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ABSTRACT

Quantum computing technologies are undergoing rapid develop-
ment. The different qubit modalities being considered for quantum
computing each have their strengths and weaknesses, making it
challenging to compare their performance relative to each other
and the state-of-the-art in classical high-performance computing.
To better understand the utility of a given quantum processor and
to assess when and how it will be able to advance the frontiers
of computational science, researchers need a robust approach to
quantum benchmarking. A variety of approaches have been pro-
posed, many of which characterize the presence of noise in current
quantum devices. These efforts include component-level perfor-
mance metrics, such as randomized benchmarking and gate set
tomography; high-level application-dependent metrics; and device-
level metrics, such as the Quantum Volume. However, it remains
unclear how low-level metrics, such as fidelities and decoherence
times, and global device metrics, such as Quantum Volume, relate
to the computational utility and practical limitations of quantum
processors to solve useful problems. In this paper, we describe our
Hamiltonian-oriented approach to quantum benchmarking called
HamPerf. Where previous application-dependent approaches spec-
ify a suite of benchmarking circuits inspired by applications, we
place the problem Hamiltonian at the center. Our strategy allows us
to probe the computational performance of a quantum processor on
standardized and relevant problem sets, agnostic of the algorithms
and hardware used to solve them,; it also provides fundamental in-
sights into how device characteristics correlate with computational
utility.

CCS CONCEPTS

« Theory of computation — Quantum computation theory; «
Hardware — Quantum computation; - Computing method-
ologies — Simulation evaluation.
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1 INTRODUCTION

In classical supercomputing, benchmarking has found a broad range
of use cases. The LINPACK [19] benchmark for solving dense lin-
ear algebra is the de facto standard for ranking supercomputers
in the TOP500 list [7]. Benchmarks can also aid in understanding
a system’s performance for certain key applications, e.g., for ma-
chine learning [42, 44]. Furthermore, benchmark suites that span
the full range of the system architecture are indispensable for guid-
ing investment and procurement decisions about next-generation
supercomputers [3].

The field of high-performance computing has matured over the
past decades and developed a deep understanding of the most impor-
tant indicators, such as memory bandwidth, energy usage, and fp64
performance, that affect the application performance. This deep
understanding is still missing in the quantum computing space for
a variety of reasons. Firstly, quantum computing technologies are
comparatively new, immature, and undergoing rapid development
cycles, which means that,

e there hasn’t been sufficient opportunity and time for users
to gain experience with this new technology;

e it is currently not yet possible to run benchmarks over a
broad range of applications and problem sizes; and,

e what was true yesterday might no longer be valid today.

At present, there exist very few end-to-end applications for which
a scientist may expect benefits from running them on a quantum
accelerator other than for fundamental research in the field of quan-
tum information science. This problem represents two sides of the
same coin: the hardware is not yet of the quality and size to provide
substantial computational advantages and at the same time the use
cases, applications, and algorithms are not fully understood because
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the hardware to run them at scale is not available. Secondly, there
is no consensus yet on what is the best qubit hardware platform
or even the computational model to build quantum computers and
design quantum algorithms. On the hardware side, superconduct-
ing qubits are currently state-of-the-art according to many metrics,
but ion traps and neutral atom qubits outperform them in terms
of coherence times and operational requirements (e.g. no dilution
fridge). On the application and algorithms side, there exist gaps
between,

e algorithms for the fault-tolerant large-scale quantum com-
puter era (e.g. Shor’s algorithm, Quantum Phase Estimation
(QPE) [32], Hamiltonian Simulation [37]) for which convinc-
ing evidence of utility exists and near-term algorithms for
noisy quantum computers (e.g. VQA [41], Quantum Sub-
space Methods [33]) for which the advantage is much less
understood and debated;

o different models of quantum computation, such as the circuit

model, adiabatic computation, analog computation, measurement-

based computations, etc..

