
UC Irvine
ICS Technical Reports

Title
An algorithm for allocation of multiport memories using a new layout memory model

Permalink
https://escholarship.org/uc/item/3wf1q511

Authors
Ramachandran, Loganath
Gajski, Daniel D.
Chaiyakul, Viraphol

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wf1q511
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An Algorithm for Allocation
of Multiport Memories Using
a New Layout Memory Model

Loganath J:lamachandran
Daniel D. Gajski

Viraphol Chaiyakul

Technical Report #93-13

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

ramachan@ics.uci.edu

Abstract

Sct3/T!c

z
G9r
~3

Mr l3-t3

Array variables are extensively used in many behavioral descriptions especially for digital and image
processing applications. During synthesis, these array variables are implemented with memory modules.
In this report, we show that simple one-to-one mapping between the array variables and the memory
modules lead to inefficient designs. We propose a new algorithm (MeSA} for efficient allocation and
mapping of array variables onto memory modules. MeSA computes, (a) the number of memory modules
required, (b) the size of each module (c) the number of ports on each module and {d} and the grouping of
array variables that map onto each memory module. It also considers the effects of address translations
that are required when two or more array variables are stored in one memory module. While, most
previous research efforts have concentrated on optimizing the scalar variables, the primary focus in
this report is deriving efficient storage mechanisms for array variables. We show the efficiency of our
technique on some standard benchmarks.

Contents

1 Introduction

2 Previous Work

3 Internal Representation

4 Memory Synthesis Algorithm
4.1 Overview
4.2 Initial Configuration
4.3 Earliest and Latest bounds
4.4 Access Probabilities
4.5 Implementation Cost
4.6 Cluster Growth ...

5 Layout Memory Model
5.1 Area of Memory Module .

5.1.1 Array of Cells ..
5.1.2 RowDecoder ..
5.1.3 ColumnDecoder
5.1.4 Buffers
5.1.5 Area of Memory Modules

5.2 Interconnect Area

6 Results
6.1 A Simple Walkthrough Example
6.2 Kalman Filter
6.3 Differential Heat Release Computation .
6.4 Discrete Fourier Transform

7 Conclusions

8 Acknowledgements

9 References

List of Figures

1 Array-Variable Clustering Example
2 Representation Scheme
3 MeSA Algorithm
4 FuConstrainedAsap Algorithm
5 FuConstrainedAlap Algorithm
6 ComputeAccessProbabilities
7 Memory Organization
8 Cell layouts
9 Simple Example . . .
10 Kalman Filter Results
11 Differential Heat Release Computation
12 Discrete Fourier Transform Computation

1

3

4

6
6
7
8
9
9

10

10
11
12
13
14
14
15
15

15
16
16
16
18

19

19

19

1
5
6
7
8
9

11
12
16
17
17
18

1 Introduction

High Level Synthesis [1, 2) consists of automatically synthesizing hardware from a given behavioral

description. Many behavioral descriptions that manipulate large amounts of data use array variables

to represent data storages. During synthesis these array variables are generally implemented with

memory modules. However, many synthesis systems either do not handle such array variables, or at

best store each array variable in a separate memory module.

In this paper, we propose a new Memory Synthesis Algorithm, (MeSA) that derives an efficient

allocation of memory modules for storing the array variables given in the description. The allocation

derived by MeSA will provide: (a) the number of memory modules (b) the size of each module and

(c) and the number of ports on each module to satisfy the required performance. The important

contribution of MeSA is array-variable clustering, whereby one or more array variables gets stored

in the same memory module based on cost and performance considerations.

Let us illustrate the advantages of array-variable clustering using a very simple example. In Fig

ure l(a), a one-line description containing two array variables A and B of size 1000 x 8 is shown.

The results of synthesis using a simple memory allocation scheme is shown in Figure l(b). Here, each

array variable is stored in a separate memory module. The size of these memory modules correspond

directly to the size of the array variables. If we assume that A[i] and ALi) can be accessed in the same

state, MemA would require 2 ports and MemB would require 1 port. The scalar variables i, j and k

are stored in registers which are connected to the address ports of the memory.

Example Description

type Memtype is array 1000 x 8 bits
variable A, B : Memtype;

B[k] = A[i] + AUJ (a)

Synthesis without Variable Clustering Synthesis with Variable Clustering

(b)

8 -MemB

(8)

----·-----------' ' •st ' Action
' ' r---r-----------
: 1 : t =A(/) +A(})

i 2 : B(k)= t
~---~·------·---

(c)

Figure 1: Array-Variable Clustering Example

.---i- ·--- ... --........... -- --
: st: Action r·-1·---·-----------
: 1 : t1 =A(}); t2 = A(i);
I I f=k+ 1000
: 2 : B(j) = t1 + t2
~--~----------------

On the other hand it is possible to store both the array variables A and B in the same memory

1

module (Figure 1(c)). Now, all accesses to variable B require an address translation. Since the adder

is also shared for address translation, additional muxes are required in the design. The important

characteristics of this design can now be studied in further detail:

• Size of the memory modules - Since many variables are stored in the same memory, large

memory modules are required. The use of larger memories may lead to increased access delays,

but could lead to reduction in area since decoding and sensing circuitry are shared.

• Number of memory modules - Fewer memory modules are required because of variable

sharing. This would lower the number of nets required to be routed, possibly resulting in smaller

designs.

