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Summary

Semi-continuous data present challenges in both model fitting and interpretation. Parametric 

distributions may be inappropriate for extreme long right tails of the data. Mean effects of 

covariates, susceptible to extreme values, may fail to capture relevant information for most of the 

sample. We propose a two-component semi-parametric Bayesian mixture model, with the discrete 

component captured by a probability mass (typically at zero) and the continuous component of the 

density modeled by a mixture of B-spline densities that can be flexibly fit to any data distribution. 

The model includes random effects of subjects to allow for application to longitudinal data. We 

specify prior distributions on parameters and perform model inference using a Markov Chain 

Monte Carlo (MCMC) Gibbs-sampling algorithm programmed in R. Statistical inference can be 

made for multiple quantiles of the covariate effects simultaneously providing a comprehensive 

view. Various MCMC sampling techniques are used to facilitate convergence. We demonstrate the 

performance and the interpretability of the model via simulations and analyses on the National 

Consortium on Alcohol and Neurodevelopment in Adolescence study (NCANDA) data on alcohol 

binge drinking.
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1 | INTRODUCTION

Data that are a mixture of continuous values and a set of frequently-observed discrete 

values are often termed semi-continuous.1 Discrete values often occur at zero and effectively 

continuous values are positive, right-skewed and with substantial heteroscedasticity.2 Zero-
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inflated semi-continuous data abound in practical applications, including questionnaire 

assessments,3 medical costs,4 microbiome data5 and single cell gene expression.6 An 

example of semi-continuous data is given by self-reported number of binge drinking 
episodes in the past year by participants of the cohort-sequential National Consortium 

on Alcohol and NeuroDevelopment in Adolescence (NCANDA) Study. Over 65% of the 

number of binge drinking episodes in the past year is concentrated at 0, but the count 

is widely distributed and highly right skewed, with a maximum of 170 episodes for one 

subject (see Figure 1b). Semi-continuous data present challenges in both model fitting and 

interpretation. Parametric distributions are inadequate for the extreme long right tails of 

the data, and mean effects of covariates obtained from traditional models fail to capture 

information for most of the population since means are heavily influenced by extreme 

values.

Two main approaches have been utilized to model semi-continuous outcomes, i.e. Tobit 

models7,8 and two-part models.9 A Tobit model assumes that outcomes are zero only 

because they fail to reach the detection level so the zeros are not true zeros, whereas a 

two-part model model treats the zero as true values and separately describes the probability 

of the outcome being positive and the magnitude of positive values. For many data types 

such as number of binge drinking episodes, the Tobit model is not appropriate since there is 

no meaningful definition of detection level. Therefore, here we focus on the two-part model:

• Part I: P(Z > 0 ∣ X) = p(X) and P(Z = 0 ∣ X) = 1 − p(X)

• Part II: Modeling of the distribution [Z ∣ Z > 0, X]

Different procedures have been implemented to model the positive (continuous) values 

as a function of covariates. Modeling the response as a log-normal distribution is 

a common approach to address the skewness and heteroscedasticity of the original 

distribution, but such strategy has issues on retransformation, interpretation, and inadequacy 

in fitting the data.10,11 Another approach is to model the positive continuous values with 

exponential family distributions such as the generalized gamma distribution, log skew 

normal distribution or normal after Box-Cox transformation, and corresponding random 

effects models have been proposed.4,2 Inferences from the positive component exclude zero 

values and only refer to the sub-population of those with positive outcomes. Therefore, 

a marginal interpretation of coefficients for the above two-component models has been 

proposed.12 To take account of the heteroscedasticity of the exponential families as well 

as the non-linear effects of the covariates, others have proposed to model the means 

and variances as smooth function of covariates.2,13,14 To address the problem that the 

above parametric approaches may not provide adequate fit for more extreme distributions, 

generalized estimating equations have been proposed, with mean and variance as smooth 

functions of the covariates.15,16

All the above methods focus primarily on covariate effects on the mean, and little attention 

has been paid to the other aspects of the distribution. For example, from both policy and 

clinical perspectives, the sub-population of “heavy drinkers” in the NCANDA Study is 

of great interest.17,18 Moreover, the mean of an extremely skewed distribution can be a 

misleading summary statistic. From Figure 1a, only a handful of lines out of 400 subjects are 
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above 25 and fluctuate (go up and down), but the highest values can go above 100, resulting 

in large mean number of binge-drinking episodes due to the extreme positive values whereas 

the median is relatively small.

To maintain both interpretability and adequate fit, we propose a two-part model, with the 

discrete component captured by a probability mass (at zero) and the continuous component 

of the density modeled semi-parametrically via a mixture of B-spline densities (B-spline 

basis functions normed to integrate to one) with weights dependent on covariates. Using 

the property that B-splines have local support,19 we not only obtain a numerically stable 

and flexible estimation of the covariate-dependent density but also a local interpretation of 

the coefficients for the covariates. Others have shown that a mixture of B-splines densities 

provide better estimation compared to other parametric and non-parametric methods.20,21,22 

Furthermore, with our Bayesian Markov Chain Monte Carlo (MCMC) algorithm, we can 

perform inference on multiple functions of the posterior distribution simultaneously, e.g., 

the marginal interpretation in terms of mean, median or any quantile of the distribution 

simultaneously with credible intervals.

This paper contributes to both methodology and graphical interpretability in analyzing zero-

inflated semi-continuous data. In the first part, we explain the details of our semi-parametric 

Bayesian zero-inflated mixture model that can account for cluster-correlated data. Then, 

we examine the performance of the algorithm in Monte Carlo simulations, comparing the 

performance to the generalized gamma model, and demonstrate its interpretability in a 

motivating application using the longitudinal number of binge-drinking episodes from the 

NCANDA dataset. The algorithm is implemented as an R script and freely available for 

download on GitHub: https://github.com/junting-ren/zero_inflated_b_spline.

2 | METHODS

Let Zij be random variables such that Zij ≥ 0, i = 1, …, N, j = 1, …, Ji, where Zij denotes 

the value for the ith subject at the jth time point. We consider the scenario, where for each 

Zij, we also have an (M+1)-dimensional vector of covariates (including intercept) denoted by 

xij = (1,1ij, x2ij, …,xMij)T. The Zij are assumed independent conditional on xij, part I random 

intercept bδi and part II random intercept bηi, with marginal density f given by

f zij xij, bδi, bηi = π0 xij, bδi 1 zij = 0 + π1 xij, bδi f1 zij xij, bηi ,

where π0 xij, bδi = 1 − π1 xij, bδi , 1 zij = 0  is 1 when zij = 0 otherwise 0, and f1 is a 

probability density with support on the positive real numbers which will be approximated 

via a finite mixture of B-spline densities. The part I random intercept captures individual-

level variation in probability of zij being drawn from the zero or positive component, and 

the part II random effect bηi capture individual variation in the positive component. It is 

natural to conjecture that the two processes that generate semi-continuous data may be 

related. Thus, we assume the part I random intercepts bδi are correlated with the part II 

random effects bηi by specifying a joint multivariate Gaussian distribution prior. If they are 
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truly associated, then the correlation structure will reduce bias in estimating the fixed effect 

coefficients.23

2.1 | Part I

We first introduce a global indicator vector δ = δ11, …, δNJN
T , where δij = 1 if zij > 0 and 

δij = 0 otherwise, and ∑i = 1
N Ji is the total number of observations. It is assumed that δij ∼ 

Bernoulli{π1(xij, bδi)}, where

π1 xij, bδi = P δij = 1 γ, xij, bδi = Φ xijT γ + bδi ,

Φ is the standard normal cumulative distribution function (CDF) and γ = (γ0, γ1, γ2, 

…,γM)T is an (M + 1)-vector of unknown parameters.

Let X denote the (M + 1) × ∑Ji covariate matrix with columns xij. Then the joint density of δ 
given γ, random effect bδi and covariates X is given by

fδ δ X, γ, bδ = ∏
i = 1

N
∏
j = 1

Ji
Φ xijT γ + bδi

δij 1 − Φ xijT γ + bδi
1 − δij .

