
UCSF
UC San Francisco Previously Published Works

Title
A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling 
Molecules

Permalink
https://escholarship.org/uc/item/3wj566hs

Journal
PLOS Computational Biology, 7(11)

ISSN
1553-734X

Authors
Jilkine, Alexandra
Angenent, Sigurd B
Wu, Lani F
et al.

Publication Date
2011-11-01

DOI
10.1371/journal.pcbi.1002271
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wj566hs
https://escholarship.org/uc/item/3wj566hs#author
https://escholarship.org
http://www.cdlib.org/


A Density-Dependent Switch Drives Stochastic
Clustering and Polarization of Signaling Molecules
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1 Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America, 2 Green Center for Systems Biology and Department of Pharmacology,
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Abstract

Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or
cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues,
diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise
when an un-clustered ‘‘off’’ state is desired? And, what limits the spread of clusters when an ‘‘on’’ state is desired? Here, we
show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise:
below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are
recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations
cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is
partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We
refer to our model as the ‘‘neutral drift polarity model.’’ Regulating the density of signaling molecules provides a simple
mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability
of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse
biological networks to create dynamic spatial organization.
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Introduction

The formation of local, high density regions of signaling

molecules (referred to below as ‘‘clusters’’) can switch cellular

pathways between ‘‘off’’ and ‘‘on’’ states and direct downstream

processes [1]. This transition may require careful regulation,

particularly when an ‘‘on’’ state initiates large-scale cellular

changes, such as observed in migration, cell division, or immune

responses [2,3,4,5,6].

Experimental and theoretical studies have demonstrated that

positive feedback plays a central role in pattern formation. Positive

feedback can amplify and reinforce spatially asymmetric distribu-

tions of signaling molecules in single cells. This amplification,

however, is indiscriminate; stochastic fluctuations could cause

switches between ‘‘off’’ and ‘‘on’’ states to occur at undesired

times, and sites of activation to occur in undesired locations [7,8].

Additional mechanisms may be combined with positive feedback

for regulating pattern formation, including coupled inhibitors [9],

long-range negative feedback [10], tight regulation of input noise

[11], or sequestration of components required for positive

feedback [12].

Here, we wondered whether mechanisms existed within positive

feedback circuits themselves to enable both the robust repression

of noise required to maintain an ‘‘off’’ state, and the reliable

establishment and persistence of distinct, high-density clusters of

signaling molecules required to maintain an ‘‘on’’ state. First, it has

been shown that positive feedback can attenuate the effects of

noise. Previous studies have demonstrated that nonlinear models

of positive feedback can give rise to bistable, temporal responses,

which in turn set thresholds for activation below which an ‘‘off’’

state can be robustly maintained [13]. (The coupling of multiple

positive feedback loops can also act to robustly maintain an ‘‘on’’

state in the presence of noisy input [14,15].) However, these

investigations were focused on temporal transitions between ‘‘off’’

and ‘‘on’’ states, and not on the emergence of spatial patterning.

Second, it has been shown that positive feedback circuits can

create clusters of signaling molecules through amplification of

stochastic fluctuations [5,16,17]. In particular, discrete simulations

of diffusing and interacting molecules [16], motivated by activated

GTPase Ras clustering on the cell membranes of lymphoid cells

[6], showed that positive feedback resulted in spatial clustering of

slowly diffusing, activated molecules. In that model, clusters spread

outward until the entire cell membrane was covered and the

spatial patterning was lost to a homogeneous activated state.

Another stochastic model [17], motivated by eukaryotic gradient

sensing, showed that patches of the phosphoinositide PIP3 could

accumulate near activated receptors on the surface of a cell. A

coarsening process then occurred with smaller patches eventually

being absorbed into larger patches. While positive feedback was

shown to initiate cluster nucleation and growth in these studies,
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mechanisms for buffering the onset of nucleation and limiting the

spread of clusters were not considered.

An important case of cluster formation is cell polarity, in which

the formation of a single, asymmetric accumulation of signaling

molecules, such as Rho GTPases, serves to define a unique cellular

axis. Many previous theoretical studies [17,18,19,20,21,22,23]

have provided insight into possible mechanisms by which a wide

variety of eukaryotic cell types, including budding yeast,

mammalian neutrophils, and amoeba can spontaneously polarize

in the absence of spatial cues [2,24,25]. We previously considered

a simple, positive feedback circuit, inspired by the ability of Cdc42

to polarize spontaneously in latrunculin-treated yeast [26]. In that

model, molecules stochastically transitioned between inactive

(cytosolic) or active (membrane-bound) states; and activated

molecules, diffusing laterally along the membrane, recruited

inactive molecules to their membrane locations. It was shown

that polarity emerged from this positive feedback circuit for

intermediate ranges of signaling molecule numbers. While

stochastic events and diffusion eventually led to the dispersal of

a cluster, at steady state the process was recurrent and a new site of

polarity would eventually re-form on the membrane. In that study,

the circuit operated by mass action for any fixed number of

signaling molecules. However, for varying numbers of molecules,

the strength of positive feedback was scaled to maintain a constant

average fraction of signaling molecules on the membrane, so the

circuit could not be in an ‘‘off’’ state. Hence, the repression of a

clustered state, and transition from ‘‘off’’ to ‘‘on’’ state was not–

and could not be–considered for varying numbers of molecules.

Though, clustering could effectively be shut off by having so few

total molecules that stochastic activation events rarely occur, or by

varying other model parameters [26].

Here, in one unified model, we investigate the ability of positive

feedback to reliably repress or create localized signaling domains.

