In this approach, we use local constant fitting techniques to obtain estimators of 
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the time-varying and time-invariant parameters. We performed a novel application of our 

method to a preclinical study in a mouse model of breast cancer to illustrate joint analysis of 

two associated outcomes: tumor volume, a longitudinal continuous outcome and number of 

days until tumor volume triples, a time-invariant count response. Our analysis demonstrated 

not only that combined treatment with experimental and standard drug achieves the largest 

reduction in tumor growth but also that all four treatments produce similar delay in number 

of days until tumor volume triples, suggesting that the observed gain in efficacy is not 

achieved through delay in onset of metastatic growth. The analysis of preclinical study 

data showed that the joint modeling framework presents more precision in estimation of 

model parameters compared to marginal modeling. Then, through a simulation study, we 

demonstrated that our procedure works well on estimating both the time-varying and time

invariant parameters for the longitudinal and time-invariant outcomes, respectively. Note that 

although we demonstrated the applicability of our approach on balanced longitudinal data, 

our method can also be applied to longitudinal outcomes that are measured irregularly, that 

is, when subjects have unequal numbers of measurements and different measurement times. 

The estimation in the data application and simulation study has been performed using the R 

statistical software.

In the analysis of the preclinical mouse study, we treat the number of days until tumor 

volume triples as a time-invariant count outcome because of no censoring in the data (tumor 

volume of all mice tripled during the study), whereas it could also be considered as a 

survival outcome. Although as noted by Laird and Olivier44, a survival outcome could also 

be considered to follow a Poisson distribution and analyzed accordingly, one could also 

be interested in analyzing the data from this study via a joint modeling framework for 

longitudinal and survival outcomes. Currently, there is no such joint modeling framework 

that includes time-varying coefficient models for the longitudinal outcome. Developing such 

a joint modeling framework would also be of interest and requires further research, for 

which the joint modeling approaches described in the work of Rizopoulos45 may prove 

useful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Estimated time-varying coefficient functions (solid) for the analysis of natural logarithm 

of the longitudinal continuous response (tumor volume) along with the estimated 95% 

pointwise confidence band. For panels A-E and F, the y-axis shows the estimated value 

of the corresponding regression coefficient in terms of natural logarithm of mm3 (tumor 

volume was measured in mm3) and the estimated standard error, respectively. For each 

panel, the dotted line marks zero. A, Intercept; B, Vehicle; C, EXP; D, STD; E, EXP+STD; 

F, σ(t)
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FIGURE 2. 
The comparison of regression coefficients for the natural logarithm of the longitudinal 

continuous response (tumor volume). For each panel, the y-axis shows the difference 

between estimated values of the corresponding regression coefficients in terms of natural 

logarithm of mm3 (tumor volume was measured in mm3). In this Figure, panels A, B, and 

C show the differences between estimated regression coefficients of STD and vehicle groups 

β12(t) − β11(t) , EXP and STD groups β13(t) − β12(t) , and EXP+STD and EXP groups 

β14(t) − β13(t) , respectively
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FIGURE 3. 
The comparison of standard errors for joint and univariate analyses of the natural logarithm 

of the longitudinal outcome (tumor volume). In this univariate analysis, the other outcome 

was included as an additional predictor. For each panel, the y-axis shows the value of the 

estimated standard error, and the solid and dashed curves show the standard errors for the 

univariate and joint models, respectively. A, Vehicle; B, EXP; C, EXP+STD
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FIGURE 4. 
Bias and estimated pointwise 95% confidence band for each time-varying coefficient 

function based on 500 Monte Carlo simulation runs. The first row shows the true function 

(solid) along with the empirical bias of our estimator (dotted). The second plot shows the 

empirical pointwise 95% confidence band (solid) and the mean theoretical pointwise 95% 

confidence band (dotted) along with the true function (dashed)
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FIGURE 5. 
The comparison of standard errors for joint and univariate analyses of the longitudinal 

outcome for each regression coefficient. In this univariate analysis, the other outcome was 

included as an additional predictor. For each plot, the y-axis shows the value of the estimated 

standard error, the solid and dashed curves show the 2.5% and 97.5% percentiles of the 

estimated standard errors for the univariate and joint models, respectively. A, β10(t); B, β11(t)
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TABLE 1

Estimated regression coefficient for each time-invariant outcome along with 95% confidence interval and a 

comparison of standard errors obtained in joint and marginal modeling

Variable β2.
(Joint Modeling)

95% CI
(Joint Modeling)

σβ2.
(Joint Modeling)

σβ2.
(Marginal Modeling)

Intercept 1.917 (1.762, 2.072) 0.079 0.145

Vehicle −0.125 (−0.280, 0.029) 0.079 0.247

EXP 0.393 (−0.038, 0.825) 0.220 0.212

STD 0.212 (−0.071, 0.496) 0.145 0.222

EXP+STD 0.206 (−0.081, 0.492) 0.146 0.223
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TABLE 2

Bias and mean square error (MSE) for the regression coefficients of the time-invariant outcome along with a 

comparison of standard errors obtained in joint and marginal modeling based on 500 Monte Carlo simulation 

runs

Regression Coefficient Bias MSE 2.5% and 97.5% Percentiles 2.5% and 97.5% Percentiles

(Joint Modeling) (Joint Modeling)

σβ2.
(Joint Modeling)

σβ2.
(Marginal Modeling)

β20 0.008 0.001 (0.113, 0.170) (0.176, 0.236)

β21 0.007 0.002 (0.044, 0.060) (0.065, 0.086)
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