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Hollow vortices in shear
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An analytical method for determining the shape of hollow vortices in shear flows is
presented in detail. In a nondimensional formulation, it is shown that the problem has
one degree of freedom represented by the free choice of the nondimensionalized speed κ
at the boundary of the vortex. The solutions form two families of shapes corresponding to
vortex circulation and shear-flow vorticity having opposite or same sign. When the signs
are opposite, the shape family resembles that described by Llewellyn Smith & Crowdy
(J. Fluid Mech., vol. 291, 2012, pp. 178–200) for hollow vortices in a potential flow with
strain. As for that flow, there is a minimum value of κ below which there is no solution as
the boundary of the vortex self-intersects, while, when the signs are the same, solutions
exist for 0 < κ.

Key words:

1. Introduction

The study of two-dimensional vortices in a non-uniform background flow has attracted
the attention of many researchers in vortex dynamics because of its overall theoretical
importance and its many applications such as, for instance, flow control, geophysical
flows, turbulence. To this purpose, several vortex models has been adopted, in particular
point vortices, vortex patches and hollow vortices.

In the context of the detection of aircraft wakes, Moore & Saffman (1971) studied the
shape of finite area vortices in a two-dimensional inviscid straining flow. They considered
irrotational strain and simple shear. By modeling vortices as vortex patches, i.e. as regions
with constant vorticity, ω = const, they found steady configurations with elliptical
shapes. Kida (1981) showed analytically that the Moore & Saffman (1971) solutions
are particular steady cases of more general unsteady time-periodic solutions, in which,
depending on the shear intensity, vortices rotate preserving their elliptical shape and
varying their ellipticity. Earlier, Chaplygin and Kirchhoff had found solutions for (i)
the motion of an elliptical patch of uniform vorticity in an exterior field of pure shear;
(ii) the motion of a (symmetric or non-symmetric) dipolar vortex with a continuous
distribution of vorticity translating steadily along a straight path; and (iii) the motion
of a non-symmetric vortex dipole moving along a circular trajectory (Meleshko & van
Heijst 1994; Lamb 1932) .

Schecter & Dubin (2001) examined two-dimensional vortex motion in a shear flow with
non-uniform vorticity. In general, a vortex travels to an extremum in the background
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vorticity distribution and the rate of this migration increases with the magnitude of the
background vorticity gradient. They also found that a retrograde vortex, which rotates
against the local shear, moves orders of magnitude faster than a prograde vortex of equal
strength.

Besides the general interest in exact solutions of the Euler equations for non-trivial
flows, analytical models of vortical structures in shear flows are relevant to the Earth’s
atmosphere and oceans. Jupiter’s Great Red Spot is another example connected to the
present study on hollow vortices: the Great Red Spot is a vortical structure that interacts
with a shear flow and exhibits high vorticity in its outer region and low vorticity in its
core (see Shetty, Asay-Davis & Marcus 2010, and references therein). Vorticity has also
been put forward as a mechanism in the formation of the Solar system (see for instance
Tanga et al. 1996).

More recently, Llewellyn Smith & Crowdy (2012) solved a problem related to the Moore
& Saffman (1971) problem of vortex equilibrium in a straining flow using the hollow-
vortex model that takes that the inside of the vortex to be vacuum or, equivalently, a
zero-vorticity region bounded by a vortex sheet (in both cases, at steady state, a constant
pressure inside the core requires a constant speed at the vortex boundary). They limited
their study to the irrotational strain case and provided a closed-form analytical solution
for steady configurations.

In the present study, we enrich the scenario by giving analytical solution to the problem
of finding the shape a hollow vortex takes at equilibrium in a shear flow.

Zero vorticity, ω = 0, means that the stream function ψ is harmonic in the inside of
the vortex. When the flow is steady, ψ is constant at the boundary and, according to the
maximum principle, ψ is constant throughout the inside of the vortex. It follows that flow
velocity is zero and pressure is constant in the interior. Equilibrium then requires constant
flow speed along the exterior side of the bounding vortex sheet. The determination of the
shape of a hollow vortex shape is so reduced to a free-streamline problem, whose study
goes back to 19th century and Kirchhoff free-streamline theory. Birkhoff & Zarantonello
(1957) and Gurevich (1966) present a broad survey of this problem. Hicks (1883) and
Pocklington (1895) are examples of historic solutions for hollow-vortex shapes. More
recent studies on hollow-vortices, based on classical hodograph method or more innovative
methods, have been produced. Among many references on the matter, one can mention,
for instance, Baker, Saffman & Sheffield (1976); Lin & Landweber (1977); Crowdy &
Green (2011); Telib & Zannetti (2011); Crowdy, Llewellyn Smith & Freilich (2012); Elcrat
& Zannetti (2012); Llewellyn Smith & Crowdy (2012); Zannetti & Lasagna (2013); Elcrat,
Ferlauto & Zannetti (2014); Green (2015).