To implement the probit model, we introduce latent variable yij such that

yij = xijT γ + bδi + eij,

where eij ∼ N(0,1). The latent variables yij are measured indirectly by the observed binary 

variable δij, so yij can be defined by:

δij =
0 if yij ≤ 0
1 if yij > 0

Using a probit regression model, we obtain a closed form expression for the posterior of 

γ and bδi, making the convergence faster and estimation more accurate when there are 

multiple global random effects, comparing to a logistic model. 24

2.2 | Construction of B-spline density basis

Before we introduce the model for part II, we first discuss the construction of the B-spline 

density basis. A spline of order d +1 is a piecewise polynomial of degree d with continuous 

derivatives up to order d −1. This is only true when adjacent polynomial pieces have the 

same value at the knots up to the d−1th derivative. Each such condition constitutes a linear 

constraint. Therefore, a spline of degree d with internal knots ξ1, ξ2, …,ξQ is determined by 

(Q +1)(d +1)− Qd = Q + d +1 bases. Instead of fitting the spline by least squares subjected 

to linear constraints, different kinds of basis functions are used in practice. For example, 

the truncated power series basis for spline of degree d with internal knots ξ1, ξ2, …,ξQ 
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are 1, z, …, zd, z − ξ1 +
d , …, z − ξQ +

d . However, the supports of truncated power series are 

not local, with some of the basis defined over the whole range. This might lead to high 

correlations among some basis, leading to numerical instabilities in estimation. Hence, it is 

often preferred to use a B-spline basis. Given the internal knots ξ1, ξ2, …,ξQ and boundary 

knots ξ0, ξQ+1, we define the following new knot sequence:

τq =
ξ0 for q = 1, …, d + 1
ξc − d − 1 for q = d + 2, …, d + Q + 1
ξQ + 1 for q = d + Q + 2, …, 2d + Q + 2

Then, the B-spline basis functions of degree d are defined by the recursive formula

Bqd z =
z − τq

τq + d − τq
Bqd − 1 z −

τq + d + 1 − z
τq + d + 1 − τq + 1

Bq + 1
d − 1 z

q = 1, …, Q + d + 1

where

Bq0 z =
1, τq ≤ z < τq + 1
0, else

and Bq
0 z ≡ 0 if τq = τq+1. It follows that they are larger than zero in intervals spanned by d 

+ 2 knots and zero elsewhere, which results in high numerical stability.25,20,26

For our application, we need to construct B-spline basis for a density function, which adds 

the constraint that the area under each B-spline basis function adds up to 1. Therefore, we 

normalize the B-spline basis to integrate to one:

gq z = d + 1
τq + d + 1 − τq

Bqd z ,

since ∫τq
τq + d + 1Bq

d z dz =
τq + d + 1 − τq

d + 1 . We constructed B-spline density basis on the range 

of the positive observations (for example the binge drinking number) that can be used to 

model the likelihood function for z. Our model takes the number of basis functions K > 4 

as a user-specified input, and constructs a cubic (i.e., d = 3) B-spline density basis with K 
− 2 internal knots and hence K − 2 + d + 1 = K + 2 basis functions. However, the last two 

B-spline density functions are not needed for most data since the probability of observing 

data at the right end of the distribution is typically low. Therefore, in our applications we 

remove the last two basis functions supported in the right tail, resulting in K remaining 

B-spline density basis functions.
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For example, with the NCANDA data, we constructed K = 5 B-spline densities that are 

supported from 0.01 to the maximum observed binge drinking counnt of 170, giving three 

equally-spaced internal knots at 42.51, 85.01, and 127.51 (Figure 2). Observe that the 

B-spline density functions are intrinsically ordered on their intervals of support, e.g., the 

first B-spline density on the left has its mode at 0.01, whereas the second B-spline density 

from the left has a mode at around 17, etc. We utilize this ordering in building part II of our 

model.

2.3 | Part II

The densityf1 for the positive part is approximated by a finite mixture of B-spline densities 

with weights that vary as a function of covariates. In the remainder of the paper, we use 

cubic B-spline densities with knot number and position fixed by the researcher. Rather than 

focus on knot position selection, we include enough knots to allow a flexible fit.27,28 The 

validity of this approach is evaluated in the simulation studies.

Specifically, the density of the non-zero observations is approximated by

f1 z1 X1, δ, α, bη = ∏
ij:δij = 1

∑
k = 1

K
ckijgk zij ,

where z1 is the vector of observations corresponding to positive values. Let 

N1 = ∑i = 1
N ∑j = 1

Ji δij and let X1 denote the corresponding (M + 1) × N1 matrix of covariates. 

The gk are the cubic B-spline densities and ckij are non-negative weights with the constraint 

∑k = 1
K ckij = 1. Equivalently, ckij is the probability that the ith subject’s jth time point belongs 

to the kth B-spline density, conditioned on δij = 1. To speed up the convergence of MCMC 

algorithm, we introduce a local latent indicator vector η = η11, η12, …, ηNJN
T . The element 

ηij ∈ {0,1, …, K} for i = 1, …,N,j = 1, …,Ji. Latent indicator ηij > 0 only if δij = 1, and 

hence specifies which B-spline density the non-zero value for subject i at time point j is 

generated from.

We consider two different modelling approaches to estimate the weights ckij: 1) an ordinal 

probit model; and 2) a multinomial logistic model. In the main text we focus on the ordinal 

probit model. We provide the formulation, estimation, code and simulation results for the 

multinomial logistic model in the Supplementary Materials.

For the ordinal probit model, we treat ηij as an ordinal categorical variable, which means 

that it represents an assignment into one of K mutually exclusive and exhaustive ordered 

categories of B-spline densities. The ordinal probit regression model can be written in terms 

of an additional latent variable lij conditional on δij = 1 as follows:

lij = xijT α + bηi + ϵij
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where ϵij ∼ N(0,1), and α = (α0, α1, …,αM) are the fixed effects for part II, and bηi is the 

random intercept. Similarly to part I, lij can be measured indirectly by the ordinal category 

ηij, but the difference is that ηij itself is also a latent variable and can be defined in terms of 

lij:

ηij =

1 if−∞ < lij ≤ λ1
2 if λ1 < lij ≤ λ2
⋮
K if λK − 1 < lij < ∞

The first threshold, λ1, defines the upper bound of the interval corresponding to ηij = 1, 

indicating that the observed z for subject i at time point j comes from the first B-spline 

density component. Threshold λK−1 defines the lower bound of the interval corresponding 

ηij = K. Threshold parameters are λT = (λ0 = λmin < λ1 < … < λK−1 < λK = λmax) with 

λmin = −∞ and λmax = ∞. For identification of the parameters, we can set λ1 = 0 or fix 

the intercept α0 = 0.
29,30

 The choice of setting λ1 = 0 has the benefit of facilitating posterior 

sampling (since sampling α0 is generally easier than sampling λ1) and also makes the 

ordinal probit model theoretically consistent with part I binary probit model. The cumulative 

response probability for the kth B-spline density is:

ℙ ηij ≤ k α, bηi = ℙ lij ≤ λk α, bηi = ℙ ϵij ≤ λk − xijT α − bηi = Φ λk − xijT α − bηi .

Therefore,

ckij = ℙ ηij = k α, bηi = Φ λk − xijT α − bηi − Φ λk − 1 − xijT α − bηi .

Conditional on δij = 1, ηij ∼ Multinomial(cij), where cij = (c1ij,…, cKij)T. The joint density of 

η given δ, α, bη, and X1 is given by

fη η δ, α, bη, X1 = ∏
ij:δij = 1

∏
k = 1

K
ℙ ηij = k α, bηi

I ηij = k

= ∏
ij:δij = 1

∏
k = 1

K
Φ λk − xijT α − bηi − Φ λk − 1 − xijT α − bηi

I ηij = k .

In summary, in part I of the model, the covariates and part I random effect modulate the 

probability of the zero and positive status of each observation. In part II of the model (for 

the positive values such that δij = 1), the covariates and part II random effects modulate the 

probability of which B-spline component the observation zij > 0 is drawn from.

