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| INVESTIGATION
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ABSTRACT Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores.
Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying
this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different
ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species.
Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute
promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans,
and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and
the Sordariomycete Sordaria macrospora. With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced
to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are
more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during
fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the
endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organi-
zation or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were
shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.

KEYWORDS fruiting body development; Ascodesmis nigricans; Sordaria macrospora; Pyronema confluens; comparative transcriptomics

THE ability to develop complex multicellular structures
evolved several times independently in eukaryotes

(Knoll 2011; Niklas 2014). Within the fungi (Eumycota),
complex multicellular structures evolved at least twice and

possibly up to 11 times. Fungal multicellular structures are
often involved in sexual development, e.g., the fruiting bodies
of basidiomycetes and filamentous ascomycetes, which most
likely evolved independently (Knoll 2011; Nagy 2017;
Nagy et al. 2018; Varga et al. 2019). Fruiting bodies function
in the production and dispersal of sexual spores, and contain
a number of cell types that are not found in vegetative my-
celium (Kües 2000; Bistis et al. 2003; Han 2009; Lord and
Read 2011; Pöggeler et al. 2018). Themolecular mechanisms
regulating fruiting body development in filamentous ascomy-
cetes have been studied in recent decadesmostly usingmodel
organisms from the Sordariomycetes or Eurotiomycetes, e.g.,
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Neurospora crassa, Sordaria macrospora, Fusarium graminea-
rum (Gibberella zeae), Trichoderma reesei, and Aspergillus
nidulans, which are able to produce fruiting bodies under
laboratory conditions and are amenable to classical and mo-
lecular genetics (Pöggeler et al. 2018). With the advent of
next generation sequencing techniques, sequencing of ge-
nomes and transcriptomes of nonmodel species became fea-
sible, allowing comparative genomics and transcriptomics
analyses of fruiting body development in different fungal
groups (Nowrousian 2014, 2018). In a previous study, we
sequenced the genome and several transcriptomes of differ-
ent developmental stages from Pyronema confluens, which
belongs to the early-diverging lineage of Pezizomycetes
(Traeger et al. 2013). A comparative analysis of P. confluens
transcriptome data with transcriptomes from different devel-
opmental stages of S. macrospora suggested that gene expres-
sion during sexual development might be conserved to some
degree, and that similar tissues from different species might
have more similar expression patterns than different tissues
within a species (Teichert et al. 2012; Traeger et al. 2013).
However, at the time of this analysis, fruiting body–specific
transcriptomes were available for S. macrospora, while for
P. confluens, only total sexual mycelia were analyzed, which
contain fruiting bodies and the surrounding nonsexual hy-
phae. Recently, fruiting body–specific transcriptomes were
generated for P. confluens (Murat et al. 2018), and in the
present study, we sequenced the genome and several tran-
scriptomes for the Pezizomycete Ascodesmis nigricans, in-
cluding fruiting body transcriptomes that were used for a
comparative study with S. macrospora and P. confluens.

Like P. confluens,A. nigricans is amember of the Pezizomycetes,
an early-diverging group of filamentous ascomycetes. The
Pezizomycetes form fruiting bodies called apothecia, which
are often disk-like in appearance with the spore-
containing asci (meiosporangia) exposed on top of the
fruiting body. However, several Pezizomycetes lineages harbor
ectomycorrhizal truffle species that form subterranean fruit-
ing bodies with a complex morphology (Hansen and Pfister
2006; Murat et al. 2018). Only few Pezizomycetes are able to
produce fruiting bodies under laboratory conditions. This has
hampered the genetic and molecular analysis of sexual de-
velopment in this group. An exception is P. confluens, which is
able to produce fruiting bodies in the laboratory within
1 week (Claussen 1912; Moore and Korf 1963; Traeger
et al. 2013). A. nigricans also produces fruiting bodies under
laboratory conditions, and similar to P. confluens, this species
is homothallic (self-fertile) and therefore does not need a
mating partner for sexual development (Obrist 1961; Van
Brummelen 1981). A. nigricans is a coprophilic fungus
(Obrist 1961), and in this it is similar to the Sordariomycete
S. macrospora (Kück et al. 2009), whereas P. confluens is a
soil-living saprobe (Seaver 1909). Under laboratory condi-
tions, the three species A. nigricans, P. confluens, and S. mac-
rospora display very similar life cycles as they are all
homothallic and able to form fruiting bodies within a week.
Furthermore, none of the three species forms conidia

(asexual spores); therefore, changes in gene expression
patterns during sexual reproduction are not obscured by
changes related to asexual sporulation. Thus, they are suit-
able model organisms for a comparative study of gene
expression during fruiting body development in filamentous
ascomycetes.

Another reason for sequencing the A. nigricans genome
was the analysis of its genome size and repeat content. Pre-
vious studies of eight Pezizomycetes genomes showed that
they are overall rather large for filamentous fungi, the small-
est genomes being those of saprotrophic species (48–60 Mb
for Morchella importuna, P. confluens, and Ascobolus immer-
sus), whereas five analyzed truffle species have genomes
ranging from 63 to 192 Mb, due to repeat expansion
(Martin et al. 2010a; Traeger et al. 2013; Murat et al.
2018). However, so far the sequenced genomes cover mostly
two of the three major phylogenetic lineages within the
Pezizomycetes, with the third lineage represented only by
the genome of P. confluens (Hansen and Pfister 2006;
Murat et al. 2018). A. nigricans is also a member of this third
lineage, even though it is only distantly related to P. confluens
(Hansen and Pfister 2006). Therefore, analysis of the A. nig-
ricans genome will improve the phylogenetic coverage for
Pezizomycetes genomes, and also improve the coverage of
Pezizomycetes with a nonmycorrhizal lifestyle.

Another point of interest in the A. nigricans genome is the
organization of the mating type (MAT) locus. MAT loci in
filamentous ascomycetes contain various genes that are
central regulators of sexual development. In heterothallic
(self-sterile) ascomycetes, each strain possesses one of two
nonallelic versions (idiomorphs) of a single MAT locus,
named MAT1-1 and MAT1-2. These loci usually contain
(among others) the MAT1-1-1 and MAT1-2-1 genes, which
encode transcription factors with a conserved alpha domain
and high-mobility group domain, respectively. In contrast,
homothallic ascomycetes carry both MAT loci within a single
genome. The two loci can be fused together, located within
close proximity, or located on separate chromosomes
(Debuchy et al. 2010; Billiard et al. 2011; Bennett and
Turgeon 2016; Pöggeler et al. 2018). In P. confluens, homo-
logs of the core MAT genes MAT1-1-1 and MAT1-2-1 were
found, as expected for a homothallic ascomycete. However,
other genes that are often part of the MAT loci in other asco-
mycetes were neither found near MAT1-1-1 or MAT1-2-1 in
this species, nor in the MAT loci of the heterothallic Pezizo-
mycete Tuber melanosporum (Rubini et al. 2011; Traeger
et al. 2013). In addition, of the two genes apn2 and sla2 that
often flank the MAT locus in more derived lineages of fila-
mentous ascomycetes (Pöggeler et al. 2018), only apn2 was
identified in proximity to the P. confluens MAT locus, whereas
none of these genes flank the MAT loci of T. melanosporum
(Rubini et al. 2011; Traeger et al. 2013). It is not clear if the
MAT loci of T. melanosporum and P. confluens represent basal
or derived MAT configurations, therefore the analysis of ad-
ditional Pezizomycetes MAT loci is of great interest for the
analysis of the evolution of sexual development in fungi.
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In this study,we sequenced the genome ofA. nigricans, and
generated transcriptomes for vegetative and sexual mycelia,
as well as for developing fruiting bodies that were isolated
from the surroundingmycelium by laser microdissection. The
transcriptomics data were used for a comparative analysis
with RNA-sequencing (RNA-seq) data from mycelia and de-
veloping fruiting bodies of P. confluens and S. macrospora to
identify conserved core groups of genes that are differentially
regulated during sexual development. Several differentially
expressed genes were functionally characterized to address
their roles during fruiting body morphogenesis by generating
corresponding deletion mutants in S. macrospora.

