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Abstract—Gamma-ray imaging attempts to reconstruct the
spatial and intensity distribution of gamma-emitting radionu-
clides from a set of measurements. Generally, this problem is
solved by discretizing the spatial dimensions and employing
the maximum likelihood expectation maximization (ML-EM)
algorithm, with or without some form of regularization. While
the generality of this formulation enables use in a wide variety
of scenarios, it is susceptible to overfitting, limited by the
discretization of spatial coordinates, and can be computationally
expensive. We present a novel approach to 3D gamma-ray image
reconstruction for scenarios where sparsity may be assumed, for
example radiological source search. In this work we first formu-
late a point-source localization (PSL) approach as an optimization
problem where both position and source intensity are continuous
variables. We then extend and generalize this formulation to
an iterative algorithm called additive point-source localization
(APSL) for sparse parametric image reconstruction. A set of
simulated source search scenarios using a single non-directional
detector are considered, finding improved image accuracy and
computational efficiency with APSL over traditional grid-based
approaches.

Index Terms—radiological source search, source localization,
Poisson likelihood, maximum likelihood, gamma-ray imaging

I. INTRODUCTION

THE reconstruction of the spatial and intensity distribution
of gamma-emitting radionuclides from a set of Poisson-

distributed measurements is employed for applications ranging
from medical imaging to nuclear security. In the case of
medical imaging, measurements are often from many static
detectors viewing a stationary volume, whereas in the case of
nuclear security, measurements may be from one or several
detectors that have moved through an environment. In both
cases, the position and orientation (pose) of the detectors
relative to the scene must be known; in the former the detector
geometry is known a priori, however in the latter case pose
information may be provided by geospatial positioning (GPS),
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an inertial navigation system (INS), or from simultaneous
localization and mapping (SLAM) [1], [2].

Here we consider the subset of scenarios where the source-
term may be assumed sparse. In the case of radiological
source search, the task is often to localize and quantify
the activity of one or more compact sources of gamma-ray
radiation. Under a point-source assumption, previous work
in static regularly-spaced 2D detector networks has consid-
ered techniques such as triangulation using least-squares [3],
hybrid grid-based maximum likelihood (ML) estimation and
expectation maximization (EM) [4], and regularized ML-EM
pre-conditioned Fisher’s scoring iterations [5]. In the space
of adaptive networks or moving detectors, approaches such
as two-stage algorithms [6], adaptive likelihoods [7], and
sequential Bayesian estimation using particle filters [8] have
been explored. Other approaches in the literature include grid-
refinement and iterative pruning [9], [10], [11], [12].

The existing approaches tend to localize a known number
of sources (primarily in 2D), assume background is known
or can be estimated prior to source localization, and rely on
the discretization of the spatial and intensity domains either
directly or for initialization of a direct solver. Grid-based
methods are limited in accuracy and can be computationally
intractable when searching for multiple sources [5]. Moreover,
methods developed in 2D may not be easily extensible to 3D
localization, due to increasing degeneracy and non-convexity
in the solution space.

More recent work has approached the problem in the
maximally general case (unknown background and no priors
on the source distribution), using ML-EM to perform 2D and
3D image reconstruction of sparse and distributed sources with
a variety of static and free-moving detector systems including
hand-held [13], [14], ground-vehicle [15], and airborne plat-
forms [16], [17]. Various regularization approaches to impose
assumptions about the source distribution have also been
studied [18], [19], [20]. While the generality of the ML-EM
formulations enable use in a wide variety of scenarios, it is
also susceptible to overfitting, limited by spatial discretization,
and can be computationally expensive and memory intensive.

In this work, we first consider the general ML-EM approach
in a discretized 3D space subject to Poisson gamma-ray
counting statistics, with and without sparsity regularization,
and demonstrate the limitations of such an approach. We
then propose a reformulation of the problem to one in which
the source model is confined to a single voxel, i.e., point-
source localization (PSL). This approach is similar to prior
work [4], though here we reconstruct in 3D and include
background as a free parameter. We then consider the PSL



problem in which both the spatial and intensity domains are
continuous. Finally, we extend the continuous PSL formalism
for general sparse image reconstruction, or additive point-
source localization (APSL), where the image is considered the
sum of multiple point-sources whose position and intensity
are continuous in nature. APSL mitigates over-fitting in its
iterative bottom-up nature and statistically-founded stopping
criteria and, because of the inherent point-source assumption
and continuous variables, results in images with improved
accuracy and interpretability as compared with traditional grid-
based approaches. Furthermore, we show that APSL offers this
enhanced performance at a reduced computational burden.

This work serves as an introduction and simple demon-
stration of the APSL approach. The formalism is general
in nature in that it can search for an unknown number of
sources in an unknown background environment using static
and dynamic detectors or detector arrays. A simulated source
search scenario comprising a single free-moving detector with
uniform directional sensitivity whose poses are derived using
SLAM is considered here. The detector poses are subject to
arbitrary rotations and translations in 3D as if being carried
by a human operator. An isotropic detector was used for
simplicity and clarity, though this case is challenging for both
localization and quantification due to the inability to break
solution degeneracy. An exhaustive study of the localization
and imaging performance of APSL and the impact of non-
uniform directional sensitivity and detector arrays will be
addressed in subsequent works.

