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ABSTRACT OF THE THESIS 

 

Scalable Association Rule Learning Algorithm for Very Large Dataset 

by 

Haosong Li 

Master of Science in Computer Engineering 

University of California, Irvine, 2020 

Professor Phillip Sheu, Chair 

 

 

Many algorithms have been proposed to solve the association rule learning problem. 

However, most of them suffer from the problem of scalability either because of unacceptable 

time complexity or tremendous memory usage, especially when the dataset is enormous and 

the minimum support (minsup) is low. This paper introduces a new approach that follows 

the divide-and-conquer paradigm, which can exponentially reduce both the time complexity 

and memory usage, even on a single machine.
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INTRODUCTION 

 

 The association rule learning problem has played a significant role in data mining for 

the past few decades. Association rules are widely used in many fields, including market 

basket analysis [28], bioinformatics [22], and more. However, the problem has an NP-hard 

nature, meaning it is challenging to find the results within a reasonable period of time.  

The invention of the Apriori Algorithm [1] made this problem computationally feasible for 

most computers on regular-sized datasets. Since then, researchers have continued to 

develop more scalable algorithms. Among others, FP-Growth [13] and Eclat [27] are two 

algorithms developed after the Apriori algorithm that improve the scalability of the Apriori 

algorithm. 

The increasing popularity of the Internet in recent decades made big data available to many 

research institutions and companies. Their sizes are so large that traditional algorithms may 

not be able to handle efficiently. This imposes a challenge to the association rule learning 

problem as well. Most of the previously designed algorithms, including the Apriori algorithm, 

the FP-Growth algorithm, and the Eclat algorithm, suffer from the problem of scalability for 

big data. All these algorithms take an unacceptable time to terminate (will be discussed in 

the experiments section). In addition, the FP-Tree of the FP-Growth algorithm and the TID 

list of the Eclat algorithm may not fit in the memory.  

This paper introduces an approach that makes it possible to mine associations rules and 

frequent itemsets for very large datasets. The approach, called the scalable association rule 

learning (SARL) algorithm, follows the divide-and-conquer paradigm and vertically divides 
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the dataset into almost equivalent partitions using a graph representation and the k-way 

graph partitioning algorithm [2]. The total complexity of the SARL heuristic algorithm, 

including the overhead of partitioning the dataset, is lower than that of the Apriori algorithm. 

The memory usage is also lower than those of the current algorithms.  

The rest of the paper is organized as follows. In Section 2, we provide a general view of other 

association rule learning algorithms and graph partitioning algorithms. In Section 3, we 

present the SARL heuristic and SARL precise algorithms with examples, formal descriptions, 

theorems, and proofs. The experiments and results are presented in Section 4, followed by 

the conclusion and future work.  

The contributions of this paper include the provision of association graphs that represent an 

efficient estimation of potential frequent itemsets, the use of MLkP algorithm to divide the 

items into partitions while minimizing the loss the information, the generation of a bridge 

partition to achieve precise computation, and recursive reduction of the size of the bridge 

partition. 
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RELATED WORK 

Association rule learning/frequent itemset mining has been an active research area. Among 

others, three approaches are considered the most popular, and possibly the most efficient: 

the Apriori algorithm, the FP-Growth algorithm, and the Eclat algorithm.  

1. The Apriori Algorithm 

The Apriori algorithm [1], introduced by Agrawal and Srikant, was the first efficient 

association rule learning algorithm. It incorporates various techniques to speed up the 

process as well as to reduce the use of memory. For example, the Lk-1 X Lk-1 method used in 

the candidate generation process can reduce the number of candidates generated, and the 

pruning process can significantly reduce the number of possible candidates at each level.  

One of the most important mechanisms in the Apriori algorithm is the use of the hash tree 

data structure. It uses this data structure in the candidate support counting phase to reduce 

the time complexity from O(k*m*n) to O(k*m*T+n), where k is the average size of the 

candidate itemset, m represents the number of candidates, n represents the number of items 

in the whole dataset, and T is the number of transactions.  

The major advantage of the Apriori algorithm comes from its memory usage because only 

the k-1 frequent itemsets, Lk-1, and the candidates in level k, Ck, need to be stored in the 

memory. It generates the minimum number of candidates based on the 𝐿𝐿𝑘𝑘−1 × 𝐿𝐿𝑘𝑘−1 

(described in [1]) and the pruning method, and it stores them in the compact hash tree 

structure. In case the candidates fill up the memory from the large dataset and a low minsup 
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setting, the Apriori algorithm will not generate all the candidates to overload the memory. 

Instead, it generates as many candidates as the memory can hold at a time.  

2. The FP-Growth Algorithm 

The Frequent Pattern Growth algorithm was proposed by Han et al. in 2000 [13]. It uses a 

tree-like structure (called Frequent Pattern Tree) instead of the candidate generation 

method used in the Apriori algorithm to find frequent itemsets. The candidate generation 

method finds the candidates of frequent itemsets before reducing them to the actual frequent 

itemsets through support counting. 

The algorithm first scans the dataset and finds the frequent one itemsets. Then, the frequent 

pattern tree is constructed by scanning the dataset again. The items are added to the tree in 

the order of their support. Once the tree is completed, the tree is traversed from the bottom, 

and the conditional FP-Tree is generated. Finally, the algorithm generates frequent itemsets 

from the conditional FP-Tree. 

The FP-Growth algorithm is more scalable than the Apriori algorithm in most cases since it 

makes fewer passes to the dataset and does not require candidate generation. However, it 

suffers from memory limitations since the FP-Tree is fairly complex and may not fit in the 

memory. Traversing the complexed FP-Tree may also be time-expensive if the tree is not 

compact enough. 

3. The Eclat Algorithm 

Different from the Apriori algorithm and the FP-Growth algorithm that work on horizontal 

datasets (e.g. T001: {1, 3} T002:{1, 4}), the Eclat (Equivalence Class Clustering and bottom-
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up Lattice Traversal) algorithm [27] uses a vertical dataset (e.g. Item1: {T001, T002}, Item3: 

{T001}, Item4:{T002}). The Eclat algorithm only scans the dataset once. It finds the frequent 

itemsets by intersecting the transaction sets.  

The Eclat algorithm takes advantage of scanning the dataset only once. However, when the 

dataset is large, and the minsup is set to a low value, the TID associated with each itemset 

becomes very long. In fact, the results can be larger than the original dataset; therefore, they 

may not fit into the memory. 

4. Other Association Rule Learning Algorithms 

There are three categories of association rule mining/frequent itemset mining 

algorithms[8]: Apriori based algorithms, tree-based algorithms, and pattern growth 

algorithms. The Apriori algorithm, the Eclat algorithm, and the FP-Growth algorithm are the 

most popular algorithms for the three categories, respectively. 

In the Apriori based algorithm category, proposed by Agrawal and Srikant in [1] the 

AprioriTID algorithm is similar to Apriori, except that it generates Ck-bar and it mines 

frequent itemsets from there instead of the dataset. The Apriori Hybrid algorithm is a 

combination of the Apriori algorithm and the AprioriTID algorithm. The DHP (direct hashing 

and pruning) algorithm [23] uses a hash function to distribute itemsets into buckets. If a 

bucket has the support lower than the minsup, then the bucket is discarded. The MR-Apriori 

[19] and HP-Apriori [21] algorithms are distributed versions of the Apriori algorithm. The 

MR-Apriori uses the MapReduce model on the Hadoop platform. They enable parallel 

execution of the Apriori algorithm. 
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The tree-based algorithms, represented by the Eclat algorithm, find the frequent itemset by 

constructing a lexicographic tree. The AIS algorithm [2] and the SETM algorithm [15] are the 

two earliest association rule mining algorithms. Reference [1] shows that the Apriori 

algorithm beats them in running time. The TreeProjection algorithm [3] counts the supports 

of the frequent itemsets and use the nodes on a lexicographic tree as the representation of 

these support numbers. The TM algorithm [26] maps the TID of each transaction to 

transaction intervals before performing intersections between these intervals. 

Lastly, the algorithms in the pattern growth category focus on frequent patterns. The P-Mine 

algorithm [5] is a parallel computing algorithm that utilizes the VLDBMine data structure to 

store the dataset and speed up the distribution of data, while the LP-Growth algorithm[24] 

makes use of an array-based linear prefix tree to improve the memory efficiency. The Can-

Mining algorithm [14] finds the frequent itemsets from a canonical-order tree, which speeds 

up the tree traversal process when the number of frequent itemsets is low. Finally, the 

EXTRACT algorithm[10] uses the theory of Galois lattice to derive association rules.  

The algorithms discussed above have scalability problems. The Apriori based algorithms, 

represented by the Apriori algorithm, have to go through the expensive candidate generation 

and support counting process. This causes a disadvantage in running time. The tree-based 

and the pattern-growth type algorithms often suffer from excessive usage of memory. For 

example, the FP-Growth algorithm could build a complex FP-Tree which does not fit into the 

memory.  

5. Graph Partitioning Algorithms 
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One of the key steps in the SARL algorithm is to partition the IAG  (see below) into k balanced 

partitions. An efficient graph partitioning algorithm is crucial since the balanced graph 

partitioning problem is NP-complete [6]. We have implemented three algorithms and 

compared them for the partitioning cost and running time. They are the recursive version of 

the Kernighan-Lin Algorithm [18], the Multilevel k-way Partitioning Algorithm (MLkP) [17], 

and the recursive version of the Spectral Partitioning Algorithm [20]. Other graph 

partitioning algorithms include the Tabu search based MAGP algorithm [11] and the flow-

based KaFFPa algorithm [25]. 