• N um her of ports - The total number of ports decreases because of efficient port sharing. In our

example the total number of ports decreased from 3 to 2. This would reduce the total number

of address lines required, thereby reducing the overall routing area.

• Address Translation operations - One of the important drawbacks of storing two array

variables in the same memory module is address translation requirements. Any reference to the

variable B (say B[k]) will have to translated to B[k + 1000], resulting in extra add operations

which could decrease the performance of the design. Additional hardware (like multiplexers) is

required to perform these new operations.

• Ordering of Variables - Since address translations are required only for variables stored with

an offset, the ordering of variables plays an important factor. In Figure l(c), one translation was

required for B[k]. Ordering A after B in the memory would result in two address translations,

possibly degrading the performance further.

All the above effects are taken into account by MeSA when it performs hierarchical clustering of

array variables. It assumes an initial configuration, wherein each array variable is stored in a separate

memory module. All possible merges are considered and a new configuration is created by clustering

two variables that results in the least cost. The cost of a particular merge depends on the actual layout

costs of the memory modules and also on the performance (i.e., the number of clock cycles required

to schedule all the operations and address translations). In order to estimate the layout costs for a

particular configuration we have also developed an extensive layout model for memories. The details

of this model are shown in Section 5.

The rest of the report is organized as follows. In the next section, we provide some of the previ

ous work in memory and register allocation and explain how MeSA is different from such previous

approaches. The representation scheme for the CDFG is shown in Section 3 and the details of the

algorithm are shown in Section 4. Finally we present the results of our algorithm on some examples

and present conclusions.

2

2 Previous Work

Many optimization techniques have been proposed in the literature for scalar variables. [3, 4, .5, 6]

presented algorithms for reducing the number of registers by storing variables with non-overlapping

lifetimes into the same register. In [3], this was formulated as a clique partition problem on a graph

formed according to overlapping lifetimes. Kurdahi and Parker [4] solved the register allocation

problem by using the left edge algorithm also used for the minimization of the tracks in standard cell

layout. Stok [5] used the edge coloring algorithm to group the variables into registers.

Another group of research papers have focussed on reducing the wiring area of the design, by

storing variables into regular structures like register files or n-port memories instead of distributed

registers. This is achieved by mapping all the scalar variables on a scheduled ftowgraph into a minimal

set of register files based on access patterns of the variables. In [7], this problem was formulated as a

0-1 integer linear programming problem. After variables are assigned to individual registers, a large

register file is formed by grouping the registers into a multiport memory. This process is repeated

till all the registers are grouped. In [8], the minimum number of multiport memories was derived by

dividing the variables into groups using a 0-1 ILP formulation. [9] focussed on minimizing the number

of interconnections, when minimizing the number of registers.

These above approaches have two important disadvantages: (i) These were formulated mainly for

scalar variables. They cannot be directly applied to array variables, unless each array variable is broken

down into its individual components. This would be impractical since the number of components in

an array variable could be extremely large. (ii) Most of these approaches were intended to be used on

a scheduled fiowgraph. Since scheduling is done prior to and independent of the memory allocation

phase these approaches would lead to an inefficient solution. As an example, the schedule may not

control the number of the number of memory accesses in each state resulting in a large bandwidth

for memory accesses. Our approach overcomes these disadvantages, since it is specifically formulated

for array variables. Also, in MeSA the allocation of the memory modules is done prior to scheduling,

taking into account the possible bounds within which data will be accessed. This would lead to more

efficient solution.

In [10, 11, 12] efficient algorithms are proposed to analyse data streams and minimize the storage

requirements for each stream. Such algorithms are required when the descriptions are written with an

applicative language. Each variable in such a description represents an infinite stream of data and it

is necessary to compute the exact size of storage required for each stream. However, after computing

the minimum storage requirements MeSA could be used to compute an efficient memory allocation to

store the variables.

3

3 Internal Representation

In this section we provide a scheme for representing ft.owgraphs containing array variable accesses. Two

special dataft.ow node types READ_MEM and WRITE_MEM are used, similar to the representation

scheme presented in [13].

The READ_MEM node contains one input and output. The input line gets the index values which

determines the location that is being read. The actual data is available on the output line. The

WRITE..MEM node contains two input lines, one for the index value and the other for the actual data

that is to be written. When the particular WRITE..MEM node is executed the value on the data line

is written to the location pointed to by the index value.

In addition to these new dataft.ow nodes, the representation contains three different types of de

pendency arcs. These arcs are:

• R-aft- W arcs: If a particular memory location is written to in statement (sti) and read from in

statement (stj) where j > i, then a Read-after-Write dependency exists. This dependency forces

the scheduling algorithm to schedule stj only after scheduling sti, in order to ensure that the

new value of the memory is used. This is represented by a R-aft- W dependency arc.

• W-aft-W arcs: If two statements (sti, stj) update a particular array, then the right order rriust

be maintained during synthesis. This is represented by a W-aft- W dependency arc and it ensures

that the scheduling algorithm maintains the order between the statements.

• W-aft-R arcs: If a particular memory location is read in statement (sti) and updated in statement

(stj) where j > i, then a Write-after-Read dependency exists. This dependency forces the

scheduling algorithm to schedule sti only after scheduling sti, in order to ensure that the new

value is not written till the old value is read. This is represented by a W-aft-R dependency arc.