Here, we list a few important reasons that an ordinal model is preferred over a multinomial 

logistic model for modeling the weights. First, the ordinal probit model for part II is 

consistent with the part I binary probit model. Second, the B-spline density bases’ modes are 

ordered across the support of the outcome z as shown in Figure 2, so it is natural to assume 
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an underlying latent linear model such that larger values for latent variable l correspond to 

observations generated from B-spline densities supported on larger values of the observed 

outcome range. This approach is commonly utilized, for example, in genetic models for 

ordinal outcomes.
31,32

 Third, multinomial logistic regression requires significantly more 

parameters as the number of B-spline density basis increases, for example a model with 

M covariates and K B-spline densities, the multinomial logistic regression requires (K − 

1) × M fixed effect parameters and K − 1 random intercepts comparing to only M + K 
− 1 fixed effect parameters and 1 random intercept for the ordinal probit model. Fourth, 

correlation between the random intercepts in part I and part II can be easily accounted for 

in the ordinal model, whereas it is impractical to estimate the correlation for a large number 

of random effects in a multinomial regression model. Fifth, in our simulations the ordinal 

probit model can handle longitudinal data with as few as 5 observations per subject, whereas 

the multinomial logistic model requires at least 20 observations per subject to give adequate 

estimates of the random effects (as demonstrated in the Supplementary Materials). Finally, 

it will be much easier (in future work) to adapt the ordinal probit model in applications to 

high-dimensional datasets, e.g., when the number of features is greater than the number of 

observations (such as is the case in many genetic data applications).

The trade-off is that the multinomial logistic model requires fewer assumptions and is more 

flexible than the ordinal model. This flexibility is demonstrated when fitting the two models 

to the generalized gamma distribution data in the cross-sectional settings model comparison 

section. In the main text, unless specified otherwise, we used the ordinal probit model for 

part II weights in simulations and real data analysis.

2.4 | Prior distribution

Here, we specify prior distributions for coefficients and the covariance of the random effects. 

For part I fixed effects α,

α ∼ N 0, Σα ,

and for part II fixed effects γ:

γ ∼ N 0, Σγ ,

where hyper-parameter Σγ and Σα are specified by the user. In the simulations and data 

application, we set both to be diagonal with variance 2.5.

It is natural to conjecture that the two processes that generate semi-continuous data may 

be related. Thus, for the random effects b = (bδi, bηi) we propose a multivariate Gaussian 

distribution prior

b ∼ N 0, Σb .

Further, we assume non-informative priors on the covariance Σb of the random intercepts:
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Σb ∼ Inverse Wishart 2, I2 .

We thus sample (bδi, bηi) simultaneously from their joint conditional posterior, which 

induces correlation between the part I and part II random effects. This can lead to improved 

estimates of the fixed effects23 when there is correlation between the random effects in the 

two parts.

The prior distribution for K − 1 thresholds λ are given as order statistics from (λmin, λmax) 

distribution,
32

ℙ λ ∝ 1 λmin < λ1 < … < λK − 1 < λmax .

2.5 | Sampling Scheme

Here, we outline the MCMC sampling algorithm for the ordinal probit model. Details on 

the conditional posterior distributions are given in the Supplementary Materials. To reduce 

autocorrelation between random effects and fixed effects, we implemented block sampling 

algorithm for the both part I and part II part of the model.24 The sampling scheme consists 

of the following steps:

1. Block sample y, l, γ, α and bδ,bη from f(y,l,γ,α,bδ,bη|Σb,Σα,Σγ) ∝ f(bδ,bη|

y,l,γ,α,Σb)f(y,l,γ,α|Σb,Σα,Σγ)

2. Sample Σb from f(Σb|bδ,bη)

3. Sample thresholds λ from f(λ|δ,η,α,bη) integrating over the latent variable l to 

speed up the convergence.

4. Sample ηij for i = 1, ..,N and j = 1, …,Ji from f(ηij|δij = 1, bηi,λ,α)

2.6 | Evaluation of covariate effects

An important advantage of estimating the joint posterior using MCMC is that we can obtain 

the posterior distribution of any function of the parameters. Therefore, in addition to making 

inferences, e.g., for the change of the mean of Z for one unit increase in a covariate, we can 

estimate the posterior distribution for the change of any quantile of Z for one unit increase 

in a covariate. Furthermore, similar to the linear regression model, a positive coefficient αm 

implies that as the mth covariate increases, the probability of observing a larger outcome 

increases. This greatly improves the interpretability of model results for zero-inflated and 

highly skewed data, as demonstrated in the simulation study and real data example.

3 | SIMULATIONS

We performed Monte Carlo simulation studies to investigate the performance of the 

proposed two-part probit model. First, to evaluate the basic performance for the model, 

a total of 500 datasets was generated with longitudinal settings, varying the number of 

subjects N and time points J for each subject, as well as cross-sectional settings with 

different number of subjects N with J fixed at 1. Then, we investigated how the number 
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of B-splines basis functions and placement of the interior knots affects inferences. Finally, 

we compared the performance of our model to the generalized gamma model4,2 using data 

generated from either a mixture of B-spline densities or a generalized gamma distribution.

3.1 | Longitudinal setting

For the longitudinal simulations, we mimicked the skewed longitudinal binge drinking data 

from NCANDA. One of the most prominent characteristic of the NCANDA data is that 

most of the subjects’ observations are 0, with only a handful of subjects’ observations being 

extremely large. Consequently, increases in covariates will result in increase, e.g., in the 

mean and 75th quantile of the outcome but not the median. Therefore, we set our both part 

I and part II fixed coefficients to be relative small compared to the thresholds. In this case, 

without the random intercepts, the linear combinations of the fixed effect coefficients will be 

much lower than the threshold for B-spline density basis on the far right of the distribution, 

resulting in simulated data with most of the subjects having zeros or small values and a 

few subjects with consistently large values of the outcome. The simulation setup is the 

following:

1. Two independent explanatory variables where X1 ∼ N(0,1) and X2 ∼ Bernoulli(p 
= 0.5).

2. For the part I Binomial probit model, we generate the probability of non-zero 

observation using coefficients γ = (−1.0,1.2,1.0), where the first coefficient is the 

value of intercept.

3. For the part II mixture model, the data were generated from K = 5 B-

splinedensitieswithsupportfrom0.01to150.00with 3 knots equally spaced. The 

ordinal probit model fixed effect coefficients are α = (−1.00,0.35,0.60) and the 

thresholds are λ = (0.00,1.90,3.00,3.50).

4. For the part I and part II random effects bi = (bδi, bηi), we set the correlation to 

be either at 0.20 or 0.60 and the variances to be 1.102 and 2.002 respectively.

5. By the above setup, the baseline (X1 = 0,X2 = 0) population mean, median and 

75th quantile are 1.58, 0.00 and 0.00 respectively. For every one unit increase 

in X1 or X2, the population mean will increase 5.09 or 4.89 comparing to 

the baseline, respectively; the population median will increase 1.84 or 0.00, 

respectively; the population 75th quantile will increase 10.01 or 9.48 comparing 

to the baseline, respectively.

Here, we only showcase three possibilities when calculating the functions of the distribution 

(mean, median and 75th quantile). In practice, researchers can calculate any function of the 

distribution in one run.

Table 1 presents the bias (sample mean departure from the truth due to the finite sample 

size), standard deviation, mean square error and coverage percentage of the credible 

intervals over 500 simulations for covariate effects on the functions of distribution for each 

simulation setup. We simulated data of total sample size ranging from Ntotal = 500 to Ntotal = 

2000. Within each sample size Ntotal, each subject has a number of longitudinal observations 

Ren et al. Page 10

Stat Med. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that ranges from J = 5 to J = 20. For example, if the sample size is Ntotal = 1000 and number 

of observation per subject is J = 5, then we would have N = Ntotal/J = 1000∕5 = 200 subjects.

For all simulation scenarios, the coverage rates were all close to the nominal 95% level. As 

the total sample size increased from 500 to 2000, the bias and variances of the covariate 

effect estimators decreased as expected. For the mean covariate effects, the bias and variance 

of the estimators are acceptable (relative to the original scale of the true covariate mean) 

even at the smallest sample size Ntotal = 500. For instance, for Ntotal = 500 and J = 5, the true 

value for the baseline mean is 1.58, whereas the estimator has a bias of 0.32 and standard 

deviation of 0.61. We also investigated whether increasing the correlation of the part I and 

part II random intercepts would lead to increase of bias, so for J = 5, we simulated data 

with either a correlation of 0.2 or 0.6 (the variances are fixed same as before). There is 

no observed difference between the two different cases. Within a fixed total sample size, 

as the number of per subject observations J decreases, the bias and variance decreases. For 

example, at total sample size Ntotal = 2000, when J = 5, the mean square error (MSE) is 2.22 

for the 0.75 quantile effect of one unit increase in X2, but for J = 20, the MSE is 4.32.

Estimation of parameters γ, α and λ are displayed in Supplementary Material Table S1. 