Materials and Methods

Strains, culture conditions, and genetic crosses

A. nigricans and S. macrospora strains used in this study are
given in Table 1. A. nigricans was grown on cornmeal me-
dium (Biomalz-Mais-Medium; BMM) (Esser 1982), rabbit
food agar medium (RFA; 25 g of rabbit food pellets were
boiled in 1 liter of distilled water., set to cool for 30 min,
filtered through cotton, and autoclaved), or V8 medium
(50 ml vegetable juice per liter, pH 5.2) at 25�. S. macrospora
was grown on cornmeal medium (BMM) or a Sordaria min-
imalmedium (SordariaWestergaard’smedium; SWG) at 25�,
as described (Esser 1982; Nowrousian et al. 2005). Both me-
dia support vigorous fruiting body formation. Transformation
protocols and protocols for genetic crosses for S. macrospora
were as described previously (Esser 1982; Nowrousian et al.
1999; Dirschnabel et al. 2014). To observe hyphal fusions,
strains were grown on minimal medium (MM) with cello-
phane, which allows sparse hyphal growth for better visual-
ization of individual hyphae (Rech et al. 2007). For
microscopy, strains were inoculated for 2–10 days on glass
slides with a thin layer of BMM with 0.8% agar (Engh et al.
2007). Quantification of linear growth was performed on
BMM or SWG using petri dishes with inoculation at the edge.
The growth front was marked over 3–5 days every 24 hr, and
experiments were performed in triplicate.

DNA preparation, sequencing, and assembly of the
A. nigricans genome

Genomic DNA from A. nigricans strain CBS 389.68 was pre-
pared for sequencing as described for P. confluens (Traeger
et al. 2013). One 270 bp insert library (23 150 bp paired-end
sequencing) and one 4 kb mate-pair library (2 3 100 bp
paired-end sequencing) were sequenced on an Illumina
HiSeq 2500. Illumina fastq files were filtered for artifacts/
process contamination. Postprocessed genomic reads were
assembled with AllPathsLG v.R49403 (Gnerre et al. 2011).

Genome annotation and analysis of repeat content

RNA-seq reads for annotation (for RNA preparation and
sequencing, see below) were assembled into consensus se-
quences using Rnnotator v.3.3.2 (Martin et al. 2010b). The

assembled consensus RNA sequence data were mapped to
genome assembly using alignments of 90% identity and
85% coverage or higher to assess genome completeness at
97.91%. The genome was annotated using the JGI Annota-
tion pipeline and made available via JGI fungal genome por-
tal MycoCosm (jgi.doe.gov/fungi) (Grigoriev et al. 2014).

Analysis of transposable elements and other repeats in the
A. nigricans genome assembly was performed as described
(Traeger et al. 2013) with RepeatMasker (A.F.A. Smit,
R. Hubley, P. Green; unpublished data; www.repeatmasker.org)
based on the RepbaseUpdate library (Jurka et al. 2005) and a
library of de novo–identified A. nigricans repeat consensus
sequences that was generated by RepeatModeler (A.F.A.
Smit, R. Hubley; unpublished data; www.repeatmasker.org/
RepeatModeler.html). An overview of assembly and annota-
tion statistics is given in Table 2.

Laser microdissection, RNA preparation, and RNA-seq

For RNA preparation, A. nigricans strain CBS 389.68 was
grown in liquid RFA or V8 medium as surface cultures (in
petri dishes without shaking) or from submerged cultures (in
100 ml flasks shaken at 130 rpm) at 25�. RNA preparation
was performed as described (Nowrousian and Kück 2006).
For annotation purposes, total RNA from mycelia grown for
3 and 5 days as surface cultures in RFA and V8 was combined
and sequenced on an Illumina HiSeq 2000 (2 3 150 bp
paired-end sequencing). For quantification of gene expres-
sion, RNA was extracted from total vegetative and sexual
mycelia, as well as from young fruiting bodies isolated by
laser microdissection. Total vegetative and sexual mycelia
were obtained by growing A. nigricans as described above
in submerged cultures and surface cultures, respectively, in
20 ml RFA medium for 4 days at 25�. For laser microdissec-
tion of young fruiting bodies, A. nigricans was grown on
microdissection slides coated with 150–200 ml RFA (with
0.8% agar) for 3 days at 25�. Fixation of slides, laser micro-
dissection, RNA preparation, and linear RNA amplification
were as described (Teichert et al. 2012). Approximately
230 microdissected young fruiting bodies were combined
for each RNA extraction. For each condition (vegetative my-
celium, sexual mycelium, and young fruiting bodies), two
independent biological replicates were performed. The cor-
responding RNAs were sequenced on an Illumina HiSeq
2500 (51 bp single-end sequencing) by GATC Biotech AG
(Konstanz, Germany).

Synteny analysis

An orthology-based analysis of synteny was performed as
described before (Traeger et al. 2013), by determining
orthologs for all A. nigricans proteins in the predicted pro-
teomes of P. confluens and T. melanosporum by reciprocal
Basic Local Alignment Search Tool (BLAST) analysis
(Altschul et al. 1997), and using custom-made Perl scripts
based on BioPerl modules (Stajich et al. 2002) to determine
the positions of corresponding orthologous genes on se-
quenced contigs.
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Phylogenomics analysis

The predicted proteomes of A. nigricans and the following
19 other fungal species were used for the reconstruction of
the phylome using the phylomeDB pipeline (Huerta-Cepas
et al. 2011): Agaricus bisporus (Morin et al. 2012),
Arthrobotrys oligospora (Yang et al. 2011), Blumeria graminis
(Spanu et al. 2010), Coccidioides immitis (Sharpton et al.
2009), Emericella nidulans (Galagan et al. 2005), F. grami-
nearum (Cuomo et al. 2007), Laccaria bicolor (Martin et al.
2008), Mycosphaerella graminicola (Goodwin et al. 2011),
Neosartorya fischeri (Fedorova et al. 2008), N. crassa
(Galagan et al. 2003), Phaeosphaeria nodorum (Hane et al.
2007), P. confluens (Traeger et al. 2013), Saccharomyces cer-
evisiae (Goffeau et al. 1996), Schizosaccharomyces pombe
(Wood et al. 2002), Sclerotinia sclerotiorum (Amselem et al.
2011), S. macrospora (Nowrousian et al. 2010), Taphrina
deformans (Cissé et al. 2013), T. melanosporum (Murat
et al. 2018), and Yarrowia lipolytica (Dujon et al. 2004).

All alignments and trees are available in phylomeDB
(www.phylomeDB.org) (Huerta-Cepas et al. 2014). For each
gene encoded in A. nigricans, a Smith–Waterman search was
performed against a proteome database containing the
proteome information of the selected species. We used an
e-value threshold of ,1e205 and a continuous overlap of
50% over the query sequence for the detection of homologs.
We limited the number of hits included in a tree to the closest
150 homologs per gene. We used three different aligners for
the multiple sequence alignments of the homologous se-
quences (forward and reversed versions of the sequences):
MUSCLE (Edgar 2004), MAFFT (Katoh et al. 2005), and
KALIGN (Lassmann and Sonnhammer 2005). The final six
alignments were combined using M-COFFEE (Wallace et al.
2006) and then trimAl to trim the alignment (consistency
cut-off of 0.16667 and -gt .0.1) (Capella-Gutierrez et al.
2009). We used PhyML v.3 for maximum-likelihood (ML)
trees (Guindon et al. 2010). Branch support was analyzed

Table 1 Fungal strains used in this study

Strain Relevant genotype and phenotype Reference or source

Ascodesmis nigricans strains
CBS 389.68 Wild type CBS-KNAW
CBS 704.96 Wild type CBS-KNAW
CBS 114.53 Wild type CBS-KNAW
CBS 163.74 Wild type CBS-KNAW
Sordaria macrospora strains
Wild type Wild type AMBa