In Figure 2 we show the CDFG for a simple for example. Each of the twelve array access is

represented by a READ..MEM or a WRITE..MEM node. The integer or constant access are represented

by a READ_VAR or a READ_CONST node. Four dependency arcs are shown by dotted arcs, while

the actual data transfer is shown as bold arcs. The figure also shows the id of each node in the

ft.owgraph.

We use a two step algorithm to create the dependency arcs. When the datafiow graph is created

we take a pessimistic view of the dependencies. Hence dependency arcs are created between the

READ.-MEM and WRITE..MEM of the same variable if the index value is not a constant. (In case the

indices are constants, arcs are created only if the constants are equal). In the second phase, standard

compiler optimization techniques are used to delete some of the arcs. Some typical techniques are

explained in [14, 13]. As a simple example an arc connecting two WRITE..MEM nodes can be deleted

4

.. ..
W-att-~.. M

........ E $ 32
...

A :aA+1;

R(C) := P(B) + P(C);

R(A) := P(A) + R(C);

S(B) := R(B) + P(A);

S(C) := Q(B) + Q(C);

Figure 2: Representation Scheme

5

Notation:

Let G = (N, E) be the CDFG consisting of a set of nodes N
and a set of edges E

Let V = {vi, v2, V3 ... vm} be the set of 'm' array variables.
Let Av; = {Vi 1, v;2, ... } be the set of array access nodes for v;.
Let T = {gi, g2 .. gm} be a set of groups, where. each group 9i represents the cluster of

variables (i.e., {v;,vj,Vk .. }).

Algorithm Outline: MeSA.

01. Assume an initial configuration T = {{vi}, { v2}, { vm}}, where
each variable is stored separately. Let 'm' be number of array variables.

02. Create a table (MAFT) with 'm' columns each column representing one group of variables.
03. foreach array access node Vii in vi, v2 ... Vm

04. Compute the earliest and latest access bounds (E(Vii), L(Vii)).

05. Compute the access probabilities for each memory module and update MAFT.
06. end for
07. ImpCost = Compute the implementation cost

08. Create a completely connected closeness C graph with 'm' vertices.
09. foreach edge (ei,j} connecting variables 9i,9j in C
10. Create new CDFG with required address translations after merging 9i and 9j ;
11. Repeat steps 2 to 7 on the new CDFG to compute new cost NewCost
12. Update edge weight ((ei,j}) = NewCost.
13. end for

14. Cluster groups 9i and 9j if Cost(edge) is minimum and update the cluster growth tree.
15. Create a new configuration with variables in groups 9i and 9j merged together and repeat

steps 2 to 14 with one less group

Figure 3: MeSA Algorithm

if the indices are 'k' and 'k+l' since we can be sure that these two indices will not be equal. We

will not delve further into these optimization techniques since they have been well documented in the

current literature.

4 Memory Synthesis Algorithm

4.1 Overview

The main goal of MeSA can be stated as: Given a behavioral description and a set of resource

and performance constraints determine the memory configuration that would result in

the least area for the design.

6

Algorithm 1.0: FuConstrainedAsap Scheduling.

InsertReadyOps(V, RList);
Cstep = O;
while(RList -:/=¢)do

Cstep = Cstep + 1;
ScheduleOps(RList, Nfu, Cstep);
ScheduleArray AccessN odes(RList, Cstep);
InsertReadyOps(V, RList);

end while

Figure 4: FuConstrainedAsap Algorithm

MeSA is based on a hierarchical clustering approach similar to [15]. Initially, each variable in

the description is assigned to a separate group. Each group is assumed to be mapped to a single

memory module. A closeness graph is created where each node represents a group and each edge

weight represents the implementation cost if the two groups were to be merged. The implementation

cost is a resultant of two factors: (a) the layout cost for the memory modules and (b) the performance

cost which measures the performance degradation because of merging two variable groups into a single

memory. After all the edge weights are computed, two groups with the lowest closeness factors are

merged.

A cluster growth graph is updated after each merge operation. Finally MeSA selects the clustering

level (based on performance criteria) that has the least implementation cost, and allocates memory

modules based on the selected variable groups at that level. The details of the algorithm are shown

below in Figure 3. The rest of the section will explain the important steps of the algorithm in further

detail.

In the algorithm explained in Figure 3, let V = { v1, v2, v3 ... vm} be the set of 'm' array variables

in the description. The description is represented by a CDFG consisting of nodes that represent

operations and edges that represent dependency between operations. The operations could be of 2

types: (a) arithmetic or logic operations (b) read and write operations of variables. Read and write

operations of array variables are represented by array-access nodes in the CD FG. Let Av; = { Vi1 , Vi2 , ••• }

be the set of array-access nodes for the array variable Vi.

4.2 Initial Configuration

Let 9i represent a group of variables 9i = { Vk, vz, Vm ••• }. Since all the variables belong to exactly one

group during any iteration of the algorithm we can state '·'ihh : 9i n 9i = <P and 3k I Vi E 9k

We define a configuration, T, as a grouping of all the array variables given in the description,

(T = {gi, 92··9m}). In the initial configuration, each variable is mapped to a separate group. The

initial configuration To can be represented as: To= { { v1}, { v2}, { v3}, .. { vm} }.

7

Algorithm 1.0: FuConstrainedAlap Scheduling.