The Kernighan-Lin algorithm swaps the nodes assigned to both partitions and finds the 

largest decrease in the total cut size. The Multilevel k-way Partitioning algorithm (MLkP) 

uses coarsening-partitioning-uncoarsening/refining steps to shrink a graph into a much 

smaller graph. After partitioning, the graph is rebuilt to restore the original graph. A single 

global priority queue is used for all types of moves. The Spectral Partitioning Algorithm finds 

splitting the values such that the vertices in a graph can be partitioned with respect to the 

evaluation of the Fiedler vector. 

Experiments have been conducted to compare the three algorithms. The datasets provided 

by Christopher Walshaw at the University of Greenwich [12] were used. We also ran 

experiments on complete graphs with 30 and 300 nodes. Each dataset was tested four 

rounds with the number of partitions (k) being 2, 4, 8, and 16. 
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Figure 1 Experiment Results for Comparing MLkP, Kernighan-Lin, and Spectral Paritioning Algorithms 

 

As shown in Figure 1, the MLkP algorithm has the highest speed in general. It is 560 times 

faster than the spectral partitioning algorithm and even faster than the recursive Kernighan-

Lin algorithm. The spectral partitioning algorithm has, in general, the best partition quality. 

It is 1.3 times better than MLkP and much better than the recursive Kernighan-Lin algorithm. 

The recursive Kernighan-Lin algorithm takes too long to complete all five datasets. It also 

shows serious scalability issues for complete graphs. 

Considering the MLkP algorithm has the best overall performance, we choose to use this 

algorithm for graph partitioning in our algorithm.  

  

dataset # of nodes # of edges avg degree k METIS Time Spectral Time METIS Cost Spectral Cost KL Time KL Cost
3elt.graph 4720 13722 2.90720339 2 0.1083529 54.73113894 97 94 Timeout N/A
3elt.graph 4720 13722 2.90720339 4 0.104274511 45.01839089 220 236 Timeout N/A
3elt.graph 4720 13722 2.90720339 8 0.082687616 34.23122334 392 341 Timeout N/A
3elt.graph 4720 13722 2.90720339 16 0.084682226 27.92868638 618 602 Timeout N/A
add20.graph 2395 7462 3.11565762 2 0.041537523 3.044170141 719 80 Timeout N/A
add20.graph 2395 7462 3.11565762 4 0.069754601 5.512359381 1296 350 Timeout N/A
add20.graph 2395 7462 3.11565762 8 0.048701763 12.52986908 1874 1199 Timeout N/A
add20.graph 2395 7462 3.11565762 16 0.054409027 29.25708413 2370 1647 Timeout N/A
add32.graph 4960 9462 1.90766129 2 0.06651473 63.91381288 10 8 Timeout N/A
add32.graph 4960 9462 1.90766129 4 0.064602375 54.39832783 43 33 Timeout N/A
add32.graph 4960 9462 1.90766129 8 0.068125963 45.34366322 85 89 Timeout N/A
add32.graph 4960 9462 1.90766129 16 0.069462299 87.3277657 182 136 Timeout N/A
data.graph 2851 15093 5.293931954 2 0.075086355 19.99383068 219 115 Timeout N/A
data.graph 2851 15093 5.293931954 4 0.069795132 14.5627892 495 262 Timeout N/A
data.graph 2851 15093 5.293931954 8 0.094658613 7.923767567 713 392 Timeout N/A
data.graph 2851 15093 5.293931954 16 0.089031458 6.522737265 1349 992 Timeout N/A
uk.graph 4824 6837 1.417288557 2 0.05449748 347.5232875 26 11 Timeout N/A
uk.graph 4824 6837 1.417288557 4 0.073782206 150.0673718 57 50 Timeout N/A
uk.graph 4824 6837 1.417288557 8 0.056687832 102.6085541 107 82 Timeout N/A
uk.graph 4824 6837 1.417288557 16 0.060199022 53.14980578 181 145 Timeout N/A
Complete Graph 30 870 29 2 0.0555 0.3539 225 114 0.0068 225
Complete Graph 30 870 29 4 0.003133 0.0351 337 316 0.01329 337
Complete Graph 30 870 29 8 0.00318 0.0488 393 380 0.02685 393
Complete Graph 300 8700 29 2 0.214009 0.19758 22484 8339 3.4756 22500
Complete Graph 300 8700 29 4 0.207079 0.2026431 33741 28022 4.891045 33750
Complete Graph 300 8700 29 8 0.18528 0.19459 39372 38846 4.888 39374
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OUR SOLUTIONS 

1. Definitions 

• K-itemset: an itemset with k items 

• Support: the occurrence of an item in the dataset. 

• Minsup: the minimum requirement of support. The user usually provides this. 

Itemsets with support < minsup are eliminated. 

• Confidence: the indication of robustness of a rule in terms of percentage. 

Confidence(XY) = support(𝑋𝑋 ∪ 𝑌𝑌)/support(X)   

• Minconf: the minimum requirement of confidence. The user usually provides this. 

Rules with confidence < minconf are eliminated. 

• Item-Association Graph: a graph structure that stores the frequent associations 

between pairs of items. 

• Balanced K-way Graph Partitioning Problem: Divide the nodes of a graph into k parts 

such that each part has almost the same number of nodes while minimizing the 

number of edges/sum of edge weights being cut off. 

2. A Scalable Heuristic Algorithm, SARL-Heuristic 

The following is an outline of the scalable heuristic algorithm. 

Step 1: Find frequent one and two itemsets using the Apriori algorithm (when minsup is high) 

or the direct generation method(when minsup is low). 

Step 2: Construct the item association graph (IAG) from the result of step 1. 

Step 3: Partition the IAG using the multilevel k-way partitioning algorithm(MLkP). 
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Step 4: Partition the database according to the result of step 3. 

Step 5: Call the modified Apriori algorithm or FP-Growth algorithm to mine frequent itemset 

on each transaction partition.  

Step 6: Find the union of the results found from each partition.  

Step 7: Generate association rules by running the Apriori-ap-genrules on the frequent 

itemsets found from step 6. 

3. Example 

Suppose the following dataset is given and minsup is set to 0.1 (or 10%, or 7 ∗ 0.1 ≈ 1 

occurrence), and minconf is set to 0.7 (or 70%): 

 

TID Items 
T000 1, 2 
T001 1, 2, 3 
T002 4, 5 
T003 1, 4, 5 
T004 2, 3 
T005 1, 2, 3 
T006 1, 4, 5 

Figure 2 Example Dataset 1 

First, we use the Apriori algorithm to find frequent two itemsets. As an intermediate step, 

the Apriori algorithm finds the frequent one-itemset first (shown in Figure 2): 
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Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

Figure 3 Frequent One Itemsets 

The frequent two-itemsets are found afterwards (shown in Figure 3): 

Frequent 
Itemsets 

Support 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
{4, 5} 2 

Figure 4 Frequent Two-Itemsets 

Next, we transform the above frequent two-itemsets into an item association graph (IAG), 

shown in Figure 4: 
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Figure 5 Item Association Graph Example 

To construct the graph, we first take itemset {1, 2} with support 3. For this, we create node 

1 and node 2 corresponding to the two items in the itemset. The edge between node 1 and 

node 2 has weight 3, representing the support of the itemset. The process is repeated for 

every frequent two-itemset found in the previous step. The IAG of this example is shown in 

Figure 5. 

Next, we use the multilevel k-way partitioning algorithm (MLkP) to partition the IAG. In this 

case, the number of nodes is small, so we only bisect the graph by setting k = 2. The result is 

shown in Figures 6 and 7. 
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Figure 6 Item Association Graph Partition 1 

 
Figure 7 Item Association Graph Partition 2 

The MLkP algorithm divides the IAG into two equal or almost equal sets in linear time while 

the sum of the weights of edges being cut off is the minimum. 
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Next, we partition the dataset according to the partitions of the IAG, as shown in Figures 8 

and 9. Each transaction partition has all the items from the corresponding IAG partition. 

However, since the algorithm has already found all frequent one and two itemsets, a 

transaction will not be added to a transaction partition if the transaction has less than three 

items. For example, T000: {1, 2} is not added to the transaction partition 1, since it only has 

two items.  Some items in the original dataset may not appear in any of the transaction 

partitions, because the infrequent one/two-itemsets are dropped in the IAG. This simplifies 

the subsequent computations. In this example, however, all the items are kept in the IAG 

because the IAG is a relatively dense graph. The following are the transaction partitions: 

TID Items 
T001 1, 2, 3 
T005 1, 2, 3 

Figure 8 Transaction Partition 1 

TID Items 
None None 

Figure 9 Transaction partition 2 

The next step is to pick the best algorithm and use it to find the frequent k-itemsets with k > 

2. For this example, we choose the modified Apriori algorithm because it is faster for mining 

small datasets as it avoids the process of finding the one and two-itemsets again. The results 

from partition 1 are shown in Figure 10: 

Frequent 
Itemsets 

Support 

{1, 2, 3} 2 
Figure 10 Frequent Itemsets from Transaction partition 1 
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Since the modified Apriori algorithm starts at finding three-itemsets, there are no additional 

frequent itemsets in the first partition. The following(Figure 11) are the results found in 

transaction partition 2: 

Frequent 
Itemsets 

Support 

None N/A 
Figure 11 Frequent Itemsets from Transaction partition 2 

The final results(shown in Figure 12) of frequent itemsets are simply the union of Figures 3, 

4, 10, and 11:  

Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
{4, 5} 3 

{1, 2, 3} 2 
Figure 12 Frequent Itemset Final Results 

After running the Apriori-ap-genrules algorithm, the association rules can be found in Figure 

13. 

