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Abstract

The P300 Speller Brain-Computer Interface (BCI) provides a means of communication for those 

suffering from advanced neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). 

Recent literature has incorporated language-based modelling, which uses previously chosen 

characters and the structure of natural language to modify the interface and classifier. Two 

complementary methods of incorporating language models have previously been independently 

studied: predictive spelling uses language models to generate suggestions of complete words to 

allow for the selection of multiple characters simultaneously, and language model-based classifiers 

have used prior characters to create a prior probability distribution over the characters based on 

how likely they are to follow. In this study, we propose a combined method which extends a 

language-based classifier to generate prior probabilities for both individual characters and 

complete words. In order to gauge the efficiency of this new model, results across 12 healthy 

subjects were measured. Incorporating predictive spelling increased typing speed using the P300 

speller, with an average increase of 15.5% in typing rate across subjects, demonstrating that 

language models can be effectively utilized to create full word suggestions for predictive spelling. 

When combining predictive spelling with language model classification, typing speed is 

significantly improved, resulting in better typing performance.
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Introduction

Neurodegenerative diseases such as ALS restrict an individual’s ability to fully engage with 

his or her surroundings by interrupting crucial cell signalling processes between the brain 

and the peripheral nervous system. Brain-computer interface systems including the P300 

speller present a promising alternative to traditional communication methods by translating 

neural signals into text, effectively bypassing the affected pathways [1]. Subjects using the 

P300 focus on a target character in a grid while stimuli consisting of highlighted rows and 

columns are presented. When the target character is highlighted, a response signal is evoked, 

which can be detected to determine the target character. Current challenges to the P300 

system include a low signal to noise ratio (SNR), which slows down typing speed, as several 

stimuli are necessary to achieve an accurate signal reading. Studies have attempted to 

accelerate typing speed by optimizing different aspects of the system, including grid size [2–

4], system parameters [5–7], stimulus presentation methods [3,8], signal processing methods 

[9–12], and stimulus types [13].

The domain of natural language has been well studied in other fields such as speech 

recognition and this knowledge can be used to aid in any communication system [14]. By 

modelling the patterns and structures of natural language, typing speed and accuracy can be 

improved, and other features such as word completion or automatic error correction can be 

added [15]. One language-based method that has been shown to significantly improve the 

speed of BCI systems is predictive spelling (PS), which allows users to type completed 

words. Similar to methods used in text messaging [16] and augmentative and alternative 

communication (AAC) devices [17], systems with PS analyse previous character selections 

to suggest full words to the user. One of the earliest implementations was presented by Ryan 

et al. [18], who directed P300 output to Quillsoft WordQ2 (version 2.5, Quillsoft, Ltd, 

Toronto, ON), assistive software which suggested word completions, which could then be 

selected by typing corresponding numbers from the standard interface. This implementation 

offered a significant improvement in the number of characters typed per minute in 

comparison to the standard paradigm, but had lower selection accuracy. Kaufmann et al. [19] 

implemented a similar approach, which integrated PS into the graphical interface of the 

P300 speller by replacing numbers with the most common words from a corpus of German 

newspaper articles. Streamlining the presentation of the suggested selections significantly 

improved the number of characters selected per minute, but also maintained the accuracy 

from the non-PS paradigm.

While these PS implementations have been shown to improve performance over the standard 

system, they have the shortcoming that they give all suggested words the same weight during 

selection, regardless of their relative likelihood. Another effective implementation of 

language models in the P300 speller has been to provide prior probabilities for character 

selections. These models use corpora of text to determine character probabilities based on 

those previously selected. Early examples used naïve Bayes or hidden Markov models to 

incorporate n-gram language models, which demonstrated significant improvements in 

system speed and accuracy [20–25]. More sophisticated language models have been 

implemented using sampling methods such as particle filtering (PF) to further improve 

accuracy by giving stronger prior probabilities to target characters and automatically 
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correcting errors [26]. We hypothesize that these methods can be extended to provide 

probabilities for suggested words by weighting them based on their relative frequencies.