Fus Spore color mutant Nowrousian et al. (2012)
S96888 Dku70 Pöggeler and Kück (2006)
S110115 Drtt106; fertile Gesing et al. (2012)
S110235 Dcac2; fertile Gesing et al. (2012)
S123704 Dcrc1; fertile Schumacher et al. (2018)
S111081 Drtt106, Dcac2, fus; fertile Schumacher et al. (2018)
S111094 Drtt106, Dcac2; fertile Schumacher et al. (2018)
S128347 Dcrc1, Drtt106; fertile Schumacher et al. 2018)
S128175 Dcrc1, Dcac2, fus; fertile Schumacher et al. (2018)
S155732 Dscm1, fus; fertile This study
S155906 Dscm1; fertile This study
S156325 Dscm1, Dcac2; fertile This study
S156391 Dscm1, Dcrc1, fus; fertile This study
S156436 Dscm1, D rtt106; fertile This study
RL1637 Dcac2, Dcrc1, Drtt106; sterile This study
RL1648 Dcrc1, Drtt106, Dscm1; partially fertile This study
RL1737 Dcac2, Dcrc1, Dscm1; sterile This study
RL1738 Dcac2, Dcrc1, Dscm1; sterile This study
RL1761 Dcac2, Dcrc1, Dscm1; sterile This study
RL1987 Dcac2, Drtt106, Dscm1; sterile This study
RL1923 Dcac2, Dcrc1, Drtt106, Dscm1; sterile This study
RL1924 Dcac2, Dcrc1, Drtt106, Dscm1; sterile This study
RL1957 Dcac2, Dcrc1, Drtt106, Dscm1; sterile This study
S153858 Dspt3; sterile This study
S155241 Dspt3; sterile This study
RL1164 Dspt3 + pOE_1829.3_GFP; fertile This study
RL1184 Dspt3 + pOE_1829.3_GFP; fertile This study
RL1493 Dspt3 + pN_1829.3_GFP; partially fertile This study
RL1509 Dspt3 + pN_1829.3_GFP; partially fertile This study
SJBK 1 AS8 Daod5; fertile This study
SJBK 19.2 AS9 Daod5 + pSMAC_06113_EGFP; fertile This study
a AMB: culture collection Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany.
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using an approximate likelihood ratio parametric test based
on a chi-square distribution. We used a discrete gamma
distribution with three rates categories in all the cases (es-
timating the gamma parameter from the data). We scanned
this phylome using a previously described algorithm for
duplication detection (Huerta-Cepas et al. 2010). Using
FatiGO (Al-Shahrour et al. 2007), we analyzed the gene
enrichment of the genes duplicated at each branch of the
species tree. To reconstruct the species tree, 143 genes that
had one-to-one orthologs in each of the selected species
were trimmed and then the alignments were concatenated.
The final alignment had 108,319 nucleotide positions. To
reconstruct the ML species tree for each alignment we used
RaxML v.7.2.6, model Protgammalg, and 100 bootstrap
support (Stamatakis 2006). Finally, a consensus tree using
Phylip and a supertree using Duptree (Wehe et al. 2008),
with a parsimony strategy from all single gene trees, was
created.

Quantitative analysis of gene expression in A. nigricans
based on RNA-seq data, and comparative transcriptomics
analysis of A. nigricans, P. confluens, and S. macrospora

Analysis of RNA-seq data from A. nigricans was done as de-
scribed previously, with minor modifications (Teichert et al.
2012; Traeger et al. 2013). Briefly, reads were trimmed with
custom-made Perl programs to remove reads with nondeter-
mined nucleotides, remove polyA or polyT stretches from
end and start of reads, respectively, and trim reads from 39
and 59 ends until a base quality of $10 was reached.
Trimmed reads of at least 40 bases were used for mapping
to the A. nigricans genome using TopHat v.2.0.11 (Trapnell
et al. 2010). Reads mapping to annotated features were
counted as described (Teichert et al. 2012), and quantitative
analysis of gene expression was performed with DESeq2
(Love et al. 2014).

For comparative transcriptomics analyses of the three
species A. nigricans, P. confluens, and S. macrospora, ortho-
logs between A. nigricans and the other two species were
determined by reciprocal BLAST analysis. Read counts for
each ortholog in the three species were obtained from
RNA-seq data from this study as well as previous analyses

of P. confluens (Traeger et al. 2013; Murat et al. 2018) and
S. macrospora (Teichert et al. 2012). RNA-seq samples in-
cluded in the analysis are given in Table 3. A combined anal-
ysis of read counts for all orthologs in all conditions was
performed with DESeq2 (Love et al. 2014).

Analysis of the mating type region in several
A. nigricans strains

DNA fragments from the mating type regions of the A. nig-
ricans wild-type strains given in Table 1 were amplified with
primer combinations Anig_mat1/Anig_mat2, Anig_mat3/
Anig_mat4, and Anig_mat5/Anig_mat6 (Supplemental Ma-
terial, Table S1) and sequenced with Sanger sequencing
(Eurofins Genomics, Ebersberg, Germany). The resulting
overlapping fragments of 1 kb each cover the MAT1-1-1
gene and flanking regions of 0.7 kb upstream and 0.8 kb
downstream.

Cloning procedures

Plasmids for generating gene deletion strains and comple-
mentation experiments in S. macrospora were cloned by ho-
mologous recombination in yeast as described (Colot et al.
2006). Oligonucleotides used for generating PCR products
for cloning procedures are given in Table S1, and plasmids
are given in Table S2. Deletion cassettes for SMAC_01829
(spt3), SMAC_04946 (scm1), SMAC_06113 (aod5), and
SMAC_06770 were generated by amplifying �1 kb genomic
regions upstream and downstream of the corresponding
genes or including coding regions if the neighboring genes
are closer than 1 kb (for spt3 and SMAC_06770). PCR frag-
ments were then cloned to flank the hph gene conferring
hygromycin resistance (Nowrousian and Cebula 2005). Plas-
mid pN_1829.3-GFP contains the spt3 and egfp open reading
frames flanked by the spt3 59-untranslated region (UTR) and
440 bp upstream of the 59-UTR, and the 39-UTR and 144 bp
downstream of the 39-UTR in pRSnat, which confers nourseo-
thricin resistance in S. macrospora (Klix et al. 2010). Plasmids
pOE_1829.3-GFP and pSMAC_06113_EGFP carry the open
reading frames of spt3 and aod5, respectively, in fusion with a
C-terminal egfp under control of the A. nidulans gpd promoter
and trpC terminator.

Generation of gene deletion strains in S. macrospora

Deletion strains for SMAC_01829 (spt3), SMAC_04946
(scm1), SMAC_06113 (aod5), and SMAC_06770were gener-
ated by transforming the deletion cassette (upstream and
downstream regions flanking the hph gene, obtained by re-
striction digest of the corresponding gene deletion plasmid
and gel elution) into a Dku70 strain, as described previously
(Pöggeler and Kück 2006). Hygromycin-resistant primary
transformants were verified for insertion of the deletion cas-
sette by PCR and Southern blot analysis, and knockout strains
were crossed against the spore color mutant fus (Nowrousian
et al. 2012) to obtain homokaryotic ascospore isolates carry-
ing the deletion allele in a genetic background without the
Dku70 allele.

Table 2 Genome assembly statistics for three Pezizomycetes

A. nigricans P. confluensa T. magnatumb

Assembly size (Mb) 27 50 192
No. of scaffolds 176 1588 1283
N50 (Mb) 0.49 0.14 1.81
Repeats (Mb) 1 6 111
Repeats (%) 4 12 58
Predicted genes 9622 13,369 9433
Coding regions (Mb) 12.1 14.6 11.5
Coding regions (%) 44.3 29.2 6.0
Introns (Mb) 1.5 2.5 2.4
Introns (%) 5.6 5.1 1.2
a Genome data from Traeger et al. (2013).
b Genome data from Murat et al. (2018),
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Stereomicroscopy and microscopy

For top and side view of cultures, stereomicroscope Stemi
2000-C (Zeiss, Jena, Germany) was used. Images were
captured with an AxioCam ERc5s (Zeiss) and Zen2Core
(v.2.5; Zeiss). Fluorescence and light microscopic investiga-
tions were carried out with an AxioImager microscope
(Zeiss). Fluorescence was studied using Chroma (Bellows
Falls, VT) filter set 41017 (HQ470/40, HQ525/50, Q495lp)
for detection of EGFP, and set 49008 (EG560/40x, ET630/
75m, T585lp) for the detection of mRFP. Images were cap-
tured with a Photometrix Cool SnapHQ camera (Roper
Scientific) and MetaMorph (Universal Imaging). Recorded
images were edited with MetaMorph and Adobe Photoshop
CS6. Light microscopy of ascus rosettes and ascospores were
carried out with AxioPhot (Zeiss) and an AxioCam. ZEN
(v.2.3, blue edition; Zeiss) was used as software for taking
images.