Rules Confidence 
{2}  {1} 0.75 
{3}  {2} 1 
{5}  {1} 1 
{2}  {3} 0.75 
{5}  {4} 1 
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{4}  {5} 1 
{1, 3}  {2} 1 

Figure 13 Association Rule Generated 

All frequent itemsets generated by the SARL algorithm are sound. Meaning each frequent 

itemset generated indeed is correct, and the support number is accurate. However, there 

may be some frequent itemsets that cannot be found by the SARL algorithm. 

4. Formal Description of the SARL Algorithm 
 
Following is the pseudo-code of SARL: 

 
SARL: 
results, two_itemset = mod1-Apriori(dataset) 
graph = build_IAG(two_itemset) 
partitions = METIS.partition(k, graph) 
files = partition-dataset(partitions) 
for file in files: 
 results += mod2-Apriori(file)  #when files are small 
 results += FP-Growth(file) #when files are large 
rules = Apriori-gen(results) 
 
mod1-Apriori(dataset): 
C1 = {} 
for transaction in dataset: 
 for item in transaction: 
  if item not in C1: 
   add item to C1  

item.counter = 1 
  else: 
   item.counter += 1 
L1 = {} 
for candidate in C1: 
 if candidate.counter >= minsup: 
  add candidate to L1 
C2 = {} 
for itemset1 in L1: 
 for itemset2 in L1: 
  if itemset1 != itemset2: 
   add itemset1 U itemset2 to C2 
for transaction in dateset: 
 for candidate in C2: 
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  if candidate.issubset(transaction): 
   candidate.counter += 1 
L2 = {} 
for candidate in C2: 
 if candidate.counter >= minsup: 
  add candidate to L2 
return L1, L2 
 
build_IAG(itemsets): 
for itemset in itemsets: 
 graph.add_node(itemset[0]) 

graph.add_node(itemset[0]) 
graph.add_edge(itemset[0], itemset[1], weight += 1) 

return graph 
 
partition-dataset(partitions): 
for transaction in dataset: 
 for partition in partitions: 
  intersect = parition intersect transaction 
  if len(inersect) > 2: 

add intersect to dataset_partition_i 
return transaction partition names 

5.  Finding Frequent 2 Itemsets using the Apriori Algorithm 

The first step of the SARL algorithm is to find the frequent  2 itemsets efficiently. 

Although the Apriori algorithm has scalability issues for very large datasets, it provides a fast 

and convenient feature to extract intermediate results and a tolerable speed for the first two 

passes. 

The Apriori algorithm finds frequent itemset Lk for each k, and each Lk is stored separately. 

We run the Apriori algorithm until it finds L2, the frequent two-itemset. 

The following explains the detailed processing of finding L2, the frequent two itemsets, using 

the Apriori algorithm. 
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The algorithm first tries to find the frequent one itemsets by traversing the dataset and count 

the occurrence of each unique item, if the number of occurrences of an item is less than the 

minsup provided by the user, that item is eliminated from the list of frequent one-itemset. 

The frequent two itemsets are discovered based on the frequent one itemsets. The algorithm 

generates C2, the candidate sets for the frequent two itemsets, using Lk-1 × Lk-1: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶𝑘𝑘 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1,𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, … ,𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−1, 𝑞𝑞. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−1 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑘𝑘−1 𝑝𝑝, 𝐿𝐿𝑘𝑘−1 𝑞𝑞 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1 = 𝑞𝑞. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, … ,𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−2 = 𝑞𝑞. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−2,𝑝𝑝. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−1 < 𝑞𝑞. 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘−1; 

 

This method generates a minimum number of candidates from the frequent one itemsets so 

that we can have fewer candidates to consider in the support counting phase.  The Apriori 

algorithm also predicts and eliminates some infrequent itemsets before support counting by 

implementing the Apriori principle in the pruning step. If an item in C2 is not in L1, that item 

is infrequent, so all the two itemsets that include this item are dropped.  

The Apriori algorithm is modified to terminate when pruning is done, and the two itemsets 

are found.  

6.  Construction of the Item Association Graph 

The item association graph G is constructed based on the two itemsets generated by the 

Apriori algorithm. G is an undirected, weighted graph. A node Vi is created for each unique 

item i in the two itemsets T with the maximum item number being n. 
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{𝑉𝑉} = {�𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=0

|𝑖𝑖 ∈ |𝑇𝑇|} 

The edges E in graph G are formed for each itemset in T: 

{𝐸𝐸} = { � 𝐸𝐸𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=0,𝑗𝑗=0

|{𝑖𝑖, 𝑗𝑗} ∈ 𝑇𝑇} 

The weight of each edge 𝐸𝐸𝑖𝑖𝑖𝑖  is equal to the support of itemset {i, j} in T: 

𝑊𝑊�𝐸𝐸𝑖𝑖𝑖𝑖� = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆({𝑖𝑖, 𝑗𝑗}) | {𝑖𝑖, 𝑗𝑗} ∈ 𝑇𝑇 

7.  Partition the IAG using the Multilevel k-way  Partitioning algorithm 
(MLkP) 

The Multilevel k-way partitioning (MLkP) algorithm [17] is an efficient graph partitioning 

algorithm. The time complexity is O(E), where E is the number of edges in a graph, and the 

maximum load imbalance is limited to 3%. 

The general idea of MLkP is to shrink (coarsen) the original graph into a smaller graph, then 

partition the smaller graph using an improved version of the KL/FM algorithm. Lastly, it 

restores(uncoarsen) the partitioned graph to a larger, partitioned graph.  

METIS is a software developed by Karypis at the University of Minnesota. It includes an 

implementation of the MLkP algorithm that takes a graph as the input and outputs groups of 

nodes separated after the partition.  

7. Transaction Partitioning 

Based on the results of the MLkP algorithm that divide the items into groups P1, P2,…,Pm, 

we can partition the transactions into the same number of groups, where each group 

𝐷𝐷𝑖𝑖  contains only the items in partition 𝑃𝑃𝑖𝑖 . For a transaction to be included in 𝐷𝐷𝑖𝑖 , it must have 
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all the items from partition 𝑃𝑃𝑖𝑖 . If a transaction includes more items than the items from 

partition 𝑃𝑃𝑖𝑖 , the intersection between the items in 𝑃𝑃𝑖𝑖  and the transaction will be added to 𝐷𝐷𝑖𝑖 . 

That is, part of the transaction will be added to 𝐷𝐷𝑖𝑖 . As a result, each transaction in a 

transaction partition must be a subset of the corresponding transaction in the original 

dataset. If a transaction has less than three items, the transaction is not added. This is 

because we have already mined the one and two itemsets, and are only interested in three 

or more itemsets. This optimization helps to reduce the size of transaction partitions.  

𝐷𝐷𝑖𝑖 = {�𝑇𝑇𝑗𝑗

𝑛𝑛

𝑗𝑗=1

|(𝑇𝑇𝑗𝑗 → Sj  ∩ 𝑃𝑃𝑖𝑖|𝑆𝑆𝑗𝑗 ∈ 𝐷𝐷)} 

 

In the above, 𝐷𝐷𝑖𝑖  is transaction partition i, 𝑇𝑇𝑗𝑗  is the transactions to be added to partition i,  𝑆𝑆𝑗𝑗  

is the jth transaction in the original dataset, 𝑃𝑃𝑖𝑖  is the item partition i, and D is the original 

dataset. 

8. Algorithm Selection and Association Rule Learning on Transaction 

Partitions 

One of the benefits that come with our solution is that the association rule learning on each 

transaction partition can be optimized by using the algorithm that best fits the partition.  

During the association rule learning on the partitioned datasets, we have three algorithms 

that are considered efficient for this job: the Apriori algorithm, the FP-Growth algorithm, and 

the Eclat algorithm.  
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Since the modified Apriori algorithm has already computed the one itemsets and two 

itemsets during the preparation phase, the candidate generation feature of the Apriori 

algorithm using the horizontal dataset is handy in this case. We have modified the Apriori 

algorithm to skip the frequent one/two itemsets finding stages and start with finding the 

frequent three itemsets from the transaction partitions. This modification is particularly 

helpful when the minsup is set to high so that the expected number of itemsets are limited 

after the two itemsets. 

We can estimate the expected number of itemsets from the average transaction length of 

each transaction partition. A higher average transaction length indicates a higher possibility 

of the presence of a long “tail” in the result. Results with long tails have itemsets with 

considerable maximum lengths, while results with short tails only contain itemsets with 

small maximum lengths. A dataset with an expected long tail means the association rule 

learning algorithm does not terminate soon after finding the two itemsets. 

The average transaction length provides a fast and straightforward reference for selecting 

the best algorithm for each transaction partition. If the average transaction length is low, the 

Apriori algorithm can be the right choice, as the modified Apriori algorithm continues from 

the two itemsets that the preparation phase has already calculated. If the average transaction 

length is high, we can take advantage of the scalability of the FP-Growth algorithm. We omit 

the Eclat algorithm because the FP-Growth and the Eclat algorithms do not have the same 

advantage provided by the modified Apriori algorithm, of which the algorithm can start with 

the two itemsets. In addition, studies [16] show that the Eclat algorithm is slightly less 

scalable than the FP-Growth algorithm. 
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Next, the selected algorithm is used to find the frequent local itemsets from the given 

transaction partition. After the algorithm has terminated, a simple union is performed on the 

frequent itemsets found from each partition. Finally, Apriori-ap-genrule is used to derive the 

rules from the frequent itemsets. This step is relatively simple. 

