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Array variables are extensively used in many behavioral descriptions especially for digital and image 
processing applications. During synthesis, these array variables are implemented with memory modules. 
In this report, we show that simple one-to-one mapping between the array variables and the memory 
modules lead to inefficient designs. We propose a new algorithm (MeSA} for efficient allocation and 
mapping of array variables onto memory modules. MeSA computes, (a) the number of memory modules 
required, (b) the size of each module (c) the number of ports on each module and {d} and the grouping of 
array variables that map onto each memory module. It also considers the effects of address translations 
that are required when two or more array variables are stored in one memory module. While, most 
previous research efforts have concentrated on optimizing the scalar variables, the primary focus in 
this report is deriving efficient storage mechanisms for array variables. We show the efficiency of our 
technique on some standard benchmarks. 
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1 Introduction 

High Level Synthesis [1, 2) consists of automatically synthesizing hardware from a given behavioral 

description. Many behavioral descriptions that manipulate large amounts of data use array variables 

to represent data storages. During synthesis these array variables are generally implemented with 

memory modules. However, many synthesis systems either do not handle such array variables, or at 

best store each array variable in a separate memory module. 

In this paper, we propose a new Memory Synthesis Algorithm, (MeSA) that derives an efficient 

allocation of memory modules for storing the array variables given in the description. The allocation 

derived by MeSA will provide: (a) the number of memory modules (b) the size of each module and 

( c) and the number of ports on each module to satisfy the required performance. The important 

contribution of MeSA is array-variable clustering, whereby one or more array variables gets stored 

in the same memory module based on cost and performance considerations. 

Let us illustrate the advantages of array-variable clustering using a very simple example. In Fig

ure l(a), a one-line description containing two array variables A and B of size 1000 x 8 is shown. 

The results of synthesis using a simple memory allocation scheme is shown in Figure l(b ). Here, each 

array variable is stored in a separate memory module. The size of these memory modules correspond 

directly to the size of the array variables. If we assume that A[i] and ALi) can be accessed in the same 

state, MemA would require 2 ports and MemB would require 1 port. The scalar variables i, j and k 

are stored in registers which are connected to the address ports of the memory. 

Example Description 

type Memtype is array 1000 x 8 bits 
variable A, B : Memtype; 

B[k] = A[i] + AUJ (a) 

Synthesis without Variable Clustering Synthesis with Variable Clustering 

(b) 

8 -MemB 

(8) 

----·-----------' ' •st ' Action 
' ' r---r-----------
: 1 : t =A(/) +A(}) 

i 2 : B(k)= t 
~---~·------·---

(c) 

Figure 1: Array-Variable Clustering Example 

.---i- ·--- ... --........... -- --
: st: Action r·-1·---·-----------
: 1 : t1 =A(}); t2 = A(i); 
I I f=k+ 1000 
: 2 : B(j) = t1 + t2 
~--~----------------

On the other hand it is possible to store both the array variables A and B in the same memory 
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module (Figure 1( c)). Now, all accesses to variable B require an address translation. Since the adder 

is also shared for address translation, additional muxes are required in the design. The important 

characteristics of this design can now be studied in further detail: 

• Size of the memory modules - Since many variables are stored in the same memory, large 

memory modules are required. The use of larger memories may lead to increased access delays, 

but could lead to reduction in area since decoding and sensing circuitry are shared. 

• Number of memory modules - Fewer memory modules are required because of variable 

sharing. This would lower the number of nets required to be routed, possibly resulting in smaller 

designs. 

• N um her of ports - The total number of ports decreases because of efficient port sharing. In our 

example the total number of ports decreased from 3 to 2. This would reduce the total number 

of address lines required, thereby reducing the overall routing area. 

• Address Translation operations - One of the important drawbacks of storing two array 

variables in the same memory module is address translation requirements. Any reference to the 

variable B (say B[k]) will have to translated to B[k + 1000], resulting in extra add operations 

which could decrease the performance of the design. Additional hardware (like multiplexers) is 

required to perform these new operations. 

• Ordering of Variables - Since address translations are required only for variables stored with 

an offset, the ordering of variables plays an important factor. In Figure l(c), one translation was 

required for B[k]. Ordering A after B in the memory would result in two address translations, 

possibly degrading the performance further. 

All the above effects are taken into account by MeSA when it performs hierarchical clustering of 

array variables. It assumes an initial configuration, wherein each array variable is stored in a separate 

memory module. All possible merges are considered and a new configuration is created by clustering 

two variables that results in the least cost. The cost of a particular merge depends on the actual layout 

costs of the memory modules and also on the performance (i.e., the number of clock cycles required 

to schedule all the operations and address translations). In order to estimate the layout costs for a 

particular configuration we have also developed an extensive layout model for memories. The details 

of this model are shown in Section 5. 