An essential difference between our previous and current models is

that positive feedback now operates entirely through mass action

kinetics (i.e. rate constants are not rescaled by total numbers of

signaling molecules). In principle, removing the constraint that

held the average fraction of signaling molecules constant could

potentially significantly alter emergent behavior. This is indeed the

case (Table 1 compares the present model to previous work,

including our own, and indicates key differences in behaviors). In

particular, we find that when the density of molecules is below an

easily computable threshold, all signaling molecules are expected

to be inactive; hence, no clusters of activated signaling molecules

form, and cells are buffered against the onset of cluster formation

regardless of the constant presence of noise. Above the threshold,

increasing densities leads to increasing numbers of activated

molecules. This process can be applied to many cell-biological

settings, and we investigate clustering of molecules in the case of

cell polarity, as well as for 2-D membranes or in 3-D volumes

where the inactive and active forms of the signaling molecules are

not segregated to spatially distinct compartments. Taken together,

we find seemingly opposing effects for noise in this positive

feedback circuit: at low densities of signaling molecules, biochem-

ical noise is ignored in an ‘‘off’’ state; at intermediate densities,

biochemical noise drives the formation of single, polarized clusters

of signaling molecules to create an ‘‘on’’ state; and at high

densities, biochemical noise overwhelms polarization to create a

spatially homogeneous ‘‘on’’ state.

Results

Formulation of positive feedback model
Here, we investigate emergent behaviors of a ‘‘minimal’’

positive feedback circuit based on mass action kinetics interactions

between two states of a signaling molecule (Figure 1A). In this

conceptual model, a single molecular species spontaneously

transitions between inactive and active signaling forms, while

positive feedback allows activated molecules to recruit and activate

nearby inactivated molecules. While many molecular networks

containing positive feedback have been identified (see Table 2),

detailed knowledge of their components and interactions is often

incomplete. In our analysis, specific details of molecular

mechanisms are elided to better focus on identifying fundamental

properties of positive feedback that may be operating within

diverse biological contexts.

We first consider the situation where inactive or active forms of

a molecule are exclusively associated with localization to the

cytosol or membrane (respectively) (Figure 1B). Here, our model is

based on the following assumptions:

1. (Well-mixed cytosolic pool) Membrane molecules diffuse via

Brownian motion with rate Dm, while cytosolic molecules are

assumed to be distributed uniformly due to their relatively fast

rates of diffusion.

2. (Mass conservation) The total number of molecules,

N~ncznm, obtained by adding the number of molecules in

the cytosol, nc, and the membrane, nm, is assumed to be

constant during the time frame of our observations.

3. (Mass action kinetics) Molecules can transition between their

inactivated and activated forms via three mechanisms

(Figure 1B). First, activated molecules on the membrane can

Author Summary

A large body of work has focused on the ability of positive
feedback in biological networks to create either switches
in time (i.e., cells are either in an ‘‘on’’ or an ‘‘off’’ state) or
form patterns in space (i.e., spatial organization in cells and
tissues). Here, we propose a stochastic ‘‘neutral drift
polarity model’’ by which positive feedback alone is
sufficient to create switch-like behaviors both in time
and space for finite molecule numbers. Our theory predicts
that below a critical density of signaling molecules,
positive feedback robustly maintains an off state; exceed-
ing this threshold switches on the recurrent emergence of
highly localized signaling clusters. Cluster formation
requires only this minimal positive feedback circuit, and
does not require additional mechanisms such as diffusion
barriers, spatial cues, or biochemical inhibitors. This
mechanism is general, and could be applied to a variety
of cellular signaling systems to create clusters in the
membrane, cytosol, or organelles.

Table 1. Summary of models for positive feedback driven
switches and resulting behavior.

Robust On/Off
Switch

Clustering
Behavior

Loss of
Clustering Reference

! X X [6,45]

Robust ‘‘On’’ Only X X [14]

X ! X [16,17,22,23]

X ! ! [26]

! ! ! This Work

doi:10.1371/journal.pcbi.1002271.t001

Density-Dependent Switch for Stochastic Clustering
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spontaneously inactivate and return to the cytosol at rate Koff .

Second, inactive molecules within a cytosolic volume Von near

the membrane can spontaneously activate and associate with

the membrane at rate Kon. Third, inactive molecules within

cytosolic ‘‘feedback’’ volumes Vfb of activated membrane-

bound molecules can be activated and recruited to the same

membrane location as the recruiter at a rate of Kfb. After

recruitment, the recruiter and recruited molecules resume

independent membrane diffusions. The fraction of molecules

available for on or feedback events is scaled by
Von

V
or

Vfb

V
(respectively), where V is the cell volume. Taken together,

these transitions determine a model of self-interaction based

entirely on mass action kinetics (Figure 1C).

We begin by discussing biological motivation for a two-state

model of positive feedback. We next mathematically analyze the

model described above. Finally, we discuss alternative cellular

settings to the first assumption, in which the inactive and active

forms intermingle in the cytosol or on the membrane, and the

inactive form has a finite speed of diffusion.

Biological motivation
This positive feedback model is applicable to diverse biological

systems. In a particular biological setting, the two states of the

signaling molecules could be distinguished by many mechanisms,

such as biochemical modifications (e.g. phosphorylation, or GDP/

GTP association) and/or cellular localization (e.g. membrane or

Table 2. Examples of cluster formation in cell signaling systems with positive feedback.

Biological System Geometry
Positive Feedback
Loop Parameters with Known Estimates

Cdc42 in S. cerevisae polarization Membrane/cytosol Cdc42RCdc24RCdc42 Diffusion rate of Cdc42 on membrane: 0.036 mm2/s [60]. (This estimate is 10
fold lower than in mammalian cells.) 61% of total Cdc42 is in cytosol [61].

