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REVIEW ARTICLE OPEN

Paradigm shift required for translational research on the brain
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Sehyun Chae6, Edward A. Dennis 7 and Pann-Ghill Suh8

© The Author(s) 2024

Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and
the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ
from those of conventional biomedical research. For example, there are different scientific interpretations due to the high
complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited
conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has
been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-
centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools.
Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic
advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved
questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and
discusses the future of biomedical research on the brain.
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INTRODUCTION
Biomedical research has recently led to the successful manage-
ment of several diseases, contributed to human health, and
advanced the global healthcare agenda. Notably, biomedical
research has successfully controlled diverse medical crises,
including smallpox, pneumonia, and appendicitis1. Furthermore,
mortality was reduced by approximately 48% from 1930 to the
end of 1970, which is estimated to have resulted from active
biomedical research2.
The field of biomedical research in the brain is still a budding

research area with many unsolved questions3 first posed by
ancient theoretical and religious concepts and now addressed
by modern empirical research4. However, unlike diseases that
have been solved with the advancement of modern science, the
causes of most brain disorders remain unclear. This could be
due to several specific limitations that are unique to conven-
tional brain research, such as complex brain anatomy,
difficulties obtaining human brain samples, the large gap
between animal and human studies, and ethical limitations,
especially in psychiatric disorders5–7. Approximately 100 years
ago, physicist Emerson Pugh said, “If the human brain were so
simple that we could understand it, we would be so simple that
we could not.” Nevertheless, brain research has rapidly
advanced over the past few decades in various fields, such as
medical science, pharmacology, biology, and engineering8.
Research in each discipline is maturing rapidly in terms of

biomedical applications and development9. Notably, as the
demand for high-performance tools has increased10,11, new
high-performance materials12,13 and devices have been devel-
oped14,15. Moreover, cumulative databases have become
invaluable references for all studies involving the identification
of genomes, proteomes, and small molecules16,17. Recently, the
integration and analysis of cumulative large-scale databases has
become a tractable approach for understanding the brain
connectome18,19.
The paradigm shift in translational research is a top-down

method that preanalyzes patient-centered data and conducts
data-based basic research and clinical/utilization research to
overcome the limitations of conventional translational research.
Collecting and analyzing patient-centered big data involves
acquiring the maximum amount of data through various high-
throughput analysis tools, enabling us to collect and merge
data and derive meaningful results. Interdisciplinary collabora-
tion leads to a comprehensive understanding20 and can provide
new insights. Consequently, interdisciplinary collaborative
research produces better results with synergistic benefits21,22.
On this basis, interdisciplinary collaborative brain research can
become a powerful framework for overcoming brain diseases
through new approaches to translational research. Therefore,
this review presents the in-depth aspects of conventional
biomedical research and discusses the future of biomedical
brain research.
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HISTORY OF BRAIN RESEARCH
The interest in human brain research can be traced back to
ancient times. The oldest known surgical text dates back to circa
1600 BCE in Egypt. It describes the restriction of head movement
to treat trauma caused by a weapon, infection prevention
methods, and bleeding control methods23. The first understand-
ing of cranial structures, brain surface structures, and cerebrosp-
inal fluid and 48 trauma cases were also recorded. Egyptians were
believed to be knowledgeable about brain trauma and its
importance. By the Renaissance, the anatomical diagram of the
human brain was almost complete24. Since then, biomedical brain
research has progressed to identifying brain structures, functions,
and mechanisms. Therefore, empirical biomedical brain research
has evolved according to time trends. In 1791, Luigi Galvani
observed convulsions in frogs’ legs when they were in contact
with a metal dissecting knife. This experiment was the first to
show that an electric current can flow among living muscles,
nerves, and cells and has become the basis for the development
of electrophysiology25.
Camillo Golgi developed Golgi staining in the 1860s, and

Ramon Cajal used it to reveal that neurons are the units that
constitute the brain and are connected in a network. The
discovery of neurons, the basic elements of the brain, in the early
20th century became the cornerstone of full-scale empirical brain
research. Since then, many studies have investigated bioelectrical
phenomena such as membrane potential, electrocardiography,
electroencephalography, neuronal cell function, chemical trans-
mission, nerve fibers, ion-transport mechanisms of nerve cell
membranes, and cerebral function and information processing in
the cerebral and visual cortex.
In the middle of the 20th century, empirical and detailed

research was conducted on the behavior of neurons. This research
elucidated the brain’s anatomical structure, but its information
processing was poorly understood. It was later revealed that
dozens of chemicals transmit information between neurons. In
1936, Henry Hallett Dale and Otto Loewi discovered and proved
that acetylcholine was a chemical transporter of nerve impulses,
and they won the Nobel Prize for their discovery26. In 1963, ion-
based mechanisms associated with excitation and inhibition were
discovered in the central and peripheral parts of the cell
membrane, termed “action potentials” by John Carew Eccles, Alan
Lloyd Hodgkin, and Andrew Fielding Huxley27.
The invention of the microscope led to the explosive