The rest of the report is organized as follows. In the next section, we provide some of the previ

ous work in memory and register allocation and explain how MeSA is different from such previous 

approaches. The representation scheme for the CDFG is shown in Section 3 and the details of the 

algorithm are shown in Section 4. Finally we present the results of our algorithm on some examples 

and present conclusions. 
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2 Previous Work 

Many optimization techniques have been proposed in the literature for scalar variables. [3, 4, .5, 6] 

presented algorithms for reducing the number of registers by storing variables with non-overlapping 

lifetimes into the same register. In [3], this was formulated as a clique partition problem on a graph 

formed according to overlapping lifetimes. Kurdahi and Parker [4] solved the register allocation 

problem by using the left edge algorithm also used for the minimization of the tracks in standard cell 

layout. Stok [5] used the edge coloring algorithm to group the variables into registers. 

Another group of research papers have focussed on reducing the wiring area of the design, by 

storing variables into regular structures like register files or n-port memories instead of distributed 

registers. This is achieved by mapping all the scalar variables on a scheduled ftowgraph into a minimal 

set of register files based on access patterns of the variables. In [7], this problem was formulated as a 

0-1 integer linear programming problem. After variables are assigned to individual registers, a large 

register file is formed by grouping the registers into a multiport memory. This process is repeated 

till all the registers are grouped. In [8], the minimum number of multiport memories was derived by 

dividing the variables into groups using a 0-1 ILP formulation. [9] focussed on minimizing the number 

of interconnections, when minimizing the number of registers. 

These above approaches have two important disadvantages: (i) These were formulated mainly for 

scalar variables. They cannot be directly applied to array variables, unless each array variable is broken 

down into its individual components. This would be impractical since the number of components in 

an array variable could be extremely large. (ii) Most of these approaches were intended to be used on 

a scheduled fiowgraph. Since scheduling is done prior to and independent of the memory allocation 

phase these approaches would lead to an inefficient solution. As an example, the schedule may not 

control the number of the number of memory accesses in each state resulting in a large bandwidth 

for memory accesses. Our approach overcomes these disadvantages, since it is specifically formulated 

for array variables. Also, in MeSA the allocation of the memory modules is done prior to scheduling, 

taking into account the possible bounds within which data will be accessed. This would lead to more 

efficient solution. 

In [10, 11, 12] efficient algorithms are proposed to analyse data streams and minimize the storage 

requirements for each stream. Such algorithms are required when the descriptions are written with an 

applicative language. Each variable in such a description represents an infinite stream of data and it 

is necessary to compute the exact size of storage required for each stream. However, after computing 

the minimum storage requirements MeSA could be used to compute an efficient memory allocation to 

store the variables. 
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3 Internal Representation 

In this section we provide a scheme for representing ft.owgraphs containing array variable accesses. Two 

special dataft.ow node types READ_MEM and WRITE_MEM are used, similar to the representation 

scheme presented in [13]. 

The READ_MEM node contains one input and output. The input line gets the index values which 

determines the location that is being read. The actual data is available on the output line. The 

WRITE..MEM node contains two input lines, one for the index value and the other for the actual data 

that is to be written. When the particular WRITE..MEM node is executed the value on the data line 

is written to the location pointed to by the index value. 

In addition to these new dataft.ow nodes, the representation contains three different types of de

pendency arcs. These arcs are: 

• R-aft- W arcs: If a particular memory location is written to in statement (sti) and read from in 

statement ( stj) where j > i, then a Read-after-Write dependency exists. This dependency forces 

the scheduling algorithm to schedule stj only after scheduling sti, in order to ensure that the 

new value of the memory is used. This is represented by a R-aft- W dependency arc. 

• W-aft-W arcs: If two statements (sti, stj) update a particular array, then the right order rriust 

be maintained during synthesis. This is represented by a W-aft- W dependency arc and it ensures 

that the scheduling algorithm maintains the order between the statements. 

• W-aft-R arcs: If a particular memory location is read in statement (sti) and updated in statement 

(stj) where j > i, then a Write-after-Read dependency exists. This dependency forces the 

scheduling algorithm to schedule sti only after scheduling sti, in order to ensure that the new 

value is not written till the old value is read. This is represented by a W-aft-R dependency arc. 

In Figure 2 we show the CDFG for a simple for example. Each of the twelve array access is 

represented by a READ..MEM or a WRITE..MEM node. The integer or constant access are represented 

by a READ_VAR or a READ_CONST node. Four dependency arcs are shown by dotted arcs, while 

the actual data transfer is shown as bold arcs. The figure also shows the id of each node in the 

ft.owgraph. 