Once the problem is nondimensionalized, we show that the problem has one degree of
freedom, i.e. the solution depends on a single nondimensional parameter. The solutions
form two separate families related to opposite or same sign of shear vorticity and vortex
circulation.

When shear vorticity and vortex circulation are opposite, the solutions are analogous
to and have the same flow topology as the hollow vortices in an irrotational straining
flow studied by Llewellyn Smith & Crowdy (2012). We have selected as free parameter
the nondimensional speed κ of the flow at the boundary of the vortex. As κ → ∞ the
solution is a point vortex. For large finite values of κ the point vortex is desingularized
into a finite area vortex. As κ decreases, the vortex area increases until a maximum area
is reached and then decreases. Unlike the solution of Llewellyn Smith & Crowdy (2012),
our solution is not expressed in closed form but is obtained by a root-finding process.

In the family corresponding to the same sign of shear-flow vorticity and vortex cir-
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culation, the point vortex solution is, as above, obtained for κ → ∞. The vortex area
increases monotonically as κ decreases.

The study of stability of the solutions goes beyond the scope of the present study.
However the present analytical method of solution offers a tool for further studies on
this important aspect of the problem, following on from, for example, the linear stability
analysis described by Llewellyn Smith & Crowdy (2012) for hollow vortices in a potential
strained flow or by Crowdy et al. (2012) for Pocklington’s vortex pair.

2. Hollow-vortex structure

We consider a hollow vortex in equilibrium in a 2D incompressible flow governed by
the Euler equation. Then

∇2ψ = −ω (2.1)

where ψ denotes the stream function and ω, which is constant, the vorticity of the flow
past the vortex. At infinity the flow tends to a pure shear flow, that is,

∇⊥ψ → −ω y i as (x, y)→∞, (2.2)

where (x, y) are Cartesian coordinates and i is the unit vector along the x-axis.
The vorticity inside the vortex is assumed to be zero. As a consequence, the internal

flow is at rest, the pressure is constant at the vortex boundary and, according to
Bernoulli’s equation, the vortex boundary is a vortex sheet with constant speed q = k
on the external side. Steady flow and constant tangential velocity result in

∂ψ

∂s
= 0,

∣∣∣∣∂ψ∂n
∣∣∣∣ = k on the boundary, (2.3)

where n and s are normal and tangential directions at the boundary.
This is a free-boundary problem which requires finding the vortex shape that satisfies

the above conditions. For the sake of simplicity, a summary description of the solution is
presented in this section while a detailed description is given in the Appendices.

Briefly, the solution is obtained according to the classical conformal mapping method.
Let z = x+i y be the complex coordinate in the physical z-plane of motion and ζ = ξ+i η
the complex coordinate in a transformed ζ-plane. The solution consists in finding the
function z = z(ζ) mapping the unit circle in the ζ-plane onto the vortex contour in the
z-plane.

For flow regularity, the mapping z(ζ) has to be analytic outside the unit circle of the
ζ-plane and such that limζ→∞ z(ζ) = ∞ and the mapping derivative dz/dζ has to be
analytic and different from zero. Thus, dz/dζ can be expressed as

dz

dζ
= exp

∞∑
n=1

bn ζ
−(n−1). (2.4)

Once the coefficients bn are determined by the solution process, the mapping z(ζ) is
obtained by analytic integration, as shown in the Appendices.

In general, (2.1) is satisfied by the streamfunction

ψ(z(ζ)) = ψω + ψp = −ω
2

Im2[z(ζ)] + Im[wp(ζ)], (2.5)

where the first term ψω is the stream function of a pure shear flow whose constant
vorticity is ω and the second term ψp is the stream function of an irrotational flow whose
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complex potential is wp. Continuing, (2.2) is satisfied by setting

wp =
γ

2π i
log ζ −G(ζ). (2.6)

The complex potential wp(ζ) is made up of the combination of the complex potential
of a point vortex with circulation γ located on the origin of the ζ-plane and a complex
potential G(ζ) which is analytic for |ζ| > 1 and is finite at infinity. Hence, in general, the
latter can be written as

G(ζ) =

∞∑
n=1

cn ζ
−(n−1). (2.7)

As detailed in the Appendix, for given values of vorticity ω, point vortex circulation
γ and vortex-contour speed k, the coefficients bn, cn of the above series, truncated at a
suitably large value N , are determined by enforcing the constraints (2.3).

