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Abstract

Background—Globally, type 2 diabetes is highly prevalent in individuals of Latino ancestry. The 

reasons underlying this high prevalence are not well understood, but both genetic and lifestyle 

factors are contributors. Circulating microRNAs are readily detectable in blood and are promising 

biomarkers to characterize biological responses (i.e., changes in gene expression) to lifestyle 

factors. Prior studies identified relationships between circulating microRNAs and risk for type 2 

diabetes, but Latinos have largely been under-represented in these study samples.
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Aims/hypothesis—The aim of this study was to assess for differences in expression levels 

of three candidate microRNAs (miR-126, miR-146, miR-15) between individuals who had 

prediabetes compared to normal glycemic status and between individuals who self-identified with 

Latino ancestry in the United States (US) and native Mexicans living in or near Leon, Mexico.

Methods—This was a cross-sectional study that included 45 Mexicans and 21 Latino participants 

from the US. Prediabetes was defined as fasting glucose 100–125 mg/dL or 2-h post-glucose 

challenge between 140 and 199 mg/dL. Expression levels of microRNAs from plasma were 

measured by qPCR. Linear and logistic regression models were used to assess relationships 

between individual microRNAs and glycemic status or geographic site.

Results—None of the three microRNAs was associated with risk for type 2 diabetes. MiR-146a 

and miR-15 were significantly lower in the study sample from Mexico compared to the US. There 

was a significant interaction between miR-146a and BMI associated with fasting blood glucose.

Conclusions/interpretation—This study did not replicate in Latinos prior observations from 

other racial groups of associations between miR-126, miR-146a, and miR-15 and risk for type 2 

diabetes. Future studies should consider other microRNAs related to different biological pathways 

as possible biomarkers for type 2 diabetes in Latinos.

Keywords

microRNA; Diabetes; Fasting blood glucose; Biomarker

Introduction

Type 2 diabetes is highly prevalent in individuals of Latino ancestry in both native countries 

of origin and in immigrants to other countries. The prevalence of type 2 diabetes in Latinos 

living in the United States (US) is 12.7% [1] and the prevalence of type 2 diabetes in 

Mexico is 14.8% [2]. Progression to type 2 diabetes occurs on a continuum, and even 

in the prediabetes state, harmful complications begin to occur [3]. Genetic risk factors 

for type 2 diabetes are common in some individuals of Latino ancestry [4, 5]. However, 

Latinos are characterized by highly heterogeneous genetic admixture [6], and genetic risk 

for type 2 diabetes between individuals who identify as Latino may vary considerably 

by geographic ancestry. Furthermore, environmental, social, and lifestyle factors are also 

important contributors to risk for type 2 diabetes [7]. The complex etiology of type 2 

diabetes makes it hard to accurately identify which individuals are at greatest risk and the 

specific mechanisms underlying risk for a given individual or population.

MicroRNAs are short (i.e., 18–26 nucleotide) regulatory elements of translation of 

messenger RNAs to amino acids. Circulating microRNAs found in serum and plasma are 

easily measured in blood and are potential biomarkers for risk for development of type 2 

diabetes, characterizing changes in expression levels prior to the onset of prediabetes or 

type 2 diabetes [8, 9]. Because microRNAs capture both underlying genetic risk as well 

as responses to environmental, social, and lifestyle factors [10, 11], they may be useful as 

biomarkers in two ways. The first is improved identification of which individuals are at 

greatest risk for type 2 diabetes. The second is information about specific patterns of gene 

expression in individuals at risk for type 2 diabetes, which is of particular interest for this 
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complex condition because gene expression is driven by interactions between underlying 

genetic predisposition and environmental and lifestyle factors.

Prior studies on microRNAs associated with risk for type 2 diabetes have primarily been 

focused on non-Hispanic white and Asian populations [12]. The purpose of this study was to 

assess relationships between circulating microRNAs and prediabetes in individuals of Latino 

ancestry. We selected three microRNAs (i.e., miR-126, miR-146a, miR-15) previously 

shown to be associated with risk for type 2 diabetes in other racial groups to assess in this 

study [13, 14]. We evaluated differences in microRNA expression levels between individuals 

who self-identified with Latino ancestry in the United States (US) and native Mexicans 

living in or near Leon, Mexico, and individuals who were prediabetic compared to normal 

glycemic status.

Research design and methods

Recruitment

This was a multi-center observational cross-sectional study carried out at two different 

research institutions in Mexico and the US.

Mexico—Participants of Mexican ancestry were recruited from primary care health centers 

that serve the general population from the city of Leon in Guanajuato, Mexico. Participants 

included were between 35 and 65 years old without a previous diagnosis of prediabetes. 