We use a two step algorithm to create the dependency arcs. When the datafiow graph is created 

we take a pessimistic view of the dependencies. Hence dependency arcs are created between the 

READ.-MEM and WRITE..MEM of the same variable if the index value is not a constant. (In case the 

indices are constants, arcs are created only if the constants are equal). In the second phase, standard 

compiler optimization techniques are used to delete some of the arcs. Some typical techniques are 

explained in [14, 13]. As a simple example an arc connecting two WRITE..MEM nodes can be deleted 
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W-att-~.. M 

........ E $ 32 
............................................. 

A :aA+1; 

R(C) := P(B) + P(C); 

R(A) := P(A) + R(C); 

S(B) := R(B) + P(A); 

S(C) := Q(B) + Q(C); 

Figure 2: Representation Scheme 
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Notation: 

Let G = (N, E) be the CDFG consisting of a set of nodes N 
and a set of edges E 

Let V = {vi, v2, V3 ... vm} be the set of 'm' array variables. 
Let Av; = {Vi 1, v;2, ... } be the set of array access nodes for v;. 
Let T = {gi, g2 .. gm} be a set of groups, where. each group 9i represents the cluster of 

variables (i.e., {v;,vj,Vk .. }). 

Algorithm Outline: MeSA. 

01. Assume an initial configuration T = {{vi}, { v2}, .... { vm}}, where 
each variable is stored separately. Let 'm' be number of array variables. 

02. Create a table (MAFT) with 'm' columns each column representing one group of variables. 
03. foreach array access node Vii in vi, v2 ... Vm 

04. Compute the earliest and latest access bounds ( E( Vii), L( Vii)). 

05. Compute the access probabilities for each memory module and update MAFT. 
06. end for 
07. ImpCost = Compute the implementation cost 

08. Create a completely connected closeness C graph with 'm' vertices. 
09. foreach edge (ei,j} connecting variables 9i,9j in C 
10. Create new CDFG with required address translations after merging 9i and 9j ; 
11. Repeat steps 2 to 7 on the new CDFG to compute new cost NewCost 
12. Update edge weight ((ei,j}) = NewCost. 
13. end for 

14. Cluster groups 9i and 9j if Cost(edge) is minimum and update the cluster growth tree. 
15. Create a new configuration with variables in groups 9i and 9j merged together and repeat 

steps 2 to 14 with one less group 

Figure 3: MeSA Algorithm 

if the indices are 'k' and 'k+l' since we can be sure that these two indices will not be equal. We 

will not delve further into these optimization techniques since they have been well documented in the 

current literature. 

4 Memory Synthesis Algorithm 

4.1 Overview 

The main goal of MeSA can be stated as: Given a behavioral description and a set of resource 

and performance constraints determine the memory configuration that would result in 

the least area for the design. 
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Algorithm 1.0: FuConstrainedAsap Scheduling. 

InsertReadyOps(V, RList); 
Cstep = O; 
while(RList -:/=¢)do 

Cstep = Cstep + 1; 
ScheduleOps(RList, Nfu, Cstep ); 
ScheduleArray AccessN odes( RList, Cstep ); 
InsertReadyOps(V, RList ); 

end while 

Figure 4: FuConstrainedAsap Algorithm 

MeSA is based on a hierarchical clustering approach similar to [15]. Initially, each variable in 

the description is assigned to a separate group. Each group is assumed to be mapped to a single 

memory module. A closeness graph is created where each node represents a group and each edge 

weight represents the implementation cost if the two groups were to be merged. The implementation 

cost is a resultant of two factors: (a) the layout cost for the memory modules and (b) the performance 

cost which measures the performance degradation because of merging two variable groups into a single 

memory. After all the edge weights are computed, two groups with the lowest closeness factors are 

merged. 

A cluster growth graph is updated after each merge operation. Finally MeSA selects the clustering 

level (based on performance criteria) that has the least implementation cost, and allocates memory 

modules based on the selected variable groups at that level. The details of the algorithm are shown 

below in Figure 3. The rest of the section will explain the important steps of the algorithm in further 

detail. 

In the algorithm explained in Figure 3, let V = { v1, v2, v3 ... vm} be the set of 'm' array variables 

in the description. The description is represented by a CDFG consisting of nodes that represent 

operations and edges that represent dependency between operations. The operations could be of 2 

types: (a) arithmetic or logic operations (b) read and write operations of variables. Read and write 

operations of array variables are represented by array-access nodes in the CD FG. Let Av; = { Vi1 , Vi2 , ••• } 

be the set of array-access nodes for the array variable Vi. 

4.2 Initial Configuration 

Let 9i represent a group of variables 9i = { Vk, vz, Vm ••• }. Since all the variables belong to exactly one 

group during any iteration of the algorithm we can state '·'ihh : 9i n 9i = <P and 3k I Vi E 9k 

We define a configuration, T, as a grouping of all the array variables given in the description, 

( T = {gi, 92··9m} ). In the initial configuration, each variable is mapped to a separate group. The 

initial configuration To can be represented as: To= { { v1}, { v2}, { v3}, .. { vm} }. 
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Algorithm 1.0: FuConstrainedAlap Scheduling. 