InsertReadyOps(V, RList);
Cstep = MaxCstep;
while(RList f= ¢)do

Cstep = Cstep - 1;
ScheduleOps(RList, Nfu, Cstep);
ScheduleArray AccessN odes(RList, Cstep);
InsertReadyOps(V, RList);

end while

Figure 5: FuConstrainedAlap Algorithm

4.3 Earliest and Latest bounds

For all the nodes in the CDFG we compute the earliest (E) and the latest bounds (L) that they can be

scheduled into. Specifically for the array access nodes Vi1 , we define E(vi1) and L(ViJ) as the earliest

and latest bound for accessing the variable from the memory.

In order to compute the earliest bound E(ViJ) for each access node ViJ, we define a new procedure

called the FuConstrainedAsap scheduling algorithm. This algorithm is a list-based scheduling

algorithm which handles the 'operator' nodes and the array access nodes differently. It schedules the

'ready' operator nodes only when a functional unit is available but it schedules all array access nodes

as soon as they become ready. The results of the FuConstrainedAsap algorithm (E(viJ) indicates the

earliest state into which the array access node Vi1 can be scheduled, under the specified functional unit

constraints. Hence the name FuConstrainedAsap algorithm.

The FuConstrainedAsap scheduling algorithm (Figure 4) maintains a priority list (RList) of ready

nodes (similar to [16]). A ready node is a node on the CDFG that has all predecessors already

scheduled. The priority list is always sorted with respect to a priority function (i.e., Mobility). During

each iteration the function Schedule Ops scans the ready list and schedules all the 'operator' nodes for

which functional units are available. Read and Write nodes of the array variables are scheduled by the

function ScheduleArrayAccessNodes as soon as they get onto the RList. Scheduling an operation may

make some other non-ready operations ready. These operations are inserted into the list according to

the priority function.

In order to compute the latest bound for each access node, we define another new procedure called

the FuConstrainedAlap scheduling algorithm (Figure 5), which is similar to the FuConstrainedAsap

Algorithm. The results of the FuConstrainedAsap algorithm (L(ViJ)) indicates the earliest state into

which the array access node Vi1 can be scheduled, under the specified functional unit constraints.

8

Algorithm: ComputeAccessProbabilites.

foreach array variable Vi;

Determine the group 9k that the Vi belongs to;
foreach array access node Vi1 of variable Vii

Let p = E(viJ;
Let q = L(viJ,
foreach index between p and q;

MAFT(i, index) = MAFT(i, index) + 1(q-p+l);
end for;

end for;
end for;

Figure 6: ComputeAccessProbabilities

4.4 Access Probabilities

Let us first define Access Flexibility of a data access node(i.e., F(Vii)), as the difference between its

L(Vii) and E(Vii) values. The probability that an access will occur between the bounds is assumed to

be uniform. Therefore the probability that a node Vii will be accessed in any of the states between

E(Vii) and L(Vii) is 1/ F(viJ·

The details of computing the access probabilities is shown in Figure 6. The access probabilities .are

collated in a table called the Memory Access Flexibility Table (MAFT) which contains one column

for each variable group and one row for each possible state. Each entry in the MAFT indicates the

expected number of accesses of a variable belonging to that group during that state. For example

if MAFT(2,3) has a value of '2', then this implies that two variables belonging to group 92 will be

accessed during state 3.

The maximum entry in the kth column determines the number of ports on memory module Mk

(represented as PM,J· The number of words WMk and the bitwidth BMk can be derived from the sizes

of all the variables in group 9k·

4.5 Implementation Cost

The implementation cost is computed as a resultant of two different cost measures (a) the LayoutArea

cost (b) the PerformancePenalty cost. The LayoutArea cost reflects the estimated area of the allo

cated memory modules, and the PerformancePenalty cost reflects the violation of the performance

constraint. The overall cost function can be expressed as

lmpCost = LayoutArea + J(*Per formancePenalty

9

An extensive memory model based on layout characteristics is provided in Section 5. This model

can be used for the estimation of LayoutArea costs. This model is derived in terms of three technol

ogy dependent parameters and three technology independent parameters. The technology dependent

parameters include: (a) Transistor Pitch, a, which is equal to the minimal distance between two tran

sistors, (b) Track Pitch, (3, which is equal to the minimal distance between two routing tracks, and

(c) Cell Height, 'Y· The technology independent parameters are (a) the number of memory modules,

(b) the size of each memory module and the (c) the number of ports in each memory module.

The Per formancePenalty is the penalty added to the cost for violating the performance con

straints. If after merging two variables and taking care of the address translations imposed by such a

merge, the design meets the performance constraint this Per formancePenalty cost is zero. Otherwise

it is the difference between the execution time of the design and the imposed performance constraint.

The weight](can be controlled by the user and provides the relative importance of area vs

performance. It should be set to a very high value if the performance constraints are to be met

always. The normalization factor for the layout and the performance costs are also incorporated into

this weight.

4.6 Cluster Growth

A closeness graph keeps track of the costs of merging two groups of variables. Initially, this graph

contains 'm' nodes one for each variable group. The weight on each edge represents the implementation

costs if the two groups are merged.