Participants presenting with fasting glucose of 100–125 mg/dL or 2-h glucose between 140 

and 199 mg/dL after an oral glucose tolerance test (OGTT) were categorized as having 

prediabetes (n = 36). Participants with fasting glucose < 100 mg/dL and 2-h OGTT < 

140 mg/dL were categorized as having normal glucose tolerance (n = 30). Exclusion 

criteria included history of diabetes, hypertension, thyroid, hepatic, immune, neoplastic, 

or endocrine disorder; statin, glucocorticoid, or anticonvulsant use; current smoking; and > 2 

drinks of alcohol/day.

United States—The US study sample included participants from the previously completed 

Practicing Restorative Yoga Metabolic Syndrome (PRYSMS) study (clinicaltrials.gov 

identifier NCT01024816), which tested the effects of restorative yoga versus active 

stretching on blood glucose in adults at risk for type 2 diabetes. Participants in the PRYSMS 

study were recruited from the San Francisco and San Diego areas and met the International 

Diabetes Federation criteria for metabolic syndrome [15]. The subset of participants who 

self-identified as Latino were included in this study (n = 21). Exclusion criteria included 

fasting glucose ≥ 126 mg/dL, HbA1c ≥ 7.0%, fasting triglycerides ≥ 300 mg/dL, weight ≥ 

400 lbs, chronic disease, and neurological conditions that limited mobility, hospitalization 

for coronary heart disease within the past 6 months, current pregnancy or lactation, history 

of bariatric surgery, substance abuse, and use of medications affecting metabolic factors. 

The PRYSMS trial and the study described in this paper were approved by the Institutional 

Review Board at the University of California, San Francisco. All participants provided 

informed consent to participate in the study.
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Data Collection

Mexico—The enrollment visit at the Mexico site included a brief medical history and 

family history for diabetes using the American Diabetes Association criteria [16]. Physical 

activity was assessed using the Spanish version of the self-administered short International 

Physical Activity Questionnaire (IPAQ) forms [17]. Participant height and weight were 

measured with a standardized stadiometer (Seca) and scale (Tanita BC-536). Hip and 

waist girth were measured with an anthropometric tape (Lufkin), and body composition 

was assessed using a bioimpedance device (InBody). Blood glucose and lipid levels were 

measured from serum samples by colorimetric enzymatic assays (Spinreact). Insulin was 

measured from serum using an ELISA kit (ALPCO) as per the manufacturer’s instructions. 

Hemoglobin A1c (HbA1c) was analyzed via chromatography with Labona Check equipment 

and reagents in plasma. Plasma was stored at − 80 °C at both locations until used.

United States—The full clinical data collection protocol for the PRYSMS trial has been 

reported previously [18]. Participant weight was measured on a standard balance beam 

scale and height using a stadiometer. Waist circumference was measured using a Gullick 

II tape spring-tension measure at the site of maximum circumference midway between 

the lower ribs and the anterior superior iliac spine. The mean of two waist circumference 

measurements was calculated. Blood glucose was measured using an automated analyzer 

with an immobilized enzyme biosensor (YSI 2300 STAT Plus, YSI Life Sciences, Yellow 

Sprints, OH). Total cholesterol, triglycerides, and HDL-cholesterol were measured by 

enzymatic colorimetric methods (Quest Diagnostics, San Jose, CA), and LDL-cholesterol 

was calculated using the Friedewald equation [19]. Blood used for banking of plasma was 

collected by venipuncture. Blood was collected into vacutainers containing the preservative 

EDTA, centrifuged at 4 °C to separate plasma from cellular blood components, and stored at 

− 80 °C.

MicroRNA quantitation

Study personnel from the Mexico site were trained in the isolation and quantitation of 

microRNAs at the US site. Both sites employed the same study protocol for all assays. 

RNA was extracted from 200 μL of plasma using the miRNeasy serum/plasma kit (Qiagen). 