InsertReadyOps(V, RList); 
Cstep = MaxCstep; 
while(RList f= ¢)do 

Cstep = Cstep - 1; 
ScheduleOps(RList, Nfu, Cstep ); 
ScheduleArray AccessN odes( RList, Cstep); 
InsertReadyOps(V, RList ); 

end while 

Figure 5: FuConstrainedAlap Algorithm 

4.3 Earliest and Latest bounds 

For all the nodes in the CDFG we compute the earliest (E) and the latest bounds (L) that they can be 

scheduled into. Specifically for the array access nodes Vi1 , we define E( vi1 ) and L( ViJ) as the earliest 

and latest bound for accessing the variable from the memory. 

In order to compute the earliest bound E( ViJ) for each access node ViJ, we define a new procedure 

called the FuConstrainedAsap scheduling algorithm. This algorithm is a list-based scheduling 

algorithm which handles the 'operator' nodes and the array access nodes differently. It schedules the 

'ready' operator nodes only when a functional unit is available but it schedules all array access nodes 

as soon as they become ready. The results of the FuConstrainedAsap algorithm (E( viJ) indicates the 

earliest state into which the array access node Vi1 can be scheduled, under the specified functional unit 

constraints. Hence the name FuConstrainedAsap algorithm. 

The FuConstrainedAsap scheduling algorithm (Figure 4) maintains a priority list (RList) of ready 

nodes (similar to [16]). A ready node is a node on the CDFG that has all predecessors already 

scheduled. The priority list is always sorted with respect to a priority function (i.e., Mobility). During 

each iteration the function Schedule Ops scans the ready list and schedules all the 'operator' nodes for 

which functional units are available. Read and Write nodes of the array variables are scheduled by the 

function ScheduleArrayAccessNodes as soon as they get onto the RList. Scheduling an operation may 

make some other non-ready operations ready. These operations are inserted into the list according to 

the priority function. 

In order to compute the latest bound for each access node, we define another new procedure called 

the FuConstrainedAlap scheduling algorithm (Figure 5), which is similar to the FuConstrainedAsap 

Algorithm. The results of the FuConstrainedAsap algorithm ( L( ViJ)) indicates the earliest state into 

which the array access node Vi1 can be scheduled, under the specified functional unit constraints. 
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Algorithm: ComputeAccessProbabilites. 

foreach array variable Vi; 

Determine the group 9k that the Vi belongs to; 
foreach array access node Vi1 of variable Vii 

Let p = E( viJ; 
Let q = L( viJ, 
foreach index between p and q; 

MAFT(i, index) = MAFT(i, index) + 1( q-p+l); 
end for; 

end for; 
end for; 

Figure 6: ComputeAccessProbabilities 

4.4 Access Probabilities 

Let us first define Access Flexibility of a data access node(i.e., F( Vii)), as the difference between its 

L( Vii) and E( Vii) values. The probability that an access will occur between the bounds is assumed to 

be uniform. Therefore the probability that a node Vii will be accessed in any of the states between 

E( Vii) and L( Vii) is 1/ F( viJ· 

The details of computing the access probabilities is shown in Figure 6. The access probabilities .are 

collated in a table called the Memory Access Flexibility Table (MAFT) which contains one column 

for each variable group and one row for each possible state. Each entry in the MAFT indicates the 

expected number of accesses of a variable belonging to that group during that state. For example 

if MAFT(2,3) has a value of '2', then this implies that two variables belonging to group 92 will be 

accessed during state 3. 

The maximum entry in the kth column determines the number of ports on memory module Mk 

(represented as PM,J· The number of words WMk and the bitwidth BMk can be derived from the sizes 

of all the variables in group 9k· 

4.5 Implementation Cost 

The implementation cost is computed as a resultant of two different cost measures (a) the LayoutArea 

cost (b) the PerformancePenalty cost. The LayoutArea cost reflects the estimated area of the allo

cated memory modules, and the PerformancePenalty cost reflects the violation of the performance 

constraint. The overall cost function can be expressed as 

lmpCost = LayoutArea + J( *Per formancePenalty 
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An extensive memory model based on layout characteristics is provided in Section 5. This model 

can be used for the estimation of LayoutArea costs. This model is derived in terms of three technol

ogy dependent parameters and three technology independent parameters. The technology dependent 

parameters include: (a) Transistor Pitch, a, which is equal to the minimal distance between two tran

sistors, (b) Track Pitch, (3, which is equal to the minimal distance between two routing tracks, and 

(c) Cell Height, 'Y· The technology independent parameters are (a) the number of memory modules, 

(b) the size of each memory module and the ( c) the number of ports in each memory module. 