Address translations have to be considered when computing the implementation costs after all the

variables in groups 9i and 9i are grouped into 9new· In order to minimize the number of translations

the variables in the group are sorted based on the decreasing order of access frequencies. As an

example if group 9new contains variables v1 , v2 and v3 in the decreasing order of access frequencies,

then all accesses of v2(j] are replaced by Vnew[j + Wv1], and all accesses of v3(j] are replaced by

Vnew[j + Wv1 + Wv2]·

The edge with the least cost is selected and the variables are clustered together, and the whole

process is repeated till a single large cluster is formed. While the clustering process continues, a

cluster growth tree is maintained. Finally the lowest cost clustering level that meets the performance

constraints is chosen from the tree. This indicates the memory allocation.

5 Layout Memory Model

The layout memory model is derived in terms of three technology dependent parameters and three

technology independent parameters. The technology dependent parameters include: (a) Transistor

Pitch, a, which is equal to the minimal distance between two transistors, (b) Track Pitch, /3, which

10

is equal to the minimal distance between two routing tracks, and (c) Cell Height, I· The technology

independent parameters are (a) the number of memory modules, (b) the size of each memory module

and the (c) the number of ports in each memory module.

Let M be the set of memory modules that will be used in a particular implementation. (i.e.,

A1 = {A'/i,Nfi,' ... iVIm}). For each of these memory modules let us assume that N;, B; and P; are

also specified where N; is the number of words, B; is the number of bits/word and P; is the number

of ports in memory module Nli. The implementation cost for this set of memory modules consists of:

(a) Cost of the Memory Modules itself, and (b) Cost of the interconnect for the nets connecting these

memory modules to the rest of the datapath. This is given by the equation:

TotalNlemoryCost = TotalAreaOJMemoryModules + TotallnterconnectArea

5.1 Area of Memory Module

WidthOILeftArray WidthAawDecoder WidthOtAightArray

Column Decoder vss

VDD

• ' ~
l~
' ~

Sense Amps/Buffers : 93

VSS ! ~ !.============================ '~
......_vo_o __________________ ~--------'·

Figure 7: Memory Organization

A typical memory module consists of four distinct submodules as shown in Figure 7. The circuits for

the submodules are similar to those in [17].

• Array of Cells, consists of a rectangular array of cells, which are used for storing the actual bit

values. This rectangular array is generally shaped as a square in order to minimize the access

delay. Since this array forms the most significant area of the memory module, a custom layout

methodology is generally used for its implementation.

11

• Row Decoder, selects one of the rows after decoding a subset of the address lines. In order to

avoid the delays associated with long polysilicon lines that run from the row decoder to each cell

row, the Row Decoder is generally placed in the center of the array

• Column Decoder, selects a set of columns by decoding the remaining address lines. The data in

these selected columns are output on the data lines.

• Buffers/ Amp which enable the memory to drive reasonable loads.

5.1.1 Array of Cells

The cell array consists of a rectangular array of memory cells. Each memory cell consists of two

crosscoupled inverters called the core 1 . The core is connected to the BIT and BIT by two pass

transistors. For a write operation the DATA is placed on the BIT line and DAT A is placed on the

BIT line. The word line is then asserted to write the data into the cell. For a read operation the

BIT and the BIT lines are precharged and then the word line is asserted. One of these two lines gets

discharged depending on the contents of the cell. The layout for the cell, are shown in Figure 8. The

innermost section of the layout (shown with dotted lines), is the core of the cell where the data is

stored and the outer transistors connect the core to the appropriate BIT lines.

In order to extend the cell design for multiported RAMS two additional transistors are required.

These connect the core memory to two new BIT and BIT lines, which are accessed through the second

port.

VDD BIT iii" VSS

Figure 8: Cell layouts

It is clear from Figure 8 that the memory cell occupies a width of 6 tracks for the core and

2 additional tracks for each BIT and BIT lines. We therefore have the equation, CellWidth =
(6 + 2 *Pi)* f3. Similarly the height of the cell consists of 2 transistor pitches for the core and 2 extra

pitches for the additional transistors that would be required for each additional port. Therefore the

1We have assumed a SRAM memory module. Similar models can be derived for other memory styles

12

height of the cell is determined by: CellH eigth = (2 + 2 * P;) *a. Since the number of cells in each

column is JN; * B; we have:

H eightof RightArray = H eightof LeftArray = JN;* B; * (2 + 2 * P;) *a

Widthof RightArray = Widthof LeftArray = (JN;* B;)/2 * (6 + 2 * P;) * j3

5.1.2 RowDecoder

The Row Decoder decodes some of the address lines and provides signals that activate an entire row

of cells. One n-input-AND gate is required for each row of cells where 'n' is the number of address

lines.

Since there are J N;B; rows, the number of address lines is flog2 (J N;Bi)l. Each AND-gate would

have flog2(J N;B;)l inputs one from each address line. Thus the number of transistors for each row

of the decoder is:

NumTrans(perport) = (2* rtog2(VN;B;)l)

Since the memory has P; ports we require P; such row decoders for each row of cells. The total

number of transistors is given by

NumTrans(RowDecoder) = 2P;rlog2(~)l

The layout estimate is based on a standard cell layout methodology similar to some of the earlier

approaches [18, 19], where the number of standard cell strips and the number of tracks are estimated.