9. Time Complexity and Space Complexity 

The theoretical time and space complexity of the Apriori algorithm is 𝑂𝑂(2𝑑𝑑) where d is the 

number of unique items in the dataset.  

The theoretical time and space complexities of the SARL algorithm consists of the complexity 

of several parts:  

(1) Time complexity of frequent 2-itemsets generation using the 

Apriori algorithm 

Finding frequent 2-itemsets requires finding 1-itemsets first. This step is simply 𝑂𝑂(𝑛𝑛) as the algorithm 
traverses the dataset once. Next, the candidate generation for 2-itemsets takes 𝑂𝑂(𝑑𝑑2) where d is the number 
of unique items in the dataset. Finally, the support checking requires 𝑂𝑂(𝑛𝑛 + 𝑑𝑑2𝑇𝑇) where T is the number 
of transactions in the dataset. Therefore, the time complexity of this step is 𝑂𝑂(𝑑𝑑2𝑇𝑇 + 𝑛𝑛). 

(2) Time complexity of IAG construction 

Since each edge in the IAG is a representation of a frequent two-itemset, and the maximum 

number of two-itemsets is 𝑑𝑑
2+𝑑𝑑
2

, the maximum number of edges in IAG is also 𝑑𝑑
2+𝑑𝑑
2

. Therefore, 

constructing the IAG takes 𝑂𝑂(𝑑𝑑 + 𝑑𝑑2+𝑑𝑑
2

) or 𝑂𝑂(𝑑𝑑2). 

(3) Time complexity of IAG partition 
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The time complexity of the IAG partition is equal to the time complexity of the MLkP 

algorithm, which is 𝑂𝑂(𝐸𝐸) or 𝑂𝑂(𝑑𝑑2).  

(4) Time complexity of transaction partition 

The dataset is traversed once to assign items into different partitions. Hence the time 

complexity is 𝑂𝑂(𝑛𝑛). 

(5) Time complexity of algorithm selection and running the selected 

algorithm 

The algorithm selection requires the calculation of the average transaction width of each 

transaction partition. The time complexity of this is 𝑂𝑂(𝑘𝑘𝑘𝑘),  where k is the number of 

partitions. 

If the modified Apriori algorithm is selected, the theoretical time complexity for each 

partition is 𝑂𝑂(21.03𝑑𝑑/𝑘𝑘) the coefficient 1.03 comes from the 3% maximum imbalance of the 

partitions caused by the MLkP algorithm. The total running time for all partitions is 

𝑂𝑂 �𝑘𝑘 ∗ 2
1.03𝑑𝑑
𝑘𝑘 � = 𝑂𝑂(2

1.03𝑑𝑑
𝑘𝑘 ), and the total time complexity of the SARL algorithm, when the 

modified Apriori algorithm is selected, is 𝑂𝑂 �𝑑𝑑2𝑇𝑇 + 𝑛𝑛 + 𝑑𝑑2 + 𝑑𝑑2 + 𝑛𝑛 + 2
1.03𝑑𝑑
𝑘𝑘 � = 𝑂𝑂(𝑑𝑑2𝑇𝑇 +

𝑛𝑛 + 2
1.03𝑑𝑑
𝑘𝑘 ). Assume 𝑛𝑛 ≫ 𝑑𝑑, and 2

1.03𝑑𝑑
𝑘𝑘 ≫ 𝑛𝑛, the time complexity can be simplified to 𝑂𝑂(2

1.03𝑑𝑑
𝑘𝑘 ). 

Compared with the time complexity of the Apriori algorithm, the SARL is 𝑂𝑂� 2𝑑𝑑

2
1.03𝑑𝑑
𝑘𝑘
� =

𝑂𝑂(2
𝑘𝑘−1.03

𝑘𝑘 𝑑𝑑) times faster than the Apriori algorithm. The exponential speed up comes from the 

small number of unique items in each transaction partition. The algorithm chosen to mine 
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frequent itemsets from the transaction partitions only needs to consider a portion of all 

items for each partition. 

(6) Space complexity of frequent 2-itemsets generation using the 

Apriori algorithm 

Finding the frequent two itemsets requires finding the one itemsets first. This step is 𝑂𝑂(𝑑𝑑), 

where d is the number of unique items in the dataset, as we need to keep at most d items in 

the memory. Next, the candidate generation step for the 2-itemsets takes 𝑂𝑂(𝑑𝑑2) space for at 

most 𝑑𝑑(𝑑𝑑−1)
2

 frequent 2-itemsets candidates. Finally, the support checking requires another 

𝑂𝑂(𝑑𝑑2) space to store the support numbers. Hence, this step requires 𝑂𝑂(𝑑𝑑2) space. 

(7) Space complexity of IAG construction 

Since each edge in the IAG is a representation of a frequent two-itemset, and the maximum 

size of the two-itemsets is 𝑑𝑑
2+𝑑𝑑
2

, the maximum number of edges in IAG is also 𝑑𝑑
2+𝑑𝑑
2

. Therefore, 

storing the IAG takes 𝑂𝑂(𝑑𝑑2) space. 

(8) Space complexity of IAG partition 

The space complexity of the IAG partition is equal to the space complexity of the MLkP 

algorithm, which is 𝑂𝑂(𝐸𝐸) or 𝑂𝑂(𝑑𝑑2).  

(9) Space complexity of transaction partition 

The dataset is traversed once to assign items into different partitions. We can assume each 

partition can fit into the memory. Therefore, the space complexity is 𝑂𝑂(𝑛𝑛
𝑘𝑘

). 
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(10) Space complexity of algorithm selection and running the selected 

algorithm 

The algorithm selection requires the calculation of the average transaction width of each 

transaction partition. The space complexity of this is O(𝑘𝑘)  = 𝑂𝑂(1) , where k is the number 

of partitions. 

If the modified Apriori algorithm is selected, the theoretical space complexity for each 

partition is 𝑂𝑂 �2
1.03𝑑𝑑
𝑘𝑘 �, where the coefficient 1.03 comes from the 3% maximum imbalance of 

partitions caused by the MLkP algorithm. The total space complexity for all partitions is 

therefore 𝑂𝑂 �𝑘𝑘 ∗ 2
1.03𝑑𝑑
𝑘𝑘 � = 𝑂𝑂(2

1.03𝑑𝑑
𝑘𝑘 ), and the total space complexity of the SARL algorithm, 

when the modified Apriori algorithm is selected, is 𝑂𝑂 �(3 − 1) ∗ 𝑑𝑑2 + 𝑛𝑛
𝑘𝑘

+ 2
1.03𝑑𝑑
𝑘𝑘 � = 𝑂𝑂(𝑑𝑑2 +

𝑛𝑛
𝑘𝑘

+ 2
1.03𝑑𝑑
𝑘𝑘 ). Assume 𝑛𝑛

𝑘𝑘
≫ 𝑑𝑑, and 2

1.03𝑑𝑑
𝑘𝑘 ≫ 𝑛𝑛

𝑘𝑘
, the space complexity can be simplified to 𝑂𝑂(2

1.03𝑑𝑑
𝑘𝑘 ). 

Compared with the space complexity of the Apriori algorithm, SARL uses only 𝑂𝑂 �2
1.03𝑑𝑑
𝑘𝑘

2𝑑𝑑
� =

𝑂𝑂 �2
1.03−𝑘𝑘

𝑘𝑘 𝑑𝑑� = 𝑜𝑜( 1

2
𝑘𝑘−1.03

𝑘𝑘 𝑑𝑑
)  space comparing to the Apriori algorithm. The exponential 

reduction of space usage comes from the small number of unique items in each transaction 

partition. If the modified Apriori is chosen to mine frequent itemsets from the transaction 

partitions, it only generates a small number of candidates for each transaction partition, 

since it does not consider items in other partitions. 

(11) Summary of the time and space complexities 

Both the time and space complexity of the SARL algorithm is 𝑂𝑂(2
1.03𝑑𝑑
𝑘𝑘 ). 
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10. Error Bound 

The SARL heuristic sacrifices some precision to obtain the speed up. However, every 

frequent itemset found by the algorithm is correct, and the support associated with each 

frequent itemset is also correct. The heuristic may miss some trivial frequent itemsets, i.e., 

the itemsets with low support. During the IAG partition phase, the MLkP algorithm makes 

cuts on the IAG to minimize the sum of the weights of the edges that are cut off. This feature 

helps to prevent large weights from cut off, while some trivial, small-weight (support) edges 

may be lost. 

In the most (extreme) case, when every transaction has all items and minsup is set to 0, we 

can calculate the error bound. In this case, the IAG is a complete graph, and the fraction edge 

cut off by the MLkP algorithm is  
𝑛𝑛∗�𝑛𝑛−𝑛𝑛𝑘𝑘�

𝐸𝐸
= (𝑘𝑘−1)𝑛𝑛

𝑘𝑘(𝑛𝑛−1)  . When n is very large, the fraction is 

approximately 𝑘𝑘−1
𝑘𝑘

. In this case, we can set k as low as 2 to still maintain 50% coverage for 

the frequent three or more itemsets. The calculation of frequent one and two itemsets is 

always accurate because they are calculated using the Apriori algorithm or the direct-

generate algorithm. 