Purified RNA was converted to cDNA using the miScript II RT Kit (Qiagen) in 20 μL 

reaction volumes using the miScript HiSpec buffer. Real-time quantitative polymerase 

chain reaction (qPCR) was used to assess relative expression of candidate microRNAs 

using the miScript kit (Qiagen). Experiments were carried out using a 384-well (US) 

or 96-well (Mexico) plate format on a Bio-Rad CFX real-time PCR machine using the 

manufacturer’s recommended cycling conditions. A standard curve was constructed for each 

microRNA target using a series of five serial dilutions. Both sites obtained at least three 

replicates measures per sample for each microRNA target. MicroRNA expression levels 

were normalized using cel-miR-39 and the global geometric mean signal of all reliably 

detected microRNAs [20, 21], and relative expression levels were calculated using the ΔΔCt 

method [22].
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Statistical analysis

Descriptive statistics and Student’s t test were used to evaluate demographic and clinical 

characteristics of participants between study sites and glycemic status (Stata version 13, 

College Station, TX). Pearson’s correlation coefficients were used to determine relationships 

between fasting blood glucose and covariates that are continuous variables. Logistic 

regression models were used to determine whether individual microRNAs were associated 

with prediabetes compared to normal glucose tolerance. Logistic regression models were 

also used to determine whether individual microRNAs were associated with the study site 

with the US as the reference site. Linear regression models were used to determine whether 

individual microRNAs were associated with fasting blood glucose. For all regression 

models, unadjusted models were first created. Next, variables that were significantly 

associated with prediabetes or study site were included as covariates in adjusted models. 

Finally, we included interaction terms for covariates that were significantly associated with 

individual microRNAs.

Results

A total of 45 participants were enrolled in Leon, Mexico, and 21 participants from the US-

based PRYSMS trial who self-identified as Latino were included in the study. Participants 

from Mexico were younger (46 ± 8 years versus 51 ± 7 years, p < 0.05) and had lower 

BMI (29.8 ± 3.8 kg/m2 versus 35.9 ± 8.1 kg/m2, p < 0.05) and weight (81.8 ± 11.4 kg 

versus 92.3 ± 18.2 kg, p < 0.05) (Table 1). While there were no differences in fasting blood 

glucose, hemoglobin A1c was higher in Latinos from the US compared to Mexicans from 

Mexico (6.0 ± 0.3% versus 4.4 ± 0.5%, p < 0.001) (Table 1). In a multivariate-adjusted 

logistic regression model, BMI but not age or sex was significantly lower in individuals from 

Mexico compared to the US (OR 0.82 (95% CI 0.71, 0.94)).

In the full study sample, 60% (n = 36) of participants had prediabetes compared to normal 

glucose tolerance (Table 2). There was no difference in the proportion with prediabetes by 

study site. A higher proportion of individuals with prediabetes were female (83% (n = 30) 

versus 57% (n = 17), p < 0.05) and had higher BMI (34.4 ± 6.0 kg/m2 versus 29.7 ± 5.8 

kg/m2, p < 0.05). Fasting blood glucose was higher in individuals with prediabetes (109 ± 8 

mg/dL versus 89 ± 8 mg/dL, p < 0.05) but there were no differences in hemoglobin A1c. In 

a multivariate-adjusted logistic regression model, BMI, but not age or sex, was significantly 

associated with risk for prediabetes (OR 1.12 (95% CI 1.00, 1.26)).

All three microRNAs were strongly significantly correlated with each other (Table 3). 

MiR-146a was significantly associated with BMI (r2 = 0.28, p < 0.05). There were no other 

significant correlations between individual microRNAs and age, sex, or BMI.

The distribution of normalized (i.e., ΔCt) expression for each microRNA by study site is 

shown in Fig. 1. In unadjusted logistic regression models, both miR-146a (OR 0.83 (95% CI 

0.67, 0.99)) and miR-15 (OR 0.79 (0.65, 0.97)) were significantly decreased in individuals 

from the Mexico study site compared to the US site (Table 4). In a model adjusted for age 

and BMI, miR-15 remained significantly lower in individuals from Mexico compared to 

the US (OR 0.76, (95% CI 0.60, 0.97)). When we further added hemoglobin A1c to the 
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model, which was higher in participants from the US compared to Mexico, miR-15 was no 

longer significant. There was no interaction between miR-15 and hemoglobin A1c. There 

was a significant interaction between miR-146a and BMI in both unadjusted and age- and 

BMI-adjusted linear regression models for fasting blood glucose.

The distribution of normalized (i.e., ΔCt) expression for each microRNA by glycemic status 

is shown in Fig. 2. In unadjusted and sex- and BMI-adjusted logistic regression models, no 

microRNAs were significantly associated with higher odds for prediabetes. In unadjusted 

and sex- and BMI-adjusted linear regression models, no microRNAs were significantly 

associated with fasting blood glucose. However, there was a significant interaction between 

miR-146a and BMI in a linear regression model for fasting blood glucose (β = − 0.16, 95% 

CI (− 0.32, − 0.01)). The test for interaction was not significant for miR-126 and miR-15.