Polarization in eukaryotic
chemotaxis

Membrane/cytosol RacRPIP3RRac Diffusion of GTPase in membrane: 0.1 mm2/s; diffusion of GTPase in cytosol:
10 mm2/s [41].

EGF Receptor signaling Membrane RasRSOSRRas Diffusion rate of Ras on membrane:0.2 mm2/s [62]. Ras density 4–40
molecules/mm2 [63].

doi:10.1371/journal.pcbi.1002271.t002

Figure 1. Conceptual model of positive feedback. (A) A simple 2-state model of positive feedback. Signaling molecules can either be in an
active (red) or inactive (green) state. Molecules can transition between active and inactive states. Positive feedback occurs because active signaling
molecules can recruit inactive molecules to change state. (B) Application of model to cell polarity. Here, active or inactive states correspond to
signaling molecule localization on the membrane or cytosol, respectively. Signaling molecules may only be spontaneously activated (with rate Kon),
or recruited (with rate Kfb) if they are within the volumes Von or Vfb of the membrane, respectively. Active molecules can spontaneously transition to
an inactive state (with rate Koff ). (C) Signaling molecule flux between the membrane and the cytosol. The total number of molecules in the
membrane and cytosol are denoted by nm and nc , respectively. The volume of the cell is denoted by V .
doi:10.1371/journal.pcbi.1002271.g001

Density-Dependent Switch for Stochastic Clustering
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cytosolic compartments); exchange between these forms may be

regulated by additional molecular components. For example, on

the membrane, the activated small GTPase Ras is observed to

form dynamic nanoclusters [27,28]. Ras activation via the Ras

activator SOS (Son of Sevenless) has been demonstrated to contain

a positive feedback loop [6]. In the nucleus, unphosphorylated

splicing factors (SFs) self-organize into dynamic nuclear speckles.

Speckle formation is modulated by the self-interaction (binding)

of slow moving unphosphorylated SFs, whereas self-interaction

is diminished in the fast-diffusing, phosphorylated state

[29,30,31,32]. Finally, within a cell, clustering may involve

molecules cycling between membrane and cytosol. Examples

include myristoylated alanine-rich C kinase substrate (MARCKS)

proteins [33] that colocalize with patches of PIP2 on the plasma

membrane in their dephosphorylated form [34].

An important biological application for our model is provided

by proteins involved in cell polarity, such as Cdc42 and other Rho

family GTPases. Like other GTPases, Cdc42 cycles between an

active GTP-bound form (that is localized to the membrane) and an

inactive GDP-bound state (that can be on the membrane or in the

cytosol). GDI (guanine dissociation inhibitor) molecules extract the

GDP-bound form of Rho family proteins from the membrane to

the cytosol, where they are sequestered in an inactive pool. In the

budding yeast, Saccharomyces cerevisiae, active Cdc42 localizes to a

single zone on the plasma membrane marking the bud assembly

site [2]. Dynamic Cdc42 GDP/GTP cycling is required for the

polarization response in S. cerevisiae [35,36], and continual

exchange between membrane and cytosol is hypothesized to be

essential for generating robust cell polarity [19,20,26].

Cycling of Cdc42 between the membrane and cytosol may be

described by our two-state positive feedback circuit. First, active

Cdc42 promotes the recruitment of more Cdc42 to the polarity

zone, resulting in a positive feedback loop (reviewed in [2]).

Second, on the timescale of cell polarization, the amount of Cdc42

can be considered to be roughly constant. Third, the inactive

cytosolic pool can be considered well mixed assuming: (i) the

amount of GDI in the cell is not a limiting factor [37,38]; and (ii)

switching between membrane and cytosolic states is rapid [39].

Then, we can use the fast exchange (rapid equilibrium

approximation) between the membrane and cytosolic GDP-

bound forms to derive a net ‘‘effective diffusion coefficient’’ [40]

for the inactive forms. This coefficient is given by a weighted

average of the membrane and cytosolic diffusion coefficients

Dmc~
ka

kazkd

Dmz
kd

kazkd

Dc, for membrane association and

dissociation rates ka,kd and membrane and cytosolic diffusion
coefficients Dm and Dc. The diffusion rates in the membrane are

typically 100–10006 slower than in the cytosol [41], resulting in

Dmc&Dm. Thus, Cdc42 satisfies all three criteria of our positive

feedback model. More generally, this simple two-state model could

be used to approximate membrane/cytosol cycling of Rho

GTPases or other signaling molecules, where an active mem-

brane-bound form undergoes slow diffusion, while an inactive

cytosolic pool is well mixed.

Numerical exploration of model behaviors
To provide insight into emergent model behaviors, we made use

of numerical simulations. We first simulated the positive feedback

circuit for a 1-D circular membrane to facilitate easy visualization

of signaling molecule behaviors in time and space. We quantified

the total number of signaling molecules on the membrane as well

as the frequency of polarization, determined by whether $50% of

the molecules were contained within a contiguous region (ranging

from 15 to 25%) of the membrane.

To compare model behavior with our previous study of

stochastic polarity [26], we varied the total number of molecules,

N (see Table 3 for model parameters). Cells were initially seeded

with 10% of the molecules randomly position on the membrane.

Consistent with previous findings, for large N the distribution of

activated signaling molecules was largely homogeneous while for

intermediate N self-organized clustering occurred. However, in

contrast with our previous model (Figure S1), we observed a clear

‘‘off switch’’: below a critical number of signaling molecules, all

molecules were localized to the cytosol; above this critical number

clustering occurred (Figure 2A–B).

To test the robustness of repression below this threshold,

halfway through a numerical simulation we abruptly moved 50%

of the molecules in the cytosolic pool to a small region covering

10% of the membrane, then restarted the simulation (Figure 2C).