The error rate should be significantly lower in more practical cases. However, it is difficult 

to estimate such error rate considering it is affected by many factors such as the closeness of 

groups of items (i.e., does an item appear with only a small number of other items?), the 

choice of minsup, and the max length of the frequent itemsets. We can make a rough 

estimation by introducing a parameter 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, the ratio of edges cut off in the IAG. 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

. 

This parameter is determined by the characteristics of a dataset, the minsup choice, and the 
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number of partitions we choose. 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  is also a rough estimation of the error rate for the 

frequent two or more itemsets. Assume the ratio of the frequent two or more itemsets found 

is 𝑃𝑃𝑚𝑚 , 𝑃𝑃𝑚𝑚 = # 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 2+ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

, then the total error bound can be computed as 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑚𝑚 ∗ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜.  

11. Benefits of Having Datasets Fit into the Memory 
Since the transaction partitions are small enough to fit into the memory, any operations 

performed on the dataset should be much faster. For example, the Apriori algorithm makes 

the number of passes on the dataset equal to the maximum length of frequent itemsets. Each 

of these passes requires reading the dataset from the disk. With our solution, the SARL 

algorithm makes at most two passes to the dataset. The first pass is to generate the frequent 

one and two itemsets, and in the second pass, the algorithm brings a fraction of the dataset 

into the memory. All further passes are made directly in the memory, resulting in speedup.  

12. Theorems and Proofs 

Theorem 1: Soundness - All frequent itemsets and association rules 

generated by the SARL algorithm are correct. 

Proof:  

Assume the SARL algorithm generates an incorrect frequent itemset. We can assume the 

correctness of the Apriori algorithm and the FP-growth algorithm. Therefore, there must be 

an error in transaction partitioning. There could be two possible types of error in transaction 

partitioning:  

(Possibility 1) The number of itemset appearances is higher than it should be. 
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(Possibility 2) Some transactions have additional items that are introduced by error.  

Assume the first possibility is true. We divide the dataset vertically (item-wise) during the 

transaction partitioning phase. Since every item in the original dataset D that belongs to 𝑃𝑃𝑖𝑖  

must be added to 𝐷𝐷𝑖𝑖 . All unique items in a transaction partition must appear in the same 

number of transactions as the original dataset. Hence, the number of itemset appearances, 

or the support of each itemset, should be the same as the original dataset. This conflicts with 

the first possibility: the number of itemset appearances is higher than it should be. 

Assume the second possibility is true. During the transaction partitioning phase, each 

transaction in the original dataset may be assigned to a transaction partition, or it may be 

split into different disjoint parts. Therefore, each transaction in a transaction partition must 

be a subset of the corresponding transaction in the original dataset, and this process cannot 

add any new items into any transactions. Hence, we find a contradiction between our 

algorithm and the second possibility. 

In summary, since both possibilities are proved to be false, the SARL algorithm is sound.▄ 

Theorem 2: Computing the frequent two itemsets is considered relatively 

trivial compared to computing the frequent three or more itemsets. 

Proof: 

If the computation of the frequent two itemsets takes more than half of the total computation 

time, we may say computing frequent two itemsets is not trivial.  
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To characterize the distribution of frequent itemsets is relatively difficult due to the 

challenges in modeling the data. To get a general view on this topic, we developed a 

mathematical model to simulate the characteristics of any dataset. The relationships of all 

the frequent itemsets can be depicted using an itemset lattice diagram shown below: 

 
Figure 14 An Itemset Lattice 

Figure 14 shows the case when every itemset has the support greater than minsup. However, 

in most cases, each layer will have some itemsets being removed due to either one of the two 

reasons: the anti-monotone property of the Apriori principle or the lack of support (i.e., 

support < minsup). To model the former, we apply the anti-monotone property to the itemset 

lattice. The anti-monotone property is as follows: 

∀𝑋𝑋,𝑌𝑌 ∈ 𝐽𝐽: (𝑋𝑋 ⊂ 𝑌𝑌) → 𝑓𝑓(𝑌𝑌) ≤ 𝑓𝑓(𝑋𝑋), 
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where if 𝐽𝐽 = 2𝐼𝐼 , I being a set of items, X is a subset of Y, then the measure f must be anti-

monotone. Applying this property to the lattice, we can have the following explanation: if an 

itemset is infrequent, then all of its supersets must also be infrequent.  

 

Figure 15 An Example of Pruning 

For example, in Figure 15, if {1, 3} is infrequent, then {1, 2, 3}, {1, 3, 4}, and {1, 2, 3, 4} are all 

infrequent. 

To model this property, we can imagine that each infrequent itemset in the same layer causes 

some supersets in the next layer to be infrequent. The first infrequent itemset results in n-

k+1 infrequent itemsets in the next layer, where n is the number of unique items in the 

dataset, and k is the current layer number or the number of items in each itemset in the 

current layer. We know that each layer has 𝐶𝐶𝑘𝑘𝑛𝑛 itemsets if none of them is infrequent. Then 
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the next layer will have 𝐶𝐶𝑘𝑘+1𝑛𝑛 total itemsets. Since n-k+1 is the number of current infrequent 

itemsets in the next layer,  𝑛𝑛−𝑘𝑘+1
𝐶𝐶𝑘𝑘+1
𝑛𝑛  is the current fraction of frequent itemsets over all the 

itemsets in the next layer. Therefore, 1 − (𝑛𝑛−𝑘𝑘+1)
𝐶𝐶𝑘𝑘+1
𝑛𝑛  is the probability of having a frequent 

itemset in the next layer if we randomly choose an itemset, and the second infrequent 

itemset should cause �1 − (𝑛𝑛−𝑘𝑘+1)
𝐶𝐶𝑘𝑘+1
𝑛𝑛 � ∗ (𝑛𝑛 − 𝑘𝑘 + 1) infrequent itemsets in the next layer. For 

the same reason, the third infrequent itemset in the current layer should cause 

 �1 −
(𝑛𝑛−𝑘𝑘+1)+�1−(𝑛𝑛−𝑘𝑘+1)

𝐶𝐶𝑘𝑘
𝑛𝑛 �∗(𝑛𝑛−𝑘𝑘+1)

𝐶𝐶𝑘𝑘+1
𝑛𝑛 � ∗ (𝑛𝑛 − 𝑘𝑘 + 1)  infrequent itemsets in the next layer. We 

can now estimate the number of infrequent itemsets I in the next layer using the number of 

infrequent itemsets in the current layer: 

𝐼𝐼𝑘𝑘 =  (𝑛𝑛 − 𝑘𝑘 + 1) + �1 − (𝑛𝑛−𝑘𝑘+1)
𝐶𝐶𝑘𝑘+1
𝑛𝑛 � ∗ (𝑛𝑛 − 𝑘𝑘 + 1) + �1 −

(𝑛𝑛−𝑘𝑘+1)+�1−(𝑛𝑛−𝑘𝑘+1)
𝐶𝐶𝑘𝑘
𝑛𝑛 �∗(𝑛𝑛−𝑘𝑘+1)

𝐶𝐶𝑘𝑘+1
𝑛𝑛 � ∗ (𝑛𝑛 −

𝑘𝑘 + 1) + ⋯  

The remaining frequent itemsets in layer k considering the above estimation of the influence 

of the Apriori principle is 𝐶𝐶𝑘𝑘𝑛𝑛 − 𝐼𝐼𝑘𝑘−1. Let us assume the probability p that an itemset to be 

frequent, assuming its parent is frequent. We can have the final estimated number of 

frequent itemsets for layer k: 

𝑓𝑓𝑘𝑘 = (𝐶𝐶𝑘𝑘𝑛𝑛 − 𝐼𝐼𝑘𝑘−1) ∗ 𝑝𝑝𝑘𝑘 

For n = 200, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three, and more 

itemsets as shown in Figure 16: 
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Figure 16 Estimation of the Number of Itemsets 

For n = 2000, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three, and more 

itemsets as shown in Figure 17: 

 
Figure 17 Estimation of the Number of Itemsets for Larger Dataset 

The above model with examples shows that the number of two itemsets is, on average, less 

than only 10% of the number of three or more itemsets. This means that only less than 10% 

of all computation power is consumed by the two itemsets. Thus, our algorithm speeds up 

the costly part, the part that mines three or more itemsets. ▄ 

Theorem 3: Consider a value of minsup such that the fraction of frequent 

one itemset over the total number of unique items, d, denoted by f, is 

less than (1 - the maximum imbalance rate), where the maximum 

imbalance rate is usually set to 3% based on the MLkP algorithm. If 

the partition by MLkP is k-way, then each partition contains less than 

d/k unique items, where d is the total unique items in the original 

p # two itemsets # three itemsets # four itemsets 2/(3+4)
0.8 12736 228346 972761 0.010603552
0.6 7164 41585 714273 0.009477971
0.4 3184 6761 30960 0.084409215
0.2 796 589 1898 0.320064335
0.1 199 67 118 1.075675676

p # two itemsets # three itemsets 2/3
0.8 1279360 231482728 0.005527
0.6 719640 42159431 0.017069
0.4 319840 6855578 0.046654
0.2 79960 597871 0.133741
0.1 19990 68301 0.292675
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dataset. As a consequence, the complexity of each partition can be 

reduced. 