The Per formancePenalty is the penalty added to the cost for violating the performance con

straints. If after merging two variables and taking care of the address translations imposed by such a 

merge, the design meets the performance constraint this Per formancePenalty cost is zero. Otherwise 

it is the difference between the execution time of the design and the imposed performance constraint. 

The weight ]( can be controlled by the user and provides the relative importance of area vs 

performance. It should be set to a very high value if the performance constraints are to be met 

always. The normalization factor for the layout and the performance costs are also incorporated into 

this weight. 

4.6 Cluster Growth 

A closeness graph keeps track of the costs of merging two groups of variables. Initially, this graph 

contains 'm' nodes one for each variable group. The weight on each edge represents the implementation 

costs if the two groups are merged. 

Address translations have to be considered when computing the implementation costs after all the 

variables in groups 9i and 9i are grouped into 9new· In order to minimize the number of translations 

the variables in the group are sorted based on the decreasing order of access frequencies. As an 

example if group 9new contains variables v1 , v2 and v3 in the decreasing order of access frequencies, 

then all accesses of v2(j] are replaced by Vnew[j + Wv1 ], and all accesses of v3(j] are replaced by 

Vnew[j + Wv1 + Wv2]· 

The edge with the least cost is selected and the variables are clustered together, and the whole 

process is repeated till a single large cluster is formed. While the clustering process continues, a 

cluster growth tree is maintained. Finally the lowest cost clustering level that meets the performance 

constraints is chosen from the tree. This indicates the memory allocation. 

5 Layout Memory Model 

The layout memory model is derived in terms of three technology dependent parameters and three 

technology independent parameters. The technology dependent parameters include: (a) Transistor 

Pitch, a, which is equal to the minimal distance between two transistors, (b) Track Pitch, /3, which 
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is equal to the minimal distance between two routing tracks, and ( c) Cell Height, I· The technology 

independent parameters are (a) the number of memory modules, (b) the size of each memory module 

and the ( c) the number of ports in each memory module. 

Let M be the set of memory modules that will be used in a particular implementation. (i.e., 

A1 = {A'/i,Nfi,' ... iVIm}). For each of these memory modules let us assume that N;, B; and P; are 

also specified where N; is the number of words, B; is the number of bits/word and P; is the number 

of ports in memory module Nli. The implementation cost for this set of memory modules consists of: 

(a) Cost of the Memory Modules itself, and (b) Cost of the interconnect for the nets connecting these 

memory modules to the rest of the datapath. This is given by the equation: 

TotalNlemoryCost = TotalAreaOJMemoryModules + TotallnterconnectArea 

5.1 Area of Memory Module 

WidthOILeftArray WidthAawDecoder WidthOtAightArray 

Column Decoder vss 

VDD 

• ' ~ 
l~ 
' ~ 

Sense Amps/Buffers : 93 

VSS ! ~ !.============================ '~ 
......_vo_o __________________ ~--------'· 

Figure 7: Memory Organization 

A typical memory module consists of four distinct submodules as shown in Figure 7. The circuits for 

the submodules are similar to those in [17]. 

• Array of Cells, consists of a rectangular array of cells, which are used for storing the actual bit 

values. This rectangular array is generally shaped as a square in order to minimize the access 

delay. Since this array forms the most significant area of the memory module, a custom layout 

methodology is generally used for its implementation. 
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• Row Decoder, selects one of the rows after decoding a subset of the address lines. In order to 

avoid the delays associated with long polysilicon lines that run from the row decoder to each cell 

row, the Row Decoder is generally placed in the center of the array 

• Column Decoder, selects a set of columns by decoding the remaining address lines. The data in 

these selected columns are output on the data lines. 

• Buffers/ Amp which enable the memory to drive reasonable loads. 

5.1.1 Array of Cells 

The cell array consists of a rectangular array of memory cells. Each memory cell consists of two 

crosscoupled inverters called the core 1 . The core is connected to the BIT and BIT by two pass 

transistors. For a write operation the DATA is placed on the BIT line and DAT A is placed on the 

BIT line. The word line is then asserted to write the data into the cell. For a read operation the 

BIT and the BIT lines are precharged and then the word line is asserted. One of these two lines gets 

discharged depending on the contents of the cell. The layout for the cell, are shown in Figure 8. The 

innermost section of the layout (shown with dotted lines), is the core of the cell where the data is 

stored and the outer transistors connect the core to the appropriate BIT lines. 

In order to extend the cell design for multiported RAMS two additional transistors are required. 

These connect the core memory to two new BIT and BIT lines, which are accessed through the second 

port. 