The structure of the paper is as follows: the traditional and
sparsity regularized ML-EM approaches for a source search
scenario are outlined in Sec. II, followed by the discrete
and continuous PSL formalisms on the same scenario in
Sec. III. The APSL algorithm is demonstrated on a multi-
source localization scenario in Sec. IV. A summary and future
work are presented in Sec. V−VI.

II. MAXIMUM LIKELIHOOD APPROACHES

A. Poisson Likelihood

Gamma-ray measurements are governed by Poisson statis-
tics since they involve independent counting of discrete events.
The negative log-likelihood of a set of I measurements
x[I×1] = [x1, x2, . . . , xI ]T in units of counts per unit inte-
gration time from mean-rates λ[I×1] is

`(x|λ) = [λ− x� logλ+ log[Γ(x + 1)]]T · 1 , (1)

where � denotes element-wise multiplication and Γ(·) is
the gamma function. The system matrix V[I×J] in units of
inverse activity (Bq−1) describes the geometric and detector
efficiency of the I measurements relative to J image voxels
with intensities w[J×1] in units of activity (Bq). The mean-
rates λ in units of counts per unit integration time are the
forward-projection of the voxel intensities

λ = V · w + bt , (2)

where b is a background rate, assumed herein to be constant,
in a single detector and t[I×1] are measurement time durations.

Detection algorithms that operate in variable background envi-
ronments are currently under development and could eliminate
the need for the constant background assumption [21].

The notation presented here is for a single detector sys-
tem, however, the formulation is easily extensible to multi-
detector systems. In this case, the number of measurements
I will increase according to the number of detectors D
(i.e., I ← I ×D). Additionally, the background rate in each
detector is treated as a free variable, such that b⇒ b[D×1] and
t⇒ t[I×D], where only a single element of each row in t is
non-zero and Eq. 2 takes the form λ = V · w + t · b.

B. Maximum Likelihood Expectation Maximization

ML-EM [22] is an iterative algorithm that solves for the
maximum likelihood estimate of intensity and background by
minimizing Eq. 1

ŵ, b̂ = argmin
w,b

`(x|w, b) . (3)

Without background, the update equation at iteration q + 1 is

ŵ(q+1) =
ŵ(q)

ς
� VT · x

V · ŵ(q)
, (4)

where the sensitivity ς [J×1] = VT · 1 and ŵ is typically
initialized (q = 0) with a flat image. With the inclusion
of a constant background rate across all measurements, the
updates can be separated into source intensity and background
equations. First defining the comparator term as

ξ(q) =
x

V · ŵ(q) + b̂(q)t
, (5)

the updates become

ŵ(q+1) =
ŵ(q)

ς
�
[
VT · ξ(q)

]
,

b̂(q+1) =
b̂(q)

T

[
tT · ξ(q)

]
, (6)

where the total measurement time T = tT · 1 and b̂(0)

is typically the median of x. This approach is statistically
founded and highly general, but, as we will show, can result in
overfitting in sparse and underdetermined scenarios. Further-
more, the calculation of V can be computationally expensive
and memory intensive when I × J � 1.

To demonstrate the limitations of ML-EM for sparse im-
age reconstruction, we consider a simulated isotropic (non-
directional) 100% efficient detector (effective area of 5 cm2)
at points along a short experimental human-walked trajectory
(270 poses) in a 20 m2 area. The trajectory was tracked with
a LiDAR-IMU sensor system and the Google Cartographer
SLAM algorithm [23]. The elevation (Z) of the path varied
slightly, roughly ±30 cm about the XY plane (Z = 0). The
choice of a simulated detector and measured trajectory was
made here for the ease of single (and multiple) point-source
injection studies while capturing the variation in detector-
source distance (in 3D) observed in real free-moving source
search scenarios. A 5 µCi (0.185 MBq) point-source was
simulated in the XY plane with a closest approach of ∼45 cm
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Fig. 1. (Color online) (Top) Measurement path in the XY plane, colorized
with the total simulated counts at each measurement. The path is a human-
walked trajectory tracked with a SLAM system. The simulated measurements
remained static at each position for a duration of 0.1 s. The source position
is shown with a red “x”. (Middle) Measurement path along the Z dimension.
(Bottom) Simulated signal and background at each measurement.

and without regard to any spatial discretization for ML-EM. A
background count rate of 100 counts per second was assumed
and each simulated measurement had a duration of 0.1 s.

The top pane of Fig. 1 shows the path of the detector in the
XY plane with heading described with arrows, colorized with
the total counts at each measurement. Larger arrows indicate
a faster speed in the trajectory, though the simulations were
done statically at each position. The source position is shown
with a red “x”. The middle pane shows the position of the
detector in Z at each measurement. Notice the detector was
positioned at Z ≈ −14 cm for the majority of the path near
the source. The bottom pane shows the simulated signal and
background (“bkg”) at each measurement.