development of biological research, including brain research.
After Ernst Abbe’s diffraction limit (λ/2, where λ is the wavelength
of light) was published in 1873, Stefan W. Hell developed
stimulated emission depletion microscopy, which overcame the
resolution limit of conventional optical microscopes using a laser
excitation beam28. Since then, researchers have been able to
observe objects <0.2 µm, enabling the understanding of viruses,
interactions between individual proteins in cells, and even smaller
molecules29. Since the early 2000s, superresolution fluorescence
microscopy, especially stochastic optical reconstruction micro-
scopy developed in 2006, has been used to randomly turn on and
off fluorescent molecules to separate molecules on the time axis,
overcoming the resolution limit and obtaining a high resolution of
approximately 20 nm30. Furthermore, advances in molecular
optics technology, including optical devices and sensors, have
led to the development of nanoscopic techniques, enabling
molecular and structural imaging of synapses and contributing to
the study of physiological functions31,32. Since the brain is a large
neural network, identifying the functions of each neuron is crucial.
However, identifying the entire connected network and under-
standing its interactions are also critical33. Therefore, the working
scale of research has moved from the microscale to the
mesoscale34. Additionally, tissue transparency technology, which
was first described in 2013, allows the internal structure of a given
tissue to be observed in three dimensions after removing the lipid

from the tissue and making it transparent, enabling observation of
the entire brain35. Brain imaging at various scales has accelerated
the study of neural circuits36–38. One of the most vital advance-
ments in brain research has been the development of measure-
ment equipment that can measure brain function externally and
analyze the brain’s electrical signals. Since then, noninvasive brain
imaging techniques such as in vivo and magnetic resonance
imaging (MRI) have been developed. In 1973, Laterbur developed
an imaging technique based on nuclear magnetic resonance
technology; the technique was named nuclear magnetic reso-
nance imaging and is now commonly referred to as MRI39. MRI
enables noninvasive examination; provides information on the
chemical structure of substances within a short examination
duration; is useful for diagnosing diseases of the nervous system,
such as the brain or spinal cord, which cannot be observed using
radiographic scanning; and has great clinical value. The combina-
tion of MRI with positron emission tomography (PET), which
displays biochemical images in three dimensions using positron-
emitting radioisotope labels, results in a system capable of
ultrasensitive molecular and high-resolution functional imaging,
which is invaluable for understanding the physiology and function
of the brain.

CONVENTIONAL BIOMEDICAL RESEARCH
Basic information
Conventional biomedical research includes the following proce-
dures: observation/result analysis, target discovery, and research
for basis/application. In conventional biomedical research,
advances in medical diagnostics and treatment depend on a
comprehensive understanding of epidemiological findings or
pathophysiological processes40. Gathering data from studies,
evaluations, and interpretations involving humans completes the
framework of conventional biomedical research, which has
contributed greatly to maintaining human health. In observa-
tion/result analysis, researchers use biotechnology to observe
biological and pathological differences between disease and
normal states41, design appropriate experiments to confirm these
differences in a controlled system42, and subsequently evaluate
the experimental results using reliable biotechnology and analyze
the results using an appropriate statistical approach43. In the
target discovery step, the analysis provides targets (specifically,
molecular targets)44. In the next step, a technology for regulating
the discovered targets is developed, the mode of action (basic and
necessary data on the target regulatory action)45,46 is investigated,
and the therapeutic potential for diseases is investigated by
expanding the range from the cellular level to the entire organism
level47. Notably, a human-level clinical trial involves multiple
stages in which safety and effectiveness are closely examined48.
This process alone is a long and complex research stage that
requires approximately 10 years49. New drugs for several diseases
are being developed through conventional biomedical research. A
summarized history of these drugs is presented in the Supple-
mentary Information, including Supplementary Table 1. We
selected some of the major causes of global mortality, as ranked
by the World Health Organization between 2019 and 2020, and
the representative diseases that have significantly impacted
human history50.
Considering the latest accomplishments, conventional biome-

dical research seems to have advantages and disadvantages. It has
provided more accurate and detailed knowledge in specific and
detailed research fields51. Furthermore, in-depth development of
research using animal models has been achieved. However, there
are some limitations to the conventional approach. First, in most
studies, academic scientists with relatively limited clinical knowl-
edge select animal and human participants for observational
analyses; therefore, the selection criteria and results remain
suboptimal52. Furthermore, there may be bias in classifying and
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comparing healthy participants and those with specific diseases in
medical research due to the relative lack of clinical knowledge.
Selection bias could lead to shortfalls in knowledge acquisition.
Second, interpreting the effects of various drug candidates in
preclinical disease animal models for reasons such as the low
genetic concordance rate with humans is difficult. The results of
preclinical animal studies are often insufficient to directly predict
or alleviate human diseases53,54. However, prioritizing preclinical
animal models is still a reasonable consideration, and several
researchers depend heavily on animal models. Third, until
recently, most results have been based on short-term cellular
and animal experiments; however, these findings likely differ from
findings in humans due to various factors. Limitations exist in
predicting effectiveness and toxicity in humans because of
deficiencies in experimental design strategies and biased species
variance; however, animal studies are still performed. Fourth,
existing biomedical studies evaluating hypotheses in clinical trials
have been conducted on several patients. These hypothesis-
driven studies have limitations in investigating heterogeneous
and multifactorial diseases, and actual human clinical samples are
difficult to collect. Therefore, in unbiased large-scale collection
and clinical data analysis, it is challenging to identify patterns and
generate actionable predictions regarding disease progression.
Moreover, even though the new drug candidates developed
through conventional biomedical research undergo numerous
expensive tests, only <10% of the compounds have been
approved with sufficient efficacy and adequate toxicity results to
meet the predictive value of preclinical studies52. Table 1
summarizes the advantages and disadvantages of conventional
biomedical research.