VDD BIT iii" VSS 

Figure 8: Cell layouts 

It is clear from Figure 8 that the memory cell occupies a width of 6 tracks for the core and 

2 additional tracks for each BIT and BIT lines. We therefore have the equation, CellWidth = 
(6 + 2 *Pi)* f3. Similarly the height of the cell consists of 2 transistor pitches for the core and 2 extra 

pitches for the additional transistors that would be required for each additional port. Therefore the 

1We have assumed a SRAM memory module. Similar models can be derived for other memory styles 
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height of the cell is determined by: CellH eigth = (2 + 2 * P;) *a. Since the number of cells in each 

column is JN; * B; we have: 

H eightof RightArray = H eightof LeftArray = JN;* B; * (2 + 2 * P;) *a 

Widthof RightArray = Widthof LeftArray = (JN;* B;)/2 * (6 + 2 * P;) * j3 

5.1.2 RowDecoder 

The Row Decoder decodes some of the address lines and provides signals that activate an entire row 

of cells. One n-input-AND gate is required for each row of cells where 'n' is the number of address 

lines. 

Since there are J N;B; rows, the number of address lines is flog2 ( J N;Bi)l. Each AND-gate would 

have flog2( J N;B;)l inputs one from each address line. Thus the number of transistors for each row 

of the decoder is: 

NumTrans(perport) = (2* rtog2(VN;B;)l) 

Since the memory has P; ports we require P; such row decoders for each row of cells. The total 

number of transistors is given by 

NumTrans(RowDecoder) = 2P;rlog2(~)l 

The layout estimate is based on a standard cell layout methodology similar to some of the earlier 

approaches [18, 19], where the number of standard cell strips and the number of tracks are estimated. 

As shown in Figure 7, the RowDecoder strips are layed out in a vertical fashion. The total number 

of strips that is required is given by: NumStrips(RowDecoder) = rNumTrans(RowDecoder) * 
a/CellH eightl This can be rewritten as: 

N umstrips(RowDecoder) = r P; * (2 * rtog2( ~)l )/(2 + 2 * P;)l 

The address lines, the power and ground lines would have to be routed throughout the stretch 

of the row decoder. In addition we estimate that internal routing of the cells inside the strip would 

require one additional track. Thus the total number of tracks required is determined by the following. 

NumTracks(RowDecoder) = rNumStrips(RowDecoder) + 2 + rtog2( ~)ll 

The total width of the Row Decoder is given by: 

vVidthRowDecoder = NumTracks(RowDecoder) * j3 + NumStrips(RowDecoder) * 'Y 
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5.1.3 ColumnDecoder 

The Column Decoder is very similar to the Row Decoder described above. It decodes the remaining 

address lines and selects the columns of data that are to be output on the data lines. One N-input-OR 

gate, an inverter and a transmission gate are required for each column of cells where 'N' is the number 

of column address lines. 

The number of address lines is flog2(Ni)l - flog2( J(NiBi))l. Each or-gate would have flog2(Ni)l -

flog2( J(NiBi))l inputs, one from each address line. Thus for each column decoder we have 

NumTrans(perport) = 2(1log2(Ni)l - flog2( j(NiBi))l + 3) 

Since the memory has Pi ports we require Pi such row decoders for each row of cells. The total 

number of transistors is given by 

In order to compute the number of strips of standard cells and the number of tracks required, we 

assume that the strips are layed out in a horizontal fashion, and the width of each strip is equal to the 

CellWidth. Thus the number of strips is given by: NumStrips = NumTrans * a/CellWidth. This 

can be rewritten as: 

The address lines, the power and ground lines would have to be routed throughout the stretch of 

the column decoder. In addition we estimate that internal routing of the cells inside the strip would 

require one additional track. Thus the total number of tracks required is determined by the following. 

NumTracks(ColDecoder) = NumStrips(ColDecoder) + 2 + flog2(ni)l - flog2( ~l 

The total height of the ColDecoder is given by: 

H eightColDecoder = NumTracks(ColDecoder) * f3 + NumStrips(ColDecoder) * / 

5 .1.4 Buffers 

In addition to the three important components of the RAM model, we have to estimate the size of the 

buffers and the sense amps that would be required. For an efficient design, the size of the buffers must 

correlate to the actual loads driven by the RAM cell. Since this is impossible to determine before the 

synthesis, we assume that the buffers are of fixed size. In our model, we assume that the height of the 

buffer is 12 tracks. 

H eighthBuf fer = 12 * (3 

14 



5.1.5 Area of Memory Modules 

In summary the total height of the memory module (i.e., Hi) is given by: 

Hi= H e·ightO f LeftArray + H eightColDecoder + H eightBuf fer 

Similarly the total width of the memory module is given by 

Wi = 2 * W idthO J LejtArray + WidthRowDecoder 

After computing the individuals (H; and Wi) we can now determine the area occupied by the 

memory modules. 

m 

TotalAreaO f M emoryM odules = L W; * H; 
i=l 

5.2 Interconnect Area 

In order to compute the interconnect area, we need to determine the total number of nets that are 

connected to the memory modules. We then estimate the area of each net which then determines the 

total interconnect area for the memory modules. 