The directional sensitivity of the detector is represented
through the computation of V. A non-directional detector was
used in this work to limit the reconstruction to “proximity
imaging” (relying only on flux modulation from the inverse
square distance to the source) and focus on the development
and performance of the algorithms that follow.
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Fig. 2. (Color online) (Top) ML-EM reconstruction ŵ (20 iterations), in
log10 scale, of a slice through the XY plane (Z = 0). A 5 µCi (0.185 MBq)
source was placed at the red “x” at Z = 0. (Bottom) Forward projection of
ML estimates into count space λ̂ compared to the measurement x. The total
negative log-likelihood of the fit is shown in the upper right corner.

The 3D image space was discretized into cubic voxels
(10 cm length), with a Z extent from -3 to 3 m (total of
∼ 1.28 × 105 voxels). The image space was centered around
Z = 0 as the path of the detector was roughly centered around
this plane.

Figure 2 shows a slice of the ML-EM reconstruction ŵ
(20 iterations), in log10 scale, along the XY plane (Z = 0).
The number of iterations reflects a 1.5 × 10−3 fractional
change in negative log-likelihood and thus a reasonable es-
timate for convergence. Twenty iterations were used in all
subsequent reconstructions for consistency (in computation)
between methods. Also shown is the forward projection of
the ML estimates into measurement space (λ̂ = V · ŵ + b̂t)
compared to the measurement, x. The optimized negative log-
likelihood (hereby referred to as the “loss”) of the fit is shown
in the upper right corner of the lower plot. As the problem is
underdetermined, the ML-EM solution significantly overfits,
placing intensities in many voxels across the whole image
space, ultimately just fitting to the noise. This effect increases
with additional iterations.

The system matrix calculation and ML-EM reconstruction
were run on a quad-core 2.7 GHz Intel Core i7 processor with
runtimes of 22 s and 0.7 s, respectively. The same hardware
was used for all reconstructions in this work.

While it minimizes the loss, the solution fails to localize
the source and places most of the intensity near the path of
the detector. The bias towards the measurement path results
in a localization error (Euclidian distance between the true
location and the highest intensity voxel center, ~rerr = ||~rtrue −
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Fig. 3. (Color online) (Top) MAP reconstruction ŵ (20 iterations of EM)
with the log prior in Eq. 8 (δ = 1 and ρ = 0.01), in log10 scale, of a slice
through the XY plane. (Bottom) Forward projected mean-rates λ̂ compared
to the measured signal x. The total negative log-likelihood of the fit is shown
in the upper right corner.

~rj=argmax(ŵ)||) of 46 cm (∼100% of closest approach). To
compensate for a much closer source, the individual source
intensities are much lower than the true value. However, the
ML-EM background estimate is considerably lower than the
true rate, resulting in more source intensity being placed
throughout the 3D image space (total of ∼19 µCi).

C. Maximum A Posteriori

A priori knowledge about the image distribution can be
incorporated into Eq. 3 with

ŵ, b̂ = argmin
w,b

`(x|w, b) + ρR(w) , (7)

where R is a convex regularizer function or penalty on the
intensities, ρ controls the strength of the regularization, and ŵ
is the maximum a posteriori (MAP) estimate.

Lingenfelter et al. [18] studied the effects of various penal-
ties to enforce sparsity in the image intensity distributions. The
sparsity-enforcing l0 and l1 norms were shown to produce so-
lutions that were equivalent or scaled versions of the ML-EM
solution. The authors proposed a non-convex penalty based on
the sum of the logarithm of all image intensity values resulting
in a sparser solution than traditional ML-EM:

Rlog(w) =

J∑
j=1

log
(wj
δ

+ 1
)
, (8)

where δ is a scale parameter.
Figure 3 shows the MAP solution ŵ (20 iterations of EM)

to the data in Fig. 1 using the log prior (δ = 1 and ρ =
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Fig. 4. (Color online) (Top) MAP reconstruction ŵ (20 iterations of EM) with
the gamma prior in Eq. 9 (α = 1.01, β = 1, and ρ = 10−3), in log10 scale,
of a slice through the XY plane. (Bottom) Forward projected mean-rates λ̂
compared to the measurement. The total negative log-likelihood of the fit is
shown in the upper right corner.

0.01) as well as the comparison of λ̂ to the measurement.
The reconstruction runtime and likelihood convergence were
similar to ML-EM.

Hyperparameter optimization was done with a coarse grid
search over δ and ρ (δ, ρ ∈ 10{−3,−2,−1,0,1,2}), maximizing
the fraction of the intensity near the source (within half the
distance of closest approach). The optimal parameters were
below the suggested range of δ and ρ in [18] due to the
difference in scale in the data. While the solution is successful
in suppressing much of the activity surrounding the trajectory
and producing a better background estimate than ML-EM, the
log prior still suffers from overfitting, fails to localize the
source, and biases the intensity near the path.