Again, below the critical number, polarization was always

immediately lost after restimulation, indicating that the mainte-

nance, as well as the establishment of polarization is prevented.

Finally, we varied the level of ‘‘input noise’’ to the system by

varying the spontaneous on rate Kon over 5 orders of magnitude.

Throughout this range, a switch-like transition between no-

clustering and clustering was observed (Figure S2). Thus, these

simulations suggested that as N increased the behaviors of the

positive feedback model transitioned from the repression, to the

emergence, and finally to the homogenization of polarization.

Mathematical model for density of molecules in the
cytosol

With these observed behaviors as motivation, we next describe

the mechanisms that underlie the behavior of this model in three

steps. First we consider the time evolution of the number of

particles in the cytosol, nc. Assuming that this number can be

treated as a continuous variable, whose evolution is determined by

a differential equation, we find switch-like behavior. Namely,

when the density N=V of particles in the cell lies below a certain

critical value x�c all particles remain in the cytosol, thus preventing

polarization of the membrane; for larger values of the density

N=V a fraction of the particles will move to the membrane,

enabling polarization. Second, we remove the assumption that nc

is a continuous variable, and more accurately model the number

of cytosolic molecules in terms of a stochastic process. We again

find that switch-like behavior emerges (Protocol S1, Section 4).

Third, to determine the range of parameters in which polarization

occurs, we extend the stochastic model to include the membrane-

bound particle positions.

Table 3. Parameters used for simulations in Figure 2.

Parameter Meaning Value Justification

Koff Spontaneous off rate 9 min21 [26], calculated
from [36].

Con~KonVon=V Spontaneous on rate 0.0005 min21 Assumed as in [26].

Cfb~KfbVfb=V Feedback rate 0.01 min21 Calculated from

Cfb=N~10 min{1

in [26].

N Total number of
molecules

Varied N&103 assumed in
[26].

Dm Rate of diffusion for
active molecules

1.2 mm2 min21 [26], calculated
from [60].

doi:10.1371/journal.pcbi.1002271.t003

Density-Dependent Switch for Stochastic Clustering
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Assuming that nc can be described by a continuous variable, our

model dictates that its rate of change (Figure 1C) is given by:

dnc

dt
~ Kfb

V
fb

V
nc{Koff

 !
nm{Kon

Von

V
nc: ð1Þ

We may also keep track of the density of molecules in the cytosol,

x~
nc

V
. Rescaling time (so that t’~KfbVfbt), equation (1) can be

rewritten more simply as:

dx

dt
~(x{x�c)(x{xN ){lx�cx ð2Þ

where the constants are given by:

xN~
N

V
; x�c~

Koff

KfbVfb

; and l~
KonVon

Koff V
ð3Þ

The first constant, xN , is the total density of molecules in a cell;

since some molecules may be membrane-bound, xN is the upper

bound for the cytosolic density x (that is, 0ƒxƒxN ). The second

constant, x�c , also has dimensions of density, and is dependent on

parameters of the positive feedback system itself, but is

independent of the cell’s volume or the number of molecules it

contains. The third constant, l, is dimensionless and reflects a ratio

of spontaneous on-to-off rates. As will be shown subsequently,

these three constants play critical roles in determining when

polarization can and cannot occur.

Steady state analysis
Polarity cannot emerge when the spontaneous on rate is

comparable to the off rate: high molecular flux due to undirected,

spontaneous on-events will overwhelm the ability of positive

feedback to create localized regions of high density [26]. Thus, we

analyze the system behavior when the spontaneous on rate is small

relative to the off rate, that is, when l%1. By considering the

Figure 2. Repression, emergence, and loss of polarity for increasing concentrations of signaling molecules. (A) Three regions of
polarization behavior are shown: repression (blue bar); spontaneous emergence (cyan bar) and loss (red bar);. Black curve: averaged membrane
fractions of molecules. Red curves: averaged probabilities of observing polarization; signaling molecules are considered clustered when more than 20
molecules are present on the membrane, and 50% of all molecules on the membrane are within a small region covering 15% (dotted curve), 20%
(dashed curve), or 25% (solid curve) of the membrane. (*) indicates critical number of molecules n�c . Results are averaged of 50 simulations, performed
for each indicated value of N . Changing the minimum cluster size to 10 molecules from 20 does not affect results (not shown). (B) Kymographs of
simulations for values of N chosen from the three regions shown in (A). (C) Positive feedback circuits give rise to switch-like behaviors in time and
space. 0 min: the positive feedback circuit is initialized with N~800 molecules, 10% of which are randomly distributed on the membrane, and
polarity is repressed (Nvn�c ); 30 min (red triangle): 10% of the cytosolic molecules are reseeded to 10% of the membrane; 60 min: 200 particles are
added to the cytosol, and polarity switches on (Nwn�c ); 90 min: 200 particles are removed from the cytosol and polarity switches off. Bottom panel:
kymograph of simulation is as in (B); top panel: total number of molecules on membrane (gray curve and left axis) and total number of molecules in
cell (red curve and right axis). Simulations were performed on a 1-D circular membrane (see Table 3 for model parameters).
doi:10.1371/journal.pcbi.1002271.g002

Density-Dependent Switch for Stochastic Clustering
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steady states of equation (2), we can understand why the ‘‘off’’ state

is buffered from noise in the small molecule number regime.