Conventional biomedical research on the brain
Neurodegenerative diseases. Using conventional biomedical
research, the observation and exploration of clinical symptoms
led to the discovery of several neurodegenerative brain diseases,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis55–57, and various systemic diseases. These brain
diseases have unique characteristics that can be used to
distinguish them from other diseases58–60. For example, in 1892,
Paul Blocq and Georges Marinesco discovered senile plaques for
the first time in the brain of a patient who died from epilepsy58.
Furthermore, senile plaques were observed in patients with
dementia, and in 1910, they were named “Alzheimer’s disease” by
a physician named Alois Alzheimer, who observed them along
with significant shrinkage of the hippocampus and neurofibrillary
tangle59. With advancements in technology, the abnormal
accumulation of amyloid plaques and tau proteins has become
known as a pathological hallmark of AD. Therefore, numerous
studies have focused on developing amyloid- and tau-related
treatments. However, most of these treatments have failed in
clinical trials because the exact causes of amyloid and tau
accumulation are still unknown61. For AD, 76% of agents in phase
III trials in 2016 were disease-modifying therapies, including

amyloid- and tau-targeted agents, whereas by 2022, only 29% of
the agents in phase III trials were disease-modifying therapies62,63.
Additionally, AD is reportedly associated with mitochondrial
dysfunction, oxidative stress, and neuroinflammation64,65, and
many studies on the development of treatments for these aspects
have been conducted, but the success rate is still extremely low.
Treatments for neurodegenerative diseases such as AD, which

have poorly understood underlying mechanisms, are difficult to
develop using a conventional biomedical research approach.
Therefore, the current treatment for neurodegenerative diseases
relies only on clinically observed pathological symptoms and is
aimed merely at symptom improvement. For instance, the
widespread loss of cholinergic neurons and overactivation of
N-methyl-D-aspartate (NMDA) receptors in the brains of patients
with AD have been identified, and cholinesterase inhibitors and
NMDA receptor antagonists are commonly used to alleviate AD
symptoms66. In patients with PD, the loss of dopaminergic
neurons in the midbrain, dopamine precursors, dopamine
agonists, and L-3,4-dihydroxyphenylalanine decarboxylase inhibi-
tors have been identified, and catechol-O-methyl transferase
(COMT) inhibitors are used to relieve PD symptoms67. Current
treatments for neurodegenerative diseases provide symptomatic
relief, but there is no conclusive evidence that they can
fundamentally cure the disease. Additionally, because neurode-
generative diseases are gradually progressive, patients are on
medication for prolonged durations, leading to the need for
increased dosages and various side effects68. Therefore, novel
treatments that differ from the currently used conventional
methods should be developed. Table 2 summarizes the clinically
approved drugs for treating neurodegenerative diseases69–73.

Psychiatric disorders. Mental illnesses have been described since
ancient times; however, any true understanding of their nature
was impossible, as they were considered a supernatural phenom-
enon caused by displeased gods, eclipses, curses, or sin71. As with
most brain diseases, experience-based treatments and exploration
of the molecular mechanisms involved in psychiatric disorders
occurred almost simultaneously.
Psychiatric disorders began to be established from a somato-

genic perspective in the 19th century74. Chlorpromazine (CPZ) was
originally synthesized as a possible potentiator of general
anesthesia and was accidentally developed as an antipsychotic
drug75. Henri Laborit, a French surgeon, used cocktail lytique to
prevent surgical shock and observed that when 50–100mg of CPZ
was injected intravenously, it prevented shock and induced
relaxation and sedation without loss of consciousness76. Since
then, CPZ has been significantly effective in relieving hallucina-
tions, delusions, and disorganized thought in patients with
schizophrenia77. Since the development of CPZ, many drugs,
including thioridazine, haloperidol, and pimozide, with similar
effects have been synthesized, but their molecular mechanism
was unknown. Then, it was discovered that these drugs bind to
dopamine receptors78. Therefore, because clomipramine, a

Table 1. Advantages and disadvantages of conventional biomedical research.