Proof:  

Assume that given f < 100% - 3% or f < 97%, and a transaction partition has 𝑑𝑑𝑖𝑖 ≥ 𝑑𝑑/𝑘𝑘 unique 

items. According to our algorithm, since 𝑑𝑑𝑖𝑖 ≥ 𝑑𝑑/𝑘𝑘, a partition in the IAG must have more than 

or equal to d/k nodes. As we assumed earlier, the maximum imbalance rate for the MLkP 

algorithm is set to 3%, then the number of nodes n in the IAG can be calculated as 𝑑𝑑
𝑘𝑘
∗ 0.97 ∗

𝑘𝑘 ≤  𝑛𝑛 ≤ 𝑑𝑑
𝑘𝑘
∗ 1.03 ∗ 𝑘𝑘 𝑜𝑜𝑜𝑜 0.97𝑑𝑑 ≤ 𝑛𝑛 ≤ 1.03𝑑𝑑. Since n cannot be more than the total number of 

unique items, 0.97𝑑𝑑 ≤ 𝑛𝑛 ≤ 𝑑𝑑. However, we know f < 97% or f *d< 0.97d, and 𝑛𝑛 ≤ 𝑓𝑓 ∗ 𝑑𝑑 since 

some frequent one itemsets may not appear in any frequent two itemsets, so 𝑛𝑛 ≤ 𝑓𝑓 ∗ 𝑑𝑑 <

0.97𝑑𝑑 and 𝑛𝑛 < 0.97𝑑𝑑. This contradicts  0.97𝑑𝑑 ≤ 𝑛𝑛 ≤ 𝑑𝑑. Therefore, the assumption 𝑑𝑑𝑖𝑖 ≥ 𝑑𝑑/𝑘𝑘 

is false, and the reverse, 𝑑𝑑𝑖𝑖 < 𝑑𝑑
𝑘𝑘

, must be true. ▄ 

13. Scalable Precise Algorithm, SARL-Precise 

The following example aims to show the motivation for the development of the SARL-Precise 

algorithm.  

Suppose the same dataset discussed earlier, as shown in Figure 18, is given and minsup is set 

to 0.1 (or 10%, or 7 ∗ 0.1 ≈  1  occurrences), and minconf is set to 0.7 (or 70%): 

  



34 
 

 

TID Items 
T000 1, 2 
T001 1, 2, 3 
T002 4, 5 
T003 1, 4, 5 
T004 2, 3 
T005 1, 2, 3 
T006 1, 4, 5 

Figure 18 Example Dataset 

First, we use the Apriori algorithm to find frequent two-itemsets. As an intermediate step, 

the Apriori algorithm finds frequent one itemset, as shown in Figure 19: 

 

Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

Figure 19 Frequent One Itemsets 

The frequent two-itemsets are found afterward, as shown in Figure 20: 

 

Frequent 
Itemsets 

Support 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
{4, 5} 2 

Figure 20 Frequent Two Itemsets 

Next, we transform the above frequent two-itemsets into an item association graph, as 

shown in Figure 21. 
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Figure 21 Item Association Graph Example 

To construct the graph, we take itemset {1, 2} with support 3, create node 1 and node 2 that 

correspond to the two items in the itemset. The edge between node 1 and node 2 has weight 

3, representing the support of the itemset. The process is repeated for every frequent two-

itemset found in the previous step. 

Next, we use the multilevel k-way partitioning algorithm (MLkP) to partition the IAG. In this 

case, the number of nodes is small, so we only bisect the graph by setting k = 2.  
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Figure 22 Item Association Graph Partition 1 

 
Figure 23 Item Association Graph Partition 2 
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The MLkP algorithm divides the IAG into two equal or almost equal sets in linear time while 

the sum of the weights of edges cut off is the minimum. The results are shown in Figure 22 

and Figure 23. 

Next, we partition the dataset according to the partitions of the IAG, as shown in Figures 19 

and 20. Each transaction partition has all the items from the corresponding IAG partition. 

However, since the algorithm has already found all frequent one and two itemsets, a 

transaction will not be added to a transaction partition if the transaction has fewer than 

three items. For example, T000: {1, 2} is not added to the transaction partition 1, since it only 

has two items.  Some items in the original dataset may not be included in any of the 

transaction partitions, because the infrequent one/two-itemsets are dropped in the IAG. This 

simplifies the subsequent computations. In this example, however, all the items are kept in 

the IAG because the IAG is a relatively dense graph. Figures 19 and 20 show the transaction 

partitions.   

TID Items 
T001 1, 2, 3 
T005 1, 2, 3 

Figure 24 Transaction Partition 1 

TID Items 
None None 

Figure 25 Transaction Partition 2 

Note that there is no transaction in partition 2. This is because partition 2 has only two 

unique items, it is not possible to mine any frequent three itemsets from this partition. 

Therefore, partition 2 is discarded. 
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In this step, TID T003 and T006 are marked as divided transactions, because they have 

elements that are divided between two different IAG partitions. The first partition is not 

enough to discover the potential frequent itemset {1, 4, 5}. 

To avoid the loss of the divided transactions, in the scalable precise algorithm, a bridge 

transaction partition is constructed based on the divided transactions from the last step, as 

shown in Figure 26.  

TID Items 
T003 1, 4, 5 
T006 1, 4, 5 

Figure 26 Bridge Transaction Partition 

According to the algorithm, the above bridge transaction partition is converted into an IAG 

and then bisected by the MLkP algorithm. The results are two partitions, [1, 4] and [5]. At the 

same time, similar to the previous step, both transactions are marked as divided and will be 

added to the next bridge partition. The following (Figure 27 and Figure 28) are two small 

bridge partitions generated from the first bridge. They are both empty because none of them 

contains any transactions of three items or more.  

TID Items 
None None 

Figure 27 Partition1 of The Bridge 

 

TID Items 
None None 

Figure 28 Partition 2 of The Bridge 

From the above two partitions, a second bridge(shown in Figure 29) is derived using the 

generate-bridge function.  
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TID Items 
T003 1, 4, 5 
T006 1, 4, 5 

Figure 29 The Second Bridge 

 

The second bridge has the same size as the first bridge, so we can stop here and discard the 

second bridge.  

The next step is to pick the best algorithm and use it to find the frequent k-itemsets with k > 

2. For this example, we choose the modified Apriori algorithm because it is faster for mining 

small datasets, and it avoids the process of finding the frequent one and two itemsets again. 

The results from partition 1 are shown in Figure 30: 

Frequent 
Itemsets 

Support 

{1, 2, 3} 2 
Figure 30 Frequent Itemsets from Transaction partition 1 

Since the modified Apriori algorithm starts at finding three-itemsets, there are no additional 

frequent itemsets in the second partition, as shown in Figure 31. 

Frequent 
Itemsets 

Support 

None N/A 
Figure 31 Frequent Itemsets from Transaction partition 2 

Figure 32 shows the frequent itemset found in the bridge transaction partition. 

Frequent 
Itemsets 

Support 

{1, 4, 5} 2 
Figure 32 Frequent Itemsets from Bridge transaction partition 
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We can compute the final result by taking the union of the frequent itemsets from Figures 

19, 20, 30, 31, and 32. The support of each frequent itemset is the maximum support among 

the results of all partitions. 

Frequent 
Itemsets 

Support 

{1} 5 
{2} 4 
{3} 3 
{4} 3 
{5} 3 

{1, 2} 3 
{1, 3} 2 
{1, 4} 2 
{1, 5} 2 
{2, 3} 3 
{4, 5} 3 

{1, 2, 3} 2 
{1, 4, 5} 2 

Figure 33 Frequent Itemset Final Results 

After running the Apriori-ap-genrules algorithm, the rules shown in Figure 34 can be 

discovered. 

Rules Confidence 
{2}  {1} 0.75 
{3}  {2} 1 
{5}  {1} 1 
{2}  {3}  0.75 
{5}  {4} 1 
{4}  {5} 1 

{1, 3}  {2} 1 
{1, 4}  {5} 1 
{1, 5}  {4} 1 

Figure 34 Association Rule Generated 
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Comparing the result with the result of the Apriori algorithm, the algorithm is sound and 

complete. Every frequent itemset and rule is correct, and it finds all frequent itemsets as well 

as all the rules. 

 

14. Concise Description of the SARL-Precise Algorithm 

Step 1: Find itemsets with size one and two using the Apriori algorithm or direct generation 

algorithm. 

Step 2: Construct the item association graph(IAG) from the result of step 1. 

Step 3: Partition the IAG using multilevel k-way  partitioning algorithm(MLkP)  

Step 4: Partition the database according to the result of step 3, mark those transactions 

required to be assigned to the bridge partition 

Step 5: Construct the bridge partition using the result from step 4. Recursively reduce the 

bridge partition into smaller partitions. 

Step 5: Choose an algorithm to mine frequent itemset on each database partition based on 

the characteristic of different algorithms. 

Step 6: Summarize the result. For each frequent itemset found in any partition, choose the 

highest support among all partitions.  

15. Another Example 

This example shows how the SARL algorithm works on a slightly more complex dataset, 

shown in Figure 35, which requires more recursions for bridge generation.  
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TID Items 

T000 1, 2, 4 
T001 2, 4, 5 
T002 2, 3, 4 
T003 1 
T004 1, 2, 3 
T005 2, 3, 5 
T006 1, 3, 4 
T007 2, 3, 5 
T008 2, 3 

Figure 35 Another Example Dataset 

Let us run the SARL algorithm. Firstly, the modified Apriori algorithm is used to find frequent 

one and two itemsets. The results are shown in Figures 36 and 37. 