Another prior used in image reconstruction, developed pri-
marily for emission and transmission tomography [24], [25],
is the gamma prior

RΓ(w) =

J∑
j=1

[
αjwj
βj
− (αj − 1) log wj

]
, (9)

where αj and βj correspond to the mean (βj) and variance
(β2
j /αj) of the gamma density for each voxel. This follows

naturally for the underlying Poisson intensities as the gamma
distribution is the conjugate prior of the Poisson likelihood.
More importantly, a gamma distribution with a constant low
mean and variance in each voxel will enforce sparsity as it
penalizes the addition of source intensity far from the mean.

Figure 4 shows the MAP solution ŵ (20 iterations of EM)
to the data in Fig. 1 using the gamma prior (α = 1.01, β = 1,
and ρ = 10−3) and the fit in count space. Again, the recon-



struction runtime and likelihood convergence were similar to
ML-EM. A grid search approach similar to above was used for
hyperparameter optimization (α, β, and ρ). Similar to the log
regularizer, the gamma prior suppresses intensity surrounding
the trajectory, though it still places intensity along the track
and fails to localize the source.

In both cases presented here, regularizing the reconstruction
using prior information fails to improve source localization
and quantification. Ultimately both problems are still severely
ill-posed. However, if the unknown source is known to be a
point-source (i.e., a source occupying a single voxel), such as
in radiological source search, significant improvements can be
made by reformulating the optimization problem in Eq. 3.

III. POINT-SOURCE LOCALIZATION

A. Discrete Space

Under the point-source assumption, the optimal background
rate and point-source intensities for each voxel can be solved
using ML-EM with the following replacements

λ⇒ Λ[I×J] = [λ1, . . . ,λJ ] ,

w⇒W[J×J] = diag(w) ,

x⇒ X[I×J] = [x, . . . , x] ,

b⇒ b[1×J] = [b1, . . . , bJ ] ,

t⇒ T [I×J] = [t, . . . , t] .

Equation 2 then becomes

Λ = V ·W + b� T . (10)

The voxel in discrete space that alone best describes the
data (minimum loss) may then be identified by solving Eq. 3
for each voxel. This can be thought of as individual ML-EM
problems in each voxel, each solving for the optimal weight
(and background) that best explains the measured data. While
Eqs. 6 and 10 can be refactored for computational efficiency,
the reconstruction will be slower than traditional ML-EM
because more computations are required. In the point-source
scenario, an analytical solution exists for the source intensities
in the absence of background

W = XT · 1 /VT · 1 . (11)

This solution can be computed exactly with little compu-
tational power, however it does not hold in the case of
the unknown background rate presented here. The analytical
solution is used as an improved initial image (over a flat image)
to increase the speed of convergence in the iterative approach.
While only 5 iterations were required for the minimum loss
voxel to achieve the same likelihood convergence as the ML
approaches above, this was not true in every voxel in the image
space. Therefore 20 iterations were used to be consistent with
the other approaches.

Figure 5 shows the ML-EM loss for each single-voxel
model of a slice through the XY plane. The reconstruction
runtime was 25.2 s. The distribution agrees with intuition as
the detector is non-directional, leading to many voxels outside
of the track that can fit sections of the data (one of the two
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Fig. 5. (Color online) (Top) ML-EM loss (20 iterations), in log10 scale, for
each single-voxel model (PSL) of a slice through the XY plane. (Middle)
Likelihood ratio test statistic of the loss’ to the minimum loss, represented
with a z-score (zoomed in near the true source location). (Bottom) Forward
projected mean-rates of the minimum loss single-voxel model λ̂ compared to
the measurement x.

peaks in the data) albeit with a higher loss. It is only the
voxels near the true location that capture both peaks in the
data, reflecting the lower loss.

The minimum loss voxel was one voxel above the true
source location in Z (resulting in the position error ∼ 10 cm).
This is not surprising as a non-directional detector was used
and there was little change in elevation over the measurement
path. Therefore some degree of degeneracy may exist in the
maximum likelihood solution. Note the activity estimate for a
point-source in this voxel was 4.7 µCi (< 10% error).

While the minimum loss voxel can be used directly for
the single-source localization (assuming the detection of the
source above background has already been done with some
other means, e.g., gross counts or spectral), spatial confidence
intervals can be computed to bound the true source location



with some degree of certainty (e.g., 95%). Under the assump-
tion that the minimum loss voxel contains the true source
location, confidence intervals can be computed around the
voxel by comparing to the surrounding likelihoods with a
likelihood ratio test.