Advantages - Ethical and legal research

- More accurate and detailed knowledge in specific and detailed research fields

- In-depth advances in biomedical research using animal models

Disadvantages - Academic scientists select the participants for observational analysis

- Animal models (nonhuman level) having a low genetic concordance rate with human models are primarily used in drug
development

- Short-term experiments are the major basis for understanding

- Clinical trials have limitations in terms of investigating heterogeneous and multifactorial diseases
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tricyclic antidepressant, was found to be effective in reducing
obsessive symptoms, the serotonin hypothesis for obsessive-
compulsive disorder was proposed79,80. A role of gamma-
aminobutyric acid (GABA) in mood disorders was proposed based
on the clinical observation that valproic acid was effective in
patients with bipolar disorders81. Psychiatric disorders are
estimated to account for 13% of the global burden of disease,
surpassing cardiovascular diseases and cancer82. However, accu-
rate mechanisms have not yet been discovered, and only a few
patients receive basic treatment83. Translational research can
reveal novel treatments; however, it requires a coordinated effort
at the disciplinary and national levels.

Other brain diseases. Attention deficit hyperactivity disorder
(ADHD) is a neurodevelopmental disorder that affects 5% of
children globally84. Its exact cause is unknown, but many risk
factors, including norepinephrine and dopamine imbalances,
have been identified85. The most common and effective
medications to regulate norepinephrine are psychostimulants,

including methylphenidate and dexamphetamine85,86. These
treatments are effective; however, they have many side effects,
such as decreased appetite, behavioral rebound, irritability,
sleep problems, and tic exacerbation87,88. Epilepsy is one of the
most common neurological disorders, affecting approximately
65 million people globally89,90. The exact cause of epilepsy is
unknown; however, it is closely associated with neurodegen-
eration, ADHD, and stroke91–93. There have been significant
advances in epilepsy treatment, including calcium ion channel
and GABA transporter modulators, over the past few decades;
however, one-third of patients are still fighting the disease,
even with the currently available medications94. As described
above, there are different types of brain diseases, including
neurodegenerative, psychiatric, and neurodevelopmental dis-
orders, but their treatments overlap and are limited. This is
because the exact etiologies are unknown, and in most cases,
the cause has been identified as an imbalance of neurotrans-
mitters, including dopamine and serotonin. Therefore, a
paradigm shift is needed in translational brain research. Brain

Table 3. Clinically approved drugs for psychiatric and other brain diseases.

Conditions Therapeutic drugs Mode of action Reference

Schizophrenia Chlorpromazine D2 receptor antagonist 95,96

Haloperidol

Risperidone

Olanzapine

Obsessive-compulsive disorder Clomipramine Serotonin reuptake inhibitor 97,98

Fluvoxamine CYP2C19 inhibitor (inhibits the metabolism of clomipramine)

Citalopram Serotonin reuptake inhibitor

Fluoxetine Selective serotonin reuptake inhibitor

Bipolar disorder Lithium carbonate Dopamine neurotransmission inhibitor 99,100

Valproic acid Voltage-gated sodium channel blocker

Carbamazepine Sodium channel blocker

ADHD Methylphenidate Dopamine and noradrenaline transporter inhibitor 84,101

Dexamphetamine Dopamine reuptake inhibitor

Epilepsy Phenobarbitone Barbiturate 102,103

Carbamazepine Sodium channel blocker

Diazepam GABA receptor agonist

Table 2. Clinically approved drugs for treating neurodegenerative diseases.

Conditions Therapeutic drugs Mode of action Reference

Alzheimer’s disease Donepezil Cholinesterase inhibitor 69,70

Rivastigmine

Galantamine

Memantine NMDA receptor antagonist

Parkinson’s disease Levodopa Dopamine precursor 71,72

Pramipexole Dopamine agonist

Ropinirole

Selegiline Dopamine agonist
MAO-B inhibitorRasagiline

Entacapone COMT inhibitor

Multiple sclerosis Teriflunomide Dihydro-orotate dehydrogenase inhibitor 73

Dimethyl fumarate Protects against oxidative stress-induced cellular injury and loss

Fingolimod Sphingosine 1-phosphate receptor agonist

COMT catechol-O-methyl transferase, MAO-B monoamine oxidase B, NMDA N-methyl-D-aspartate.

J.H. Yoon et al.

1046

Experimental & Molecular Medicine (2024) 56:1043 – 1054



diseases are more complex than systemic diseases. Conse-
quently, special attention should be given to interdisciplinary
efforts that provide a comprehensive view of the entire brain.
Table 3 summarizes the available drugs for psychiatric disorders
and other brain diseases, excluding treatments that are also
used for various psychiatric diseases84,95–103.

EMERGING TECHNOLOGIES
Neuroimaging
Neuroimaging is a noninvasive technique that is used to scan
brain structures or functions in humans and animals at the macro
level. There are various promising tools for brain imaging: MRI,
functional MRI (fMRI), PET, electroencephalography (EEG), and
magnetoencephalography. The simultaneous provision of differ-
ent types of important information, such as structural, functional,
and molecular information and temporal changes, makes
neuroimaging an emerging high-throughput analysis toolkit.
MRI uses nuclear magnetic resonance to create images of brain

structures39, whereas fMRI uses blood oxygenation level-
dependent contrast to observe the degree and area of brain
activation in humans10. PET observes changes in metabolic
processes and blood flow by measuring positrons emitted by
radioactive tracers11. EEG measures the brain’s electrical activity
mainly generated by nerve cells104, whereas magnetoencephalo-
graphy measures the magnetic field change derived from the
brain’s electrical activity105.
In the history of neuroimaging, blood flow changes have been