The number of wires that are required for the memory modules is equal to the number of pins. 

(i.e., the sum of address, data and control pins in all memory modules). Thus we have 

m 

TotalNumPins =LP;* (llog2(N;)l + B; + 1) 
i=l 

The Average WireLength is assumed to be equal to half the perimeter of the modules. 

m 

AverageWireLength = L: W; + M ax1<i<m(H;) 
i=l 

Based on these assumptions, the interconnect Area can be derived as follows: 

TotalinterconnectArea = AverageWireLength * TotalN umPins * {3 

6 Results 

MeSA has been implemented in 'C' on a SUN SparcStation. In this section we present a walkthrough 

example and the results of running MeSA on a number of examples. For all our experiments, MeSA 

was provided with the high level VHDL description of the design and the functional unit allocation. 
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Stage Cluster Graph Closeness Graph Perl 
variable A : integer; 

~ 
variable B: Integer, Q 
variabt. C : integer; 

variable D : integeri 
(P)(Q)(R)(S) ... ffi 

variable P : Mom(40 downto O); 1 "' . 500 
"' variable Q : Mom(30 downto O); 

... ~ 

0 
variable R : Mem(20 downto O); s variable S : Mam(1 o downto O); 

begin; 
A ::sA+1i 2 (P)(Q)(R)(S) 8.70 Q 

R(C) := P(B) + P(Cr, LJ !;;: 
R(A) := P(A) + R(C); P,R c:i 900 
S(B) :• R(B) + P(A~ 8.39 s 
S(C) := Q(B) + Q(C); 

end process; 
(P)(Q)(R)(S) 

3 ~ 1100 (a) Simple Example l--[_J 207.754 

Fu Allocation : 1 adder. eo n• : 4 (P)(Q)(RXS) 
Perl Conatralnt : 1100 ns; 

~ 1300 Clock Period : 100ns; ~ 
(b) Constraints 

(c) Execution Trace 

Figure 9: Simple Example 

6.1 A Simple Walkthrough Example 

In Figure 9(a), we show a simple description containing 4 array variables. The constraints provided 

to MeSA are shown in Figure 9(b ). 

Initially each of the four variables are assumed to be in separate groups. A closeness graph is 

created (Figure 9( c)) showing the implementation cost if the variables are merged. In the first stage, 

the variables P and Rare merged based on the lowest cost. In stage 2, the variable S got merged along 

with P and R. In the last stage, a single cluster is obtained. As the variables are merged together the 

performance deteriorates because of address translation. Finally the design that results in the lowest 

cost but meeting the performance constraint is selected from the cluster tree. 

6.2 Kalman Filter 

The Kalman Filter [20], contains six array variables of various sizes. With a simple memory allocation 

algorithm, six memory modules were allocated and the total layout area for the memory modules was 

39 million sq microns. On the other hand, MeSA was able to derive a 35% more efficient allocation 

of 2 memory modules reducing the memory area to about 25 million sq microns. By being able to 

exploit the adder available in the datapath for address translations, some of the overheads associated 

with variable grouping were avoided and just one additional state was required due to array variable 

merging. 

6.3 Differential Heat Release Computation 
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Kalman Filter 
Number of Array Variables 6 - (A, K, G, Y, X, V) 

Size of Array Variables A (2S6 * 16) y ( 16. 16) X(16*16) 
K (2S6 * 16) G ( 64 * 16) v ( 4. 16) 

Perl Constraint 3SOO clocks 
Clock Period 100 ns 
Fu Constraint 1 ALU, 1 Multiplier 

Alloc Results Without Clustering Me SA 
#Mem Modules 6 - (M 1, M2, M3, M4, MS, M6) 2-(M1, M2) 

#Ports in each M1<=1, M2 <= 1 , M3 <= 1, M1<=1 
MemModule M4<= 1, MS <= 1, M6 <= 4 M2<=2 

Size of each M1 <= 2S6*16, M2 <= 16*16, M3 <= 16*16 M1(608 * i6) 
MemModule M4 <= 2S6*16, MS<= 64*16, M6 <= 4*16 M2( 4. 16) 

Vars assigned to M1 <=A, M2<=Y, M3 <=X M1 <= Y,K,A,G,X 
each Mem module M4<= K, MS <=G, M6 <=V M2<=V 
Num States 40 states 41 states 
Layout Area(Mem) 39 .1 SS M sq microns 2S.199 M sq microns 
Performance 3168 clocks 3424 clocks 