Discussion

Compared to prior studies focused on relationships between circulating microRNAs and risk 

for type 2 diabetes, we did not find significant associations between miR-126, miR-146a, 

or miR-15 and prediabetes. Prior studies were primarily conducted in European or Asian 

populations [12, 23, 24], whereas we studied Latinos. We did identify a significant 

association between miR-146a and BMI, which is a relationship that has previously been 

observed in several studies of Europeans [25]. We also identified differences in expression 

levels of miR-146a and miR-15 between individuals living in or near Leon, Mexico, 

compared with individuals living in the US who self-identified as Latino.

MiR-146a has previously been associated with risk for type 2 diabetes in numerous studies, 

including a meta-analysis [24, 26]. Inflammation is one of the potential mechanisms by 

which miR-146a is hypothesized to have an effect on risk for type 2 diabetes and related 

conditions [27, 28]. There is strong experimental evidence that biological pathways from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) are targeted by miR-146, including 

ones related to inflammation (e.g., nuclear factor-κβ (NF-κβ) signaling pathway, Toll-like 

receptor signaling pathway, tumor necrosis factor-α signaling pathway) [29]. Findings 

from prior studies have been inconsistent in terms of the direction of the association 

(i.e., increased versus decreased expression of miR-146a and increased risk for type 2 

diabetes). These discrepancies may partly result from differences in the tissue source from 

which microRNAs were obtained (e.g., plasma versus peripheral blood mononuclear cells 

(PBMCs)) and cross-sectional study design, which does not allow for characterization of 

where an individual lies on the glycemic spectrum. Our study did not find any association 

between miR-146a and prediabetes, which may be attributed in part due to differences in 

study design, including the examples listed above [26]. Another possible explanation for our 

null findings is that prior studies were primarily focused on European and Asian populations 

[12]. One prior study of microRNAs and risk for type 2 diabetes included Mexicans [30]. 

MiR-146a was significantly decreased in individuals with type 2 diabetes compared to 

healthy controls and was significantly correlated with BMI [30]; however, microRNAs were 

obtained from PBMCs, whereas our study focused on circulating microRNAs from plasma. 

Another study identified decreased expression of miR-146a associated with type 2 diabetes 

in Ecuadoreans and correlations between miR-146a and inflammatory markers [31]. Both of 
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these prior studies were cross-sectional and included individuals with a diagnosis of type 2 

diabetes, whereas our study focused on prediabetes. There are many physiological changes 

across the glycemic spectrum from normal glucose tolerance to impaired fasting glucose 

(i.e., prediabetes) to type 2 diabetes that are not captured in cross-sectional study designs 

that use only fasting blood glucose to assess glycemic status.

Overweight and obesity are major risk factors for type 2 diabetes, with approximately 

40–70% of individuals at high risk for type 2 diabetes being overweight or obese [32]. 

We observed a significant correlation between miR-146a and BMI and a significant 

interaction between these two variables in determining odds for prediabetes versus normal 

glucose tolerance. MiR-146a has previously been associated with obesity in animal models 

[33, 34] and obesity-related inflammation in human adipocytes [35]. In human studies, 

miR-146a was increased in obese Chinese children and Chinese adults with type 2 diabetes 

and in functional in vitro and animal model studies increased miR-146a impaired β-cell 

function and insulin secretion [23]. Another KEGG pathway targeted by miR-146a is 

the adipocytokine signaling pathway. Overweight and obesity cause inflammation in part 

through the activity of adipocytokines, which are inflammatory molecules generated in 

adipose tissue [36–38]. The significant interaction that we observed between miR-146 and 

BMI suggests that the effect of BMI on prediabetes depends on the expression level of 

miR-146a, or vice versa. The relationship between miR-146a and risk for type 2 diabetes 

may be linked to its effect on body composition and/or obesity-related inflammation. Future 

studies that include a longitudinal design, gold-standard assessments of body composition 

and glycemic status, and functional analysis of the impact of miR-146a on genes related to 

inflammation and obesity may further shed light on these relationships.

Prior studies identified associations between miR-15 and risk for type 2 diabetes [39, 40]. 

Baseline levels of miR-15 were lower in Spanish individuals who developed type 2 diabetes 

after 5 years, though miR-15 was not significantly associated with other measures of risk for 

type 2 diabetes (i.e., fasting blood glucose, hemoglobin A1c, measures of insulin sensitivity) 

[40]. A study of African-Americans identified a U-shaped curve in the relationship between 

miR-15 and the glycemic trajectory, with lower expression of miR-15 in individuals with 

prediabetes compared to individuals with normal fasting glucose or type 2 diabetes [39]. 