According to (2.5) and (2.6), Stokes’ theorem and the residue theorem, the circulation
Γ of the hollow vortex is

Γ =

∮
∂

qqq · ds = k Lc =

∮
∂

(
∂ψω
∂y

dx− ∂ψω
∂x

dy

)
+ Re

∮
|ζ|=1

dwp
dζ

dζ = ωAv + γ, (2.8)

where Av is the vortex area, and Lc is the vortex perimeter.
Let the problem be nondimensionalized by taking the absolute value of the vorticity of

the shear flow ω as reference vorticity (ωref = |ω|) and the absolute value of the vortex
circulation γ/(2π) as the reference circulation (γref = |γ/(2π)|). The reference length

and velocity become lref =
√
|γ/(2π ω)| and qref =

√
|ω γ/(2π)|, respectively.

The streamfunction of the nondimensionalized problem, written as function of ζ,
becomes

ψ(ζ) = −δ
2

Im2[z(ζ)]− τ log |ζ| − Im[G(ζ; δ, τ, κ)]. (2.9)

with δ = sgn(ω), τ = sgn(γ) and where

κ =
k√

|ω γ/(2π)|
. (2.10)

is the nondimensional velocity at the vortex boundary. For δ = τ and δ = −τ , two families
of shapes are defined by varying the parameter κ. That is, all the solutions corresponding
to given values of vorticity ω and circulation γ can be scaled onto two family of shapes.

As for Llewellyn Smith & Crowdy (2012), the general topology of the flow can be
deducted by considering the related problem of a point vortex in the same shear flow. In
the physical z-plane, the nondimensionalized stream function for the point vortex flow is

ψpv = −δ
2
y2 − τ

2
log(x2 + y2) (2.11)

Figure 1a shows the streamline pattern for δ = −τ , that is for a point vortex whose
circulation is opposite to the shear vorticity. The flow has two stagnation points and a
separatrix that divides a finite body of recirculating fluid entrained by the vortex from
the external non-recirculating flow driven by the shear flow.

Figure 1b shows the case of equal sign point-vortex circulation and shear vorticity
(δ = τ). There are no stagnation points and all the streamlines are closed. Close to the
point vortex the streamline shapes are near-circular, while far away the shear flow makes
them more and more elongated.
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a) b)

Figure 1. Streamline patterns of the point vortex solution: a) δ = −τ ; b) δ = τ
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Figure 2. Hollow vortex streamlines for δ = −τ and κ = 2.

2.1. The δ = −τ case

We first consider the solutions for δ = −τ = −1 for different values of κ. It is obvious
that the δ = −τ = 1 choice generates the same flows streaming in reversed direction.

An example of solution is provided by figure 2 where the flow field has been drawn
for κ = 2. By varying the parameter κ, a hollow vortex solution can be continued onto
a family of vortices with different shapes and areas. Hollow-vortex shapes are displayed
in figure 3a for given values of the nondimensionalized speed κ in the range 1.32 6 κ.
As κ→∞ the solution tends to a zero-area vortex, that is, to the point-vortex solution.
As κ decreases the point vortex is desingularized into more and more elongated vortices
with finite area. The nondimensional area α = Av/l

2
ref is plotted versus κ in figure 3b).

For κ = κ? ≈ 1.6, the vortex area reaches a maximum. As κ decreases, the shapes start
to resemble those computed by Llewellyn Smith & Crowdy (2012) for hollow vortices in a
strain flow (n = 2 in their notation; see their figures 2 and 3), with a limiting value for κ
below which there is no solution as the boundary starts to self-intersect. This outcome is
expected for κ < κ?, where a decrease of speed at the vortex contour is accompanied by a
decrease of the vortex area. In nondimensional form (2.8) yields κ lc = 2π τ+δ α, where lc
is the nondimensional length of the vortex contour. In the present case δ = −κ = −1 and
the contour length becomes lc = (2π−α)/κ. As κ decreases it becomes longer and, since
the vortex area is getting smaller, it will eventually self-intersect. The pinch-off happens
between κ = 1.32 and κ = 1.31 (the numerical procedure will produce self-intersecting
shapes as κ continues to decrease). An explanation of such an agreement might be given
by noticing that a shear flow can be decomposed into a strain flow plus a rigid body
rotation: ψsh = ψst + ψω, with

ψsh = −(ω/2) y2, ψst = (ω/4) (x2 − y2) and ψω = −(ω/4) (x2 + y2),
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Figure 3. Hollow vortices for δ = −τ . Left panel: vortex shapes for κ = 1.4, 1.5, 1.6, 1.75, 2,
2.25, 2.5, 3, 3.5, 4; right panel: nondimensionalized vortex area vs. κ.
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Figure 4. Streamline pattern for δ = τ and κ = 1.5.