The goal of this study was to extend a previously reported PF method for P300 signal 

classification to create word suggestions for PS [26]. Using a word-based language model, a 

probability distribution over possible character and word targets is made by sampling the 

possible targets in the model. The resulting distribution provides both a set of suggested 

target words, and a probability distribution over the possible selections that is used as a prior 

probability. We compared online performance using the modified model with that using the 

standard PF model in a set of healthy subjects to determine whether incorporating PS yields 

improvements over using language models for prior probabilities alone.

Materials and Methods

Data Collection

All data was acquired using g.tec amplifiers, active EEG electrodes, and electrode cap 

(Guger Technologies, Graz, Austria); sampled at 256 Hz; referenced to the left ear; 

grounded to AFZ; and filtered using a passband of 0.1 – 60 Hz. Additional artifact detection 

(e.g., eye blink detection) was not performed and it was left to the classifier to determine 

whether a signal contained a valid ERP. The electrode set consisted of a previously reported 

set of 32 electrodes [7]. The subjects for the online study consisted of 12 healthy volunteers 

with normal or corrected to normal vision between the ages of 20 and 35. The system used a 

6 × 6 character grid, famous faces stimuli [13], row and column flashes, and a stimulus onset 

asynchrony of 125 ms. During sessions with PS enabled, suggested words appeared on the 

top row of the grid and the numbers 1–6 were removed (Figure 1). Using the standard 

interface, a 3.5-second gap was included between characters to allow subjects time to find 

the next character in the sequence. When PS was enabled, this gap was increased to five 

seconds to allow for the additional task of checking suggested word completions for the 

target word.

Each experimental session consisted of three training trials followed by two online testing 

trials, one with and one without PS. Each training trial consisted of copy spelling a 

preselected 10-character phrase. For the online portion, subjects were instructed to decide on 

a phrase of their choosing that consisted of approximately 10 words. For each of the online 

trials, the subject had five minutes to spell as much as they could of their phrase using the PF 

classifier with and without PS enabled. Counterbalancing was realized by flipping a coin to 

determine whether PS would be enabled in the first or second online trial. Subjects were 

instructed not to correct errors and to repeat the phrase if they completed it in under five 

minutes. If the system incorrectly picked a word completion, subjects were instructed to 

move to the next word rather than attempting to continue spelling the current word.

BCI2000 was used for data acquisition and online analysis [27]. Statistical analysis was 

performed using MATLAB (version 8.6.0, MathWorks, Inc, Natick, MA).

Speier et al. Page 3

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Language Model

The model of the English language used in this study is identical to the probabilistic 

automata model described previously by Speier et al. [26]. This model consists of a directed 

graph with states for every substring that starts a word in the corpus, starting with a blank 

root node (Figure 2). Each node has directed edges to nodes that add a single character to the 

string. Thus, a model of a vocabulary consisting only of the word “THE” would result in 

four states: the root node representing a blank string, “T,” “TH,” and “THE.” When the word 

“THAT” is added to the model, it shares the root node and the “T” and “TH” states, and adds 

two additional states: “THA” and “THAT.” The state “TH” then links to both the states 

“THE” and “THA.”

States that represent completed words contain links back to the root node to begin a new 

word. The state “THE,” for instance, links to the root because “THE” is a complete word, 

but it also is the beginning of other words so it has additional links to other states such as 

“THEM” or “THEY.” Transition probabilities are determined by the relative frequencies of 

substrings in the Brown English language corpus [28].

p xt x0: t − 1 =
c(xm: t)

∑xt′
c(xm: t − 1, xt′)

=
c(xm: t)

c(xm: t − 1) (1)

where m is the index of the last root node in the sequence x0:t−1, and c(xm:t) is the number of 

occurrences of words that start with the string xm:t in the corpus. For instance, the 

probability of typing the letter “E” after “TH” has already been entered is found by dividing 

the number of occurrences of words that begin with “THE” by the number of times words 

start with “TH” in the corpus. Similarly, the probability that a word ends and the state 

transitions back to the root is the ratio of the number of times that word occurs in the corpus 

over the number of word occurrences starting with that substring.

Classifier

Because it is impractical to compute the probability distribution over all possible strings 

typed by the user in real time, the probability distribution is estimated using the PF classifier. 