Data availability

Raw sequence data generated in this study were submitted
to the NCBI Sequence Read Archive (A. nigricans genome
sequencing and transcriptome sequencing for annotation,
accession numbers SRP082924 and SRP082925) and Gene
Expression Omnibus databases (A. nigricans transcriptome
data, accession number GSE92315). The A. nigricans whole-
genome shotgun project has been deposited at DNA
Databank of Japan (DDBJ)/European Molecular Biology
Laboratory (EMBL)/GenBank under the accession number
SSHT00000000. The version described in this manuscript is
version SSHT01000000. Supplemental material available at
figshare: https://doi.org/10.25386/genetics.9891440.

Results

Sequencing and assembly of the A. nigricans genome

A. nigricans is a homothallic Pezizomycete that produces
fruiting bodies within a week under laboratory conditions
(Figure 1). However, while P. confluens needs light for fruit-
ing body formation (Claussen 1912; Traeger et al. 2013), A.
nigricans can form fruiting bodies independent of light (Fig-
ure S1), and under laboratory conditions has a life cycle that
is very similar to those of P. confluens and S. macrospora
(Figure S2), making it a suitable species to be included in
comparative transcriptomics analyses of fruiting body
formation.

The genome of A. nigricans strain CBS 389.68 was se-
quenced as part of the 1000 Fungal Genomes project
(http://1000.fungalgenomes.org) (Grigoriev et al. 2011,
2014). The assembly consists of 176 scaffolds with a total
size of 27 Mb and 9622 predicted protein-coding genes (Ta-
ble 2). BLASTP searches with a eukaryotic core gene set were
used to determine completeness of the gene space as
described previously (Parra et al. 2009). All of the 248 single-
copy core genes were present among the predicted A.
nigricans genes, suggesting that the assembly covers the com-
plete gene space. With 27 Mb, the A. nigricans genome is the
smallest Pezizomycete genome sequenced to date. However,
it contains about the same number of genes with a similar

Table 3 RNA-seq data analyzed in this study

Condition
GEO accession

number Reference

Ascodesmis nigricans
Vegetative mycelium GSE92315 This study
Sexual myceliuma GSE92315 This study
Protoapotheciab GSE92315 This study
Pyronema confluens
Vegmixc GSE41631 Traeger et al. (2013)
DDc GSE41631 Traeger et al. (2013)
Sexual myceliuma GSE41631 Traeger et al. (2013)
Protoapotheciab GSE61274 Murat et al. (2018)
Sordaria macrospora
Vegetative mycelium GSE33668 Teichert et al. (2012)
Sexual myceliuma GSE33668 Teichert et al. (2012)
Wild-type protoperitheciab GSE33668 Teichert et al. (2012)

For each condition, two independent biological replicates were analyzed, except for
P. confluens protoapothecia, where three independent biological replicates were
analyzed. GEO, Gene Expression Omnibus; DD, constant darkness.
a Sexual mycelium represents mycelia including embedded developing fruiting
bodies.

b Protoapothecia and protoperithecia are young fruiting bodies isolated by laser
microdissection.

c Conditions vegmix (combined RNA from several growth conditions that allow only
vegetative growth) and DD (growth in darkness) represent mycelia that cannot
develop sexual structures.

Figure 1 Life cycle of A. nigricans under continuous illumination and
laboratory conditions. Strain CBS 389.68 was grown on microscopic
slides with RFA medium (with 0.8% agar) for 1–6 days in constant light.
After 1 day, a mycelium of septated hyphae is formed. After 2 days,
apothecia initials can be observed that contain swollen young asci after
3 days (arrows). Immature hyaline spores can be observed within asci
after 4 days. Spores become pigmented during maturation after 5 days.
Mature spores are released from eight-spore asci after 6 days. Develop-
ment of mycelium and apothecia is the same in constant darkness (Figure
S1). Bar for all images, 20 mm.
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amount of coding sequence as the over seven times larger
genome of T. magnatum, the largest Pezizomycete genome
currently known (Murat et al. 2018), as well as the genome of
P. confluens, the closest sequenced relative of A. nigricans
(Table 2). Part of the smaller genome size of A. nigricans
can be attributed to much fewer repeat sequences compared
to other Pezizomycetes (Table 2). Furthermore, intron se-
quences also cover less sequence space in the A. nigricans
genome than in other Pezizomycetes (Table 2). Overall, the
A. nigricans genome is more compact with respect to non-
coding features than other Pezizomycetes genomes, but re-
tains the same coding capacity.

To assess the evolution of A. nigricans genes and their
homologs across 19 other sequenced fungi, we reconstructed
their evolutionary histories using the phylomeDB pipeline
(Huerta-Cepas et al. 2011). We reconstructed the evolution-
ary relationship of the selected species based on concatenat-
ing the alignments of 143 genes that were present in a single
copy in all the species analyzed and building a supertree
combining all individual gene trees from the phylome (see
Material and Methods). The resulting phylogeny confirms
that P. confluens and A. nigricans are sister species within
the Pezizomycetes, with the Tuber species, represented by
T. melanosporum, on a separate branch within the
Pezizomycetes lineage (Figure 2).

An analysis of synteny between the genomes ofA. nigricans
and other Pezizomycetes showed little conservation in gene
order, both at the level of scaffolds as well as for small geno-
mic regions of two or three genes (Figure S3). Interestingly,
the number of syntenic gene pairs or triplets that A. nigricans
shares with P. confluens is lower than the same numbers for
P. confluens and T. melanosporum, even though A. nigricans
and P. confluens aremore closely related to each other than to
T. melanosporum (Figure 2). One possible explanation might
be that the reduction of genome size observed in A. nigricans
was achieved through extensive genome restructuring in-
volving multiple translocations.

Analysis of the mating type locus of A. nigricans

The genome of the homothallic Pezizomycete P. confluens
contains the twoMAT genesMAT1-1-1 andMAT1-2-1, which
is typical in homothallic ascomycetes (Traeger et al. 2013). In
contrast, the A. nigricans genome contains only one MAT
gene, namely MAT1-1-1 (Figure 3). TBLASTN searches in
the A. nigricans genome also failed to discover a MAT1-2-1
homolog. Interestingly, the A. nigricans MAT1-1-1 gene is
located in the vicinity of two genes, APN2 and locus tag
50832, that are linked to MAT1-2-1 in P. confluens (Figure
3). Furthermore, several repeat regions are flanking theMAT
gene as well as APN2 in A. nigricans (Figure 3). One hypoth-
esis to explain these findings might be that a common ances-
tor of A. nigricans and P. confluens carried a MAT locus with
both MAT1-1-1 and MAT1-2-1, and that a recombination/
duplication event separated the MAT genes in P. confluens,
whereas repeat-induced recombination led to the deletion of
MAT1-2-1 in A. nigricans.

To verify that the region occupied by MAT1-1-1 in strain
CBS 389.68 is the same in other A. nigricans strains, the re-
gion between the genes flanking MAT1-1-1 was amplified by
PCR from four A. nigricans wild-type strains (including CBS
389.68; Figure 3 and Table 1) and sequenced by Sanger
sequencing. All four strains carry the MAT1-1-1 gene in this
genomic location, therefore thisMAT configuration is present
in all analyzed A. nigricans strains so far.