When there are no spontaneous activation events (i.e., Kon~0,

the evolution of the cytosolic density given by (2) reduces to:

dx

dt’
~(x{x�c )(x{xN ): ð4Þ

The right hand side is a simple quadratic expression. Hence, at

steady state, the cytosolic density is predicted to be at one of two

values, xN or x�c , defined in equation (3). If x~xN , then all

molecules are sequestered in the cytosol (i.e., nC~N). No

molecules are available for the membrane, and clustering is

repressed by default. If x~x�c , then n�c~x�cV molecules are in the

cytosol and the remaining N{n�c molecules are on the membrane.

Then, the circuit is in a permissive state for clustering, and

whether or not clustering can occur is determined by other

relationships among the parameters [26]. It follows from equation

(4) that the smaller of these two steady states is stable, while the

larger is unstable (Figure 3A).

What determines which of these steady states a cell will be in? A

key distinguishing factor is that xN depends on the molecule number

N whereas x�c does not. This makes N a natural parameter to vary,

whose effects can easily be observed by comparing the ratio of the two

steady state roots, b~
xN

x�c
(analogous to the basic reproductive ratio

[42] in theories of epidemiology, discussed later). As N increases from

small to large values, clustering goes from being repressed x�cvxN

� �
to being possible x�cwxN

� �
(Figure 3A). Switching occurs at the

‘‘critical’’ density x�c (in a so-called transcritical bifurcation) when the

two roots are equal (b~1). (Note that density-dependent switching is

not observed if feedback is scaled to maintain a constant fraction of

activated molecules [26]; the analogous ratio of roots b’~
KfbVfb

Koff V
is

independent of N.) What other parameters of this positive feedback

could cells modulate to regulate repression of clustering? As can be

seen from b~
xN

x�c
~

NKfbVfb

Koff V
, decreasing the positive feedback rate

or the recruiting volume, or increasing the membrane dissociation
rate or the cell volume will expand the range of densities where
clustering is repressed. Taken together, when molecular density is
below an easily computable threshold, a cell will be in a repressed
state for clustering.

The ‘‘off’’ state can also be buffered when spontaneous

activation events are allowed to occur (i.e. Konw0) (Figure 3B).

Equation (2) has two distinct steady states, given by solutions of

(x{x�c)(x{xN ){lx�cx~0 ð5Þ
When spontaneous activation events are relatively infrequent, i.e.

when l~
KonVon

Koff V
is small, we expect the roots of equation (5)

Figure 3. Polarity is repressed below a critical total density of signaling molecules. (A) Illustration shows stability of equilibrium values for

cytosolic densities, xN~
N

V
and x�c~

Koff

KfbVfb

, for varying N when Kon~0. Red: stable root; black unstable root. (B) Shown is equilibrium membrane

fraction nM=N of signaling molecules on the membrane nM for various cell densities and different values of Kon. Cytosolic buffering occurs when

nM=N is nearly zero. (C) The probability, pn , that the: cytosol contains exactly n molecules is shown for different total molecule numbers, N , scanned
between 0 and k. Steady state probabilities of molecule numbers in the cytosol are computed from stochastic master equation (Protocol S1). Inset:
zoom-in of transition region showing bimodality of probability distribution.
doi:10.1371/journal.pcbi.1002271.g003

Density-Dependent Switch for Stochastic Clustering
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to be close to the steady states of equation (4). For equation (5), the

smaller root is always smaller than xN and x�c , and corresponds to

a stable steady state, while the larger root is always larger than xN

and x�c , and corresponds to an unstable steady state. Because the

larger root is always greater than xN , only the smaller root is

physically relevant (there cannot be more particles than N). There

is no exchange of stability, and equation (2) has a unique, stable

steady state. However, when l is small, the smaller root still

exhibits switch-like behavior near N~n�C (due to the proximity of

the bifurcation point; this phenomenon is described in bifurcation

theory as an imperfect transcritical bifurcation with l as

imperfection parameter [43]).

Stochastic model for molecule density in the cytosol
Of course, the actual number of molecules in any given cell is

finite. It is known that stochastic fluctuations may drive cellular

behavior to new dynamic states not seen in deterministic models

[26,44,45,46]. We next investigate whether the switching behavior

shown in the continuous setting would also hold in a stochastic

setting.

A more detailed description of the probabilities for the time

evolution of the number nc(t) of molecules in the cytosol is given in

terms of a one-step continuous time stochastic process [47]. In a

stochastic process, the steady state is described by its stationary

distribution. This distribution specifies the probability, pn, that the

cytosolic pool contains exactly n molecules for a randomly chosen

cell from a large ensemble of cells, or for one cell inspected at a

randomly chosen time from a sufficiently long time interval. The

stationary distribution is obtained by solving the master equation

(Protocol S1, Section 4 and [47]).

The switching in the preceding continuum approximation also

appears in the stochastic analysis when the ratio of on-to-feedback

rates, c~
KonVon

KfbVfb

, is small. We find that the stationary distribu-

tions undergo a qualitative change as N increases above n�c~x�cV .
More precisely, when Nvn�c all probability density centers around
N , while for Nwn�c the stationary distribution rn is essentially a
Poisson distribution with expectation n�c (Figure 3C). Interestingly,

the stationary distribution shows bimodality near the transition

point (Figure 3C, inset) while the deterministic solution is

unimodal. The ability of stochasticity to induce bimodality to a

deterministic mass action equation was also recently reported for

cellular signaling in phosphorylation-dephosphorylation cycles

[45]. As we discuss next, the ratio c cannot be too large if

clustering in the ‘‘on’’ state is also desired.

Polarization of signaling molecules
The preceding analysis focused on the overall numbers of

molecules in inactive or active states. We next examine the spatial

distribution of the active signaling molecules. We perform this

analysis in the stochastic setting, as the continuous setting modeled by

partial differential equations leads to a homogeneous steady state

(Protocol S1, Section 6). The basis for stochastic cluster formation,

previously described [26,48], remains valid in this current work for

any specified set of parameters. However, the feedback reaction rate

in the present work depends differently on N and, as a consequence,

the range of parameters that permit polarization are changed. Here,

we provide a new approach for analyzing the mechanism responsible

for the emergence of clusters and calculate the parameter ranges in

which polarization is possible (Protocol S1, Section 5).