This makes it a major challenge to devise quantum benchmarks
that are (i) broadly applicable across the different technologies and
computational models, and (ii) future-proof for large-scale quantum
computers while still meaningful in the noisy quantum computing
era. Current approaches to quantum benchmarking still fall short of
these goals and can be roughly subdivided in three tiers, see Fig. 1:

(1) Component level benchmarks—such as randomized bench-
marking [34] and gate set tomography [11] allow for low-
level, accurate characterization of quantum devices by means
of gate fidelities and decoherence times. While they provide
accurate, low-level information, it is unclear how they relate
to the overall computational utility of the device. Further-
more, they often incur an exponential overhead and can thus
be costly to evaluate at scale.

(2

~

attempt to capture the performance in a single metric and
are in that sense the quantum analog of LINPACK. The main
shortcomings are: (1) random square circuits might not be
representative of an actual workload, and (2) they are not
future-proof as the classical verification that is required does
not scale beyond a few 10s of qubits.

(3) Application level benchmarks—such as SupermarQ [50],
QUARK [21], and the QED-C suite [38] are closest in philos-
ophy to HamPerf. They define a suite of quantum circuits
based on applications, such as VQE, and a feature vector of
metrics designed to capture the performance.

These existing approaches remain largely siloed and fail to ac-
curately correlate application-level performance with component-
level metrics [50]. In our approach, we want to take meaningful and
important strides toward breaking down these silos and achieving
this ambitious goal.

We identify that the commonality between all qubit technologies
and computational models is that they solve a computational prob-
lem through Hamiltonian evolution and encode the problem in the
Hamiltonian. This connection can be very explicit, as in the case of
adiabatic and analog quantum computation, or more subtle as for
the circuit model. Furthermore, the problem encoding can be 1:1,

Device level benchmarks—such as quantum volume (QV) [15]
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SupermarQ Suite, QED-C Suite, ...
— define test suite: feature vectors to characterize performance
over a range of applications

Application level

Quantum Volume, Algorithmic Qubits, ...

Device level

— captures device performance in single metric (~LINPACK)

Quantum tomography, randomized benchmarking,
— characterizes gate fidelities, T1/T2 times, ...

Component level

Figure 1: There currently exist three tiers of quantum bench-
marks. At the component level protocols like gate set tomog-
raphy [11] and randomized benchmarking [34] allow for
characterization of individual gate or qubit fidelities. Device
level metrics such as quantum volume (QV) [15] attempt to
capture the performance of a particular device in a single
quantity, while application level benchmark suites are de-
signed to measure device performance over a representative
workload.

when the problem Hamiltonian is naturally expressed in the Pauli
algebra, it can be very close to 1:1, for example, the Jordan-Wigner
transformation for fermionic Hamiltonians, or it can make use of
embeddings such as for example binary, unary (one-hot), or Gray
codes [47, 48].

Because of the intricate connection between the Hamiltonian
and the problem on hand, and the Hamiltonian and the quantum
system on the other hand, we propose to develop a Hamiltonian-
oriented approach to quantum benchmarking. The umbrella name
for our project is HamPerf, in analogy to MLPerf [42]. Compared to
existing application level benchmarks, we design HamPerf to be (1)
applicable to multiple models of computation, including classical,
(2) able to map the crossover regime from classically easy to hard,
(3) flexible in correlating hardware characteristics to computational
utility, and (4) scalable.

The rest of the paper is organized as follows: we describe the
contents of HamLib and the goal of having a standardized dataset
for future algorithm development; we then describe the goals of
HamPerf as a benchmarking framework for evaluating quantum
application performance and the steps needed to allow quantum al-
gorithm and hardware evaluation to reach a similar level as classical
computing.

2 PROPOSED RESEARCH AND METHODS

In this section, we describe what research and methods we include
in our benchmarking approach.

2.1 HamlLib

Our approach to HamPerf starts from HamLib [46], a new and large
dataset of qubit-based quantum Hamiltonians designed for bench-
marking purposes. HamLib contains datasets from the physical
sciences and combinatorial optimization, as depicted in Fig. 2. The
collection contains problems on 2 qubits up to 1,000 qubits and thus
allows for benchmarking of current, small-scale quantum comput-
ers while at the same time being future-proof. Many of the problem
instances can also be further extended to larger systems where
required. Furthermore, the dataset contains problems of different
complexity, from classically easy to hard, for all problem domains.
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Figure 2: An overview of the HamLib [46] dataset of Hamilto-
nians for quantum benchmarking which contains problems
from physics and chemistry, as well as combinatorial opti-
mization. The figure used from [46].