and that the streamline pattern for a hollow vortex in a strain flow has the same topology
as for a δ = −τ hollow vortex in a shear flow (see figure 2). By taking a normalization
analogous to the present one for the problem examined by Llewellyn Smith & Crowdy
(2012), that is by selecting, according to their notation, the strain factor γ and the vortex
circulation Γ as reference values, a nondimensionalized speed κ̃ of the vortex contour can
be defined which results in a monotonically decreasing function of the parameter µ used
in their study. As a consequence, the behaviour of area versus µ in their figure 3(b) has
the same behaviour of our plot of area versus κ shown by the present figure 3.

2.2. The δ = τ case

Figure 4 shows the streamline pattern for δ = τ = 1 and for κ = 1.5. As discussed
above, this solution appears as a desingularization of the point vortex solution shown in
figure 1b). The entire flow field consists of closed streamlines and there are no stagnation
points. By varying the vortex contour speed κ, the solution can be continued to vortices
with different areas. Vortex shapes are drawn for given values of κ in figure 5a, the
corresponding area values are plotted on figure 5b. As κ → ∞ the solution tends to a
zero area vortex, that is, to the point vortex solution. As κ decreases the vortex shape
elongates and the area increases. The limit as κ → 0 is an infinite stagnant strip above
and below bounded by two shear flows with zero velocity at the strip boundary. This is
reminiscent of the limit of the solution of Baker et al. (1976) when the vortices in the
array start to touch and the array reduces to a strip.

3. Concluding remarks

The paper presents in detail an analytical method for determining the shape of hollow
vortices in shear flows.
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Figure 5. Hollow vortices for δ = τ . Left panel: vortex shapes for κ = 0.75, 1, 1.25, 1.5, 2, 3;
right panel: nondimensionalized vortex area vs. κ.

In a nondimensional formulation, it is shown that the problem has one degree of
freedom represented by the free choice of the nondimensional flow speed κ at the vortex
contour. For κ → ∞ the solution tends to the point vortex flow. For finite values of κ,
the solution is desingularized into finite area vortices. The solutions form two families of
shapes which correspond to vortex circulation and shear-flow vorticity having opposite
sign (γ ω < 0) or equal sign (γ ω > 0).

For γ ω < 0 the family of shapes resembles that described by Llewellyn Smith &
Crowdy (2012) for hollow vortices in strained potential flows. As for that family, there is
a value of κ for which the vortex area reaches a maximum, and there is also a minimum
value of κ below which there is no solution as the vortex contour self-intersects.

For γ ω > 0, the area of the vortex is a monotonic decreasing function of κ. For κ→∞
the solution tends to the zero-area point vortex. Solutions exist for arbitrary small values
of κ and that for κ→ 0 the vortex shape tends to an infinite strip.

The method intrinsically looks for steady solutions, thus oscillating solutions à la Kida
(1981) are not considered and cannot be excluded.

The authors would like to thank Daniel Freilich for carrying out calculations to verify
the results for small values of κ.

Appendix A. Coefficient series determination

The series coefficients bn and cn in (2.4) and (2.7) are computed by a fixed point
iteration or zero-finding process.

According to (2.9) and (2.6), the complex velocity u− i v, written as function of ζ, is

u− i v = −δ Im[z(ζ)]−
(

i τ

ζ
+

dG

dζ

)
1

dz/dζ
. (A 1)

Let ũ and ṽ be the normal and tangential components of the flow velocity at the vortex
boundary, the complex velocity ũ− i ṽ becomes

ũ− i ṽ =

[
(u− i v)

dz/dζ

|dz/dζ|
ζ

]
|ζ|=1

. (A 2)

We assume that τ is positive (τ = 1), as a consequence ṽ is positive and conditions (2.3)
become ũ = 0 and ṽ = κ, that is

Re

(
dG

dζ
ζ

)
|ζ|=1

= Re

[
−δ Im(z(ζ))

dz

dζ
ζ

]
|ζ|=1

(A 3)
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and ∣∣∣∣dzdζ

∣∣∣∣ =

{
Im[δ Im(z(ζ)) ζ dz/dζ) + ζ dG/dζ + τ

κ

}
|ζ|=1

. (A 4)

Let the series (2.4), (2.7) be truncated at a suitably large value n = N (in our
computations we have set N = 128). The process is started by assuming a set of values
for the bn coefficients. A starting guess of bn = 0 for n = 1, ..., N for the largest value
of κ was used, after which κ was decreased and the previous value of bn was used as
the starting guess. As shown below, (A 3) allows the computation of a first set of cn
coefficients, then (A 4) allows the coefficients bn to be updated. The process is repeated
until the absolute maximum difference between old and new values of the coefficients bn
falls below a given threshold D (we set D = 10−10). For large enough values of κ (around
1.5 for the case δ = −τ and 1.2 for the case δ = τ), a fixed-point iteration was used in
which the new values of bn replace the old. For smaller values of κ, a multi-dimensional
root-finding algorithm (fsolve in Matlab) to find zeros of the difference between old and
new coefficients.