The fixed effects α and γ for all sample size and number of observation per subject are 

estimated with low bias, standard deviation and posterior credible intervals achieved the 

nominal coverage level. As for the thresholds λ, the bias decreases and coverage increases 

as the total number of sample or number of observations per subject increases. When the 

sample size is small, the higher the threshold is, the more bias in estimation. This is due 

to observations coming from the B-spline density basis supported at the larger values are 

sparse, thus making it harder to estimate the threshold values on the high end. Interestingly, 

almost all threshold estimations only achieved around 85% coverage rate, but the coverage 

rate for the different effect of the covariates still maintained the nominal coverage level 95%. 

We speculate that this is due to the high correlation between the cubic B-spline density basis 

that led to identification problems for auxiliary parameters but the functions of the auxiliary 

parameters are still identifiable.33,25 The part I and part II random effect variance coverage 

rates can be found in supplement Figure S1. Part I random effect variance coverage rates 

stayed stable at 95% nominal level regardless of the sample size. For part II random effect 

variance, as sample size or number of observations per subject increased, the coverage rate 

increased.

For Figure 3, the x-axis, ranging from 0 to 150, is the whole support of positive part of 

the semi-continuous distribution; The y-axis, starting from 0, is the probability density of 

specific point in the support and the gray shaded area is the 95% credible band. Figure 3a 

displays overall model fit when X1 = 1, X2 = 1 when the total sample size is Ntotal = 2000 

and number of observations per subject is J = 20 for one realization of the simulated data. 

Figure 3b displays model fits for 9 randomly selected subjects in the same realization. We 

took the average of the selected subject’s covariates across the different time points. Using 

the estimated mean fixed effects, thresholds and subject’s random intercept, we calculated 

the weight for each B-spline density basis at the average covariate values for the specific 

subject. Using the estimated weights and the true weights, we plotted both the estimated and 

true positive valued distribution for that specific averaged covariates values and individual 
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random effect. Although some of the individual distributions are very different from the 

population distribution, the estimated model density did a good job capturing the true 

individual density because of the subject-specific random intercept.

3.2 | Cross-sectional setting

We increased the coefficients for B-spline densities to α = (−1,1.8,1.6) and kept the other 

parameters (λ,γ) the same as the longitudinal setting. If we keep the same α as in the 

longitudinal setting, the observations would be limited to the left half of the distribution 

(small values) due to the finite sample size and no random effects to increase the probability 

of observing values coming from the B-spline densities supported at the right tail of the 

distribution. For this new setting, the baseline (X1 = 0,X2 = 0) population mean, median and 

75th quantile are 1.58, 0.00 and 0.00 respectively. For every one unit increase in X1 or X2, 

the population mean will increase 11.69 or 8.86, respectively; the population median will 

increase 5.54 or 0.00, respectively; the population 75th quantile will increase 22.21 or 17.42, 

respectively.

As shown in Table 2, the performance of the cross-sectional model is even better than the 

longitudinal model: for the same baseline true mean value of 1.58, the MSE of the estimator 

is 0.11 in the cross-sectional model but 0.36 for the best longitudinal model (J = 5) at the 

same total sample size of 500. As the sample size increased by a factor of two, the MSE 

of the all estimators also decreases by a factor of two, as observed in both the longitudinal 

and cross-sectional simulation result Table 1 and 2. The auxiliary parameters’ bias, standard 

error and coverage rate is displayed in the supplement material Table S1. The fixed effects 

for part II are estimated with high accuracy for all sample sizes. The bias and variance 

for threshold decreased as the sample size increased. The coverage rate for the threshold 

increased as sample size increased, but did not reach the nominal level due to the high 

correlation of the cubic B-spline density basis, similar to the longitudinal setting.

3.3 | Model sensitivity to B-spline density specification

Our model performed well when we know the true number of B-spline density basis 

functions as well as the true knot placement, but it is natural to expect that researchers 

do not know the true underlying B-spline density basis number and knot placement. In this 

section, we investigate the performance of our model under the situation when we do not 

know the number of splines and knot position of the underlying data model. Using the same 

data generating model as the cross-sectional setting where the number of B-spline densities 

K = 5, the three internal knot positions are equally spaced and the total sample size fixed at 

Ntotal = 1000, we ran misspecified models with K = 7 (number of equally spaced internal 

knots K − 2 = 5), K = 10 (number of internal knots 8) and K = 15 (number of internal 

knots 13). The auxiliary parameters α for part II are incorrectly estimated with bias as large 

as 3.5 and coverage rate as low as 0 shown in supplement material Table S1. However as 

the model complexity increases (K increases), we do not see a trend in increasing bias and 

variance comparing to the correctly specified model for the covariate effect parameters of 

interest as shown in Table 3. Moreover, the coverage rate maintain the nominal 95% level 

regardless of the B-spline density basis number and internal knot placement. This means that 

the probability distributions of, when X1 = 0 and X2 = 0, when X1 = 1 and X2 = 0, when X1 
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= 0 and X2 = 1, are well estimated which is illustrated in Supplementary Materials Figure 

S2.

We also included longitudinal simulations using the same set of parameters as the cross-

sectional setting (K = 5) with additional correlated part I and part II random effects with 

standard deviation 1.1 and 2, and a correlation of 0.2. With K fixed at 10 and knots equally 

spaced, the misspecified B-spline model still achieved decent coverage rate with the lowest 

coverage rate hovering around 90% when J = 5. As the number of observations per subject 

increase from J = 5 to J = 20, the variance slightly increased, but all the covariate effects’ 

coverage rate converged to the nominal level. This demonstrated one of the most prominent 

advantages of modeling the data density semi-parametrically: the true model does not need 

to be known beforehand in order to obtain good estimates of densities and effects of interest.

3.4 Model comparison

One of the most flexible parametric models for part II is the generalized gamma distribution. 

Therefore, we compared our semi-parametric model to generalized gamma model. First, 

let’s introduce the generalized gamma distribution. Let Γ(⋅) denote the standard gamma 

function. The density of the generalized gamma distribution is given by:

f z; κ, μ, σ = ηη
σzΓ η ηexp u η − ηexp κ u

with three parameters: κ for shape, µ for location, and σ for scale. We have η = |κ|−2 > 0 and 

u = sign(κ)(logz − µ)∕σ. If Z denotes a random variable with the generalized density, then its 

mean and variance are respectively given by

E Z = exp μ +
σlog κ2

κ + log Γ 1/κ2 + σ/κ − log Γ 1/κ2

and

Var Z = exp μ κ2σ/κ 2 Γ 1/κ2 + 2σ/κ
Γ 1/κ2 −

Γ 1/κ2 + 2σ/κ
Γ 1/κ2

−2

The generalized gamma distribution comprehensively includes the standard gamma, inverse 

gamma, Weibull, and log-Normal distributions as its special cases. For example, if the scale 

parameter σ = k, it reduces to the standard gamma distribution with density

f z; υ, η = 1
υηΓ η

zη − 1exp −z/ν

where shape parameter η = |κ|−2 and scale parameter υ = κ2 exp(µ). Alternatively, taking the 

limit of generalized gamma density as k → 0, one obtains
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f z; μ, σ = 1
σz 2πexp − log z − μ 2

2σ2

a log-Normal density function with log-mean µ and log-standard deviation σ. Finally, the 

inverse gamma distribution is obtained by setting k = −σ with σ > 0, while the Weibull 

distribution is obtained by setting k = 1. Further detail and SAS code may be found in Liu’s 

paper.2,4

3.4.1 | Comparison setup

We generated cross-sectional data and longitudinal data from the zero-inflated generalized 

gamma distribution and the zero-inflated B-spline mixture distribution with total sample 

size Ntotal = 2000. We ran the semi-parametric Bayesian model and zero-inflated generalized 

gamma model2,4 regardless of whether it is the correct model for the underlying data.

For the generalized gamma distribution data, we have part I model (binary probit model 

with γ = (1,1.2,−1), covariates distribution X1 ∼ N(0,1), X2 ∼ Bernoulli(p = 0.5) and 

random intercept with standard deviation of 1.1 for longitudinal settings. For part II of the 

parametric model, we generated from the generalized gamma distribution with coefficients 

ψ = (0.3,1,−0.5), ζ= (−0.3,−0.5,−0.2) and fixed k = 0.7, where µ and σ vary with the 

covariates:

μi = xiTψ + b

σi2 = exp xiTζ

Note that the dependence of σi on the covariates allows for possibility of heteroscedasticity 

and b is the second part random intercept with standard deivation of 1 for longitudinal 

simulation scenarios. The baseline (X1 = 0,X2 = 0) population mean, median and 75th 

quantile are 1.25, 0.87 and 1.73 respectively. The median and 75th quantile is calculated 

using Monto Carlo simulation since close form calculation is not possible for generalized 

gamma distribution. For every one unit increase in X1 or X2, the population mean will 

increase 2.53 or −0.81, respectively; the population median will increase 2.20 or −0.87, 

respectively; the population 75th quantile will increase 3.10 or −1.05, respectively.