This diversity will allow us to design benchmarks on top of Ham-
Lib that can map out the intermediate cross-over regime where
quantum computers can start to deliver potential computational
advantages and correlate this regime to device characteristics.

Furthermore, during the development of HamPerf, we continue
to evaluate and update the HamLib data set in order to cover the
breadth of applications that are of interest to researchers. Other
science domains of interest to include problem data sets from Ham-
Lib and HamPerf are, for example, high-energy physics, nuclear
physics, and linear algebra.

We note that another Hamiltonian dataset was recently released
by Pennylane [5] (Xanadu’s quantum software library) with a simi-
lar goal, containing example Hamiltonians from chemistry, lattice
models, and other areas. They have also recently incorporated parts
of HamLib into Pennylane’s data module such that the Hamiltoni-
ans can easily be used with their software.

2.2 HamPerf

HamPerf is focused on building a transparent and unbiased evalu-
ation of the performance of different types of quantum hardware
in executing tasks of importance to the scientific community. The
benchmarking framework is designed in a modular and integrated
way according to the organization as presented in Fig. 3.

2.2.1 Correlating Hardware Traits to Device Utility. Existing quan-
tum devices and control hardware vary tremendously in their tech-
nology and implementation details. A comprehensive and univer-
sal understanding of the relationship between low-level hardware
metrics and computational and algorithmic utility in quantum com-
puters is crucial for developing useful quantum devices.

Each high-level metric can be decomposed into low-level hard-
ware characteristics. For example, an overall time-to-solution can
be represented as per-component profiling that can give valuable
insights into how an existing quantum system can be scaled and
where the major improvements and developments must be made.
Energy cost is another crucial metric that has been driving green
HPC research for decades [2]. We propose to analyze the energy
cost per component using the HamPerf approach. Moreover, as the
number of qubits grows the trends in these metrics and character-
istics change.
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In our previous research [12], we demonstrated how high-level
circuit characterization can be used to analyze and quantify quan-
tum control hardware giving insights into its capabilities and lim-
itations per qubit number. It allowed us to predict when circuit
and experiment size will no longer be feasible due to contestants
in control hardware speed. This demonstration shows the impor-
tance of using quantum benchmarks in not only quantum device
characterization but also in the evaluation of the support hardware.
While in classical computing a low IPS rate will result in a longer
delay to obtain computational results, in quantum computing it
can cause the results of an experiment to be completely unusable.
Quantifying these limitations will allow us to better understand
the utility of quantum devices for specific use cases and under the
continuing growth of the system size and complexity.

Here, we study which physical properties of quantum devices
and the classical control eco-system constrain the computational
power for different problem domains. We create a hardware eval-
uation methodology using the proposed Hamiltonian approach.
HamPerf will also allow us to understand which algorithms and
problem domains may be more or less robust against noise and
provide insight into which combination of hardware, algorithm,
and problem instance will lead to quantum acceleration.

2.2.2  Colliding Worlds: Quantum vs. Classical. In order to assess
whether a quantum computer will be useful for an application,
we must understand whether it outperforms a classical computer
for the same task. One aspect of HamPerf involves studying the
scaling and resource requirement of classical software packages, to
compare against our analyses of quantum programs.

We plan to make such comparisons through (a) where possi-
ble, collecting existing scaling and resource data from the literature
[36, 54]; and (b) where necessary, running well-developed advanced
classical software packages [8, 18, 22, 26, 31, 49, 52, 55] to under-
standing scaling and resources. These scaling analyses can be run
on HPC compute resources to ensure a fair comparison between
the quantum backends and state-of-the-art classical computing. We
intend to make such quantum-classical comparisons for most of
the Hamiltonians in HamLib.