For |ζ| = 1, so that ζ = eiϕ, (A 3) can be recast as

Re

[
N∑
n=1

Cn e−i (n−1)ϕ

]
= Re

[
−δ Im(z(ζ))

dz

dζ
ζ

]
|ζ|=1

. (A 5)

with Cn = −(n − 1) cn. Once old values of the right-hand side are evaluated at 2N
equispaced points of the ζ-plane unit circle, the computation of a new set of cn (n 6= 1)
coefficients can be obtained through the discrete Fourier transform. The coefficient c1 is
an additive constant to the potential G(ζ) (2.7) which can be arbitrarily chosen.

Then (2.4) yields

log

∣∣∣∣dzdζ

∣∣∣∣ = Re

(
N∑
n=1

bn ζ
−(n−1)

)
(A 6)

and (A 4) can be recast as

Re
(∑N

n=1 bn e−i (n−1)ϕ
)

=

log

{
Im[δ Im(z(ζ)) ζ dz/dζ) + ζ dG/dζ] + τ

κ

}
|ζ|=1

.
(A 7)

A new set of values for bn is obtained by the discrete Fourier transform of the right-
hand side evaluated at 2N equispaced points of the ζ-plane unit circle by means of the
old bn values, needed to evaluate the z(ζ) and dz/dζ terms, and by means of the updated
cn coefficients, needed to evaluate the dG/dζ term.

The mapping z(ζ) is given by the indefinite integral z(ζ) =
∫

(dz/dζ) dζ, that is

z(ζ) =

∫
exp

N∑
n=1

bn ζ
−(n−1)dζ. (A 8)

The Laurent series expansion of the integrand yields

exp

N∑
n=1

bn ζ
−(n−1) ≡

N∑
n=1

an ζ
−(n−1). (A 9)

We show below that there is a closed-form analytic relationship between the coefficients
an and bn having the form aj = f(b1, ..., bj). Since the closure condition of the vortex
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implies that
∮

(dz/dζ)|ζ|=1dζ = 2πi a2 = 0, the integral (A 8) is

z(ζ) = a1 ζ −
N∑
n=3

an
n− 2

ζ−(n−2). (A 10)

All the solutions here found are symmetric with respect to the x, y axes. As a consequence
the computed an, bn are all real and equal to zero for even n indexes.

Appendix B. The aj = f(b1, ..., bj) relationship

We set

σ = exp s(t) (B 1)

with

s =

N∑
n=1

bnt
n−1. (B 2)

For t = 1/ζ, the identity (A 9) becomes

σ ≡
N∑
n=1

an t
n−1 (B 3)

The coefficients an can be found as coefficients of the McLaurin series expansion or,
equivalently, as residues at t = 0 of σ, that is

an = Res

(
σ

1

tn

)
t=0

=
1

(n− 1)!

(
dn−1

dtn−1
σ

)
t=0

. (B 4)

The first coefficient clearly is a1 = eb1 . The subsequent coefficients an are obtained
by evaluating the right-end side of (B 4) with a recursion formula which avoids actual
onerous derivations. In fact, the first derivative of σ is

dσ

dt
= σ

ds

dt
(B 5)

and, according to the general Leibniz rule for derivation of products, the higher order
derivatives result in

dj+1σ

dtj+1
=

dj

dtj

(
σ

ds

dt

)
=

j∑
k=0

j!

k! (j − k)!

dkσ

dtk
dj−k+1s

dtj−k+1
. (B 6)

For t = 0, this gives (djs/dtj)t=0 = j! bj+1, thus the values of the σ derivatives are given
by the recursion formula(

dj+1σ

dtj+1

)
t=0

=

j∑
k=0

j!

k!

(
dkσ

dtk

)
t=0

(j − k + 1) bj−k+2, (B 7)

which, according to (B 4), yields

aj+1 =
1

j

j−1∑
k=0

(j − k)ak+1bj−k+1, with j = 1, 2, ...N − 1, (B 8)

where the starting value is a1 = eb1 .
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