For the mixture B-spline distribution data, part I model is the same as the generalized 

gamma model. For part II, we generated from K = 10 B-spline density bases equally spaced 

starting from 0.01 to 10.00 with the same part II coefficients as in the generalized gamma 

model α = ψ= (0.3,1,−0.5) and threshold λ = (0,0.1,0.15,0.2,0.22,0.25,0.3,1,1.5). Therefore, 

the baseline (X1 = 0,X2 = 0) population mean, median and 75th quantile are 3.44, 0.76 

and 7.06 respectively. For every one unit increase in X1 or X2, the population mean will 

increase 3.33 or −2.12, respectively; the population median will increase 7.02 or −0.76, 

respectively; the population 75th quantile will increase 1.56 or −6.65, respectively. This is an 
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extremely right skewed distribution, with most of the data concentrated at the right tail of the 

distribution.

For fitting the Bayesian semi-parametric model to the generalized gamma data, since we 

do not know the correct knot placement positions, the placement of the knots are equally 

spaced or determined by quantiles of the observed simulated data. For example, if we have 

K number of B-spline densities, then we would place K − 2 internal knots at the t
K − 1  for t = 

1, …,K − 2 quantiles of the observed positive valued data. We fitted the generalized gamma 

data with our semi-parametric Bayesian probit model with K = 10,15,20,30 to investigate the 

degree of underfitting or overfitting. Furthermore, we included a run with our multinomial 

logistic model for part II with K = 15 and equally spaced knots.

3.4.2 | Comparison result

For the cross-sectional positive data generated from the B-spline mixture distribution, 

the semi-parametric Bayesian model fitted this extremely right skewed data perfectly and 

obtained the correct inference for covariate mean, median and 75th quantile effect. On the 

other hand, the generalized gamma model failed to estimate the correct covariate mean effect 

with coverage rate as low as 1.23% and failed to converge in multiple instances. With poor 

performance even for cross-sectional B-spline data, the performance of gamma model for 

longitudinal B-spline data are expected to be worse and therefore omitted. This simulation 

demonstrated that our semi-parametric Bayesian model can be used to fit extremely right-

skewed data while giving correct inference on any quantile of covariate effects, whereas the 

generalized gamma model cannot.

For cross-sectional positive data generated from the generalized gamma distribution, the 

generalized gamma model estimated the covariate mean effect with high accuracy and low 

variance as shown in Table 4. The generalized gamma model can not provide inference 

on the median nor the 75th quantile effects, since there is no closed-form representation 

for these quantiles. On the other hand, even without knowing the underlying distribution, 

our Bayesian semi-parametric model with knots placed at quantiles of the data or equally 

spaced did a good job in estimating covariate effects when the number of B-spline density 

functions was greater or equal to 20 using the ordinal probit model, with the coverage rate 

for the mean and 75th quantile effects at the 95% nominal level. For the median effect, 

the coverage rate was slightly lower, at around 80% coverage. As the number of B-spline 

density functions increased up to 30, the coverage rate of estimators began to decline 

slightly, indicating the model was starting to overfit the data, as shown in Table 4. However, 

the drop was quite small, demonstrating the robustness of the model to B-spline density 

number and knot placement. Furthermore, we compared the equally spaced knot ordinal 

probit model with equally spaced knot multinomial model with K = 15. The multinomial 

model had similar bias and higher variance comparing to the ordinal model. On the other 

hand, the multinomial model is more flexible and hence had higher coverage rate at around 

95% for all three covariate effects. Another interesting observation is that the variances of 

the semi-parametric model were only slightly larger than the generalized gamma model.
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For longitudinal data generated from the generalized gamma distribution, the bias decreased, 

and coverage increased as the number of observations per subject J increased for our 

Bayesian B-spline model, achieving nominal coverage rate for most of the parameters when 

number of observations per subject was at J = 20, but the coverage rate for the median 

effect can be as low as around 60% when J = 5. Due to the semi-parametric nature of 

our model and fitting to a parameter-rich generalized gamma data, we speculated that the 

individual random effects were estimated more accurately when the number of observations 

per subjects were large and thus leading to better estimation of the population effects.

4 | REAL DATA ANALYSIS

The National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) 

was designed to disentangle the complex relationships between onset, escalation, and 

desistance of alcohol use and changes in neurocognitive functioning and neuromaturation.34 

We applied the proposed method to evaluate how number of binge drinking episodes in 

the past year changes with neuromaturation, using calendar age as our proxy. Number of 

binge drinking episodes is measured by the Customary Drinking and Drug Use Record,35 

administered on an annual basis, which asks: “During the past year, how many times have 

you consumed 4+ (females)/5+ (males) drinks within an occasion?” We considered three 

covariates: age, sex and education level. The analysis included N = 820 subjects aged from 

12 to 26 at baseline (11 subjects without education level information were excluded). Each 

subject had at most 5 annual observations, with 3,261 total observations. Over 65% of the 

number of binge drinking episodes in the past year were equal at 0, but of the remainder 

there is large variation, with a maximum at 170. While number of binge drinking episodes 

is integer valued, we can approximate it as a continuous outcome because of the wide range 

of the values. From the spaghetti plot in Figure 1a, most of the subjects’ binge drinking 

episodes in the past year remain below 25 regardless of age, but the overall average was high 

due to the extreme values.

We fitted our proposed model to the NCANDA data with K = 5 B-spline basis functions 

with equally-spaced knot placement (see Figure 2). Note, we also fitted the data with K = 

15 B-spline densities (not shown), with no significant change in covariate effects. As seen in 

Figure 4a, the model yielded good fit for the overall sample at mean covariates values. The 

model-based distribution fitted the data well for smaller values of binge drinking episodes 

but somewhat under-fitted the data when the values were large. This is because the plot only 

showed the distribution where the covariates were fixed at the mean value, which did not 

take account of the random effects. The between-subject variation of the right end of the 

distribution is accounted for by the high variances of the random intercepts for part I (3.66, 

CI: 2.87 to 4.58) and part II (3.81, CI: 2.44 to 5.83).

Table 5 shows how the mean, median and 75th quantile of the population distribution 

changes with standardized age, sex and standardized education level. For the mean number 

of binge drinking episodes, the baseline value is 0.71 [95% Credible Interval (CI): 0.41 

to 1.06], and it increases by 4.78 (95% CI: 4.09 to 5.52) as standardized age increases 

by one unit, and increases by 0.62 as standardized education increase by one unit. On the 

other hand, the baseline median number of binge drinking is 0 and only increases by 2.33 
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(95% CI: 0.59 to 3.75) for one unit increase of standardized age and increase by 0.00 (95% 

CI: 0.00 to 0.00) for one unit increase of standardized education. For heavy drinkers (75th 

quantile), who starts out with 0 number of binge drinking at baseline, will binge drink 8.80 

(95% CI: 7.30 to 10.06) more as standardized age increases one unit but will not binge 

drink more as education level increased. The results from median and 75th quantile of the 

distribution suggested that heavy binge drinking subjects (75th quantile of the distribution) 

will have a large increase in binge drink number as age increases, whereas for over half 

of the population the increase is relatively minute. Moreover, while higher education levels 

increased the mean binge drinking number, for over 75% of the sample education level had 

no effect. Therefore, for zero-inflated and highly skewed data such as these, quantiles can be 

more informative summary statistics than the mean.

Table 6 shows the estimates and credible interval of the model parameters. As age increases, 

the probability of observing larger values increases. The part II coefficient for age is positive 

(1.18, CI: 0.89–1.49), indicating a higher probability of values generated from B-splines 

that are supported to the right of the distribution. For example, if we increase standardized 

age by 3 and fix other covariates at baseline (standardized age=0, sex=Female, standardized 

education=0), the part II latent variable mean will be 1.18 × 3 − 3.71 = −0.17 (the variance 

of the latent variable l for the ordinal model is fixed at 1). The probability of this latent 

variable reaching above λ1 = 0 will increase significantly compared to the baseline, with the 

mean equal to −3.71. This leads to a larger probability of observing values from the second 

B-spline and lower probability of observing values from the first B-spline. This is illustrated 

in Figure 4b: when standardized age increases from 0 to 3, the probability density shifted 

to the right (the density region where the B-spline k ≥ 2 is supported at increases, but the 

likelihood decreased for the region where k = 1 B-spline is supported).