We make a distinction between two different problem categories:

(i) Physics and Chemistry problems—In the realm of classical simu-
lation of quantum physics (i.e. chemistry, materials, and condensed
matter), our view is that quantum computers are most likely to
be useful when very high accuracy results for strongly correlated
systems are required. Because of this, it is especially important
to study quantum algorithm performance with respect to these
three algorithm classes: quantum Monte Carlo [23], tensor network
methods [40], and coupled cluster theory [9] (the latter is applicable
primarily to chemistry).

We plan to run benchmark tests for all three of these classical
algorithm classes, in order to compare against our estimated quan-
tum resource requirements. Though it would not be reasonable to
consider every major software package in this area, it is important
to ensure that the software package chosen for these comparisons is
reasonably fast. We consider packages NWChem [52], pySCF [49],
pyQMC [55], QMCPack [31], Quimb [26], and iTensor [22], as these
are packages that are known to be reasonably fast and with which
the authors are already familiar. We will do spot checks on a few
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Figure 3: HamPerf connects a dataset of relevant problem
Hamiltonians (HamLib [46]) with applicable combinations
of quantum algorithms and quantum backends to cover the
spectrum of quantum technologies under development.

Hamiltonians to determine which package to use in each Hamil-
tonian class and use the best-performing package for our reported
times-to-solution.

(it) Combinatorial Optimization problems— There are several ex-
isting classical solvers for classical combinatorial problems, and
these will be used to compare against our quantum resource esti-
mates. HamLib is set up such that it allows for scaling comparisons
for a variety of classical problem instances that are somewhat re-
lated to the real world. For instance, we are able to use HamLib
to make quantum-to-classical comparisons of real-world traveling
salesman problem [43] instances as well as industrially relevant
instances of graph problems [27].

In order to limit the scope of work, we focus primarily on SDP
(semidefinite program) solvers to study classical scaling. We will
consider both time-to-solution and quality of solution using existing
well-developed packages CVXPY [18] and MOSEK [8].

To determine whether and in which contexts quantum computers
will be useful, it is necessary to estimate resource counts and how
they scale with respect to problem size. In turn, this often simply
translates to studying how each component of the problem scales.
Certainly this is the case for hybrid quantum-classical algorithms
[10, 20], where each component of the algorithm may be studied
separately. A hybrid quantum-classical algorithm typically includes
a parametrized quantum circuit ansatz, which encodes the problem
cost function that is evaluated on the quantum computer through
measurements. Next, the circuit parameters are updated to improve
the trial solution wavefunction. This process is repeated iteratively
until a sufficiently good approximation is obtained.

To the best of our knowledge, no standard benchmarking frame-
work has been developed for hybrid algorithms, which are the
primary algorithms we expect to demonstrate quantum advantage
in the near term, and thus our work fills an important and timely
gap in the field.
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Our efforts are focused on developing benchmarks for two crucial
components of hybrid algorithms, quantum measurements, and
ansatzae.

(i) Measurement efficiency— Evaluating one instance of a cost
function (e.g. the energy of a molecule) is often costly, requiring
many circuit repetitions. Several methods have recently been devel-
oped to vastly reduce the number of “shots” required to estimate
this cost function, and this aspect of hybrid algorithms is an impor-
tant aspect of algorithm scaling, as the time-to-solution is directly
proportional to the required number of shots.

Many aspects of these measurement efficiency schemes relate
directly to a given hardware set. For example, some near- and
medium-term hardware may not allow for measurement efficiency
routines that require longer circuit depth. Further, differences in
qubit connectivity between quantum computers may be the sole
variable leading to one method being favorable over another. Finally,
the quality of a single-shot measurement will not be perfect for
near-term hardware and will vary considerably between different
devices; this variability should be explicitly taken into account in
HamPerf.

HamPerf develops a benchmark based partly on the following
state-of-the-art measurement efficiency methods. First, there are
what we call the “commuting measurement” methods, for which
the many-term Hamiltonian is partitioned, and each measurement
shot provides information about many terms in the Hamilton-
ian [14, 25, 53]. These are in some sense the conceptually sim-
plest methods, though they also tend to be straightforward to code
and require the shortest circuit depths. The HamPerf framework
would also include code for the following three methods, which
require more circuit depth to implement, but for certain Hamil-
tonian classes will require fewer measurements: fermion-specific
change-of-basis methods [29], quantum subspace methods [33],
and shadow tomography [28].