Genes for secondary metabolism in A. nigricans

Most genomes of higher filamentous ascomycetes carry mul-
tiple genes for the biosynthesis of polyketides and nonribo-
somal peptides, two major classes of secondary metabolites
in fungi (Kroken et al. 2003; Bushley and Turgeon 2010;
Teichert and Nowrousian 2011; Brakhage 2013; Keller
2019). However, previous analyses of the P. confluens ge-
nome revealed only seven nonribosomal peptide synthase
(NRPS) genes and one polyketide synthase (PKS) gene in this
species, much fewer than in the genomes of higher filamen-
tous ascomycetes (Traeger et al. 2013). An analysis of the
predicted A. nigricans proteins revealed five putative NRPS,
but no PKS (Table S3). Thus, A. nigricans lacks even a homo-
log for the single type I PKS gene present in the P. confluens
genome, and the single type III PKS gene present in the ge-
nomes of higher filamentous ascomycetes is missing in both
P. confluens and A. nigricans.

One of the five NRPS genes in the A. nigricans genome
encodes a siderophore NRPS also found in other fungal ge-
nomes (Table S3). There are three putative alpha-aminoadipate
reductase (AAR) NRPSs, which are typical fungal NRPSs
involved in amino acid biosynthesis. Most fungi have only
one AAR gene; an exception is P. confluens, with five genes
(Bushley and Turgeon 2010; Traeger et al. 2013). Thus, the
three AAR gene homologs in A. nigricans suggest that this
gene family expansion might be present throughout the
P. confluens/A. nigricans lineage of Pezizomycetes. The
fifth NRPS gene in A. nigricans, proteinId396591, encodes a

Figure 2 Species tree of 20 fungal species based on phylome reconstruc-
tion. The species tree was built based on 143 single-copy, widespread
genes (see Materials and Methods for details). All nodes are maximally
supported by 100% bootstrap. The scale bar gives substitutions per site.
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putative NRPS of unknown function (Table S3). There is one
NRPS of unknown function encoded in P. confluens, too, but
its domain architecture is different from proteinId396591,
therefore these genes might not be orthologs.

Comparative transcriptomics of fruiting body development
in A. nigricans, P. confluens, and S. macrospora

To analyze global changes in gene expression during sexual
development in A. nigricans, we sequenced transcriptomes
from three developmental stages by RNA-seq (Table 3 and
Table S4). To obtain total vegetative mycelia, A. nigricans
was grown in submerged cultures, which prevents the forma-
tion of sexual structures. For total sexual mycelia, A. nigricans
was grown as surface cultures, and the developing fruiting
bodies as well as the surrounding nonsexual mycelium was
harvested for RNA extraction. To obtain RNA solely from
developing fruiting bodies, we used laser microdissection to
isolate young fruiting bodies from the surrounding mycelium
as described previously (Teichert et al. 2012). RNA-seq data
from similar developmental stages are available for P. con-
fluens and S. macrospora (Teichert et al. 2012; Traeger et al.
2013; Murat et al. 2018) (Table 3), and we used these for
comparative transcriptomics analyses with A. nigricans.

To address the question if orthologous genes inA. nigricans
and P. confluens (Pezizomycetes) as well as in S. macrospora
(Sordariomycetes) show similar expression patterns during
fruiting body formation, we analyzed gene expression for
the 4791 genes for which putative orthologs were found in
all three species (Table S5). In a previous study of S. macro-
spora, expression patterns in developing fruiting bodies dif-
fered much more from total vegetative and total sexual

mycelia than the total mycelial samples differed from each
other (Teichert et al. 2012). This trend is confirmed when
analyzing data from orthologs in the three species (Figure 4).
In all cases, the number of differentially expressed genes is
much higher when comparing fruiting body samples vs. sex-
ually competent mycelium than in a comparison of vegetative
vs. sexually competent mycelium. These data suggest that the
expression patterns in sexual mycelia are dominated by the
nonsexual hyphae that make up the bulk of the mycelium
rather than by the developing fruiting bodies. The results also
indicate that fruiting bodies of filamentous ascomycetes sig-
nificantly restructure their transcriptome in the transition
from vegetative hyphal growth to the development of fruiting
bodies.

Clustering of correlation coefficients based ongene expres-
sion ratios for comparisons of fruiting bodies or vegetative
mycelium vs. sexual mycelium showed that comparisons in-
volving fruiting bodies for all three species group together
and are separated from the comparisons of vegetative vs.
sexual mycelia (Figure S4). This confirms the trend described
above, namely that fruiting bodies have distinct transcrip-
tomes compared to nonsexual hyphae (Figure 4). Further-
more, it suggests that there might be conserved gene
expression patterns during sexual development in filamen-
tous ascomycetes.

Next, we identified genes that are differentially regulated
in developing fruiting bodies in all three species. There are
83 genes that are upregulated, and 114 genes that are down-
regulated indeveloping fruitingbodies of all three species, but
not differentially regulated in other comparisons (Figure 5
and Table S6). Among the downregulated genes are 16 genes
with predicted functions in protein synthesis or turnover, and

Figure 3 Comparison of the mating type loci of A. nigricans and P. confluens. Orthologs of two genes that are linked to MAT1-2-1 in P. confluens
(APN2, shown in yellow, and PCON_08388, shown in green) are linked to MAT1-1-1 in A. nigricans. No MAT1-2-1 homolog was detected in A.
nigricans. Genes shown in white do not have orthologs within the mating type regions. Repeat regions around the A. nigricans MAT locus are shown in
red. The region around the A. nigricans MAT1-1-1 amplified by PCR from several A. nigricans strains is indicated by a horizontal black bar. The predicted
genes encoding helicase domain proteins adjacent to MAT1-1-1 were manually annotated on scaffold 13 with the coordinates [join
(17159..17356,17407..17700)] and [join (19850..21059,21107..21250,21298..22613)].

1552 R. Lütkenhaus et al.



another 16 genes with predicted roles in protein phosphory-
lation/dephosphorylation or signal transduction (Table S6).
It is possible that downregulation of such genes is an essential
step during fruiting body formation, and in-depth analyses of
these genes might be of interest for future studies. However,
in this study we focused on the genes that are upregulated
specifically in developing fruiting bodies in all three species,
as thesemight have conserved roles in sexual development in
filamentous ascomycetes. An analysis of putative functions
based on conserved domains among the upregulated genes
showed that there are 23 genes encoding proteins with pre-
dicted roles in vesicle transport, the endomembrane system,
or transport across membranes. This group of genes might be
of interest for future functional analyses.

Among the upregulated genes during fruiting body forma-
tion in A. nigricans, P. confluens, and S. macrospora are also
13 genes encoding proteins with predicted roles in chromatin
organization or the regulation of gene expression (Figure 5
and Table S6). As the transition from vegetative growth to
fruiting body development requires a drastic restructuring of
the transcriptome, transcription factors and chromatin mod-
ifiers are expected to play pivotal roles in this transition. A
number of specific transcription factors have already been
shown to be involved in sexual development in filamentous
ascomycetes, whereas the role of chromatin modifiers in
this process is less well understood (Nowrousian 2018;
Pöggeler et al. 2018). To learnmore about the roles of genes

with evolutionary conserved expression patterns, we chose
four of these genes for functional analysis through gene
deletion.

Functional analysis of genes with evolutionary conserved
expression patterns during development

Functional analysis of four genes with conserved expression
patterns was carried out in S. macrospora, because for this
filamentous ascomycete molecular techniques like transfor-
mation and gene deletion systems are available (Engh et al.
2010; Teichert et al. 2014). The candidates were chosen from
the genes with conserved upregulation during sexual develop-
ment based on their predicted functions in other species
or presence of conserved domains. Among the four genes that
were chosen for deletion in S. macrospora, one (SMAC_06770)
has a predicted function within the endomembrane system,
whereas the other three (SMAC_01829, SMAC_04946, and
SMAC_06113) are predicted to be involved in regulating tran-
scription or chromatin organization.