This classifier estimates the probability distribution over possible outputs by sampling a 

batch of possible realizations of the model (i.e., a batch of output strings that could have 

been typed by the user). Each of these realizations is called a particle, which contains a 

pointer to a node in the model and represents one possible configuration of the model at a 

given time. Each of these particles moves through the language model independently, based 

on the model transition probabilities. Low probability realizations are periodically replaced 

by more likely realizations by resampling the particles based on weights derived from the 

observed EEG responses. The algorithm estimates the probability distribution of the possible 

output strings by finding the proportion of the particles that point to each state after they 

have moved through the model.
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In order to determine the probability that the user is attempting to type a given character xt 

based on the observed signals, stepwise linear discriminant analysis (SWLDA) is used to 

select a set of signal features to include in a discriminant function [29]. During training, the 

algorithm uses ordinary least-squares regression to predict class labels and iteratively adds 

the most significant features and removes the least significant features until either the target 

number of features was met or it reached a state where no features were added or removed 

[10]. The score for flash i for character t, yt
i, can then be computed as the dot product of the 

feature weight vector with the features from that trial’s signal. It has been shown that scores 

can be approximated as independent samples from a Gaussian distribution given the target 

character [19].

f (yt
i xt) =

1
2πσa

2exp − 1
2σa

2 yt
i − μa

2 i f xt ∈ At
i

1
2πσn

2exp − 1
2σn

2 yt
i − μn

2 i f xt ∉ At
i

(2)

where μa, σa
2, μn, and σn

2 are the means and variances of the distributions for the attended and 

non-attended flashes, respectively, and At
i is the set of characters highlighted in flash i. The 

conditional probability of a target at time t given the EEG signal and the previous target 

characters x0:t−1 can then be found:

p xt yt, x0: t − 1 αp(yt xt)p(xt x0: t − 1)αp(xt x0: t − 1)∏i f yt
i xt (3)

where p(xn|x0:n−1) is the prior probability of character xn given the previously selected 

characters, determined from the language model. Because the previous target characters are 

unknown, it is necessary to compute the probability over all possible output strings. This 

computation is impractical, so the distribution needs to be estimated using sampling methods 

such as particle filtering.

In particle filtering, a set number of samples (i.e., particles) are created to estimate the 

distribution over the language model. Each particle j consists of a link to a state in the 

language model, xt
(t); a string consisting of the particle’s state history, x0:t

(t); the index of the 

last time the particle was in the root node, m; and a weight, w(j). When the system begins, a 

set of P particles is generated and each is associated with the root node with an empty 

history and a weight equal to 1/P. At the start of a new character, a sample character xt
(t) is 

drawn for each particle from the proposal distribution defined by the language model’s 

transition probabilities from the particle’s history, x0:t−1
(t).
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xt
( j) ∼ p(xt x0: t − 1

( j)) (4)

where p(xt|x0:t−1
(j)) is provided by the language model as in equation 1. When a particle 

transitions between states, its pointer changes from the previous state in the model, xt−1, to 

the new state xt The history for each particle, x0:t
(t), is stored to represent the output 

character sequence associated with that particle. After each stimulus response, the score for 

that response, yt
i, is computed and the probability weight is updated for each of the particles:

wt
( j)αp yt xt

( j) α∏i f yt
i xt (5)

where f yt
i xn

j  is computed as in equation 2. The weights are then normalized and the 

probability of an output string is found by summing the weights of all particles that 

correspond to that string.

p x0: t y1: t = ∑k wt
(k)δx0: t

x0: t
(k)

(6)

where δ is the Kronecker delta. Dynamic classification was implemented by setting a 

threshold probability, pthresh, to determine when a decision should be made. The program 

flashes characters until either maxxt
p xt y1: t = maxxt

Σx0: t − 1
p x0: t y1: t ≥ pthresh or the 

number of sets of flashes reached the maximum (10). The classifier then selects the string 

that satisfied argmaxx0:tp(x0:t|y1:t). If characters in this output differ from the previous output 

text, the previous characters are assumed to be errors and are replaced by those in the current 

string. A new batch of particles, xt
*, are then sampled from the current particles, xt, based on 

the weight distribution, wt. Each of the new particles are then assigned an equal weight 

wt
*(j)=1/P. The subject then moves on to the next character and the process then repeats with 

the new batch of particles. The optimization of pthresh is impractical for online experiments, 

so a previously reported value of 0.95 was used for all trials [17].