(ii) Circuit ansatzae— In order to link quantum algorithm per-
formance with a given hardware (and in turn whether a quantum
computer will find utility), it is important to consider the quan-
tum circuit ansatz used for a hybrid algorithm. This ansatz is a
consequential decision when designing quantum algorithms, and
an ansatz that is optimal on one hardware might be inefficient for
another type of hardware [10, 24, 30]. Especially relevant to this
topic is qubit connectivity. Our hope is that an extensive analysis of
circuit ansatzae may even allow us to make more general comments
about hardware types. For instance, it could be that circuit ansatzae
are more naturally expressed on ion traps and are more favorable
for a particular Hamiltonian class.

2.2.3  Flexible Software Stack for Benchmarking. A big part of the
HamPerf development involves the implementation and standard-
ization of the benchmarking procedures in the HamPerf software
stack. We design this software stack to bring together the different
components shown in Fig. 3 in a flexible, lightweight, sufficiently
general, and user-friendly way. We ensure that the classical part
of the HamPerf software stack can be deployed on HPC compute
resources, while the quantum algorithms and quantum backends
will be supported using emerging industry standards such as Open-
QASM 3.x [4], Qiskit [51], Cirq [17], etc. We work to integrate
HamPerf with quantum backends that are available to the research
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team, for example, the Advanced Quantum Testbed [1] and QuEra
hardware [6]. Furthermore, we explore the use of emulated quan-
tum backends, such as the cuQuantum SDK [16], in HamPerf. This
allows us to: (1) lay the groundwork for end-to-end quantum bench-
marks on actual quantum backends through numerical emulation,
(2) additionally, benchmark quantum-inspired algorithms against
purely classical implementations.

The HamPerf software stack brings together the different com-
ponents shown in Fig. 3. We approach this using modern software
engineering practices such as continuous integration/continuous
deployment (CI/CD). This approach has the advantage that we can
immediately start developing the HamPerf software stack, while
still allowing for a high degree of flexibility to adapt the design
to the requirements set by the other thrusts of the project. For
example, the integration of new performance metrics, quantum
algorithms, or classical codes defined by the other thrusts can set
new requirements for the core HamPerf stack. Our CI/CD approach
means that such changes will be made efficiently and with minimal
risk of introducing errors.

2.24  Verification, reproducibility and scalability. We anticipate
that over the next five years, there will be some experiments demon-
strating quantum advantage (i.e. solving a problem that would be
intractable with only classical resources) for problems of interest to
the scientific community. With this in mind, we construct HamPerf
as a scalable toolset that can be adapted for that period and be use-
ful for benchmarking systems/algorithms on 40+ qubits. Therefore,
we focus on verification, by which we mean confirming that the
results from the applications run on the quantum computer are cor-
rect, reproducibility, meaning that we can recover the same quality
of results from different quantum runs, and scalability, meaning
our approach will be useful as quantum computers grow in qubit
number. To accomplish these goals we include exactly solvable
models in our set of applications. For example, there are certain
problems of interest in condensed matter physics that are classically
solvable even for a large number of qubits, such as free fermionic
systems. The transverse field Ising model in one dimension (in-
cluded in HamLib for a range of system sizes) is an example of a
free fermionic system that is of great importance for understanding
quantum phase transitions [45] and is used regularly as a model for
quantum hardware demonstrations of new algorithms [33, 39]. The
authors of this paper have experience developing efficient classical
software to process these model systems at scale [13, 35] and have
demonstrated results up to 16 qubits on quantum hardware and
a few 1,000s of qubits classically. One approach would be to use
these lower complexity, exactly solvable problems as a starting
point for verification of HamPerf benchmarks at scale. Complexity
could slowly added by for example turning on extra terms in the
Hamiltonian perturbatively. A similar approach can be used for
chemical systems, where molecules that are not strongly correlated
and therefore amenable to classical solvers could be the starting
point for verifying/using HamPerf at scale. We emphasize that Ham-
Lib has been constructed such that a range of problem complexities
are included for each subcategory of the dataset and thus it is well
suited for this approach.
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