associated with brain function106. This has underpinned the
significant progress in functional brain imaging with the devel-
opment of fMRI and PET over the past 30 years107. When the brain
structures are damaged, brain function can be disrupted. This is
because the neural system is substantially flexible and organizes
neural networks through regional interactions. Conversely, it is
locally rigid and maintains the specificity of neural responses to
brain functions that are specialized to separate regions. These
properties underlie the principles describing the brain’s functional
organization: segregation and integration108. Functional segrega-
tion was defined as “localizationism” by Franz-Joseph Gall
(1758–1828), Johann Spurzheim (1776–1832), and Paul Pierre
Broca (1824–1880), who stated that a function is specialized to a
particular anatomical region. Therefore, injuries or lesions in that
region can cause loss of function.
Conversely, according to Marie Jean Pierre Flourens

(1794–1867), Kurt Goldstein (1878–1965), and Karl Lashley
(1890–1958), functional integration implies networks of interac-
tions among specialized regions. The loss of intact connections in
a network causes functional loss. Deficient global integration or
local segregation is associated with functional brain organization.
Therefore, the functional manifestations of local brain regions
have been increasingly used to understand brain diseases.
Consequently, recent neuroimaging methods can be used as a
translational approach in neuroscience to investigate how brain
structures and functions are linked to genetic variations and
disease manifestations.
Combining basic neuroscience, neuroimaging, and clinical

applications to develop diagnostic methods for brain diseases
has recently emerged as an intermediary approach in neu-
roscience. Therefore, a better understanding of the symptoms of
brain disease is becoming possible109. Notably, numerous
neuroimaging studies have attempted to diagnose neurovegeta-
tive diseases such as AD, PD, amyotrophic lateral sclerosis, and
chronic traumatic encephalopathy. Recent advances in neuroima-
ging techniques and data analysis methods that provide the
means to test the underlying organization of brain structure (MRI),
function (fMRI), and metabolism (PET) from the microscopic to the
macroscopic level have enabled this research. Therefore, brain
injuries and neurodegenerative brain diseases can be linked

through translational neuroimaging, which may provide new
insights for biomedical research. For example, traumatic brain
injury (TBI) studies using animal models are becoming increasingly
important to match neuroimaging findings in humans with
pathophysiological results in animals110. The idiosyncratic features
of human TBI, such as heterogeneity, severity, temporal patho-
physiology, and different brain systems, challenge the clinical
application of mild TBI in animal models111. Nevertheless,
translational neuroimaging results may explain the similarities
and differences between humans and animals in terms of the
effects of TBI112. In particular, resting-state fMRI in humans and
mice demonstrated dynamic functional changes in mild TBI,
wherein deficits and recovery occur over time112,113. Therefore,
neuroimaging plays an important role in translational neu-
roscience because it is the cornerstone of in vivo measurements.
However, its use for the collection and utilization of other types of
data is limited.
The high cost of using neuroimaging methods such as MRI and

PET can make translational neuroscience based on neuroimaging
difficult; therefore, using a large database led by neuroimaging
consortia, such as the UK Biobank (n= 35,735), the Human
Connectome Project (n= 1200), and the Alzheimer’s Disease
Neuroimaging Initiative (n > 1800), is increasingly essential114. The
more neuroimaging data that are shared, the more studies can
progress by sharing thousands of individuals’ MRI, fMRI, and PET
data for basic neuroscience, neuroimaging, and clinical studies. A
large amount of data has been used to derive reliable results in
replicability and longitudinal studies115,116.
Therefore, recent neuroimaging studies have attempted to

combine multimodal117–120, and multispecies121,122 data to inter-
pret brain structural and functional changes based on the
underlying mechanism123. The advantages of multimodal neuroi-
maging include high spatiotemporal resolution, improved data
quality, and understanding of the anatomical basis of functional
activity. However, the disadvantages are different resolutions, data
complexities, and sample sizes123–125. Nevertheless, whether
neuroimaging results are consistent with the results derived from
different data types remains unclear due to the current lack of
mining of multimodal data.

Multiomics
Technological advances in high-throughput platforms for omics-
based analysis, including genomics, transcriptomics, proteomics,
metabolomics, and lipidomics, have greatly contributed to
understanding human health, medicine, and diseases126. Geno-
mics and transcriptomics identify genetic variants and multi-
factorial targets associated with diseases; however, predicting the
biological effects of individual variants is difficult due to
epigenetic, transcriptional, and posttranslational modifications.
Proteomics quantifies protein abundances and posttranslational
modifications such as glycosylation, phosphorylation, and ubiqui-
tination127. With improved mass spectrometry-based methods,
thousands of proteins in a patient’s tissues or body fluids can be
identified simultaneously. Therefore, proteomics can provide
comprehensive information about actual protein functions and
cellular processes associated with disease pathogenesis. However,
compared with genomics, proteomics still has insufficient cover-
age at the genome level due to several technical issues (such as
ionization efficiency for poorly responding peptides)128. Moreover,
there are weak correlations between each type of omics data
(transcripts versus proteins), mostly reflecting reactive processes,
such as cellular half-life, RNA/protein degradation, splicing, and
posttranslational modifications129. Since the etiology of most
diseases involves multiple factors, it is impossible to focus on one
factor, and diagnosis and treatment are difficult128. Therefore,
comprehensive technology integration is required to identify
disease-related factors. The integrative approach combines
individual omics data sequentially or simultaneously to
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understand molecular/intermolecular interactions130. Metabolo-
mics, especially lipidomics, uses mass spectrometric techniques
similar to those of proteomics but analyses the products of
metabolism, in which enormous numbers of metabolites vary with
disease state131–136.
To date, multiomics approaches have been applied to cancer