Predictive Spelling

When PS is added to the model, the same classifier and language model are used, but the 

projection step is modified in order to estimate the probabilities of potential completed 

words. When particles are being projected, a proportion, ρ, of them continue moving 

throughout the model until they reach the root node. Figure 3 contains pseudo-code 

describing the process of particle projection in the PS enabled model. Note that because 

particles can move multiple steps in one transition, the length of the particle history can now 

be greater than t, so it is denoted n. Each particle can have different values of n and m; the 

subscript j is omitted for these values here for simplicity.
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After projection, the probability distribution over words is found by summing the weights of 

particles that have been projected forward to completed words

p(x y1: t) = ∑
k: xn

(k) = ′_′
wt

(k)δx
xm:n
(k)

(7)

The top K of these words are then added to designated locations in the character grid (Figure 

1). EEG responses associated with flashing those cells are applied to the particles that have 

been projected to those words. Particles that were projected to lower probability words are 

given zero probability and will be replaced during the next resample phase. In this study, the 

probability of a complete word selection was set empirically to 0.40 and six word 

suggestions were presented to the user.

Evaluation

Evaluation of a BCI system must take into account two factors: the ability of the system to 

achieve the desired result and the amount of time required to reach that result. Because there 

is a trade-off between speed and accuracy, evaluation in BCI communication literature is 

traditionally based on the mutual information between the selected character, x, and the 

target character, z, referred to as the bit rate (BR).

BR = ∑z p(z)∑x p(x z)log p(x z)
p(x) (8)

In the most common metric, information transfer rate (ITR), the probabilities for all 

characters are assumed to be the same p x = 1
N  where N is the size of the alphabet (36)) 

and errors are assumed to be uniform across all possible characters, so

p(x z) =
ACCc x = z

1 − ACCc
N − 1 x ≠ z

(9)

whereACCc =
Σtδxt

zt

n  is the single character accuracy and n is the total number of characters 

selected. This reduces the bit rate to

BR = logN + ACCclogACCc + (1 − ACCc)log
1 − ACCc

N − 1 (10)

This is then multiplied by the average number of characters selected per minute (CPM=n/

time) to produce the ITR [26].
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ITR = BR * CPM (11)

One problem introduced by including PS is that sentences including erroneous word 

completions could be a different length from the target. Comparing at the character level no 

longer works in this case. One solution is to base accuracy on Levenshtein distance (LD) 

(i.e., the minimum number of insertions, deletions, and replacements required to convert x 

into z) [30]. We then have ACCc = n − LD x, z
n  and the equations above hold.

It has previously been pointed out that ITR overestimates the amount of information 

conveyed by the system because characters do not occur with equal frequency [31]. Also, the 

amount of information that ITR assigns to a word is based largely on the word’s length. This 

metric assigns a significantly higher amount of information to incorrect strings that are share 

characters to the target, regardless of whether they make syntactic sense or possibly confuse 

the meaning (table 1). An alternative would be to base the metric on word frequency 

p Z′ = c z′
c * . The accuracy can then be computed as the fraction of correct words 

ACCW =
Σtδx′t

z′t

n′ , resulting in a conditional probability of a selection:

p(x′ z′) =
ACCW y = z′

(1 − ACCW) p(x′)
1 − p(z′) y ≠ z′

(12)

The bit rate then becomes

BR′ = ∑z′ p(z′) ACCWlog
ACCW
p z′ + 1 − ACCW log

1 − ACCW
1 − p(z′) (13)

The mutual information can then be found by multiplying by the words selected per minute 

WPM = n′
time .

MI = BR′ * WPM (14)

Because the distributions for speeds, accuracies, and bit rates are not normally distributed, 

significance was tested for all metrics using Wilcoxon signed-rank tests.
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Results

EEG response

Subjects demonstrated a negative inflection in their EEG responses at a latency of 200 ms, 

and a positive inflection at a latency of 300 ms (Figure 4). These responses are consistent 

with the N200 and P300 responses that have previously been reported when using famous 

faces stimuli [13]. No significant difference was found between the EEG responses when 

subjects were focusing on single characters versus the suggested completed words.