Figure 10: Kalman Filter Results 

Differential Heat Release Computation Algorithm 
Number of Array Variables 4 - (P, V, B, D) 
Size of Array Variables P(469 * 16) V(469 * 16) 8(469 * 16) 0(469 * 16) 
Pert Constraint 1800 clock cycles 
Clock Period 100 ns 
Fu Constraint 1 ALU, 1 Multiplier, 1 shifter 

Alloc Results Without Clustering MeSA 
#Mem Modules 4 - (M1, M2, M3, M4) 2 - (M1, M2) 
#Ports M1 <= 4, M2 <= 1, M3 <= 1, M4 <= 1 M1<=3, M2<=1 

M1<=469*16 M2 <= 469*16 M1<=469*16 
Size M3 <=469*16 M4 <= 469*16 M2 <= 1407*16 

Variables M1 <= P, M2 <= V, M3 <= B, M4 <=D M1 <= P, M2 <= V,B,D 
Num States 14 states 15 states 
Layout Area(Mem) 136.2 M sq microns 93.88 M sq microns 
Performance 1665 clocks 1792 clocks 

Figure 11: Differential Heat Release Computation 
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The Differential Heat Release computation algorithm models the heat release within a combustion 

engine. The description for this experiment was taken from [21]. This description contains 4 array 

variables and was synthesized with the constraints shown in Figure 11. MeSA was able to share 

the variables into a one port memory module and a three port memory module. The area savings 

was again equal to about 40% with a small loss in performance (about 8%), compared to a simple 

allocation algorithm. 

6.4 Discrete Fourier Transform 

Decimation in Frequency - OFT Algorithm 
Number of Array Variables 4 - (SigReal, Siglmag, WReal, Wlmag) 
Size of Array Variables All variables are of size(1024 * 16) 

Pert Constraint None given 
Clock Period 100 ns 
Fu Constraint 1 comp, 2 adder, 1 subtracter, 1 multiplier, 1 divider 

Alloc Results Without Clustering MeSA 
#Mem Modules 4 - (M1, M2, M3, M4) 3 - (M1, M2,M3) 
#Ports M 1 <= 2, M2 <= 2, M3 <= 1, M4 <= 1 M1 <= 2, M2 <= 2, M3 <= 1 

M1 <= 1024*16 M2 <= 1024*16 M1, M2 <= 1024*16 
Size M3 <=1024*16 M4 <= 1024*16 M3 <= 2048*16 

Variables M1 <= SigReal M2 <=Sig I mag M 1 <=Sig Real, M2<=8igl mag 
M3 <=WReal M4 <=Wlmag M3 <=WReal,Wlmag 

Num States 36 states 36 states 
LaJ19ut AreaiMem 106.698 M s_g_ microns 99.8 M ~microns 
Performance 36 states 36 states 

Figure 12: Discrete Fourier Transform Computation 

The Fast Fourier Transform (FFT) converts information from the time domain into the frequency 

domain. This representation in the frequency domain is used for various signal processing applications. 

The Discrete Fourier Transform is the discrete version of the continuous FFT transforms. Efficient 

algorithms for the computation of a N-point DFT are discussed in [22]. 

In this experiment we modeled the Decimation in Frequency algorithm in VHDL. The real and 

imaginary values for the input signal were modeled with 2 array variables (SigReal and Siglmag). 

The constants for WN were modeled with 2 more array variables, (WReal and Wlmag), resulting in 

4 array variables. 

MeSA was invoked on this design, with an FU allocation consisting of 2 adders, 1 subtractor, 1 

multiplier and 1 divider. MeSA derived an allocation containing 3 memory modules. It allocated one 

memory module for the variable SigReal, another module for the variable Siglmag and finally a single 

memory module for the remaining variables WReal and Wimag. By sharing the two variables in the 

same memory module, the total reduction in the size of the design was about 8%. The details of the 
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results are shown in Figure 12. 

It is clear from all the above experiments, that mapping each array variable to a separate memory 

module does not lead to an efficient solution. Grouping all the array variables into one memory does 

not lead to an efficient solution either, since the large memory may require multiple ports, resulting 

in large designs. 

7 Conclusions 

This paper presented a new algorithm (MeSA) for efficient allocation of memory modules, required for 

the implementation of array variables in a given description. MeSA computes an efficient allocation 

of memory modules, determines the number of ports on each of the modules and derives an efficient 

grouping of the a;rray variables into the allocated memories. It also takes into account the ordering of 

variables in a memory module and the address translation requirements. MeSA uses a layout model 

to estimate the layout costs of the memory modules. 

From our experiments we can conclude that MeSA produces much more efficient designs, than 

systems that directly allocate one memory module per array variable or allocate one large memory 

module to store all the array variables. 
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