biology. In cancer diagnosis and treatment alone, multilevel
information, such as mutation, fusion gene, RNA, and protein level
expression changes, is needed137,138. Omics analyses have helped
to elucidate key mechanisms involved in cancer onset, treatment
resistance, and the risk for recurrence. Notably, integrative
multiomics analyses have provided more comprehensive mole-
cular signatures to identify cancer subtypes139,140. Recent
advances in omics analysis and data archiving and processing
have provided reliable data141. There have been global efforts to
obtain new molecular information by which to treat and diagnose
cancers by reproducibly obtaining and integrating omics informa-
tion142. The Cancer Genome Atlas (TCGA) of the United States
National Cancer Institute (NCI) provides multiomics datasets
(including genomic, transcriptomic, epigenomic, proteomic, and
phosphoproteomic data) from >20,000 patients across 33 cancer
types to aid in the discovery of molecular signatures to diagnose,
treat, and prevent cancer143. The International Cancer Genome
Consortium (ICGC), a genomics and informatics consortium that
started in 2007, began the 25 K project for genome analysis of
25,000 primary untreated cancers144. Analysis of whole-genome
cancer (Pancancer Analysis of Whole Genomes project) started in
2013, and > 3000 eligible whole-cancer genomes of several cancer
types are currently being analyzed144,145. The ICGC aims to
accelerate genomic oncology research (Accelerating Research in
Genomic Oncology project), where key clinical queries and patient
clinical data drive the inquisition of cancer genomes. Clinical trials
provide a unique resource of multiomics data from patients with
cancer to accelerate the discovery of new therapies146. The Clinical
Proteomic Tumor Analysis Consortium was formed and centered
on the U.S. NCI by applying proteomics technology147. Tumor
Analysis Consortium databases contain all the clinical information
of patients with cancer147,148. Notably, all proteomics-based
technologies, such as sample preparation, peptide generation,
chemical labeling, mass spectrometry, and data processing, are
optimized and shared149. The Tumor Analysis Consortium project
has created and provided novel proteomic results for cancer
biomarkers and targets150,151. Projects to discover new mechan-
isms and target molecules through multiomics analysis of diverse
diseases are being actively undertaken as joint research between
countries151.
Analysis of trace molecules in single cells is becoming the aim

for identifying causes of diseases. Due to efforts such as the
development of single-cell isolation methods and the improve-
ment of cell resolution, the omics layer can be analyzed integrally
at the single-cell level152,153. Additionally, multiomics technology
development has greatly increased our understanding of the
critical pathways that influence complex cell physiology and
secondary metabolite production154. Multiomics involves compar-
ing and interpreting vast amounts of experimental data and
performing customized statistical analysis; therefore, it is time-
consuming, requires professional manpower, and imposes a
considerable overall economic burden. However, the diversifica-
tion of analysis, interpretation, and visualization of multiomics
data to overcome these limitations has led to improvements in
methods, devices, and processes130,155.
Multiomics also involves several computational techniques for

the integrative analysis of multiomics datasets. An unsupervised
model-based method, multiomics factor analysis, integrates
multiple datasets and finds principal sources of variability156.
iCluster, capable of identifying genomic features that mostly
influence biological variation, uses joint latent variable models to
characterize molecular subtypes157. It also successfully synthesizes

the complexity of multiomics data through machine learning (ML),
deep learning (DL), and network-based feature extraction and
transformation method development158,159. Multiomics advances
are revolutionary; therefore, incorporating truly integrated mul-
tiomics analysis can rapidly advance precision medicine. Efforts
are ongoing to develop an analytical infrastructure to effectively
create, analyze, and annotate multiomics data160.

Artificial intelligence
The data obtained from basic and clinical research for translational
studies are heterogeneous and large in scale161,162. These data
span from the microscale to the macroscale, include human and
animal data, and include molecular, cellular, regional, whole-brain,
behavioral, and even textual information163,164. Therefore, inno-
vative methods may be required to integrate and process these
complex data.
Notably, various artificial intelligence (AI) types have been

suggested since John McCarthy coined the term “artificial
intelligence” in 1956165,166. In particular, ML, which enables
learning from experience, has various applications, including
classification, prediction, and generalization through supervised or
unsupervised routes167. In the medical field, it has been
successfully applied to determine the prognosis and diagnosis
of diseases166,168. However, the performance of conventional ML
significantly depends on the feature selection and extraction
process, which DL does not require169. Recently, DL, a type of ML,
has grown exponentially, supported by the development of
various algorithms, big data, and hardware such as graphic
processing units170–172. DL involves a kind of neural network with
multiple and deep layers; however, it can learn from raw data,
features on hidden layers, and results173.
Thus far, DL has successfully performed neuroscience analysis,