The phenomenon of polarization is defined by the property that

a large fraction of the membrane-bound signaling molecules

cluster within one small region of the membrane. In general,

molecules will be distributed unevenly on the membrane due to

stochastic fluctuations. Recruitment and disassociation will not

deterministically amplify such asymmetries; at equilibrium, each

membrane-bound signaling molecule will recruit or disassociate

with equal probabilities causing these effects to cancel at first

approximation. However, the stochastic nature of the process can

cause imbalances in the molecular distribution to undergo a

neutral drift in which eventually a small region of the membrane

contains most molecules while the remainder is largely depleted.

When Kon is small, on-events are infrequent and we can analyze

the clustering mechanism in between on-events by grouping the

membrane-bound signaling molecules into ‘‘clans’’ and tracking

their genealogy [26]. Initially the clans are defined by dividing the

membrane into a large number of small regions and declaring all

molecules in any such region to form one clan. Clan genealogy is

defined by assigning each newly recruited molecule to the clan of

its recruiter, and by erasing the clan identity of any spontaneously

dissociating molecule. As time progresses, clans will shrink and

grow in population size, but once a clan has lost its last member it

becomes extinct and cannot return. As long as no on-events occur,

the number of clans cannot increase. Our analysis shows that if the

time interval between two on-events is sufficiently long then, the

expected time in which only half the original clans survive is

(Protocol S1, Section 7)

Thalf ~
N{n�c

Koff

ln 2 ð6Þ

If the membrane is initially partitioned into 2k clans, then after

time

Tk~k
N{n�c

Koff

ln 2 ð7Þ

only one clan is expected to remain (Figure 4A).

A range of parameters for which single clans emerge within

localized domains can be computed explicitly, even when a

small number of on-events are allowed (Protocol S1, Section 5).

First, the frequency of on-events must be low enough that there

is enough time to allow all clans but one to become extinct be-

fore the on-events significantly contribute to a new fraction of

membrane-bound population of molecules. If

c~
KonVon

KfbVfb

%
a

k ln 2
ð8Þ

then all but a (small) fraction a (e.g. ƒ10%) of the total molecules

on the membrane will belong to a single clan. Second, if

membrane diffusion is slow enough then all members of the

surviving clan will be located in a small neighborhood of the site of

its ancestral clan (Figure 4B). This will be true if the number of

molecules is bounded by

NƒNpol&C2
Koff V2=3

Dm

zx�cV , ð9Þ

where Dm is the membrane diffusion constant and the constant C2

depends on the size of the initial k regions (Protocol S1, Section 5).

Taken together, estimates (8) and (9) indicate when membrane-

bound molecules will have redistributed with high probability to

form a single localized cluster (Figure 4C). Note that equation (8) is

a conservative estimate; polarization was observed even when Kon

was above this bound (Figure S2).

Numerical simulations in alternative cellular settings
Finally, we tested applications of this positive feedback circuit

to generate molecular clusters in 2-D or 3-D cellular settings,

motivated by possible applications of our model framework to

clustering on membranes [49] and in the nucleus [50]. We used

the freely available spatial stochastic particle simulator Smoldyn

Density-Dependent Switch for Stochastic Clustering
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version 2.15 [51] to implement an alternative version of this circuit

(Figure 5A; see Protocol S1, Section 8 for differences). In

particular, we removed the assumption that the inactive form

exists in a spatially homogenous pool, and assumed a finite rate

of diffusion, DI , for the inactive molecules, which was still faster

than the diffusion rate DA of the active molecules (i.e.,

0vDA%DIv?). We tested the model in three different

biologically motivated spatial settings, in which: (1) active

molecules diffuse on the surface of a sphere, and recruit inactive

forms from its interior; (2) active and inactive molecules both

diffuse within the same 2D compartment, such as plasma

membrane; and (3) active and inactive forms both diffusing within

the same 3D volume, such as within the nucleus. In all settings, we

observed transitions from a buffered ‘‘off’’ state, to one or several

localized clusters, to a homogeneous ‘‘on’’ state as the number of

molecules increased (Figure 5B and Video S1). For a fixed,

intermediate number of molecules we observed competition

between clans, until a single recurrent cluster remained (Video

S2). Adjusting for the dimensions of the model parameters V and

Kfb (see Protocol S1, Section 8), the transitions for this alternative

model (Figure 5C and Figure S3) were in close agreement with the

analytically computed phase plane.

Discussion

It has long been appreciated that positive feedback plays a key

role in intracellular signaling [13,52] and, in particular, the ability

of molecules to self-organize into highly localized clusters in the

membrane or cytosol of cells. Positive feedback can cause

clustering to occur in the absence of localizing mechanisms such

as pre-existing spatial cues (e.g. chemoattractants), diffusional

barriers (e.g. septins at the base of the primary cillium) or

molecular cross-linking. What prevents positive feedback from

amplifying inevitable biological noise when an un-clustered ‘‘off’’

state is desired? And, what limits the spread of clusters when an

‘‘on’’ state is desired? In theory many additional mechanisms

could be postulated. Here, we find that a minimal model of a

positive feedback circuit has the intrinsic ability both to suppress

and amplify noise: below a critical number of signaling molecules,

clustering switches off; above this threshold, highly localized

clusters are recurrently generated.