The comparison of each loss `j to the minimum loss `min
remains in the interior of the parameter space, and thus Wilks’
Theorem [26] states that the test statistic of twice the negative
log-likelihood difference

z = 2(`j − `min) , (12)

will be asymptotically distributed like χ2
k, where the number

of degrees of freedom k is the difference in the number of
free parameters between `min and `j . The parameters of `min
are all fixed, resulting in a difference of 5 free parameters
(one source intensity, one background rate, and three spatial
coordinates of the source), therefore z ∼ χ2

5. For a system of
Nd detectors, the solution would generalize to k = 4 +Nd.

Note that with degenerate maximum likelihood estimates
(as can be the case with non-directional systems and limited
movement in one or more of the spatial dimensions) the
number of degrees of freedom k ≤ 4 + Nd. Simulations or
resampling methods would be required to determine the shape
of the distribution and the true value of k, which may not be
feasible in an operational search setting. However, assuming a
larger k will always result in a more conservative confidence
interval. While some degree of degeneracy may exist in this
problem presented here, a value of k = 5 was used for the
single detector system.

The equivalent Gaussian sigma (z-score) of a random vari-
able x distributed like χ2

k is

z-score =
√

2 erf−1
[
Φχ2

k
(x)
]

(13)

where erf−1(·) is the inverse error function and Φχ2
k
(·) is the

cumulative distribution function (CDF) of the χ2
k distribution.

The middle image of Fig. 5 shows the confidence intervals
around the minimum loss voxel in units of z-scores (zoomed
in near the source location). It is clear that the localization is
sharply peaked with high confidence (≥ 5σ), demonstrating
the superior localization capabilities of the approach.

The calculation of confidence intervals for the source inten-
sity is more complex as it is coupled to the reconstructed posi-
tion and background estimates. A more appropriate approach
in this case would be to compute covariances from the Fisher
information matrix (Cramer-Rao bound) or by determining
the distributions empirically by gridding over intensity and
background for the positions within some given confidence
limit. However, this is outside the scope of this work.

The bottom image of Fig. 5 shows the minimum loss single-
voxel model fit in count space. The solution is no longer
overfit (resulting in a larger loss compared to the ML-EM and
MAP approaches). The simple reformulation of the problem
drastically improves both the localization and quantification
performance, though, if the reconstruction is in discrete space,
at the cost of a higher computational burden.

B. Continuous Space

The minimization of Eq. 1 can be reformulated as an
optimization problem not only in continuous intensity, but also
in the continuous 3D spatial coordinates of the point-source
(~rs)

argmin
(ws, ~rs,b)

`(x|ws, ~rs, b) , (14)

where the ith instance of Eq. 2 from a source at position ~rs is
given by

λi = visws + bti , (15)

and the system response for measurement i from a point-
source at ~rs (neglecting attenuation) is

vis ≈
η(~rs, ~ri)ti
|~ri − ~rs|2

, (16)

where η(~rs, ~ri) is the angular response of the detector at
position ~ri to a point-source at position ~rs. For an isotropic
detector η = constant.

In this formulation, the response is calculated only where
needed in the optimization. This removes the need to com-
pute the entire 3D system matrix, V, significantly reducing
the computational and memory burden of the reconstruction.
Furthermore, the reconstruction is no longer limited to the size
of voxels used to discretize the image space.

Note that solving for source intensities and source positions
are independently convex problems, but solving for them
simultaneously in Eq. 14 is no longer convex. Several methods
exist to overcome this issue, but for this work a traditional
convex optimization algorithm was used along the optimal
ML-EM intensity (and background) manifold. In other words,
the optimization algorithm was allowed to search only the
positions of the point sources and at each step (source position)
ML-EM was performed to find the optimal source intensity
and constant background.

The BOBYQA derivative-free algorithm [27] for bound
constrained optimization in the NLopt [28] package within
the parallel optimization Python library PYGMO [29] was
used here with 20 ML-EM iterations at each step. Several
other algorithms (both derivative-free and gradient-based) are
available, but BOBYQA produced the best results with the
fastest convergence in this problem. The results are shown in
Fig. 6. The point-source position is no longer limited by the
voxel size, producing a position error < 2 cm, and the error
in the reconstructed point-source intensity was < 1% of the
true intensity.

The reconstruction runtime was 160 ms, considerably faster
than the previous approaches. This time also includes the
calculation of the system matrix, but in this case the re-
sponse was only computed for ∼50 positions, equivalent to
∼50 columns of V. This is compared to the J = 1.28 × 105

columns for the voxelized space in the previous section. The
50 columns in this case indicate the number of positions tested
in the BOBYQA optimization routine before convergence.
Note that as the number of measurements and voxels increases,
the full calculation of V becomes significantly expensive and
memory intensive (in some cases, requiring more memory than
available RAM, thus further slowing the reconstruction as V
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Fig. 6. (Color online) (Top) PSL solution (blue diamond) of a single point-
source to best describe the measured data, solved for in continuous 3D space
along the maximum likelihood source intensity and background manifold
using a conventional derivative-free optimization algorithm (BOBYQA). (Bot-
tom) Forward projected mean-rates λ̂ compared to the measurement x.

must be computed on the fly), further limiting the runtime per-
formance of spatially-discretized approaches. The continuous
PSL formulation avoids this problem entirely, scaling linearly
with the number of measurements.