Online performance

Using traditional evaluation metrics, all 12 subjects were able to type characters with at least 

80% accuracy using each of the algorithms and all but one of the subjects were able to type 

at least 10 characters per minute (Table 2). When PS was enabled, 6 of the 12 subjects 

achieved at least 95% accuracy and a typing speed over 12 characters/minute.

Nine of 12 subjects achieved a higher bit rate when using PS than when using the PF method 

alone. When using the PF algorithm alone, subjects selected and average of 11.16 

characters/ minute with 96.79% accuracy, resulting in an average bit rate of 53.89 bits/

minute. When incorporating PS, subjects achieved significant speed improvements, with an 

average CPM of 12.72 characters/minute (p=0.002) and an average bit rate of 59.39 bits/

minute (p=0.046). PS resulted in a small accuracy decrease that was not statistically 

significant (p=0.71).

When using word-level metrics, 10 of 12 subjects achieved a higher bit rate when using PS 

than when using the PF method alone. Using the PF algorithm, subjects typed an average of 

2.19 words/minute with 89.86% accuracy, resulting in an average bit rate of 13.79 bits/

minute. Incorporating PS resulted in significant speed improvements, with an average WPM 

of 2.53 words/minute (p<0.0001) and an average bit rate of 16.54 bits/minute (p=0.0012). 

When considered on the word level, PS also saw a small accuracy increase that was not 

statistically significant (p=0.21).

Discussion

Overall, incorporating PS increased typing speed using the P300 speller, with an average 

increase of 15.5% in typing rate across subjects. The speed increase of 1.6 characters/minute 

on average was comparable to the previous studies by Ryan et al. (1.5 characters/minute) 

[18] and Kaufmann et al. (1.6 characters/minute) [19], although from a much higher baseline 

(11.2 characters/minute compared to 3.76 characters/minute and 2.01 characters/minute, 

respectively). This increase was primarily a result of the ability to choose multiple characters 

at once. The actual rate of selections decreased, mainly due to the extra time allotted 

between characters for checking the suggested words, but the additional characters typed 

during word completions more than offset this decrease (Table 4). The amount of benefit 

provided by PS is largely tied to the length of the words the subject wishes to spell and the 

frequency of the words in the corpus, which influences how many characters the subject 

must type before it becomes a suggestion. For uncommon words, the PS method was 

actually detrimental to typing rate as subjects were required to type out most or all 
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characters at a lower speed. In aggregate, however, PS was beneficial as all but one of the 

subjects saw increased WPM values.

By incorporating PS, word accuracy increased from 89.85% to 92.56%, while character 

accuracy decreased from 96.79% to 94.80%. While this decrease was not statistically 

significant, it could have occurred because incorrect word completions can be drastically 

different from the target word, resulting in several incorrect characters in the same word. 

Output using PS therefore has fewer incorrect words, but those words that are typed 

incorrectly often have more errors than when typing without PS. It is possible that incorrect 

words can contain some additional information about the word the user was attempting, 

which could mean that words that are close to the target could convey more information than 

those with multiple errors. However, this information is usually dependent on the target and 

erroneous words as well as the surrounding context. For instance, erroneously replacing a 

word with a different part of speech can make the error obvious, allowing the reader to use 

context to figure out the target. If the error is the same part of speech as the target, however, 

the new sentence can be grammatically correct, but with different meaning. Future studies 

can analyse a reader’s ability to understand the meaning of typed strings in the presence of 

errors to determine the true effect on the information conveyed.

The benefit of the PS option is tied directly to the user’s ability and preference to use it. 