Interestingly, positive feedback only produces spatially localized

clusters in the stochastic regime, when one assumes a finite

number of molecules and the presence of biological noise. In a

continuum limit positive feedback alone is not sufficient for pattern

formation, and many reaction-diffusion models have shown the

need for additional mechanisms, such as long range negative

feedback or substrate depletion [9,10]. The loss of small clusters

and emergence of a dominant cluster for finite numbers of

molecules is partly a phenomenon of random sampling, and is

somewhat analogous to the fixation or loss of neutral mutations in

finite populations [53]. That clustering may not be observable in

the continuous limit [26] suggests, when analyzing signal

transduction networks, finite sizes of populations cannot be

ignored. In homage to classic work in population genetics, we

refer to our model as the ‘‘neutral drift polarity model.’’

Similar threshold behaviors in autocatalytic processes appear in

diverse settings [54]. Interestingly, our minimal model of positive

feedback can also be recast as a well-studied mathematical model

for the spread of an epidemic. In this setting: the cytosolic

Figure 4. Positive feedback can recurrently generate a single, polarized cluster of signaling molecules. (A) Illustration of lifetimes for
competing clans between on-events. After a rapid period of extinction (top panel), a single surviving clan emerges (bottom panel). (B) Illustration of
localization of surviving clan. When diffusion of the membrane-bound signaling molecules is slow enough, all members of the single surviving clan
(red dots) are located within a small neighborhood (tan ellipse) of the site that contained their ancestral recruiters (gray triangle). (C) Illustration of
phase plane diagram showing behaviors of positive feedback circuit. Colors indicate probabilities of polarization going from dark red (high
probability) to dark blue (zero probability). Black lines are plotted from equations described in main text.
doi:10.1371/journal.pcbi.1002271.g004
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molecules correspond to susceptible individuals (S); membrane-

bound molecules correspond to infectious individuals (I); and the

recruitment of new molecules by membrane-bound molecules

corresponds to the spread of infection when an infected and a

susceptible individual come in contact. Collectively, these

interactions are referred to as an SIS model, and form a system

of equations similar to ours [55]. The dimensionless parameter b,

described earlier, can be interpreted as the expected number of

susceptible individuals that can become infected though contact

with an infected individual [42]. Our results are analogous to the

property that when bv1 the spread of infection is repressed,

whereas for bw1 the disease is endemic in the population. The

differences between the deterministic and the stochastic SIS model

in a spatially homogeneous setting have been well-characterized

[56,57,58]. In particular, the endemic steady state is only

quasi-stationary, as I~0 is an absorbing steady state (once there

are no infective individuals left, there is no new source of

infection), and stochastic fluctuations always result in eventual

disease extinction [59]. Our positive feedback model differs from

the SIS model in the inclusion of spontaneous transitions from the

susceptible (inactive) pool to the infectious (active) pool. This

significantly changes the long-term behavior of the system. Our

results suggest that by including the effect of variable spread rates

for susceptible and infectious individuals, introduction of new

infections, and finite population sizes, parameter regimes exist in

the SIS model where recurrent spatial patches of infected

individuals can occur.

The neutral drift polarity model considered in this paper is a simple

conceptual model that encapsulates the mechanism for particle

clustering. Although this model captures the generic features of the

emergence of cell polarity, and can be mathematically analyzed

both in the deterministic and the stochastic regime, simplifying

assumptions were made for mathematical tractability. First, in our

theoretical treatment we assumed that the inactive forms are

Figure 5. Density-dependence of spatial clustering is observed for different spatial geometries. (A) Modification of model shown in
Figure 1B, removing the assumptions that the active and inactive molecules are spatially segregated into different spatial compartments, and that the
inactive form is spatially homogeneous (infinite rate of diffusion). Here, both the active (red) and inactive (green) molecules can occupy the same
compartment and diffuse at finite speeds given by rates DA and DI , respectively. (B) Numerical implementation of the modified model shown in (A)
for three different spatial geometries: (i) active molecules reside on the surface of sphere, while inactive molecules reside in the interior (polarity); (ii)
both active and inactive molecules reside in a 3-D volume (cytosol); and (iii) both active and inactive molecules reside on a 2-D surface (membrane).
For all geometries, we observe progression from buffered off state to localized clusters to homogeneous on state as the number of molecules is
increased. (C) Phase plane diagram for the 2-D model as a function of molecule numbers and membrane area. Numerical simulations using the
stochastic molecule simulator Smoldyn illustrate a density-dependent switch in clustering behavior. Inset: analytically computed phase plane
diagram; ‘‘+’’ marks indicate locations of simulations; V in equations has dimensions of area (see labels at bottom (B)). All simulations in (B–C) were
performed using the Smoldyn stochastic molecule simulator version 2.15 [51]; . Shown are results from running the stochastic simulation for 100 time
units (see Protocol S1, Appendix for code and parameter values).
doi:10.1371/journal.pcbi.1002271.g005
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well-mixed throughout the cell. This assumption was weakened for

the Smoldyn implementation, where a high but finite rate of diffusion

was assumed for the inactive molecules. Second, the reaction volumes

Von and Vfb are assumed to be constants, so that the spontaneous-on

and feedback rates, Con and Cfb (respectively), are independent of the

density of membrane-bound molecules. This may not be a reasonable

approximation for regions of high molecule density when the reaction

volumes frequently overlap and mass-action kinetics no longer apply.

Third, recruitment of inactive molecules to the membrane in our

circuit is modeled by simple mass action between active and inactive

forms. In reality, positive feedback loops are more complicated and

can involve additional molecular components. For example, in

budding yeast, active Cdc42 recruits the adaptor protein Bem1,

which in turn recruits/activates the Cdc42 GEF (guanine nucleotide

exchange factor) Cdc24 [2].