As shown in Figure 7, the RowDecoder strips are layed out in a vertical fashion. The total number

of strips that is required is given by: NumStrips(RowDecoder) = rNumTrans(RowDecoder) *
a/CellH eightl This can be rewritten as:

N umstrips(RowDecoder) = r P; * (2 * rtog2(~)l)/(2 + 2 * P;)l

The address lines, the power and ground lines would have to be routed throughout the stretch

of the row decoder. In addition we estimate that internal routing of the cells inside the strip would

require one additional track. Thus the total number of tracks required is determined by the following.

NumTracks(RowDecoder) = rNumStrips(RowDecoder) + 2 + rtog2(~)ll

The total width of the Row Decoder is given by:

vVidthRowDecoder = NumTracks(RowDecoder) * j3 + NumStrips(RowDecoder) * 'Y

13

5.1.3 ColumnDecoder

The Column Decoder is very similar to the Row Decoder described above. It decodes the remaining

address lines and selects the columns of data that are to be output on the data lines. One N-input-OR

gate, an inverter and a transmission gate are required for each column of cells where 'N' is the number

of column address lines.

The number of address lines is flog2(Ni)l - flog2(J(NiBi))l. Each or-gate would have flog2(Ni)l -

flog2(J(NiBi))l inputs, one from each address line. Thus for each column decoder we have

NumTrans(perport) = 2(1log2(Ni)l - flog2(j(NiBi))l + 3)

Since the memory has Pi ports we require Pi such row decoders for each row of cells. The total

number of transistors is given by

In order to compute the number of strips of standard cells and the number of tracks required, we

assume that the strips are layed out in a horizontal fashion, and the width of each strip is equal to the

CellWidth. Thus the number of strips is given by: NumStrips = NumTrans * a/CellWidth. This

can be rewritten as:

The address lines, the power and ground lines would have to be routed throughout the stretch of

the column decoder. In addition we estimate that internal routing of the cells inside the strip would

require one additional track. Thus the total number of tracks required is determined by the following.

NumTracks(ColDecoder) = NumStrips(ColDecoder) + 2 + flog2(ni)l - flog2(~l

The total height of the ColDecoder is given by:

H eightColDecoder = NumTracks(ColDecoder) * f3 + NumStrips(ColDecoder) * /

5 .1.4 Buffers

In addition to the three important components of the RAM model, we have to estimate the size of the

buffers and the sense amps that would be required. For an efficient design, the size of the buffers must

correlate to the actual loads driven by the RAM cell. Since this is impossible to determine before the

synthesis, we assume that the buffers are of fixed size. In our model, we assume that the height of the

buffer is 12 tracks.

H eighthBuf fer = 12 * (3

14

5.1.5 Area of Memory Modules

In summary the total height of the memory module (i.e., Hi) is given by:

Hi= H e·ightO f LeftArray + H eightColDecoder + H eightBuf fer

Similarly the total width of the memory module is given by

Wi = 2 * W idthO J LejtArray + WidthRowDecoder

After computing the individuals (H; and Wi) we can now determine the area occupied by the

memory modules.

m

TotalAreaO f M emoryM odules = L W; * H;
i=l

5.2 Interconnect Area

In order to compute the interconnect area, we need to determine the total number of nets that are

connected to the memory modules. We then estimate the area of each net which then determines the

total interconnect area for the memory modules.

The number of wires that are required for the memory modules is equal to the number of pins.

(i.e., the sum of address, data and control pins in all memory modules). Thus we have

m

TotalNumPins =LP;* (llog2(N;)l + B; + 1)
i=l

The Average WireLength is assumed to be equal to half the perimeter of the modules.

m

AverageWireLength = L: W; + M ax1<i<m(H;)
i=l

Based on these assumptions, the interconnect Area can be derived as follows:

TotalinterconnectArea = AverageWireLength * TotalN umPins * {3

6 Results

MeSA has been implemented in 'C' on a SUN SparcStation. In this section we present a walkthrough

example and the results of running MeSA on a number of examples. For all our experiments, MeSA

was provided with the high level VHDL description of the design and the functional unit allocation.

15

Stage Cluster Graph Closeness Graph Perl
variable A : integer;

~
variable B: Integer, Q
variabt. C : integer;

variable D : integeri
(P)(Q)(R)(S) ... ffi

variable P : Mom(40 downto O); 1 "' . 500
"' variable Q : Mom(30 downto O);

... ~

0
variable R : Mem(20 downto O); s variable S : Mam(1 o downto O);

begin;
A ::sA+1i 2 (P)(Q)(R)(S) 8.70 Q

R(C) := P(B) + P(Cr, LJ !;;:
R(A) := P(A) + R(C); P,R c:i 900
S(B) :• R(B) + P(A~ 8.39 s
S(C) := Q(B) + Q(C);

end process;
(P)(Q)(R)(S)

3 ~ 1100 (a) Simple Example l--[_J 207.754

Fu Allocation : 1 adder. eo n• : 4 (P)(Q)(RXS)
Perl Conatralnt : 1100 ns;

~ 1300 Clock Period : 100ns; ~
(b) Constraints

(c) Execution Trace

Figure 9: Simple Example

6.1 A Simple Walkthrough Example

In Figure 9(a), we show a simple description containing 4 array variables. The constraints provided

to MeSA are shown in Figure 9(b).