including analyses of DNA/RNA sequences, metabolomic data,
proteomic data, microscopy images, and MRI data174–180. For
example, DL has been successfully applied to drug discovery,
which is a costly and time-consuming process. DL can identify
drug targets, biomarkers, and druggability181. Moreover, DL can be
used to confirm drug-target interactions and drug‒drug combina-
tions182,183. DL is a high-throughput tool because the large
chemical and protein space makes it difficult for conventional
methods to search for and identify the characteristics of any
appreciable fraction of all possible combinations182,183. Generative
DL techniques have recently emerged and have been applied in
neuroscience. Since the generative adversarial network was
introduced in 2014184, many generative adversarial network
variants have been developed to classify diseases and for disease
progression modeling and synthetic data generation185. Genera-
tive adversarial networks can produce plausible data. Therefore, a
small amount of data for EEG, MRI, and multimodal neuroimages
were augmented186–188, and missing multiomics data could be
handled by generative DL189,190.
The next step for translational research involves developing

methods to handle heterogeneous and multimodal data, a
problem of algorithms, hardware, and computational systems.
Nevertheless, we expect progress to be rapid and on a large scale
with promising outcomes. Emerging high-throughput analysis
tools, including neuroimaging, multiomics, and AI, can help
researchers conduct large-scale biomedical research that induces
a paradigm shift for conventional research. Figure 1 presents a
streamlined workflow for new biomedical research using high-
throughput analysis tools.

NEW DIRECTIONS IN TRANSLATIONAL RESEARCH
With conventional research methods that proceed from basic to
clinical, we can fully understand living organisms; however, these
methods have limitations in overcoming diseases191. Furthermore,
academic fields have been self-focused and fragmented due to
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relatively slow technological advances in scientific fields, including
intercommunication methods141. However, academic research
fields are maturing and achieving success in applications based
on robust fundamental backgrounds, such as electronic engineer-
ing. Based on this maturity of academic research fields and
intercommunication tools, the current era is truly of smart
communication.
A new era is coming for biomedical research, representing a

paradigm shift192. We have presented emerging high-throughput
analysis tools such as neuroimaging, multiomics and AI technol-
ogy193–195. These tools enable patient-centered and large-scale
biomedical research196 and can ultimately drive a new approach.
In new translational research, various high-throughput analyses of
patients, clinical data utilization, personalized diagnostics, and
treatment through the discovery of target molecules by multio-
mics are involved. Furthermore, the emergence of interdisciplinary
cooperative studies involving basic science and engineering will
provide insight into how unresolved questions in biomedicine can
be solved197,198. Interdisciplinary collaborative studies could
include core capability enhancement by securing large-scale data,
development of analysis technology, and application of AI
technology to data integration and interpretation.
Figure 2 presents a scheme of new translational research

combining interdisciplinary collaborative research. It starts with
multilayered patient-centered research and includes patient data
acquisition steps on micro- and macroscales163,164. Since this step
requires multilayered analysis with high reproducibility and
reliability, high-throughput analysis tools such as multiomics and
imaging and corresponding clinical data should be employed141.
In this step, multilayered diverse information determines the next

step: interdisciplinary collaborative research. AI-based data
integration and interpretation are used to discover molecular
and signaling signatures before the next step143. Subsequently,
the discovered information is put into the interdisciplinary
collaborative research cycle (Fig. 2), which includes interdisciplin-
ary research fields such as biology, basic sciences, and technology.
Each research field takes the discovered information from AI-
based analysis and draws its interpretation from its point of view.
Excluding biology, each of these interpretations would be unique
because multilayered and patient-centered data constitute a new
data type and a previously unknown principle in each research
field. These findings will provide new hypotheses and insights into
diseases. Therefore, subsequent experimental approaches to
validate new hypotheses are needed. This step would reveal
new technology questions, thereby involving the technology field.
The technology field has developed new technologies and
provides new data for functional research against the new
hypotheses. In this cycle, each research field communicates with
the others to draw more rational and advanced conclusions in
their field and harmoniously across diverse disciplines. This activity
promotes the theoretical advancement of each discipline and new
approaches, theories, and technologies. The new technologies for
diagnostics and treatments derived from this step are then
applied to clinical research. This step is not a conventional clinical
trial but rather the stage for testing new technologies using a
group of patients with no ethical concerns, similar to the test bed
scale198. From the clinical research step, valuable information is
acquired from human specimens199. The acquired information is
fed back to the interdisciplinary collaborative research cycle to
improve their conclusions. The information is also fed back to the