5 | DISCUSSION

We proposed a semi-parametric Bayesian model for cluster correlated zero-inflated semi-

continuous data. Instead of assuming a fixed family of distributions (e.g., Exponential 

Family)2 or no form of distribution for response (e.g., generalized estimating equations),16 

we directly model the density of the positive part with mild assumptions for the number 

of B-spline densities and placement of internal knots that are robust to misspecification. 

Together with a Bayesian Gibbs sampler, we are able to model extremely skewed 

distributions that parametric models cannot fit and, moreover, obtain the posterior 

distribution of any function of the parameters. This is important, as obtaining the quantiles 

of the covariate effects allows researchers to more accurately interpret questions regarding 

covariate effects and individual variation, as illustrated in the simulations and real data 

example. Using the localized properties of B-spline density, researchers can use the model to 

intuitively quantify how covariates are related to the outcomes.

To reduce computational cost and improve estimation, we modeled the weights of the 

mixture using an ordinal probit model. To our knowledge, this is the first paper to formally 

introduce and investigate the algorithm of modelling the mixture B-spline density basis 

weights using an ordinal model. Another advantage of using the ordinal model is that we 

can easily penalize the coefficients by imposing a common prior for all the coefficients so 
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that it can be fitted to high-dimensional data when the number of the features larger than 

the number of observations. On the other hand, we also provide the algorithm and code 

for estimating the B-spline density weights using a more commonly-applied multinomial 

logistic model.

Another advantage of our model is that it naturally handles heteroskedasticity. Here 

heteroskedasticity refers to non-constant variance of the outcome across different levels 

of the covariates. Our Bayesian semi-parametric model directly estimates the density (and 

hence the variance) of the outcome for each level of the covariates semi-parametrically. This 

is illustrated in Figure 3 and Figure S2, which show that the density of the specific levels of 

the covariates were estimated correctly. As a consequence, the non-constant variances of the 

outcome for different covariate sets were also correctly estimated.

In simulations, the semi-parametric Bayesian model was able to capture the covariate effects 

with high accuracy. Random effects variances were estimated well even when the number 

of observations per subjects were as low as 5. We also investigated the model performance 

when the number of B-spline density basis and the knot placement were misspecified in 

the cross-sectional setting. The estimated distribution for different covariate levels coincided 

with the true distribution as demonstrated in Figure S2 in the Supplementary Materials, 

giving good estimates for the covariate mean, median and 75th quantile effects. Finally, our 

semi-parametric model maintained decent performance even when the underlying data was 

generated from generalized gamma distribution. The interpretation of our semi-parametric 

model is more intuitive thanks to the localized support of the B-spline density basis and 

latent linear model, compared to the generalized gamma model where the mean covariate 

effects are dependent on the variance. Furthermore, if of scientific interest, a researcher 

could classify each observation into K categories according to the K locally supported 

B-spline bases using the posterior distribution of the corresponding B-spline density weights 

ck.

Several issues deserve further investigation. A systematic approach to select the number 

B-spline density basis functions and internal knot position would be helpful to improve the 

performance of the model when the underlying true data distribution is not known. Although 

the covariate effect estimates were unbiased and reached the nominal coverage rate, the low 

coverage rate of the threshold parameters needs further investigation. Due to the nature of 

MCMC algorithm, the model requires more computational time compared to the maximum 

likelihood models. Using AMD Ryzen 3900x CPU with 3800MHZ computing power, it 

took on average 8.5 minutes to finish one instance on a dataset with 2000 sample size and 

2 covariates. Methods such as MCMC subsampling36 and variational inference37 could be 

implemented to speed up the algorithm.

6 | SOFTWARE

Software in the form of R code, together with simulation data set is available on github: 

https://github.com/junting-ren/zero_inflated_b_spline.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
NCANDA data descriptive plots: (a) Spaghetti plot of binge drinking episode number VS 

visit age for randomly selected 400 subjects and (b) Histogram for the number of binge 

drinking episodes for all subjects.
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FIGURE 2. 
B-spline density used in the NCANDA data model and their corresponding supports and 

modes. The black points on the x-axis are the corresponding two boundary knots and three 

internal knots.
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FIGURE 3. 
Model fit when Ntotal = 2000 and J = 20 in one realization for (a) Population positive 

distribution comparing model to true density when X1 = 1, X2 = 1; (b) Individual positive 

distribution for randomly selected 9 subjects taking random intercepts into account. The red 

line is the model estimate, 95% credible interval in gray, and the blue line is the true density.
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FIGURE 4. 
NCANDA data analyses: model fit for (a) Population distribution at mean covariates values 

for the positive part. The yellow histograms are densities for the data, whereas gray shaded 

areas are the 95% credible band. (b) Population positive distribution comparing baseline to 

when standardized age increased 3 units. The gray shaded areas are the 95% credible band.
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TABLE 1

Longitudinal simulation results with 500 replications. Mean, median and 75th quantile of the distribution of 

Z at the baseline X1 = 0, X2 = 0, and the covariate effects comparing to the baseline. True value for baseline, 

X1 effect and X2 effect are: 1.58, 5.09 and 4.89 for the mean; 0.00, 1.84 and 0.00 for the median; 0.00, 10.01 

and 9.48 for 75th quantile, respectively. SD: standard deviation. MSE: mean square error. CR: credible interval 

coverage rate of the true parameter value.

Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

Baseline (X1 = 0, X2 = 0)

Ntotal = 500

J=5* 0.27(0.57) 0.40 94.9 0.00(0.00) 0.00 100.0 0.16(0.34) 0.14 100.0

J=5 0.24(0.55) 0.36 94.6 0.00(0.00) 0.00 100.0 0.14(0.26) 0.09 100.0

J=10 0.32(0.61) 0.48 95.7 0.01(0.01) 0.01 100.0 0.27(0.48) 0.30 100.0

J=20 0.51(0.83) 0.95 95.1 0.01(0.01) 0.01 100.0 0.63(0.92) 1.24 99.6

Ntotal = 1000

J=5* 0.12(0.40) 0.18 93.6 0.00(0.00) 100.0 0.03(0.06) 0.01 100.0

J=5 0.12(0.40) 0.18 95.5 0.00(0.00) 0.00 100.0 0.02(0.06) 0.01 100.0

J=10 0.15(0.43) 0.20 96.4 0.00(0.00) 0.00 100.0 0.07(0.16) 0.03 100.0

J=20 0.19(0.53) 0.32 95.4 0.01 (0.01) 0.01 100.0 0.16 (0.31) 0.12 100.0

Ntotal = 2000

J=5* 0.05(0.28) 0.08 95.6 0.00(0.00) 100.0 0.01(0.01) 0.00 100.0

J=5 0.06(0.28) 0.08 94.0 0.00(0.00) 0.00 100.0 0.01(0.01) 0.00 100.0

J=10 0.09(0.32) 0.11 94.2 0.00(0.00) 0.00 100.0 0.01(0.03) 0.01 100.0

J=20 0.14(0.40) 0.17 93.2 0.00(0.00) 0.00 100.0 0.05(0.14) 0.02 100.0

One unit increase in X1

Ntotal = 500

J=5* 0.34(1.25) 1.69 93.6 0.59(1.49) 2.57 95.3 0.96(2.63) 7.86 95.3

J=5 0.34(1.26) 1.70 94.4 0.58(1.41) 2.31 94.8 0.93(2.66) 7.95 94.4

J=10 0.51(1.25) 1.83 96.1 0.71(1.59) 3.05 94.5 1.13(2.77) 8.96 97.5

J=20 0.69(1.51) 2.75 96.1 1.19(1.98) 5.33 93.9 1.33(3.31) 12.71 96.7

Ntotal = 1000

J=5* 0.11(0.95) 0.91 93.2 0.28(1.09) 1.27 92.4 0.45(2.21) 5.08 94.0

J=5 0.19(0.91) 0.86 95.9 0.21(1.04) 1.12 94.5 0.59(2.00) 4.34 95.3

J=10 0.19(0.92) 0.89 95.6 0.27(1.15) 1.40 93.0 0.56(2.02) 4.42 96.8

J=20 0.24(1.01) 1.08 96.0 0.40(1.32) 1.91 95.2 0.61(2.27) 5.53 95.6

Ntotal = 2000

J=5* 0.07(0.67) 0.46 92.4 0.06(0.81) 0.65 94.8 0.26(1.44) 2.16 92.0

J=5 0.04(0.67) 0.45 92.6 0.02(0.81) 0.66 92.8 0.22(1.42) 2.07 93.0

J=10 0.07(0.69) 0.49 95.4 0.11(0.88) 0.79 94.8 0.32(1.55) 2.49 94.4

J=20 0.16(0.79) 0.64 94.4 0.28(1.05) 1.18 95.0 0.51(1.81) 3.55 94.0
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Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