SMAC_06770 encodes a homolog to the S. cerevisiae
ALG11 gene, which encodes glycolipid 2-alpha-mannosyl-
transferase, an enzyme involved in protein glycosylation in
the endoplasmic reticulum through formation of glycosyla-
tion intermediates on the cytosolic side of the endoplasmic
reticulum (Cipollo et al. 2001). Deletion of ALG11 in S. cer-
evisiae leads to poor growth at 25�, and a temperature-
sensitive lethality at 37� (Cipollo et al. 2001). Deletion of

Figure 4 Comparative analysis of gene expression during development in A. nigricans (A.n.), P. confluens (P.c.), and S. macrospora (S.m.). The graphs
show log2 fold change values vs. mean expression for all genes with orthologs in all three species. In each graph, expression during fruiting body
formation (protoapothecia or protoperithecia) or expression during vegetative growth (veg or vegmix) is compared to expression in total sexual mycelium
from the respective species. The analysis was done with DESeq2, genes in red are genes that are differentially expressed with an adjusted P-value ,0.1.
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Figure 5 Expression ratios of orthologs that are up- or downregulated in young fruiting bodies of A. nigricans (A.n.), P. confluens (P.c.), and S.
macrospora (S.m.), but not differentially regulated in other conditions. The heatmaps were generated based on hierarchical clustering of log2 fold
changes. The heatmap on the left shows genes that are up- or downregulated in young fruiting bodies, the heatmap on the right shows only genes that
are upregulated in young fruiting bodies. The corresponding S. macrospora locus tags for selected genes are indicated on the right. Locus tags shown in
gray correspond to genes that are predicted to be involved in vesicle transport, the endomembrane system, or transport across membranes. Locus tags
shown in black correspond to genes predicted to be involved in chromatin organization or regulation of gene expression.
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SMAC_06770 in S. macrospora resulted in transformants that
grew very poorly and were unable to form fruiting bodies
(Figure S5). Thus, the gene appears to be involved in basic
cellular processes besides sexual development in S. macro-
spora, similar to S. cerevisiae.

SMAC_06113 is orthologous to the N. crassa aod-5 gene,
which regulates transcription of the gene encoding alterna-
tive oxidase (Chae et al. 2007; Chae and Nargang 2009).
AOD-5 consists of two domains, a GAL-4 like domain at the
N-terminus and a central PAS domain that might be involved
in protein-protein interactions. Deletion of SMAC_06113 in S.
macrospora did not result in any defects in sexual develop-
mental under laboratory conditions. The strain was fully fer-
tile, similar to the wild type (Figures S6 and S7). Because of
the homology of SMAC_06113 to N. crassa aod-5, we tested
growth of the deletion strain and complemented transform-
ants on antimycin A. This drug inhibits the electron transport
through complex III in mitochondria and, consequently,
alternative oxidase expression is induced for respiration
(Descheneau et al. 2005). Similar to N. crassa aod mutants,
the S. macrospora SMAC_06113 deletion strain was not able
to grow in presents of antimycin A, in contrast to the wild
type and a complemented strain (Figure S7). Therefore,
SMAC_06113 was named aod5 (alternative oxidase 5). Fluo-
rescence microscopy with strains expressing an aod5-egfp fu-
sion showed that aod5 localizes to the nucleus, as expected
for a transcription factor (Figure S7).

Earlier studies with chromatin modifiers asf1, cac2, crc1,
and rtt106 revealed only asf1 as essential for sexual repro-
duction in S.macrospora, whereas cac2 and rtt106might have
redundant function under nutrient deprivation (Gesing et al.
2012; Schumacher et al. 2018). Here, we chose another
putative chromatin modifier encoded by SMAC_04946 for
functional analysis. SMAC_04946 encodes a protein with a
conserved SAS4 domain. In S. cerevisiae, Sas4 is described
as part of the SAS complex (something about silencing) to-
gether with Sas2 and Sas5 (Sutton et al. 2003), and was
found to interact with Asf1p (Osada et al. 2001). However,
DELTA-BLASTp searches did not reveal clear homologs for
Sas2 and Sas5 in S. macrospora, and the SAS4 domain is
the only part of the SMAC_04946 protein that is conserved
in S. macrospora compared to yeast. Hence, we named the
gene scm1 (sas4-domain chromatin modifier) and analyzed if
deletion of scm1 results in any phenotype (Figure S8). Similar
to the deletion of several other chromatin modifiers (cac2,
crc1, and rtt106) (Gesing et al. 2012; Schumacher et al.
2018), the Dscm1 mutant was fertile after 7 days on BMM
and SWG (Figure 6). To address whether there might be re-
dundancy of SCM1 and other chromatin modifiers, we gener-
ated double-deletion strains by genetic crossing (Figure S9).
However, none of the double mutants of scm1 with cac2, crc1,
or rtt106 had a developmental phenotype (Figure 6). This is
similar to doublemutants involving cac2, crc1, or rtt106, which
were generated previously, and all of which are fertile on BMM
medium (Schumacher et al. 2018) (Figure S10). Therefore,we
performed crosses to obtain triple- and quadruple-deletion

strains (Figure S9). All possible triple-mutant combinations
of scm1, cac2, crc1, and rtt106 showed at least reduced fertility
up to sterility (Figure 6). While the Dcrc1/Drtt106/Dscm1
mutant formed perithecia and even discharged some spores,
all triplemutantswithDcac2 background are sterile. The triple
mutants Dscm1/Dcac2/Drtt106 and Dcac2/Dcrc1/Drtt106
formed few immature fruiting bodies without a perithecial
neck, sometimes with a few immature spores inside (Figure
6).However, the sporeswere not discharged evenafter 21days
on BMM. Dscm1Dcac2Dcrc1 formed only protoperithecia.
The quadruple mutant showed a phenotype comparable to
so-called pro mutants (Teichert et al. 2014), forming only
small protoperithecia (Figure 6).

The fourth gene we chose for further analysis was
SMAC_01829 encoding a homolog to the SPT3 subunit of
the SAGA complex, a conserved eukaryotic transcriptional
coactivator complex (Spedale et al. 2012; Helmlinger and
Tora 2017). The SAGA complex is well characterized in yeast,
and for filamentous fungi a deletion strain of spt3 was ana-
lyzed in F. graminearum (Timmers and Tora 2005; Gao et al.
2014). In S. macrospora, deletion of spt3 results in a most
conspicuous phenotype (Figure 7 and Figure S11). Dspt3
strains grow significantly slower than the wild type on both
full medium (BMM) and minimal medium (SWG) (Figure
7B). The Dspt3 mutant is still able to undergo hyphal fusion
(Figure 7C); however, hyphal morphology is different from
the wild type in older hyphae, with intrahyphal growth oc-
curring in swollen hyphae (Figure 7C). Besides the vegetative
phenotype, deletion of spt3 leads to sterility with only few
nonpigmented, often submerged protoperithecia (Figure 7, A
and D). Hyphae that make up the protoperithecia are less
densely packed than in the wild type. The formation of fruit-
ing bodies and ascospores was restored in complemented
transformants on BMM with spt3 under native and constitu-
tive promoter within 10 days (Figure 7, A and D). However,
only complemented strains with spt3 under a constitutive
promotor were able to discharge spores. On SWG medium,
complementation did not result in fertile strains even after
14 days, but resulted in formation of more pigmented proto-
perithecia and fewperithecia (Figure 7A). The growth ratewas
also only partially restored in complemented transformants
(Figure 7C). The transformants carry ectopically integrated
complementation plasmids, and it is possible that the native
chromatin environment is required for a fully functional
spt3.

Discussion

The A. nigricans genome is small and gene-dense

Fruiting body morphogenesis in ascomycetes is a complex
process that requires the concerted action of a large number of
genes. Molecular studies with several model organisms have
led to the identification of many such developmental genes,
but the degree to which fruiting body development is con-
served at the morphological and molecular level is not yet
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clear (Pöggeler et al. 2018). One way to address this ques-
tion is by comparative transcriptomics to test if gene expres-
sion patterns are conserved across species. In this study, we
sequenced the genome of the Pezizomycete A. nigricans,
and generated several transcriptomes that were used in
comparative transcriptomics analyses with two other
ascomycetes.