Several biological predictions come out of our work. First, the

ability to switch this positive feedback circuit on and off suggests

that it could be placed as a primer, upstream of other signaling

circuits, to initiate subsequent physiological processes. Such a role

has been proposed in the context of Cdc42 polarization in yeast, in

which a cytoskeleton-independent positive feedback circuit–with

some similar features to the one studied here–acts as a primer for a

second actin-dependent positive feedback circuit [2,36]. Second,

our results suggest that over- or under-expression of a reporter

probe to monitor a feedback system can have the unintended effect

of eliminating the spatial organization that it was intended to

observe. Third, our numerical simulations in 2D and 3D suggest

that a positive feedback provides a ‘‘minimal’’ model for repressing

or initiating molecular aggregation and microdomain formation,

such as observed on lipid membranes [1], in the nucleus [50] and

in cytosolic puncta [4]. Fourth, our results provide a natural

interpretation of (and prediction for) heterogeneity of cells in

clustered states by providing a link between numbers of signaling

molecules per cell and probabilities of observing off/on states or

cluster formation within the population.

Our work points to the intrinsic ability of positive feedback to give

rise to spatial clustering. We propose that a positive feedback circuit,

operating in the stochastic regime, can create a robust switch that

can prevent spurious activation in an ‘‘off’’ state, and can be

switched ‘‘on’’ or ‘‘off’’ by simply varying molecular density. As

positive feedback loops form a common motif in many signal

transduction networks, our work reveals a design principle based on

neutral drift dynamics that may lie at the heart of diverse network

functions. Additional mechanisms could be coupled to this basic

positive feedback module to fine-tune the ability of biological

systems to create sharp localized clusters. Finally, the discrete nature

of molecular processes means that there can be significant

fluctuations from mean behavior described by deterministic models,

and stochastic models will be required to capture those effects.

Materials and Methods

Analytical results
Derivations of estimates and formulas used in Figures 1–4 are

given in the Main Text and Protocol S1.

Consistency of constants with previous work
In previous work [26], feedback kfb was scaled to maintain a

constant fraction of membrane molecules regardless of the total

number N of molecules. The relationship between the previous

constants kfb,kon,koff

� �
to the current constants Kfb,Kon,Koff

� �
is

as follows: Kfb~
kfb

N

V

Vfb

; Kon~kon

V

Von

; and Koff ~koff .

Simulations
Simulations in Figure 4 were performed using Matlab version

R2009a on a unit as previously described [26]. Parameter values

are as shown in Table 3.

All simulations in Figure 5 were performed using the stochastic

particle simulator Smoldyn version 2.15. The algorithm for

bimolecular reactions in Smoldyn is based on the Smoluchowsky

theory of diffusion-limited chemical reactions [51]. We note that

the model implemented in Smoldyn differs from the theoretical

treatment of the positive feedback circuit in several ways (see

Protocol S1, Section 8). Parameter values and Smoldyn code for

Figure 5 is given in Protocol S1.

Supporting Information

Figure S1 Polarization frequencies for positive feedback circuits

based on two different models of scaling positive feedback. Top panel:

positive feedback based entirely on mass action kinetics (current

study); Bottom panel: positive feedback normalized to maintain a

fixed fraction (set to be 10% in this simulation) of molecules on the

membrane at steady state (presented in [26]). Curves and simulations

are as in Figure 2A of the main text. Top and bottom panels are

averages of 50 or 20 simulations (respectively). We note for the

bottom panel that the steady state membrane fraction (black curve)

drops below 10% as N becomes small. This is due to the bimodality

of the stationary distribution (see Protocol S1 and [45]); for small N,

the membrane may be empty frequently. Polarization rates (red

curves) also drop for small N . This is due, in part, to the decrease in

heq. Additionally, regions of the membrane containing #20

molecules were not counted as polarized, hence polarization rates

may be under-reported. In particular, for the lower panel, fewer than

20 ( = 10%:200) molecules are expected on the membrane when

N,200, and the low fraction of polarized cells in this regime is in part

a reflection of this (arbitrary) cutoff.

(PDF)

Figure S2 Polarization frequencies for positive feedback with

varying spontaneous on-rates. Plots are as in Figures 2A and S1.

All simulations performed with 20 replicates; values of Con were

varied over a 5-fold range (indicated on each panel). Note that

even for relatively high values of Con, we still observe a sharp

boundary below which polarity is not observed.

(PDF)

Figure S3 Phase plane diagrams for the Smoldyn implementa-

tion in (a) cytosolic geometry (V~L3), and (b) polar geometry

V~
4

3
pL3

� �
, showing the range of N and V for which

polarization will occur. Curves correspond to n�c~x�cV (black

curve), V~
Kfb

Kon

a

ln2
, (blue curve), and Npol~C2

Koff V2=3

Dm

zx�cV

(red curve). See Protocol S1, Section 8 for detailed derivations of
these quantities and Appendix for parameter values used.
Abbreviations used: Off-homogenous off state, On-homogenous
on state, P-polarity, MC-multiple clans.

(PDF)

Protocol S1 Supporting Information for ‘‘A Density-Dependent

Switch Drives Stochastic Clustering and Polarization of Signaling

Molecules’’, containing details of mathematical derivations.

(PDF)

Video S1 Smoldyn simulation of positive feedback circuit for an

increasing number of particles. Repression, emergence, and loss of

polarity is observed as the concentration of signaling molecules is

increased. See Protocol S1 for code and parameter values.

(MP4)
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Video S2 Smoldyn simulation of positive feedback circuit for a

fixed number of particles. Recurrent polarity is observed. See

Protocol S1 for code and parameter values.

(MP4)
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