To explore the performance of the continuous PSL approach
in this source scenario, the simulation was run 10,000 times
with source activities randomly sampled between 1-10 µCi and
a constant background rate of 100 counts per second. Figure 7
shows a box plot of the position and source intensity errors
against the true source strength, binned at 1 µCi intervals. For
each interval, the mean signal-to-noise-ratio (SNR) is shown as
an additional horizontal axis. The SNR of a single simulation
is defined as max(Si/

√
Si +Bi) where Si and Bi are the

signal and background at measurement i, respectively. The
position errors are expressed as a percent of closest approach
(45 cm). The median in each bin is denoted with an orange
horizontal line, the boxes range from the first to third quartile,
and the arms extend out to the 10th and 90th percentiles. Both
the median and spread of each error decreases with source
strength, as expected. The median source intensity error is
below 10% across all activities and the median position error
is less than 40% of the distance of closest approach.

Figure 8 shows the correlation between the position and
source intensity errors for > 99% of the total 104 simulations
(outlier reconstructions are ignored). Recall the detector po-
sition remained close to Z ≈ −14 cm while near the source,
which was placed at Z = 0. The isotropic response of the
detector and the little movement in Z results in degenerate
solutions in likelihood that extend along Z. Furthermore, the
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Fig. 7. (Color online) Box plot of the position and source intensity errors
against the true source strength, binned at each µCi, for 104 simulations
with source intensities randomly sample between 1-10 µCi. Position error as
defined in Sec. II-B is shown here in percent of closet approach. The median
in each bin is denoted with an orange line, the boxes range from the first to
third quartile, and the arms extend out to the 10th and 90th percentiles. The
mean SNR over each interval is shown as an additional horizontal axis.

Fig. 8. (Color online) 2D histogram of position and source intensity errors for
> 99% of the total 104 simulations with source activities between 1-10 µCi.
Less than 1% of events were outside of the defined bounds and are not shown.
Bin widths are 1% in each direction. The degeneracy of the solution space is
highlighted by green dashed lines and a discussion in provided in the text.

position below the measurement path equal to the offset of
the path to the true source location (Z ≈ −28 cm or 60%
position error) represents a degenerate solution in source
intensity. These effects can be seen in the plot in three distinct
regions (shown with dashed green lines). First, a diagonal band
extends out from the origin, corresponding to reconstructed
positions above the true location in Z. A second diagonal band
extends out from a position error of 60%, corresponding to
reconstructed positions below the degenerate source intensity
solution in Z. Finally, a slightly curved band is observed
between the origin and this point, representing the positions
between the true source location and the degenerate source
intensity solution on the opposite side of the path. The band
peaks at a position error of 30% (plane of the measurement
path, Z ≈ −14 cm), where the source intensity estimate is
lower to compensate for the closer source. Ultimately, while



some degeneracy is observed in the solution space, enough
variation existed in the detector position that the majority
of reconstructions were near the origin in Fig. 8, correctly
localizing and quantifying the source, particularly for high
SNR sources.

IV. ADDITIVE POINT-SOURCE LOCALIZATION

The additive nature of Poisson variables facilitates the
inclusion of M known, constant source rate contributions,
µ[I×1] into Eq. 15, rewritten as

λi = visws + µi + bti , (17)

where µi =
∑M
m=1 vimwm. Now Eq. 14 can be reformulated

to localize an additional source

argmin
(ws, ~rs,b)

`(x|ws, ~rs, b,µ) . (18)

While one can attempt to solve Eq. 18 in discrete space as
in Sec. III-A by successively solving for sources one at a time,
this approach does not allow for the re-optimization of source
intensities and positions after a new source is found. In the
continuous space formulation, a re-optimization can be done
in position and intensity across multiple sources, allowing all
the free parameters to vary at once. This capability is crucial in
the multi-point-source reconstruction problem as the addition
of another source can affect the overall likelihood fit of the
previous source configuration.

Algorithm 1 is proposed here to iteratively recon-
struct a sparse parametric image of N sources, S =
{(w1, ~r1), ..., (wN , ~rN ); b}, in the continuous space formula-
tion, where N is also treated as an unknown. After each new
source is identified, the re-optimization of source positions and
intensities can be done in two ways:

1) In the fashion of [30], alternate between
a) Fix intensities and re-optimize positions using con-

ventional optimization methods (e.g., BOBYQA).
b) Fix positions and re-optimize intensities and back-

grounds using ML-EM.
2) Re-optimize source positions using conventional opti-

mization methods along the optimal intensity and back-
ground manifold (as done in Sec. III-B).