Fig. 1 Workflow for new biomedical research using high-throughput analysis tools, including neuroimaging, multiomics, and AI
technology. Neuroimaging, including MRI, DTI, MRS, and PET, provides multimodal imaging information. Multiomics, including genomics,
proteomics, and metabolomics, provides molecular information. By linking with clinical information, AI-based integrative data analysis using
multimodal neuroimaging and multiomics offers valuable new insights into biomedical brain research, such as new biomarkers, disease
subtypes, and treatments. MRI magnetic resonance imaging, AI artificial intelligence, PET positron emission tomography, DTI diffusion tensor
imaging, MRS magnetic resonance spectroscopy, SNP single-nucleotide polymorphism, CNV copy number variation, LOH loss of
heterozygosity, fMRI functional MRI.
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multilayered patient-centered research step to help improve
analytical methods and availability determination.
As an example, when PD is considered in this scheme, the first

step can consist of the data analysis of patients with PD
(Supplementary Fig. 1). To acquire molecular information,
proteogenomics, metabolomics, and transcriptomics of biological
sources, including cerebrospinal fluid, blood, and urine, are
applied200–202. Neuroimaging tools such as MRI, PET, or single-
photon emission computed tomography are used to obtain
macroscale information116. Subsequently, the corresponding
clinical information of patients with PD is collected. After the
fundamental analysis for data validation, this multilayered
information is put into an AI-based in-depth analysis for big data
integration. This step discovers well-suited and/or new target
molecule and signal module candidates. Next, the results are
compared and verified with previously well-known information,
such as dopamine pathway-related contents143. In interdisciplin-
ary collaborative research, the integrated information, including
images and molecular and signal signatures, is used as new data
for each research field. New hypotheses and insights from each
research field will appear using the data, and preliminary
interdisciplinary research on new PD targets will be conducted.
The development of technology for PD diagnosis and treatment
will also commence. New molecular and/or imaging targets will be
discovered; therefore, the technology field can provide previously
unknown diagnostic and treatment methods for PD, such as
noninvasive diagnosis technology and target molecule regulation-
based treatment using deep brain stimulation technology203,204.
Members of the interdisciplinary cycle could correct their
hypotheses and develop technologies through active intercom-
munication and discussion. Next, these valuable outcomes are
applied to clinical research. The new findings and technologies
associated with PD will be applied to limited human samples and
interpreted: the technologies for precise PD diagnostics/treatment
and noninvasive deep brain stimulation-based PD treatment can
be tested. After analyzing the clinical research results, a new

research design for in-depth basic and interdisciplinary research
will be devised and executed. The acquired information is fed
back to the interdisciplinary collaborative research cycle to revise
the PD hypothesis and calibrate preliminary technologies,
including diagnostics and deep brain stimulation.
Recent psychiatric studies have identified the necessity and

feasibility of the new translational research that we suggest here.
Notably, all multiomics, neuroimaging, and AI methods were not
integrated; however, there were some uses of partial integration
for clinical neuroscience. For example, multimodal neuroimaging
(MRI and PET) and machine learning have been integrated to
predict psychiatric disorders and neurodegenerative dis-
eases205–207. PET and DL (convolutional neural network) have
been integrated to differentiate patients with AD208. Another
study reported the integration of EEG and machine learning
algorithms to detect predementia AD209. In other studies,
combining multimodal neuroimaging and multiomics was used
to link neuroimaging markers with biomarkers of neurodegenera-
tion, indicating a greater genetic risk for AD. For example,
neuroimaging markers in patients with AD correlated with
neurodegeneration biomarkers, such as GFAP and Ptau 181 and
217210. Diverse combinations of neuroimaging and multiomics
have been used to classify patients with PD using DL211 and to
predict patients with PD using network analysis-based proteo-
mics212. Furthermore, some studies have integrated transcrip-
tomic and neuroimaging brain models213 and neuroimaging-
based connectomics to predict neurodegenerative processes214.
These attempts may bridge the gap between genomics and
neuroimaging and find biomarkers for treating neurodegenerative
diseases193. These studies align with the new direction we
suggest, including interdisciplinary research concepts of biology;
however, in basic sciences and technology, partial integration may
not address several limitations derived from conventional brain
research. Therefore, considering brain structures, functions, and
genes across individuals through the lens of integrated multio-
mics, neuroimaging, and AI information may be increasingly

Fig. 2 Scheme of the paradigm shift required for translational research combined with interdisciplinary research. New directions in
translational research start with multilayered patient-centered research using high-throughput analysis tools such as multiomics and imaging
with high reproducibility and reliability. AI-based data integration and interpretation reveal new molecular and signaling signatures.
Subsequently, the discovered information is inputted into the interdisciplinary collaborative research cycle. The relevant conclusions from an
interdisciplinary collaboration provide new technologies for diagnoses and treatments. Then, new technologies are applied to clinical
research using patient groups. The obtained information is fed back to the cycle to improve the conclusions. AI artificial intelligence.
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crucial for understanding the underlying mechanisms of brain
diseases, including neurodegenerative and psychiatric disorders,
and for developing treatments215. Thus, new translational research
may be able to solve difficult problems in brain biomedical
research.
In conclusion, conventional biomedical research has made

numerous contributions198. However, its limitations are apparent,
especially in biomedical brain research. To date, theories and
technologies have rapidly developed and matured. Therefore, a
new direction in translational research combined with the
application of new technologies and interdisciplinary collaborative
research will inevitably overcome the limitations of conventional
approaches for brain research.
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