Compared to previously sequenced Pezizomycete genomes,
the A. nigricans genome is rather small. With 27 Mb, it is only
about half the size of theM. importuna genome, the smallest of
the previously sequenced Pezizomycete genomes (Murat et al.
2018). However, it has retained a coding capacity similar to
other, much larger Pezizomycete genomes. The size differ-
ences are causedmainly by a higher amount of repeats in other
Pezizomycetes, but noncoding regions like introns alsomake up
a smaller part of the genome in A. nigricans. The differences in
genome size could be explained by the expansion of repeats
and noncoding regions including introns in the other
Pezizomycetes, or by genome reduction processes specific to
A. nigricans, or both. The finding that microsynteny is higher
between P. confluens and T. melanosporum than between
P. confluens and the more closely related A. nigricans might

support a hypothesis of genome size reduction involving
major restructuring in A. nigricans.

One group of genes usually present in the genomes of
filamentous ascomycetes, but absent in A. nigricans, are PKS
genes. This is unusual even for Pezizomycetes, which have
fewer secondary metabolism genes than other Pezizomyco-
tina, with T. melanosporum harboring two, and P. confluens
containing only one PKS gene (Martin et al. 2010a; Teichert
and Nowrousian 2011; Traeger et al. 2013). Given their phy-
logenetic relationships, the most parsimonious explanation
would be the presence of (at least) one PKS gene in the com-
mon ancestor of Pezizomycetes, which was lost in the lineage
leading to A. nigricans. The NRPS gene content of A. nigricans
is more typical of filamentous ascomycetes, even though the
number of NRPS genes is small, similar to other Pezizomycetes.

The mating type locus of the homothallic A. nigricans
contains a single MAT1-1-1 gene

Another unusual feature of the A. nigricans genome is its
mating type region. A. nigricans is homothallic, and most
homothallic filamentous ascomycetes harbor a MAT1-1-1
gene and a MAT1-2-1 gene in their genome. However, there

Figure 6 Phenotypes of single, double, triple, and quadruple chromatin-modifier mutants of S. macrospora. The strains were grown for 7 days on
BMM. Gene deletion of scm1 results in a fully fertile strain, which only sometimes forms perithecia lying on the side. Double-deletion strains of scm1
with cac2, crc2, or rtt106 are also fully fertile after 7 days (the Dscm1/Dcrc1/fus mutant produces brown ascospores due to the presence of the spore
color mutation fus). Triple and quadruple chromatin-modifier deletion strains showed reduced fertility up to sterility. While Dscm1/Dcrc1/Drtt106 was
able to form perithecia and discharge spores, all three triple mutants containing Dcac2 were sterile. Although sometimes forming immature fruiting
bodies with few spores inside, Dscm1/Dcac2/Drtt106 and Dcac2/Dcrc1/Drtt106 never discharged spores (strains were observed for 21 days). Dscm1/
Dcac2/Dcrc1 forms few enlarged protoperithecia, but no spores. The quadruple mutant showed a phenotype comparable to so-called pro mutants
forming only protoperithecia, and therefore is sterile. Scale bars for top and side view, 500 mm; scale bars for ascus rosettes and spores, 100 mm.
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is no indication of a MAT1-2-1 gene in the A. nigricans ge-
nome, and the MAT1-1-1 region is the same in three addi-
tional strains analyzed. Thus, A. nigricans apparently
manages sexual reproduction with a single idiomorph carry-
ing a singleMAT gene.While unusual, there are other cases of
such unisexual mating in filamentous ascomycetes, where

all nuclei carry the same single MAT idiomorph (Bennett
and Turgeon 2016). One example is Neurospora africana, a
homothallic species that carries a MAT1-1 idiomorph, but no
MAT1-2-related gene, and similar findings were made for
several other homothallic Neurospora species, and possibly
for homothallic species of the Dothideomycete genus

Figure 7 Phenotypic characterization of S. macrospora Dspt3 and complemented strains. (A) Overview of strains grown on BMM and SWG for 7 and
14 days (details on the right for each strain). Dspt3 is sterile on both media and forms only few nonpigmented protoperithecia. Complemented strains
under native promoter (Dspt3::na-spt3-egfp) and constitutive promoter (Dspt3::Pgpd-spt3-egfp) form perithecia on BMM, but need longer (10 days
compared to 7 days in the wild type) to become fertile and discharge spores. On minimal medium (SWG), complemented strains did not form mature
perithecia even after 14 days. (B) The growth rate of Dspt3 is significantly reduced on BMM and SWG compared to the wild type. Complemented strains
grow faster than the mutant strain, but not as fast as the wild type. (C) Hyphal fusion and hyphal morphology of Dspt3. The mutant strain is able to form
hyphal anastomoses (red arrowheads). In older mycelium, Dspt3 forms enlarged hyphae, which start to grow into dead hyphae (intrahyphal growth,
yellow arrowheads). (D) Detail of fruiting body development on BMM. Protoperithecia of Dspt3 are nonpigmented and less compact than wild-type
protoperithecia. Ascogonia were not found on the agar surface, where they are formed in the wild type, because protoperithecia in the mutant were
mostly formed below the agar surface. Consequently, ascogonia are present within the agar, but difficult to detect there due to their small size and lack
of pigmentation. The deletion strain never formed pigmented protoperithecia or perithecia. The complemented strains formed perithecia after
8–10 days. Only the complemented strain with spt3 expressed from a constitutive promoter discharged spores after 10 days; however, both com-
plemented strains formed spores within the perithecia. Scale bar for ascogonia and young protoperithecia, 20 mm; scale bar for pigmented proto-
perithecia and perithecia, 100 mm unless indicated otherwise; scale bar for ascus rosettes, 40 mm.
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Stemphylium (Glass et al. 1988, 1990; Inderbitzin et al.
2005; Wik et al. 2008; Gioti et al. 2012). In the homothallic
SordariomyceteHuntiella moniliformis, unisexual reproduction
takes place with just a MAT1-2 idiomorph (Wilson et al.
2015). In the homothallic S. macrospora, MAT1-1-1 is
present, but dispensable for sexual development, whereas
MAT1-2-1 is required together with MAT1-1-2 (Pöggeler
et al. 2006b; Klix et al. 2010). Unisexual mating can also
occur in heterothallic species, if one or both mating types
are capable of sexual reproduction on their own. This was
demonstrated, for example, for theMAT A mating type of the
Sordariomycete Sordaria brevicollis, for MATa cells of the
ascomycete yeast Candida albicans, and for MATa cells of
the basidiomycete Cryptococcus neoformans (Robertson
et al. 1998; Lin et al. 2005; Alby et al. 2009). Thus, it might
be possible that A. nigricans is heterothallic with the ability of
(at least) one mating type to undergo unisexual mating be-
cause currently, only four strains have been analyzed for their
mating types, making it possible that additional mating types
exist in the population. Another hypothesis to explain the
single-gene mating type locus of A. nigricans might be that
the species is indeed homothallic, and that the loss of the
MAT1-2-1 gene might be related to a reduction in morpho-
logical complexity of the fruiting body. It has been hypothe-
sized previously that the morphologically simple fruiting
bodies of the Pyronema and Ascodesmis lineages are reduced
forms that evolved independently frommore complex apoth-
ecia in other Pezizomycete lineages (Hansen and Pfister
2006). Since mating type genes can have functions other
than the actual mating (Böhm et al. 2013; Bennett and
Turgeon 2016), it is possible that a less complex fruiting body
morphology can be sustained with a reduced complement of
mating type genes.

Comparative transcriptomics of fruiting body
development in three ascomycetes reveals conserved
patterns of gene expression

Comparative transcriptomics can be used to identify con-
served patterns of gene expression in different species, or
conversely, to identify species-specific expression patterns
that might help to explain, for example, morphological dif-
ferences between species (Stuart et al. 2003; Brawand et al.
2011; Romero et al. 2012). In fungi, the latter approach was
applied in comparative transcriptomics studies of Sordario-
mycete species from the Fusarium and Neurospora lineages.
While expression patterns for many groups of genes or func-
tional categories were similar, distinct differences in gene
expression could be used to identify genes involved in spe-
cies-specificmorphological transitions (Sikhakolli et al. 2012;
Lehr et al. 2014; Trail et al. 2017). In basidiomycete mush-
rooms, several comparative transcriptomics studies revealed
a certain degree of conservation of gene expression during
mushroom formation in several Agaricomycetes, including
genes for cell wall remodeling, adhesion, signal transduction,
transcription factors, and protein degradation (Ohm et al.
2010; Morin et al. 2012; Plaza et al. 2014; Almási et al.