A model selection criterion is then used to test the new
model (N+1 sources) compared to the old model (N sources).
The Bayesian Information Criterion (BIC) [31] was used here
and is given by

BIC = log(I)k + 2`(x|λ̂) , (19)

where k = 4N + 1 is the number of parameters estimated
by the model (the intensity and XYZ position of each source
and the constant background rate in the detector) and I is the
number of measurements. Again, for a multi-detector system
k would generalize to k = 4N +Nd. The preferred model is
the one with the minimum BIC value. The BIC penalizes the
acceptance of a new model based on the number of parameters
used in the model (i.e., the addition of another source must
significantly improve the model in order to be accepted). The
BIC was used here, as opposed to another model selection

Algorithm 1 Additive Point-Source Localization

1: Initialize reconstruction. S = {(); b = median(x)}
2: converged = False
3: Solve Eq. 14, append to S
4: while not converged do
5: Sold = S
6: Solve Eq. 18 for additional source, append to S
7: Re-optimize source positions, intensities and background, update S
8: Test for acceptance of S relative to Sold using BIC
9: if accepted then

10: Clean S: drop low weight or weakly contributing sources and
collapse nearby sources

11: Re-optimize current state of source positions, intensities and
background, update S

12: else
13: S = Sold
14: converged = True
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Fig. 9. (Color online) (Top) Measurement scenario similar to Fig. 1 now with
multiple sources in the XY plane. The source positions are shown with red
x’s as well as numbers in colored boxes. (Bottom) Simulated signal source
components and background at each measurement.

criterion such as the Akaike Information Criterion (AIC) [32],
as it applies a stricter penalty, therefore restricting the addition
of many sources and reducing overfitting.

If the new model is accepted, a cleaning procedure is
invoked to drop low intensity and weakly contributing sources
as well as combine spatially close sources (defined to be
< 10 cm in this case). If the source configuration is changed
in the cleaning, a re-optimization is performed again. If the
new model is rejected, the algorithm is stopped. We note the
APSL algorithm correctly stopped at one source in the source
scenario presented above.

The multi-source performance of the APSL algorithm is
explored using the simulated detector and measurement path
from above (see Fig. 9). In addition to the 5 µCi source
used previously, three additional sources were placed in the
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Fig. 10. (Color online) (Top) ML-EM reconstruction ŵ (40 iterations), in
log10 scale, of a slice through the XY plane (Z = 0) for the scenario
presented in Fig. 9. (Bottom) Forward projected mean-rates λ̂ compared to
the measurement x.

XY plane near the trajectory, with activities ranging from 6-
8 µCi and closest standoffs of 35-55 cm. The bottom pane of
of Fig. 9 shows the simulated signal source components and
background at each measurement.

The unregularized ML-EM reconstruction, in log10 space,
along the XY plane and the corresponding fit in count space
are shown in Fig. 10. Forty iterations were required in this
case to achieve the same likelihood convergence stated in
Sec. II-B. The system matrix calculation runtime was 22 s
and the reconstruction runtime was 1.2 s. ML-EM continues
to produces an overfit solution and fails to correctly localize
any of the sources. Again, the overfitting behavior worsens
with more iterations. Similar to Sec. II-C, the inclusion of
sparsity regularizers in ML-EM did not improve the results.

The APSL reconstruction results are shown in Fig. 11 and
the errors are shown in Table I. The BOBYQA algorithm was
used with 20 ML-EM iterations at each step in the position
optimization (additional iterations were not necessary and did
not affect the result). The total reconstruction runtime was
12.8 s. Again, this time includes the calculation of the columns
in V needed in the optimization. APSL converges to the correct
number, location, and intensity of the four unique sources,
without the use of pre-conditioning as in [5], and accurately
estimates the constant background rate.

The reconstruction errors in position are all < 10 cm in
the XY plane, with slightly higher errors in the Z dimension.
Larger errors are observed for the sources outside of the
measurement path (#1 and #4). This is expected due to the
limited sensitivity to these regions and the degeneracy in the
solution space discussed previously. In general, it is shown that
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Fig. 11. (Color online) (Top) APSL solution (blue diamonds) in the XY plane
(Z = 0) for the scenario presented in Fig. 9. (Bottom) Forward projected
mean-rates λ̂ (individual source and background components) compared to
the measurement x.

TABLE I
APSL RECONSTRUCTION ERRORS IN FIG. 11.

Source 1 Source 2 Source 3 Source 4
wtrue (µCi) 8.0 6.0 5.0 6.0

ŵ (µCi / % err) 7.3 / 9.9 5.6 / 7.2 4.8 / 3.9 7.7 / 22.3
~̂rerr, XY (cm) 3.6 2.9 1.3 5.5
~̂rerr, Z (cm)† 10.5 5.8 5.4 15.4

† Generally, ~̂rerr, Z > ~̂rerr, XY due to the non-directional detector used and
that the path primarily moved in XY, without much change in Z.

larger position errors correlate with larger intensity errors, as
was shown in Fig. 8.

While this example uses a simple model with nearby sources
and relatively large individual SNRs, several peaks overlap
to produce an overall complex source term. Furthermore,
the measured detector path captures the variation in detector
position we would expect in an operational source search
scenario, adding variation to the signal as well as breaking
some of the degeneracy in the ML solution space. Ultimately,
the results highlight the success of the APSL algorithm in the
deconvolution of the signal into the correct individual source
components and background.