Initially each of the four variables are assumed to be in separate groups. A closeness graph is

created (Figure 9(c)) showing the implementation cost if the variables are merged. In the first stage,

the variables P and Rare merged based on the lowest cost. In stage 2, the variable S got merged along

with P and R. In the last stage, a single cluster is obtained. As the variables are merged together the

performance deteriorates because of address translation. Finally the design that results in the lowest

cost but meeting the performance constraint is selected from the cluster tree.

6.2 Kalman Filter

The Kalman Filter [20], contains six array variables of various sizes. With a simple memory allocation

algorithm, six memory modules were allocated and the total layout area for the memory modules was

39 million sq microns. On the other hand, MeSA was able to derive a 35% more efficient allocation

of 2 memory modules reducing the memory area to about 25 million sq microns. By being able to

exploit the adder available in the datapath for address translations, some of the overheads associated

with variable grouping were avoided and just one additional state was required due to array variable

merging.

6.3 Differential Heat Release Computation

16

Kalman Filter
Number of Array Variables 6 - (A, K, G, Y, X, V)

Size of Array Variables A (2S6 * 16) y (16. 16) X(16*16)
K (2S6 * 16) G (64 * 16) v (4. 16)

Perl Constraint 3SOO clocks
Clock Period 100 ns
Fu Constraint 1 ALU, 1 Multiplier

Alloc Results Without Clustering Me SA
#Mem Modules 6 - (M 1, M2, M3, M4, MS, M6) 2-(M1, M2)

#Ports in each M1<=1, M2 <= 1 , M3 <= 1, M1<=1
MemModule M4<= 1, MS <= 1, M6 <= 4 M2<=2

Size of each M1 <= 2S6*16, M2 <= 16*16, M3 <= 16*16 M1(608 * i6)
MemModule M4 <= 2S6*16, MS<= 64*16, M6 <= 4*16 M2(4. 16)

Vars assigned to M1 <=A, M2<=Y, M3 <=X M1 <= Y,K,A,G,X
each Mem module M4<= K, MS <=G, M6 <=V M2<=V
Num States 40 states 41 states
Layout Area(Mem) 39 .1 SS M sq microns 2S.199 M sq microns
Performance 3168 clocks 3424 clocks

Figure 10: Kalman Filter Results

Differential Heat Release Computation Algorithm
Number of Array Variables 4 - (P, V, B, D)
Size of Array Variables P(469 * 16) V(469 * 16) 8(469 * 16) 0(469 * 16)
Pert Constraint 1800 clock cycles
Clock Period 100 ns
Fu Constraint 1 ALU, 1 Multiplier, 1 shifter

Alloc Results Without Clustering MeSA
#Mem Modules 4 - (M1, M2, M3, M4) 2 - (M1, M2)
#Ports M1 <= 4, M2 <= 1, M3 <= 1, M4 <= 1 M1<=3, M2<=1

M1<=469*16 M2 <= 469*16 M1<=469*16
Size M3 <=469*16 M4 <= 469*16 M2 <= 1407*16

Variables M1 <= P, M2 <= V, M3 <= B, M4 <=D M1 <= P, M2 <= V,B,D
Num States 14 states 15 states
Layout Area(Mem) 136.2 M sq microns 93.88 M sq microns
Performance 1665 clocks 1792 clocks

Figure 11: Differential Heat Release Computation

17

The Differential Heat Release computation algorithm models the heat release within a combustion

engine. The description for this experiment was taken from [21]. This description contains 4 array

variables and was synthesized with the constraints shown in Figure 11. MeSA was able to share

the variables into a one port memory module and a three port memory module. The area savings

was again equal to about 40% with a small loss in performance (about 8%), compared to a simple

allocation algorithm.

6.4 Discrete Fourier Transform

Decimation in Frequency - OFT Algorithm
Number of Array Variables 4 - (SigReal, Siglmag, WReal, Wlmag)
Size of Array Variables All variables are of size(1024 * 16)

Pert Constraint None given
Clock Period 100 ns
Fu Constraint 1 comp, 2 adder, 1 subtracter, 1 multiplier, 1 divider

Alloc Results Without Clustering MeSA
#Mem Modules 4 - (M1, M2, M3, M4) 3 - (M1, M2,M3)
#Ports M 1 <= 2, M2 <= 2, M3 <= 1, M4 <= 1 M1 <= 2, M2 <= 2, M3 <= 1

M1 <= 1024*16 M2 <= 1024*16 M1, M2 <= 1024*16
Size M3 <=1024*16 M4 <= 1024*16 M3 <= 2048*16

Variables M1 <= SigReal M2 <=Sig I mag M 1 <=Sig Real, M2<=8igl mag
M3 <=WReal M4 <=Wlmag M3 <=WReal,Wlmag

Num States 36 states 36 states
LaJ19ut AreaiMem 106.698 M s_g_ microns 99.8 M ~microns
Performance 36 states 36 states

Figure 12: Discrete Fourier Transform Computation

The Fast Fourier Transform (FFT) converts information from the time domain into the frequency

domain. This representation in the frequency domain is used for various signal processing applications.

The Discrete Fourier Transform is the discrete version of the continuous FFT transforms. Efficient

algorithms for the computation of a N-point DFT are discussed in [22].

In this experiment we modeled the Decimation in Frequency algorithm in VHDL. The real and

imaginary values for the input signal were modeled with 2 array variables (SigReal and Siglmag).

The constants for WN were modeled with 2 more array variables, (WReal and Wlmag), resulting in

4 array variables.