Frequent 
Itemsets 

Support 

{1} 4 
{2} 7 
{3} 6 
{4} 4 
{5} 3 

Figure 36 Frequent One Itemsets 

 

Frequent 
Itemsets 

Support 

{1, 2} 2 
{1, 3} 2 
{1, 4} 2 
{2, 3} 5 
{2, 4} 3 
{2, 5} 3 
{3, 4} 2 
{3, 5} 2 

Figure 37 Frequent Two Itemsets 
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Similar to the previous examples, the IAG is constructed according to the frequent two 

itemsets found above, as shown in Figure 38. 

 

Figure 38 IAG for Example 2 

The MLkP algorithm divides the IAG into two partitions, as shown in Figure 39 and Figure 

40: 
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Figure 39 IAG Partition 1 

 

Figure 40 IAG Partition 2 
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Next, the SARL algorithm divides the original dataset into two transaction partitions, as 

shown in Figure 41 and Figure 42, according to the two IAG partitions above with the same 

method discussed in the previous example: 

TID Items 
None None 

Figure 41 Transaction partition 1 

TID Items 
T005 2, 3, 5 
T007 2, 3, 5 

Figure 42 Transaction partition 2 

In this process, we mark each divided transaction and put its TID into a list if that transaction 

has three or more items: [T000, T001, T002, T004, T006]  

Next, the first bridge partition is constructed with the transactions in the list above, as shown 

in Figure 43. 

TID Items 
T000 1, 2, 4 
T001 2, 4, 5 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Figure 43 The First Bridge Partition 

Now, the first bridge partition is treated as the original dataset to generate an IAG, 

partitioned by the MLkP algorithm ([1,3] and [2, 4, 5]), and generates two small bridge 

partitions, as shown in Figure 44 and Figure 45: 

TID Items 
None None 

Figure 44 Small Bridge Partition 1 
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TID Items 
T001 2, 4, 5 

Figure 45 Small Bridge Partition 2 

A second bridge partition can be built during this process, as shown in Figure 46: 

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Figure 46 The Second Bridge Partition 

Comparing to the previous bridge, the second bridge has one fewer transaction and one 

fewer unique item. Therefore, we have a reduced bridge partition. Since the decomposition 

is lossless, the first bridge can be safely discarded. 

If we repeat this process one more time, the IAG partitions are [1,2] and [3, 4]. Then we can 

obtain two empty bridge partitions and the bridge partition shown in Figure 47. 

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Figure 47 The Third Bridge Partition 

This third bridge partition is the same partition as the second one. Therefore, we can discard 

this one. In summary, we have losslessly transformed the original dataset into the partitions 

shown in Figures 48, 49, and 50. 

TID Items 
T005 2, 3, 5 
T007 2, 3, 5 

Figure 48 The Transaction Partition 1 
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TID Items 
T001 2, 4, 5 

Figure 49 The Transaction Partition 2 

 

TID Items 
T000 1, 2, 4 
T002 2, 3, 4 
T004 1, 2, 3 
T006 1, 3, 4 

Figure 50 The Second Bridge Partition 

After running the modified Apriori algorithm on each of the partitions. We can find the 

frequent itemset shown in Figure 51: 

Frequent 
Itemsets 

Support 

{2, 3, 5} 2 
Figure 51 Frequent Itemsets Found 

The example shown above has only one frequent three itemset. However, according to 

Theorem 2, given a low minsup and a large dataset, there should be more frequent three or 

more itemsets than frequent two itemsets. 

We can find the union of all frequent itemsets to compute the final result, as shown in Figure 

52. The support of each frequent itemset is the maximum of those across the results from all 

partitions for the same itemset. 

Frequent 
Itemsets 

Support 

{1} 4 
{2} 7 
{3} 6 
{4} 4 
{5} 3 

{1, 2} 2 
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{1, 3} 2 
{1, 4} 2 
{2, 3} 5 
{2, 4} 3 
{2, 5} 3 
{3, 4} 2 
{3, 5} 2 

{2, 3, 5} 2 
Figure 52 Final Frequent Itemsets 

By running the Apriori-ap-genrules algorithm, the rules shown in Figure 53 can be found. 

Rules Confidence 
{2}  {3} 0.71 
{3}  {2} 0.83 
{5}  {2} 1 
{4}  {2} 0.75 

{3, 5}  {2} 1 
Figure 53 Association Rules 

Again, both frequent itemsets and association rules found by the SARL algorithm are sound 

and complete.  

16. Formalized Algorithm 

Following is the pseudo-code for the SARL-Precise Algorithm. 

(12) Pseudo Code 

SARL_Precise: 
bridges = [] 
results, two_itemset = mod1-Apriori(dataset) 
graph = build_IAG(two_itemset) 
partitions = METIS.partition(k, graph) 
files, div_index = partition-dataset(dataset, partitions) 
bridges = generate-bridge(files, div_index, k, dataset, 0, infinity) 
files += bridges 
for file in files: 
 results += mod2-Apriori(file)  #when files are small 
 results += FP-Growth(file) #when files are large 
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rules = Apriori-gen(results) 
 
mod1-Apriori(dataset): 
C1 = {} 
for transaction in dataset: 
 for item in transaction: 
  if item not in C1: 
   add item to C1  

item.counter = 1 
  else: 
   item.counter += 1 
L1 = {} 
for candidate in C1: 
 if candidate.counter >= minsup: 
  add candidate to L1 
C2 = {} 
for itemset1 in L1: 
 for itemset2 in L1: 
  if itemset1 != itemset2: 
   add itemset1 U itemset2 to C2 
for transaction in dateset: 
 for candidate in C2: 
  if candidate.issubset(transaction): 
   candidate.counter += 1 
L2 = {} 
for candidate in C2: 
 if candidate.counter >= minsup: 
  add candidate to L2 
return L1, L2 
 
build_IAG(itemsets): 
for itemset in itemsets: 
 graph.add_node(itemset[0]) 

graph.add_node(itemset[0]) 
graph.add_edge(itemset[0], itemset[1], weight += 1) 

return graph 
 
partition-dataset(dataset, partitions): 
div_index = [] 
for transaction in dataset: 
 for partition in partitions: 
  intersect = parition intersect transaction 

 if len(intersect) < len(transaction): 
      div_index.append(TID_of_transaction)  

                   elif len(intersect) > 2: 
add intersect to dataset_partition_i 
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return dataset_partition_names, div_index 
 
generate-bridge(div_index, k, dataset, i, last_len): 
 count = 0 

for TID in div_index: 
  bridge_i. add (dataset[TID]) 
  count+=1 
 if count == last_len: 
  return bridge_i 
 else:  
  dataset = bridge_i 
  results, two_itemsets = mod1-Apriori(dataset) 
  graph = build_IAG(two_itemset) 
  partitions = METIS.partition(k, graph) 
  temp_files, div_index = partition-dataset(dataset, partitions) 
  return generate-bridge( div_index, k, dataset, i+1, count), temp_files 
   

17. Recursively Generating Bridge Transaction Partitions 

 
The bridge dataset and their partitions are necessary to achieve a precise calculation of 

frequent three or more itemsets. The main purpose of deriving them is to reconsider all 

potential errors, so the SARL algorithm does not miss any frequent itemsets.  

The algorithm is greedy and defined recursively. In each recursion, it first finds all divided 

transactions that were labeled during the transaction partition step, and they are added to 

the bridge partition. The divided transactions were labeled so that there is no need to make 

a whole pass of the dataset again to check if a transaction is divided. Then, it calculates the 

number of transactions in the bridge partition and compares it to the previous, undivided 

bridge partition. If the current bridge partition has the same number of transactions as the 

previous one, that means the current reduction does not reduce the size of the bridge 

partition any further. The algorithm discards the current bridge partitions. On the other hand, 
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if the total number of transactions in the new bridge partition is less than that of the previous 

bridge partition, then the algorithm divides the bridge partition again. 

Some additional transaction partitions are generated through this process. However, 

calculating frequent itemsets in these smaller partitions are relatively simple since they are 

small enough to fit into the memory and contain fewer unique items than their parent bridge 

partition. Reducing the size of the bridge partition could result in an exponential reduction 

in the complexity of finding frequent itemsets, as we analyzed earlier.  

18. Analysis 

The time and the space complexities of the SARL-Precise algorithm, when the modified 

Apriori algorithm is chosen, are the same as those of the Apriori algorithm. That is, 𝑶𝑶(𝟐𝟐𝒅𝒅) for 

both time and space complexities. From our previous analysis, the SARL-Heuristic algorithm 

has a complexity of 𝑶𝑶(𝟐𝟐
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎
𝒌𝒌 )  for both time and space. In the most extreme case, every 

transaction of the original dataset is divided, then the bridge partition will be the same as 

the original dataset, and the total time complexity will be 𝑶𝑶�𝟐𝟐
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎
𝒌𝒌 � + 𝑶𝑶(𝟐𝟐𝒅𝒅)  = 𝑶𝑶(𝟐𝟐𝒅𝒅) . 

Similarly, the total space complexity is also 𝑶𝑶(𝟐𝟐𝒅𝒅). However, the SARL-Precise algorithm 

runs faster than the Apriori algorithm in most cases. This is because the MLkP algorithm 

finds the sub-optimized solution to cut the minimum number of transactions. Thus, the size 

of the bridge is usually much smaller than the original dataset.  