2019; Krizsán et al. 2019). To address the question if
conserved patterns of gene expression can be found during
fruiting body development in distantly related filamentous
ascomycetes, we compared transcriptomes from mycelia
and young fruiting bodies from A. nigricans, P. confluens,
and S. macrospora. The three species represent different
Pezizomycotina lineages, but have similar lifestyles in that
they are homothallic and do not produce any asexual spores,
facilitating sexual development–specific transcriptome anal-
yses. Our results indicate that transcriptomes of developing
fruiting bodies are distinct from mycelial samples in all three
species, and furthermore, are more similar between species
than fruiting body transcriptomes are compared to mycelial
samples from the same species. This confirms preliminary
results based on comparisons of mycelia of P. confluens with
fruiting bodies and mycelia of S. macrospora (Traeger et al.
2013). Similar tissue- or development-specific conserved ex-
pression patterns of protein-coding genes have been noted
previously in animals (Necsulea and Kaessmann 2014; Levin
et al. 2016; Marlétaz et al. 2018).

To identify genes that might play a role in fruiting body
development, we identified genes that were upregulated
during fruiting body development in all three analyzed spe-
cies, but which were not differentially regulated in other
analyzed conditions. Among the 83 identified genes, 23 en-
code proteins with predicted roles in vesicle transport, the
endomembrane system, or transport across membranes.
Genes that encodeproteins involved in cellular transportwere
also enriched among genes that are expressed during fruiting
body development of three Neurospora species (Lehr et al.
2014). Interestingly, a recent study on Neolecta irregularis,
a member of the early-diverging ascomycete group of
Taphrinomycetes, showed that genes involved in the func-
tions of diverse endomembrane systems are conserved in
N. irregularis and the Pezizomycotina (filamentous ascomy-
cetes), all of which form fruiting bodies, but not in ascomy-
cete yeasts that do not form fruiting bodies (Nguyen et al.
2017). The fruiting bodies ofNeolecta and the Pezizomycotina
most likely evolved independently, but based on a common
set of genes in the last common ancestor of ascomycetes. It is
possible that the evolution of complex multicellular struc-
tures with similar functions selected for similar cellular ma-
chineries (Nguyen et al. 2017). One reason might be that
fruiting body formation requires a metabolically “competent”
mycelium that transfers nutrients to the developing fruiting
body (Wessels 1993; Pöggeler et al. 2006a). Such a transfer
might need a specialized complement of genes managing the
transport of large amounts of nutrients. Another, not mutu-
ally exclusive, explanation could be the requirement for
building cells with specialized cell wall structures, e.g., asci,
ascospores, or the nonsexual cells of the fruiting body. Again,
specialized groups of genes involved in transport processes
might be required for these purposes.

In addition to genes involved in transport processes,
13 genes with predicted roles in chromatin organization or
the regulation of gene expression are among the genes
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upregulated during fruiting body development in the three
species. The differentiation of fruiting bodies entails a drastic
restructuring of the transcriptome, as evidencedby thegreatly
different transcriptome profiles of fruiting bodies and non-
sexual mycelia. Thus, it is likely that the combined actions of
chromatinmodifiers and specific transcription factors prepare
the cells for the transition to sexual development (Pöggeler
et al. 2018). Enrichment of genes involved in transcription
was also found among genes preferentially expressed during
fruiting body morphogenesis of three Neurospora species,
and in a comparative transcriptomics analysis of S. macro-
spora and F. graminearum (Gesing et al. 2012; Lehr et al.
2014). Genes involved in transcription might in turn regulate
the expression of genes important for cell differentiation, e.g.,
genes for managing endomembrane systems as described
above. In S. macrospora, the transcription factor gene pro44
was found to be upregulated during fruiting body develop-
ment (Teichert et al. 2012). Subsequent transcriptome anal-
ysis of a pro44 deletion mutant showed that genes involved
in cellular transport were downregulated in developing
fruiting bodies of the mutant strain (Schumacher et al.
2018).

Functional characterization of genes with conserved
expression patterns reveals roles in fruiting
body development

Our functional characterization of four genes with evolution-
ary conserved transcriptional upregulation during fruiting
body formation showed that three of them indeed play a role
during sexual development. The exception is aod5, the ho-
molog ofN. crassa aod-5, which encodes a transcription factor
involved in regulating the expression of the alternative oxi-
dase gene aod-1 (Chae et al. 2007; Chae and Nargang 2009).
The corresponding S. macrospora aod5 mutant shows a
growth defect on antimycin A, similar to N. crassa, but no
defects in sexual development. In N. crassa, AOD-5 interacts
with another transcription factor, AOD-2, to activate aod-1
transcription (Chae et al. 2007; Chae and Nargang 2009),
and one might speculate that an aod-2 homolog in S. macro-
spora might carry out some functions of aod5 during devel-
opment. However, the aod-2 ortholog of S. macrospora,
SMAC_04081, is not transcriptionally upregulated during de-
velopment, in contrast to aod5.

For the other genes that were functionally characterized,
involvement in fruiting body differentiation could be con-
firmed. However, for one of the genes, the putative glycolipid
2-alpha-mannosyltransferase SMAC_06770, sterility of the
deletion mutant accompanies a severe growth defect. A
growth phenotype was also reported for the corresponding
S. cerevisiae mutant (Cipollo et al. 2001). The sterility of the
S. macrospora deletion strains might therefore not be a spe-
cific effect related to development but caused by the overall
growth defect.

Deletion of the putative chromatin modifier gene scm1 did
not result in a developmental phenotype in a singlemutant or
double mutants with chromatin modifier genes cac2, crc1,

and rtt106. However, analysis of all possible triple mutants
as well as the quadruple mutant revealed developmental de-
fects ranging from impaired spore formation and discharge to
complete lack of perithecia and spore production. While cac2
and rtt106 are homologs to histone H3/H4 chaperones of
other eukaryotes, and crc1 is predicted to encode a subunit
of the chromatin remodeling complexes RSC or SWI/SNR
(Wilson et al. 2006; Avvakumov et al. 2011; Schumacher
et al. 2018), the molecular role of scm1 is not yet clear. How-
ever, it is unlikely that the four chromatin modifiers act in the
same protein complexes or regulatory pathways, therefore
the lack of developmental phenotypes in the double mutants
might indicate that there is a certain redundancy in the mo-
lecular mechanisms priming chromatin for its cellular func-
tions. Another, not mutually exclusive, explanation might be
that the chromatin structure needs to be drastically reshaped
for successful fruiting body development, and that this
restructuring needs most, but not all chromatin-modifying
activities to be available. Future experiments using tech-
niques like Hi-C to analyze three-dimensional chromatin or-
ganization during development will help to address these
hypotheses (Mota-Gómez and Lupiáñez 2019).

The deletion mutant of the gene for the predicted SAGA
complex subunit SPT3 is sterile in addition to a mycelial
growth defect, and these phenotypes are similar to the spt3
mutant of F. graminearum (Gao et al. 2014). The SAGA
complex is a multisubunit transcriptional coactivator that
performs multiple functions, e.g., histone modification and
interaction with transcriptional activators (Spedale et al.
2012; Helmlinger and Tora 2017). These activities are car-
ried out by distinct modules within the complex, and SPT3 is
part of the TBP (TATA-binding protein) binding module
(Helmlinger and Tora 2017). The modularity of the complex
allows sharing of the modules between SAGA and other com-
plexes (Helmlinger and Tora 2017), and additional studies
will be required to address the role of transcriptional coacti-
vator complexes and other chromatin modifiers during sex-
ual development in fungi.
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