MeSA was invoked on this design, with an FU allocation consisting of 2 adders, 1 subtractor, 1

multiplier and 1 divider. MeSA derived an allocation containing 3 memory modules. It allocated one

memory module for the variable SigReal, another module for the variable Siglmag and finally a single

memory module for the remaining variables WReal and Wimag. By sharing the two variables in the

same memory module, the total reduction in the size of the design was about 8%. The details of the

18

results are shown in Figure 12.

It is clear from all the above experiments, that mapping each array variable to a separate memory

module does not lead to an efficient solution. Grouping all the array variables into one memory does

not lead to an efficient solution either, since the large memory may require multiple ports, resulting

in large designs.

7 Conclusions

This paper presented a new algorithm (MeSA) for efficient allocation of memory modules, required for

the implementation of array variables in a given description. MeSA computes an efficient allocation

of memory modules, determines the number of ports on each of the modules and derives an efficient

grouping of the a;rray variables into the allocated memories. It also takes into account the ordering of

variables in a memory module and the address translation requirements. MeSA uses a layout model

to estimate the layout costs of the memory modules.

From our experiments we can conclude that MeSA produces much more efficient designs, than

systems that directly allocate one memory module per array variable or allocate one large memory

module to store all the array variables.

8 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant #91-DJ-146). We are

grateful for their support. We would also like to thank Tadoshi Ishii for his suggestions and useful

discussions during the course of this project.

9 References

[1] R. Camposano and W. Wolf, High Level VLSI Synthesis. Kluwer Academic Publishers, 1991.

[2] Daniel Gajski, Nikil Dutt, Allen Wu and Steve Lin, High Level Synthesis. Kluwer Academic

Publishers, 1992.

[3] C.Tseng and D. Siewiorek, " Automated Synthesis of Datapaths in Digital Systems,'' IEEE

Transactions on CAD, pp. 379-395, July 1986.

[4] F.J.Kurdahi and A.Parker, "REAL: A Program for Register Allocation,'' m Proc. of the 24rd

Design Automation Conj., IEEE/ ACM, 1987.

[5] L.Stok, "Interconect Optimisation during Data Path Allocation,'' in Proc. of the EDAC, 1990.

19

[6] F.Depuydt, G.Goossens and H.De Man, "Clustering Techniques for Register Optimization during

Scheduling Preprocessing," in Proc. of the IEEE. Con/. on Computer Aided Design., pp. 280-283,

IEEE, November 1991.

[7] M. Balakrishnan et.al, " Allocation of Multiport Memories in Data Path Synthesis," IEEE Trans

actions on CAD, pp. 536-540, April 1988.

[8] I. Ahmed and C. Chen, "Post Processor for Data Path Synthesis Using Multiport Memories," in

Proc. of the IEEE Conf. on Computer Aided Design., pp. 276-280, IEEE, November 1991.

[9] T.Kim and C.L.Liu, "Utilization of Multiport Memories in Data Path Synthesis," in Proc. of the

30th Design Automation Conference, 1993.

[10] J. Vanhoof, I. Bolsens and H.De. Man, "Compiling Multi-dimensional Data Streams into Dis

tributed DSP ASIC Memory," in Proc. of the IEEE Conf. on Computer Aided Design., 1991.

[11] P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf and W.F.J. Verhaegh, "Phideo: A silicon

compiler for high speed algorithms,'' in Proc. of the European Conference on Design Automation.,

IEEE, February 1991.

[12] J.Vanhoof, K.Van Rompaey, I. Bolsens, G.Goossens and Hugo De Man, High Level Synthesis.for

Real Time Digital Signal Processing. Kluwer Academic Publishers-, 1993.

[13] A. Orailoglu and D. D. Gajski, "Flow Graph Representation," in Proc. of the 23rd Design Au

tomation Con/., pp. 503-509, IEEE/ ACM, June 1986.

[14] A. Aho and U. J., Principles of Compiler Design. Massachusets: Addison-Wesley, 1977.

[15] M. McFarland and T. Kowalski, "Incorporating Bottom-Up Design into Hardware Synthesis,"

IEEE Transactions on Computer-Aided Design, September 1990.

[16] B. Pangrle and D. Gajski, "State Synthesis and Connectivity Binding for Microa.rchitecture Com

pilation," in Proc. of the IEEE Con/. on Computer Aided Design., pp. 210-213, IEEE, November

1986.

[17] N .Weste and K.Eshra.ghia.n, Principles of COM OS VLSI Design: A Systems Perspective. Addison

Wesley Publishing Company, 1988.

[18] F.J.Kurda.hi, Area Estimation of VLSI Circuits. PhD thesis, Univ. of So. Calif., August 1987.

[19] C. Rama.cha.ndra.n et.al, "Accurate layout area. and delay modeling for system level design," in

International Conference on Computer Aided Design, IEEE/ ACM, November 1992.

20

[20] N. Dutt and C. Ramachandran, "Benchmarks for the 1992 high level synthesis workshop," tech

nical report, Dept. of Information and Computer Science, University of California, Irvine, CA

92717, 1992. Technical Report : 92-107.

[21] Francky Catthoor and Lars Svesnsson, Application-Driven Architecture Synthesis. Kluwer Aca

demic Publishers, 1993.

[22] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. New Jersey: Prentice

Hall International Inc, 1989.

21