Even with PS enabled, the user has the choice to ignore suggestions and instead continue to 

spell out words one character at a time. If PS is enabled and not used, it likely reduces 

spelling speed because of the increased pause between characters. It can also reduce 

accuracy because a fraction of the particles are reserved for selections, so the system is 

effectively operating on a reduced number of particles and, therefore, a less precise 

estimation of the probability distribution. For instance, the phrase chosen by subject L 

contained the word ‘WANT,’ which after two selections, was included as one of the 

suggested options. The subject instead spelled out the word using individual characters 

despite the fact that the correct word remained in the list of completions for each of the last 

three selections. The inability for this subject to locate suggestions likely contributed to the 

fact that he had slower typing speed using PS. Increased use could have allowed this subject 

to become more familiar with the system and therefore take full advantage of the potential 

improvements PS provides. In another instance, subject J chose a six-word phrase where two 

of the words were relatively low probability in the model and were never offered as 

completions. This subject was therefore required to type these words out completely, 

resulting in a lower typing speed when PS was enabled. A corpus more targeted towards 

words the specific user is likely to type would make typed words appear as options sooner, 

thereby improving the performance of a system with PS.

Limitations and future directions

The language model used in the current system does not allow for words that are outside of 

the vocabulary (OOV) because they did not appear in the training corpus. Previous models 

have allowed for such words by using character patterns, such as n-grams, rather than 

requiring full words from the corpus [20,24,32]. However, these methods have been shown 

to be less effective than the model used in this study [26]. A model that has the capabilities 
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of both of these frameworks can be created by introducing smoothing, which effectively uses 

the word-based model for words that appeared in the corpus, but then reverts to a character-

based model for OOV words. Similar methods have been previously used for smoothing 

between high dimensional character models to simpler ones [33,34]. Implementing such a 

method would be advantageous in a realistic setting where subjects are likely to want to use 

words that are uncommon in general language such as proper nouns.

Because EEG signals are susceptible to various sources of noise, it could be beneficial to 

add filters specifically designed to remove artifacts. Artifacts that are uncorrelated with the 

target stimulus (e.g., background noise, wire movement, spurious eye blinks) would likely 

decrease signal-to-noise, thereby reducing the accuracy of the system. If artifacts are 

consistent and correlated with the target stimulus (e.g., the subject moves or blinks after 

every target stimulus), then they may artificially inflate system performance. While we did 

not observe movements or unusual blinking patterns by subjects during trials, future studies 

could use monitors such as eye trackers to verify that this was not taking place.

This study was conducted using healthy volunteers who did not have the same constraints as 

“locked-in” patients, such as restrictions to eye gaze. While the classifier used in this study 

was previously tested in the ALS population [15], it is unclear whether the added 

requirement of checking word suggestions will be more difficult and therefore offset the 

gains seen by typing multiple characters at once. The healthy subjects in this study generally 

had no problems with the additional cognitive task of scanning through the suggested words, 

and therefore appreciated the added speed that predictive text afforded. However, it is 

possible that this additional task will make the system more taxing for ALS patients, which 

could make it less practical despite the performance increase. Commercial systems based on 

eye tracking such as the Tobii Dynavox system (Tobii Technology, Inc., Stockholm, 

Sweden) already incorporate word suggestions, so it is likely that PS will be beneficial in the 

target population. However, future studies in the ALS population should be conducted to 

determine how these results in healthy subjects translate to affected population. If predictive 

text is a hindrance to some subjects, subjects still have the option to ignore the suggestions 

and type out individual characters, so incorporating predictive text should not ever hinder a 

subject’s ability to use the system.

Conclusion

Language models used for improving classification speed and accuracy in the P300 speller 

can be effectively utilized to create full word suggestions for PS. When combining PS with 

language model classification, typing speed is significantly improved, resulting in better 

typing performance. Using these methods can make evaluation difficult because the 

assumptions of traditional metrics are violated. Evaluating on a word level can overcome 

some of these difficulties to more accurately evaluate P300 performance.
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Figure 1. 
Images of the character grids used in standard (a) and predictive spelling (PS) (b-d) trials. In 

PS trials, the six most likely words are presented in the top row of the grid given the 

previously typed characters. Three examples are shown with no entered text (b), after 

entering the letter ‘H’ (c), and after entering the string “HE” (d).
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Figure 2. 
Example model of a vocabulary consisting of the words “AT,” “THE,” “THEM,” and 

“THAT.” Shaded states represent complete words that have links back to the root node.
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Figure 3. 
Pseudo-code for projection of particles.