One unit increase in X2

Ntotal = 500

J=5* 0.18(1.36) 1.89 95.5 1.13(1.12) 2.54 97.7 0.72(2.88) 8.81 95.7

J=5 0.15(1.36) 1.87 95.8 1.08(1.05) 2.28 97.7 0.62(2.93) 8.95 95.8

J=10 0.35(1.51) 2.40 92.5 1.38(1.32) 3.66 97.8 0.88(3.32) 11.77 94.7

J=20 0.44(1.62) 2.81 96.5 1.84(1.67) 6.20 96.7 0.89(3.66) 14.16 96.5

Ntotal = 1000

J=5* 0.07(1.01) 1.02 94.4 0.79(0.72) 1.15 97.2 0.45(2.21) 5.08 94.0

J=5 0.09(0.98) 0.97 95.5 0.69(0.69) 0.95 98.2 0.43(2.15) 4.82 94.1

J=10 0.19(1.06) 1.15 93.4 0.93(0.91) 1.40 96.0 0.62(2.32) 5.79 95.0

J=20 0.13(1.16) 1.36 94.0 1.15(1.12) 2.57 96.0 0.38(2.72) 7.55 93.4

Ntotal = 2000

J=5* 0.06(0.70) 0.49 95.4 0.53(0.51) 0.55 97.2 0.26(1.56) 2.50 96.0

J=5 0.01(0.68) 0.46 94.4 0.50(0.49) 0.49 97.0 0.19(1.48) 2.22 94.8

J=10 0.07(0.77) 0.59 94.0 0.64(0.60) 0.77 96.4 0.33(1.73) 3.11 93.0

J=20 0.11(0.84) 0.72 95.0 0.85(0.79) 1.34 97.4 0.46(2.03) 4.32 94.6

*
Only for the rows with “*”, the correlation between the part I and part II random intercept is 0.6. For other rows without “*”, the correlations are 

fixed at 0.2.
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TABLE 2

Cross-sectional simulation results with 500 replications. Mean, median and 75th quantile of the distribution of 

Z at the baseline X1 = 0, X2 = 0, and the covariate effects comparing to baseline. True value for baseline, X1 

effect and X2 effect are: 1.58, 11.69 and 8.86 for the mean; 0.00, 5.54 and 0.00 for the median; 0.00, 22.21 and 

17.42 for 75th quantile, respectively. SD: standard deviation. MSE: mean square error. CR: credible interval 

coverage rate of the true parameter value.

Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

Baseline (X1 = 0,X2 = 0)

Ntotal = 500 0.07(0.33) 0.11 94.2 0.00(0.00) 0.00 100.0 0.01(0.04) 0.01 100.0

Ntotal = 1000 0.04(0.22) 0.05 96.2 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

Ntotal = 2000 0.02(0.16) 0.03 95.4 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

Ntotal = 4000 0.01(0.12) 0.01 94.0 0.00(0.00) 0.00 100.0 0.00(0.00) 0.00 100.0

One unit increase in X1

Ntotal = 500 0.36(1.48) 2.32 95.2 0.37(2.69) 7.35 94.4 0.46(2.60) 6.99 95.2

Ntotal = 1000 0.12(1.05) 1.12 95.0 0.09(2.00) 4.00 96.2 0.08(1.84) 3.40 95.6

Ntotal = 2000 0.13(0.75) 0.58 95.2 0.15(1.49) 2.24 96.0 0.16(1.32) 1.76 95.0

Ntotal = 4000 0.05(0.51) 0.26 95.2 −0.03(1.02) 1.03 94.8 0.05(0.91) 0.83 94.8

One unit increase in X2

Ntotal = 500 0.06(1.17) 1.36 95.8 1.37(1.25) 3.43 98.2 0.06(2.36) 5.59 94.8

Ntotal = 1000 −0.05(0.84) 0.72 93.8 0.94(0.92) 1.74 97.6 −0.15(1.70) 2.93 93.0

Ntotal = 2000 0.03(0.58) 0.34 94.2 0.71(0.67) 0.95 97.2 0.05(1.17) 1.37 95.0

Ntotal = 4000 −0.01(0.39) 0.16 95.2 0.48(0.47) 0.45 96.8 −0.04(0.82) 0.68 96.0
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TABLE 3

Spline misspecification simulation results with 500 replications for fixed total cross-sectional sample size of 

1000. True value for baseline, X1 effect and X2 effect are: 1.58, 11.69 and 8.86 for the mean; 0.00, 5.54 and 

0.00 for the median; 0.00, 22.21 and 17.42 for 75th quantile, respectively. SD: standard deviation. MSE: mean 

square error. CR: credible interval coverage2 rate of the true parameter value.

Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

Baseline (X1 = 0, X2 = 0)

K = 5* 0.04(0.22) 0.05 96.2 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

K = 7 −0.03(0.25) 0.06 92.6 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

K = 10 −0.04(0.26) 0.07 92.4 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

K = 10
+ −0.05(0.26) 0.07 91.2 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

K = 15 −0.01(0.23) 0.06 93.6 0.00(0.00) 0.00 100.0 0.01(0.01) 0.01 100.0

K = 10, J = 5 −0.42(0.48) 0.42 87.4 0.00(0.00) 0.00 100.0 0.03(0.09) 0.01 100.0

K = 10, J = 10 0.40(0.53) 0.44 88.8 0.00(0.00) 0.00 100.0 0.08(0.19) 0.04 100.0

K = 10, J = 20 0.50(0.64) 0.66 91.2 0.00(0.00) 0.00 100.0 0.24(0.44) 0.25 100.0

One unit increase in X1

K = 5* 0.12(1.05) 1.12 95.0 0.09(2.00) 4.00 96.2 0.08(1.84) 3.40 95.6

K = 7 0.48(1.06) 1.37 93.2 0.32(1.99) 4.07 93.2 0.15(2.06) 4.25 95.0

K = 10 0.61(1.12) 1.63 90.6 0.27(2.09) 4.43 93.2 0.04(2.13) 4.55 94.4

K = 10
+ −0.65(1.12) 1.64 90.6 0.24(2.00) 4.05 94.8 0.10(2.10) 4.42 93.6

K = 15 0.38(1.16) 1.47 92.0 0.37(1.67) 2.92 95.4 −0.22(2.13) 4.61 90.8

K = 10, J = 5 1.65(2.02) 6.80 87.2 0.96(2.81) 8.81 92.4 1.41(3.74) 15.95 92.6

K = 10, J = 10 1.50(2.18) 7.00 89.0 0.84(3.16) 10.69 91.8 1.07(4.17) 18.54 94.0

K = 10, J = 20 1.64(2.47) 8.79 91.2 1.04(3.49) 13.29 96.0 1.25(4.65) 23.22 94.2

One unit increase in X2

K = 5* −0.05(0.84) 0.72 93.8 0.94(0.92) 1.74 97.6 −0.15(1.70) 2.93 93.0

K = 7 0.19(0.88) 0.81 93.6 1.06(0.97) 2.06 98.2 −0.18(1.74) 3.05 93.4

K = 10 0.39(0.89) 0.95 91.4 1.19(1.06) 2.56 97.0 −0.16(1.70) 2.91 95.0

K = 10
+ 0.40(0.88) 0.93 93.0 1.08(1.00) 2.06 98.4 −0.18(1.69) 2.89 94.8

K = 15 0.24(0.89) 0.85 94.4 1.43(1.18) 3.42 97.8 −0.35(1.82) 3.42 94.0

K = 10, J = 5 1.10(1.54) 3.58 90.4 1.98(1.64) 6.60 98.6 0.78(2.96) 9.40 94.6

K = 10, J = 10 1.12(1.84) 4.61 90.8 2.28(2.07) 9.47 97.4 0.62(3.69) 13.99 94.8

K = 10, J = 20 1.18(2.02) 5.48 92.6 2.82(2.36) 13.55 97.6 0.58(4.13) 17.42 95.4

*
The correct model (same number of B-splines and knot positions as the data generating model).