19. Theorems and Proofs 
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Theorem 5: Each decomposition of a bridge partition or the original 

dataset is lossless. 

Proof: 

After dividing the original dataset into two transaction partitions, there are two possibilities 

for each transaction of the original dataset. Each transaction T must be either divided and 

assigned to different partitions or assigned to a single partition as a whole. For the latter 

case, all existing subsets of T, including duplications of T, must also be assigned into the same 

partition. We can say that partition contains the complete information for any itemsets that 

are subsets of T. Therefore, both the Apriori algorithm and the FP-growth algorithm will get 

the same support for frequent itemsets that are subsets of T.  As for the former case, the 

bridge partition B includes all divided transactions. If a frequent itemsets F is not a subset of 

any transaction T, T being a transaction completely assigned to 𝑃𝑃𝑖𝑖  , then all transactions K 

that are supersets of F must be assigned to B. On the other hand, if F is a subset of some 

transaction T, being a transaction completely assigned to 𝑃𝑃𝑖𝑖 , then this will be the latter case. 

The former case can be described as,  

𝐹𝐹 ⊂  �𝑇𝑇 | 𝑇𝑇 ∈ 𝑃𝑃𝑖𝑖  ∧ (∀𝑡𝑡 ⊂ 𝑇𝑇) ∈ 𝑃𝑃𝑖𝑖   
𝐾𝐾 | 𝐾𝐾 ∈ 𝐵𝐵 ∧ (∀𝑘𝑘 ⊂ 𝐾𝐾) ∈ 𝐵𝐵   

Therefore, for each frequent itemset F, all transactions that contain any supersets of F are 

assigned to only one partition. So all support numbers are guaranteed to be the same as the 

ones before decomposition.  

For the same reasons, all subsequent decompositions are performed on the bridge partitions 

and are lossless as well. 
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EXPERIMENTS AND RESULTS 
We designed and conducted experiments on both small and large datasets to demonstrate 

the scalability of our algorithm. The experiments were performed on a computer with the 

following settings: 

OS: Ubuntu 64-bit virtual machine 

CPU: Intel Core i7-4720HQ 

Memory: 8192MB allocated to the virtual machine 

Disk: 5400RPM, 64MB Cache, 6.0Gb/s, SSHD, 8GB flash memory 

Programming Language: Python 3.7 

The datasets [3] we use include Mushroom [9], T10I4D100K [3], and T40I10D100K [3]. The 

details of each dataset will be covered later. 

For each of these datasets, we tested the SARL algorithm with various settings for the FP-

Growth and the Apriori algorithms on different values of minsup. The various settings of the 

SARL algorithm are as follows: 

2apF: k = 2, Apriori-based, heuristic mode.  

2apT: k = 2, Apriori-based, precise mode.  

2fpF: k = 2, FP-Growth-based, heuristic mode.  

2fpT: k = 2, FP-Growth-based, precise mode.  

4apF: k = 4, Apriori-based, heuristic mode.  
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4apT: k = 4, Apriori-based, precise mode.  

4fpF: k = 4, FP-Growth-based, heuristic mode.  

4fpT: k = 4, FP-Growth-based, precise mode.  

The Mushroom Dataset 

The mushroom dataset has the following metrics: 

Number of unique items: 119 

Number of transactions: 8124 

Average transaction width: 23 

File size: 558 KB 

This is a small dataset considering its size. However, the complexity of mining frequent 

itemsets is non-trivial due to its large average transaction width. The experiments was done 

repeatedly for minsup of 20%, 10%, 7%, 4%, 1%, 0.7%, 0.4%, and 0.1%. The time limit for 

each experiment was set to 400 seconds for each of the 80 experiments. The results are 

shown in Figure 54: 

 
Figure 54 Experiments from the Mushroom Dataset 

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
20 79.2578 62.78268 54.88132 126.1449 29.18472 13.04025 94.26079
10 379.6436 56.5663 305.3277 129.0632 19.01914 269.448

7 354.9317 113.5315 165.1814 17.03973 368.4053
4 161.2162 44.68621
1 362.2856 39.26179

0.7 165.8576 51.73652
0.4 386.2269 46.14297
0.1 100.1229
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Figure 55 Mushroom Dataset Test Results 

According to Figure 55, the results show that the four-partition, FP-Growth-based, heuristic 

SARL algorithm scales the best for this dataset regardless of the minsup value. It is 6 to 20.8 

times faster than the FP-Growth algorithm when the FP-Growth algorithm does not exceed 

the time limit. Although it does not cover all frequent itemsets or association rules, 

depending on the application, this could be a great tradeoff. The two-partition, FP-Growth-

based, heuristic SARL algorithm is the second-best in terms of running time. It has a higher 

accuracy with acceptable running time except for the test with 0.1% minsup. Two precise, 

FP-Growth based SARL algorithms mostly outperform the FP-Growth and the Apriori 

algorithms. The Apriori algorithm does not perform well on this dataset, and it does not 

terminate for any of the experiments. The average transaction width might have a high 

impact on the performance of the Apriori algorithm.   

The second dataset we have tested is T10I4D100K. It has the following statistics: 
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Number of unique items: 870 

The average size of transactions: 10 

The average size of the maximal potentially large itemsets: 4 

Number of transactions: 100000 

File size: 4MB 

The algorithms were tested on T10I4D100K for minsup of 10%, 4%, 1%, 0.7%, and 0.4%. 

This dataset has a medium size (for this environment), so the time limit is set to 300 seconds 

for each of the 50 experiments.  

Figure 56 shows the results for T10I4D100K: 

 
Figure 56 T10I4D100K Test Results 

 

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
10 2.835414 19.57188 19.81187 19.11257 18.06593 18.71221 20.30663 19.44224 19.68889 5.622139

4 4.288454 18.61193 18.11847 18.25904 18.33747 18.43984 18.2938 18.39262 19.37539 18.49691
1 277.5966 32.34425 26.54587 21.23481 279.7529 21.47209 25.65941 20.94079 274.8818

0.7 288.9096 24.09774 30.65488 23.6652 22.95777 32.24238 23.90843
0.4 58.42791 89.43828 199.8875 56.80203 88.83656 207.7374
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Figure 57 T10I4D100K Test Results 

 

From Figure 57, the Apriori algorithm has an average performance for the initial minsup of 

10% and 4%. However, it quickly reached the maximum running time after that and unable 

to finish the task in time for all subsequent minsup. The FP-Growth has a better performance. 

It was the fastest for higher minsup of 10% and 4%, but jumped to almost 300 seconds for 

1% and 0.7%, before having timeout at 0.4%. All settings of the SARL algorithm outperform 

the Apriori and the FP-Growth algorithm for middle and low minsup. The SARL algorithm is 

slightly slower at a high minsup of 10%, and they were tied with the Apriori but was slightly 

slower than FP-Growth at minsup of 4%.  

The dataset T40I10D100K has the following statistics:  
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Number of unique items: 942 

The average size of transactions: 40 

The average size of the maximal potentially large itemsets:10 

Number of transactions:100000 

File size: about 15 MB 

This relatively large-size dataset was tested on minsup values of 20%, 10%, 7%, and 4%. The 

maximum running time was set to 300 seconds each for a total of 40 experiments. 

Figure 58 shows the results of the experiments: 

 
Figure 58 T40I10D100K Test Results 

 

fp sarl 2apF sarl 2apT sarl 2fpF sarl 2fpT sarl 4apF sarl 4apT sarl 4fpF sarl 4fpT ap
20 8.736294 229.0365 267.8287 235.9384 235.0602 232.3693 229.7591 231.474 232.7452 23.49573
10 228.2672 226.3674 226.8315 226.7898 239.0484 237.0974 233.1036 230.0035 158.8888

7 236.5143 247.8587 233.9087 235.3071 253.1851 238.6583
4 241.4238 256.5347 252.5584 242.9868 256.7242 241.8205
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Figure 59 T40I10D100K Test Results 

The results of the experiments(shown in Figure 58 and Figure 59) show an obvious 

distinction between the scalability of different algorithms. All settings of the SARL algorithm 

demonstrates very high scalability. Almost all settings of the SARL algorithm had stable 

running time throughout the entire range of minsup. Surprisingly, the Apriori algorithm 

performs better than the FP-Growth algorithm with minsup between 20% and 7%. However, 

it is still unable to terminate within the time limit for minsup = 4%. Lastly, the FP-Growth 

algorithm does not scale very well on this dataset. It failed to terminate within the given time 

for both 7% and 4% of minsup. 
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CONCLUSIONS AND FUTURE WORK 
We have proposed a scalable, highly parallelizable association rule mining algorithm (SARL 

algorithm) in this paper. The contributions include the use of the divide-and-conquer 

method to speed up complex computations, the use of an item association graph that 

provides an efficient estimation of potential frequent itemsets, the use of the MLkP algorithm 

to divide the items into partitions while minimizing the loss of information, the generation 

of the bridge partition to achieve precise computation, and recursive reduction of the bridge 

partition. We have shown the scalability of the SARL algorithm through a series of 

experiments. The results indicate that the SARL algorithm has better scalability than both 

the Apriori and the FP-Growth algorithms in most cases.  

In the future, we plan to extend our work on the following tasks:  

• Develop the parallel version of the SARL algorithm and its implementation. 
• Develop a scalable SARL algorithm to mine hierarchical item association rules. 
• Study how characteristics of the datasets that influence the performance of the SARL 

algorithm.  
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