Speier et al. Page 17

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Average stimulus response for subject B for attended (solid) and non-attended (dashed) 

stimuli in online trials when attending on a signal character (a) or a completed word (b). 

Signals are averaged across four channels: CPZ, POZ, PO7, and PO8
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Table 1.

Bit rate values using the information transfer rate (ITR) and mutual information (MI) methods as well as word 

and character accuracies (ACCW and ACCC, respectively) for example output strings resulting from attempts 

to type the string “HELLO_WORLD_.” The numbers marked with an asterisk are obtained by using 

Levenshtein distance to compute accuracy. Using the new method, the information rate for incorrect words is 

the same regardless of word length or similarity to the target.

Typed text ACCC ITR ACCW MI

HELLO WORLD_ (target) 100 43.00 100 14.66

HELLO WOULD_ 91.7 41.43 50 5.93

HELLO WHIRL_ 66.7 27.63 50 5.93

HELLO PLANET_ 50* 24.95* 50 5.93
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Table 2.

Selection rates (CPM), accuracies (ACCC), and information transfer rates (ITR) for each subject in online 

spelling using the particle filter (PF) classifier with and without predictive spelling (PS) enabled.

CPM
(characters/minute)

ACCC (%) ITR (bits/minute)

PF PF-PS PF PF-PS PF PF-PS

A 11.68 15.07 97.92 100.00 57.45 77.89

B 11.41 14.07 100.00 100.00 58.99 72.72

C 10.34 13.35 98.04 87.69 50.98 53.40

D 11.78 14.27 89.66 96.77 49.02 68.48

E 10.20 11.26 94.00 92.86 46.26 49.90

F 11.30 13.51 98.21 82.09 55.91 48.27

G 10.45 12.07 96.15 100.00 49.49 62.38

H 12.28 14.23 100.00 98.57 63.51 71.01

I 12.23 12.25 96.72 85.51 58.62 46.90

J 9.84 9.56 100.00 100.00 50.86 49.41

K 11.42 12.64 100.00 100.00 59.02 65.34

L 10.96 10.35 90.74 94.12 46.57 47.04

Average 11.16 12.72 96.79 94.80 53.89 59.39
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Table 3.

Word level metrics for online trials consisting of the number of words typed per minute (WPM), the 

percentage of words typed correctly (ACCW), and the mutual information (MI) between the target and typed 

sentences when using the particle filter (PF) classifier with and without predictive spelling (PS) enabled.

WPM (words/minute) ACCW (%) MI (bits/minute)

PF PF-PS PF PF-PS PF PF-PS

A 1.87 2.25 83.33 100.00 10.57 16.49

B 2.24 2.78 100.00 100.00 16.43 20.39

C 2.43 3.05 91.67 87.50 15.65 18.40

D 2.37 2.79 75.00 92.86 11.71 18.24

E 1.84 2.41 88.89 83.33 11.33 13.65

F 2.37 2.70 83.33 78.57 13.44 14.14

G 2.21 2.53 81.82 100.00 12.21 18.51

H 2.29 2.65 100.00 92.86 16.80 17.37

I 2.17 2.42 90.91 83.33 13.80 13.69

J 1.90 1.88 100.00 100.00 13.91 13.78

K 2.14 2.37 100.00 100.00 15.69 17.37

L 2.45 2.52 83.33 92.31 13.89 16.38

Average 2.19 2.53 89.86 92.56 13.79 16.54
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Table 4.

Example online output for typing with and without predictive spelling (PS). Each row is the result of subject H 

attempting to spell “WISE MEN SAY FORGIVENESS IS DIVINE BUT NEVER PAY FULL PRICE FOR 

LATE PIZZA” for five minutes. Bold characters are errors and underlined characters are those selected using 

PS.

Method Output

Target WISE MEN SAY FORGIVENESS IS DIVINE BUT
NEVER PAY FULL PRICE FOR LATE PIZZA

PF WISE MEN SAY FORGIVENESS IS DIVINE BUT
NEVER PAY FULL PRICE F

PF-PS WISE MEN SAY FORGIVENESS IS DIVINE BUT
NEVER PAY FULL PRICE FAR LATE P
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