In the group with type 2 diabetes, miR-15 was associated with body weight and body 

mass index, but not hemoglobin A1c, and none of these associations was observed in the 

group with prediabetes [39]. In addition, miR-15 was able to discriminate between type 2 

diabetes and prediabetes and between prediabetes and normal blood glucose, although these 

models were not compared to any other predictive or discriminatory models [39]. Our study 

showed that hemoglobin A1c, which differed between study sites (i.e., US versus Mexico) 

attenuated the relationship between miR-15 and study site. The relationship between miR-15 

and hemoglobin A1c remains relatively unstudied. Mechanistic studies of miR-15 identified 

regulation of NF-κβ [41, 42] with corresponding increases in the inflammatory interleukin-8 

and interferon-γ markers [42], suggesting that miR-15 may also contribute to regulation of 

inflammation observed in individuals at risk for type 2 diabetes.

MiR-126 was previously associated with risk for type 2 diabetes in numerous studies 

[14, 43]. Insights from mechanistic studies of miR-126 showed that this microRNA is 
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associated with endothelial cell function [44–46], and therefore, differential expression may 

be associated with consequences from type 2 diabetes and elevated blood glucose levels 

[47]. Prior studies that identified associations between miR-126 and risk for type 2 diabetes 

focused on primarily European and Asian racial groups [43, 48–51]. Very little has been 

reported about microRNAs associated with risk for type 2 diabetes in Latino populations. 

Further studies are needed to validate our finding that miR-126 may not be associated with 

prediabetes in Latinos.

The Latino racial group category includes individuals from vast geographic regions with 

highly admixed genetic characteristics [6]. Characterization of individuals by this broad 

criterion may lack specificity about the degree of genetic similarity. For example, Latinos 

living in California have different genetic characteristics compared with Latinos living 

on the East Coast of the US or in Mexico and Central and South America [52]. Prior 

studies that included individuals of Latino origin (e.g., Ecuadorean) may have been 

genetically dissimilar to our study sample. In order to accurately assess genetic similarity 

between individuals from the Latino racial group, genetic admixture analysis is needed. 

Furthermore, behavioral and lifestyle factors that impact risk for type 2 diabetes vary 

considerably between individuals who are broadly categorized as Latino. Inconsistencies in 

the associations between individual microRNAs and risk factors for type 2 diabetes may 

be the result of not only differences between racial groups in terms of genetic admixture/

genetic risk and behavioral/lifestyle factors but also differences within racial groups (i.e., 

Latinos) that are unaccounted for by this very general categorization.

A limitation of this study and the majority of studies to date is the cross-sectional design. 

Development of type 2 diabetes occurs on a continuum, and cross-sectional studies fail 

to identify where on this continuum an individual may fall. Even within the clinically 

assigned categories of normal glucose tolerance, prediabetes, and type 2 diabetes, there 

may be differences in the underlying pathophysiology that impact expression levels of 

circulating microRNAs. Clinical and molecular data collection for this study was carried 

out at separate study sites. However, the laboratory protocols were identical at both sites, 

and study personnel were trained on the molecular data collection protocols at the US site. 

All data analysis was performed at a single site (US). There were some differences in 

demographic and clinical characteristics between the study sites, which were included as 

covariates in models. The genetic ancestry of all participants is not known, and the degree 

of genetic similarity between individuals is not known. Environmental and lifestyle factors 

were not assessed and conclusions about the impact of these potential risk factors on the 

associations between individual microRNAs and prediabetes cannot be made.

Circulating microRNAs are emerging as promising biomarkers for risk for type 2 diabetes. 

However, the majority of studies to date have primarily included individuals who identify as 

non-Hispanic white/European or Asian. Latinos have a particularly high prevalence of type 2 

diabetes, and the reasons for this are not well understood. Given that circulating microRNAs 

capture the combined impact of genetic predisposition with responses to environmental and 

lifestyle factors, they may provide new insights about the reasons for increased risk for type 

2 diabetes in some individuals and populations.
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Fig. 1. 
Distribution of normalized microRNA expression levels by study site. Box and whisker 

plots show maximum (upper horizontal line), 75th percentile (upper border of box), 50th 

percentile/median (mid-line of box), 25th percentile (lower border of box), and minimum 

(lower horizontal line). Black dots represent outliers. MiR, microRNA; MX, Mexico; US, 

United States
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Fig. 2. 
Distribution of normalized microRNA expression levels by glycemic status. Box and 

whisker plots show 95th percentile (upper horizontal line), 75th percentile (upper border 

of box), 50th percentile/median (mid-line of box), 25th percentile (lower border of box), 

and minimum (lower horizontal line). Black dots represent outliers. MiR, microRNA; MX, 

Mexico; US, United States
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