A. Separation of Spatially Close Sources

The ability to separate sources with an isotropic detector is
dependent on the measurement path, the statistics collected,
and the degeneracy of the ML solution space. However, it
is expected that, given a path near two sources, an isotropic
detector should be capable of resolving two sources (in space
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Fig. 12. (Color online) (Top) APSL solution (blue diamonds) in the XY plane (Z = 0) for two sources (#1: 9 µCi, #2: 5 µCi) with separation of 40 cm (left)
and 30 cm (right) placed in the XY plane. The distance of closest approach in the measurement path is 40 cm in both cases. (Bottom) Forward projected
mean-rates λ̂ (individual source and background components) compared to the measurement x for the images in the top panel. Reconstruction errors are
discussed in the text.

and intensity) that are spatially separated by at least the
distance of closest approach.

To demonstrate the resolving capability of APSL when
using an isotropic detector, two unequal activity sources (9 µCi
and 5 µCi) are simulated in the XY plane near the measure-
ment path, with a 40 cm distance to closest approach. We
consider two scenarios in which the source separations are
40 cm and 30 cm. APSL is run on each scenario and the
results are shown in Figure 12.

In the case where the source separation is the distance of
closest approach, APSL is successful in resolving two sources,
with XY position errors < 10 cm, Z position errors < 15 cm,
and intensity errors < 5%. In the case where the source
separation is less than the distance of closest approach, APSL
places a single source with a combined activity (13.8 µCi)
between the two sources. A slight bias is observed towards
the stronger source (#1), though this is expected as this source
contributes more to the measured signal and a better fit to this
source can result in a lower overall loss.

V. SUMMARY

Using a simple simulation of a single point-source and a
non-directional detector moved over an experimental SLAM-
tracked trajectory, we have shown that a reformulation of the
sparse inverse problem can improve source localization and
quantification performance. In sparse scenarios, the traditional
and sparsity-enforcing regularized ML-EM approaches suffer

from overfitting and fail to localize point-sources. Ultimately,
these approaches are attempting to solve an inherently under-
determined problem. The reformulation of the problem with a
point-source assumption (PSL) is well-posed and was shown
to accurately localize point sources and quantify their intensity,
though at the expense of computational complexity when
reconstructing in a discretized spatial domain. Solving PSL
as an optimization over continuous intensity and position
increased localization and quantification performance and im-
proved computational efficiency and memory consumption.

The continuous PSL formulation was extended and gen-
eralized to APSL for multiple point-source localization or
sparse parametric image reconstruction. To demonstrate the
concept, four point-sources were simulated near the same
experimental measurement path, forming a complex source
term. ML-EM failed to localize any of the sources or provide
a useful initialization for a gradient-based approach, even
with sparsity regularization. APSL successfully deconvolved
the signal into the correct individual source and background
components (including the number, location and strength of
the sources) at a reduced computational and memory burden.

Finally, APSL successfully resolved (in both space and
intensity) two sources of unequal activity in close proximity.
The resolving capability drops quickly near the distance of
closest approach, but detectors or detector arrays that are
better able to determine the direction of photon incidence are
expected to better resolve closer sources.



VI. FUTURE WORK

In this manuscript we have presented the APSL approach
for sparse parametric image reconstruction, using simulated
data for demonstration purposes. Further work is needed to
rigorously characterize the algorithm and validate the scenarios
in which it may be used. We will pursue this work with
experimental data, evaluating the performance, limitations, and
scalability of the approach. This effort will include investiga-
tions into complex source terms such as weak, large standoff,
and shielded sources as well as more constrained measurement
paths relevant to radiological source search (e.g., straight lines
or single pass) that may be subject to more degeneracy in the
solution space. The impact of imaging detector systems and/or
arrays (i.e., anisotropic detectors) on localization accuracy and
computational burden will also be explored.

While a constant background assumption was made here
and may be appropriate for the small search space and short
measurement duration, this may not be appropriate in wide-
area urban search scenarios [33], [34], [35]. Therefore a
treatment for variable background rates must be incorporated
into the algorithm for larger search spaces and longer measure-
ments. For example, advanced radiological detection and iden-
tification algorithms designed for dynamic background envi-
ronments [21] could be used to model spatially or temporally-
varying background counts in the measured signal. The counts
attributed only to an identified source (or sources) could then
be used as an input to the APSL framework, mitigating the
need for a varying background term. This approach would also
facilitate the localization of specific radioisotopes.

Finally, relevant for field operations, APSL will be devel-
oped for streaming operation, informing the user of potential
source locations in real-time and directing the path to decrease
the time to detect and localize sources. With the addition of
contextual sensors, the image space can be constrained to static
surfaces and volumes [14], [36], [37] or to moving objects in
the 3D scene model, improving the computational speed of
the reconstruction as well as providing additional context to
the user in real-time.
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