+
Knot placements are determined by quantiles of the sampled simulationdata. All other knot placements are equally spaced.
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TABLE 4

Model comparison results with 500 replications for fixed total cross-sectional sample size of 2000. GG:gamma 

data, gamma model; GB: gamma data, B-spline model, J indicates the number of observations per subject 

for the longitudinal data; BG: B-spline data, gamma model; BB: B-spline data, B-spline model with correct 

number of B-spline densities and knot placement; SD: standard deviation. MSE: mean square error. CR: 

credible interval coverage rate of the true parameter value.

Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

Baseline (X1 = 0, X2 = 0)

GG 0.00(0.04) 0.00 95.6 - - - - - -

GB10* 0.05(0.05) 0.01 81.0 0.05(0.05) 0.01 74.6 0.01(0.08) 0.01 91.0

GB20* 0.01(0.05) 0.00 95.8 0.06(0.05) 0.01 76.0 0.00(0.08) 0.01 91.6

GB30* 0.00(0.05) 0.00 94.2 0.06(0.05) 0.01 74.1 0.01(0.08) 0.01 92.4

GB15+ 0.03(0.06) 0.01 93.8 0.01(0.06) 0.00 92.2 0.02(0.10) 0.01 93.4

GB15 −0.02(0.05) 0.00 87.6 0.04(0.05) 0.01 82.2 −0.02(0.08) 0.01 89.8

GB20 −0.01(0.05) 0.00 91.2 0.05(0.05) 0.01 79.6 −0.02(0.07) 0.01 90.8

GB30 0.00(0.05) 0.00 94.6 0.05(0.05) 0.01 78.6 −0.01(0.08) 0.01 92.6

GG, J=5 0.00(0.09) 0.01 93.4 - - - - - -

GB30, J=5 −0.05(0.09) 0.01 87.6 −0.09(0.08) 0.01 70.2 −0.02(0.14) 0.02 88.4

GB30, J=10 −0.03(0.11) 0.01 89.6 −0.07(0.11) 0.02 79.8 0.02(0.18) 0.03 91.4

GB30, J=20 −0.01(0.14) 0.02 92.8 −0.05(0.13) 0.02 91.2 0.06(0.21) 0.05 94.0

BG −1.74(2.58) 9.71 15.6 - - - - - -

BB −0.01(0.14) 0.02 94.0 0.33(0.55) 0.41 95.6 −0.03(0.11) 0.01 93.2

One unit increase in X1

GG −0.01(0.08) 0.01 95.8 - - - - - -

GB10* 0.03(0.09) 0.01 95.6 −0.13(0.11) 0.03 80.4 0.33(0.14) 0.13 38.2

GB20* −0.04(0.09) 0.01 94.0 −0.06(0.11) 0.02 89.0 −0.09(0.16) 0.04 93.2

GB30* −0.07(0.09) 0.01 89.0 −0.06(0.11) 0.02 89.0 −0.08(0.17) 0.03 91.4

GB15+ 0.04(0.15) 0.02 95.2 −0.01(0.17) 0.03 93.8 0.01(0.26) 0.07 95.2

GB15 0.04(0.09) 0.01 92.6 0.02(0.12) 0.01 93.4 0.01(0.17) 0.03 92.4

GB20 0.03(0.09) 0.01 93.4 0.01(0.11) 0.01 94.2 −0.02(0.17) 0.03 94.4

GB30 0.01(0.09) 0.01 95.8 −0.04(0.11) 0.01 93.6 −0.06(0.16) 0.03 93.0

GG, J=5 0.00(0.17) 0.03 93.0 - - - - - -

GB30, J=5 −0.09(0.20) 0.05 90.4 −0.10(0.22) 0.06 87.8 −0.09(0.32) 0.11 87.4

GB30, J=10 −0.11(0.24) 0.07 90.2 −0.12(0.23) 0.07 86.6 −0.19(0.34) 0.15 87.6

GB30, J=20 −0.07(0.27) 0.08 93.6 −0.08(0.25) 0.07 93.4 −0.14(0.36) 0.14 91.0

BG −3.37(0.32) 11.5 1.23 - - - - - -

BB 0.01(0.12) 0.02 94.0 −0.35(0.53) 0.40 92.2 0.02(0.13) 0.01 90.4

One unit increase in X2

GG 0.00(0.04) 0.00 95.2 - - - - - -
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Mean Median 75th quantile

Bias (SD) MSE CR Bias (SD) MSE CR Bias (SD) MSE CR

GB10* −0.04(0.06) 0.01 89.2 −0.01(0.06) 0.01 93.8 −0.03(0.09) 0.01 90.4

GB20* 0.00(0.05) 0.01 94.0 −0.02(0.06) 0.01 95.0 −0.03(0.09) 0.01 91.8

GB30* 0.01(0.05) 0.01 93.2 −0.04(0.06) 0.01 87.4 −0.04(0.09) 0.01 90.2

GB15+ 0.03(0.06) 0.00 91.6 0.03(0.07) 0.01 92.0 0.06(0.11) 0.02 90.4

GB15 0.03(0.05) 0.00 86.4 −0.02(0.06) 0.01 92.6 0.02(0.08) 0.01 90.8

GB20 −0.03(0.05) 0.00 90.4 −0.01(0.06) 0.01 93.4 0.01(0.08) 0.01 93.6

GB30 0.02(0.05) 0.00 93.2 −0.01(0.06) 0.01 94.4 −0.01(0.09) 0.01 92.6

GG, J=5 0.00(0.07) 0.01 93.2 - - - - - -

GB30, J=5 0.14(0.10) 0.03 67.0 0.13(0.08) 0.02 57.0 0.11(0.17) 0.04 74.0

GB30, J=10 0.09(0.10) 0.02 78.4 0.10(0.10) 0.02 75.2 0.01(0.18) 0.03 88.8

GB30, J=20 0.07(0.11) 0.02 89.2 0.10(0.11) 0.02 85.2 −0.02(0.19) 0.04 93.8

BG 1.54(1.73) 5.37 9.57 - - - - - -

BB 0.01(0.16) 0.03 93.0 −0.32(0.55) 0.41 95.4 0.05(0.13) 0.02 92.2

*
Knots determined by quantiles

+
Equqally spaced knots with multinomial logistic regression for part II
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TABLE 5

Distribution mean, median and 75th quantile of the number of binge drinking episodes at baseline or 

comparing to baseline at different age and sex. CI: 95% credible interval.

Covariate
Mean Median 75th quantile

Estimate CI Estimate CI Estimate CI

Baseline* 0.71 (0.41, 1.06) 0.00 (0.00,0.00) 0.00 (0.00, 0.00)

Effect of age** 4.78 (4.09, 5.52) 2.33 (0.59, 3.75) 8.80 (7.30, 10.06)

Effect of sex** 0.02 (−0.40, 0.45) 0.00 (0.00,0.00) 0.00 (0.00, 0.00)

Effect of education** 0.62 (0.28, 1.03) 0.00 (0.00,0.00) 0.00 (0.00, 0.00)

*
Standardized age=0, sex=Female, standardized education=0

**
One unit increase in standardized age or standardized education level or switching to male, comparing to baseline.
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TABLE 6

Posterior mean estimate and credible interval of model parameters for part I fixed effect coefficients (γ), 

part II fixed effect coefficients (α) and threshold parameters (λ) of the NCANDA data model. Part I random 

intercept posterior mean estimate is 3.66 (CI: 2.87, 4.58) and part II random intercept estimate is 3.81 (CI: 

2.44, 5.83).

Covariate γ α λ 2 λ 3 λ 4

Intercept −1.39 (−1.66, −1.15) −3.71 (−4.50, −3.00) 0.23 (0.03, 0.53) 1.80 (1.34, 2.27) 2.51 (1.96, 3.41)

Age 1.72 (1.55, 1.89) 1.18 (0.89, 1.49) - - -

Sex 0.02 (−0.30, 0.35) 0.20 (−0.28, 0.68) - - -

Education 0.37 (0.21, 0.54) 0.22 (0.48, −0.03) - - -
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