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A novel mechanism for exciting intrinsic toroidal rotation
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1Department of Physics and Center for Astrophysics and Space Sciences,
University of California San Diego, La Jolla, California 92093-0424, USA
2CEA Cadarache, 13108 St. Paul Lez Durance, France
3Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451, USA

!Received 2 December 2008; accepted 31 March 2009; published online 4 May 2009"

Beginning from a phase space conserving gyrokinetic formulation, a systematic derivation of
parallel momentum conservation uncovers two physically distinct mechanisms by which
microturbulence may drive intrinsic rotation. The first mechanism, which emanates from E!B
convection of parallel momentum, has already been analyzed #O. D. Gurcan et al., Phys. Plasmas
14, 042306 !2007"; R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 !1993"$ and was
shown to follow from radial electric field shear induced symmetry breaking of the spectrally
averaged parallel wave number. Thus, this mechanism is most likely active in regions with steep
pressure gradients or strong poloidal flow shear. The second mechanism uncovered, which appears
in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation
induced by the polarization drift. This novel means of driving intrinsic rotation, while nominally
higher order in an expansion of the mode frequency divided by the ion cyclotron frequency, does not
depend on radial electric field shear. Thus, while the magnitude of the former mechanism is strongly
reduced in regions of weak radial electric field shear, this mechanism remains unabated and is thus
likely relevant in complementary regimes. © 2009 American Institute of Physics.
#DOI: 10.1063/1.3122048$

I. INTRODUCTION

Recent experimental studies have generated a substantial
body of evidence suggesting that observations of intrinsic
toroidal rotation encompass a rich, multifaceted set of phe-
nomena. An understanding of the physical mechanisms driv-
ing intrinsic rotation is crucial to magnetic fusion since both
toroidal flow shear and the rate of plasma rotation are well
known to influence the power threshold required for L-H
mode transitions as well as the stability of resistive wall
modes. A crucial element of this diverse set of phenomena
has been illuminated via the compilation of a broad database
of H-mode plasma discharges.1 This database suggests that
within H-mode plasmas, the value of the offset of toroidal
rotation typically scales linearly with the plasma stored en-
ergy divided by the plasma current and is usually in the
cocurrent direction.2

While neoclassical, sub-neoclassical, and thermal ion or-
bit loss have been proposed as candidates for explaining
various manifestations of intrinsic rotation,3–5 flow genera-
tion induced by turbulent stresses provides a natural candi-
date for many plasma regimes. Motivated by the latter of
these two possibilities, a minimal model of intrinsic rotation
has been constructed in Refs. 6 and 7 based on an L-H mode
bifurcation model.8 This formulation, whose primary novel
ingredient is a mean E!B shear driven contribution to the
momentum flux !as well as convective terms, see Refs. 9–12,
for example", suggests a close link between intrinsic rotation
and regions of strong radial electric field shear, such as exist

near the edge of H-mode plasmas. Within the aforemen-
tioned framework, the rate of rotation in H-mode discharges
is largely set by the width of the edge pedestal, which is
typically closely correlated with the stored energy. Thus, this
reduced framework appears to be capable of qualitatively
reproducing several robust elements of the empirical trends
observed in H-mode plasmas.

While certain empirical trends, especially those in
H-mode plasmas, appear amenable to reduced models depen-
dent on a single mechanism for driving rotation offsets,
a significant subset of phenomena is not easily recon-
ciled with the above trends. A particularly illustrative
example is provided by recent experiments in L-mode
limited plasma discharges.13,14 In these discharges, rates
of plasma rotation in excess of that which can be accounted
for by external momentum sources have been observed.
Inversions in the direction of plasma rotation have been
initiated via traversing a critical density !or current" thresh-
old, which would seem to suggest either a mechanism
whose sign inverts as the density threshold is crossed,15 or
a competition between multiple independent mechanisms.
Furthermore, the rotation velocity near the edge of the
plasma is reduced by neutral drag, such that the role of
scrape-off-layer flows is mitigated.16 Also, we note that
these inversion events appear to be initiated in the
plasma core, thus further distinguishing them from edge
phenomena.

Before proceeding further it is useful to review the form
of the turbulent momentum flux. The evolution of parallel
momentum has been shown to obey17a"Electronic mail: cmcdevitt@ucsd.edu.
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where for simplicity we do not distinguish the parallel and
toroidal directions. The first term in the momentum flux cor-
responds to the toroidal viscosity, where early theoretical and
experimental work have demonstrated the scaling #"+#i
!Refs 18 and 19" !although recent gyrokinetic simulations
have shown significant departures from this scaling20". The
second term corresponds to a momentum pinch or convec-
tive term, and has been treated in Refs. 10–12 !see Refs. 7
and 21 for a discussion on the role of particle fluxes". Finally,
the last term in the momentum flux is often referred to as the
residual stress !i.e., the portion of the momentum flux inde-
pendent of the mean toroidal velocity and its gradient", a
particular manifestation of which has been shown to arise
due to violations of reflectional symmetry about the rational
surface, often induced by E!B shear.6,22–26 As discussed
below, while the E!B shear induced residual stress term is
not the only residual stress term present in the momentum
flux, it is likely to be the most robust mechanism in the
vicinity of transport barriers. This follows since while this
portion of the residual stress is being enhanced by E!B
shear, the remaining terms in the turbulent momentum flux
are reduced due to E!B shear decorrelation of the back-
ground turbulence.27,28 Thus, the radial electric field shear
driven portion of the residual stress is likely to play a con-
spicuous role in barrier regions. Assuming a stationary solu-
tion and integrating from 0 to r, this expression may be writ-
ten as

− #"
#%v"!r"&

#r
+ Vc%v"!r"& + S!r"

=
1
r
,

0

r

dr!r!Sext!r!" = Ŝext!r" ,

where Ŝext is the integrated external momentum source.
Hence, while clearly physically distinct, the residual stress
has a mathematical form which is isomorphic to the inte-
grated momentum source. Thus, the residual stress corre-
sponds to an ideal candidate for understanding offsets in the
toroidal rotation velocity. This is in contrast to the convective
or “pinch” term, whose magnitude is dependent on the local
rotation velocity and thus has a fundamentally distinct effect
on rotation profiles. Specifically, systems whose only nondif-
fusive contribution to the momentum flux is convective do
not admit stationary solutions with a finite rate of rotation
without the presence of either an external momentum source
or a nonzero edge boundary condition. Thus, terms in the
momentum flux with the form of a residual stress correspond
to an ideal means for driving intrinsic rotation.

The diversity of experimental observations in L-mode
plasmas14,29,30 naturally motivates the search for alternate
mechanisms for driving intrinsic rotation. As discussed in the
previous paragraph, residual stress terms correspond to an
ideal candidate for understanding the spontaneous generation
of parallel flows. Thus, the determination of the lowest order
residual stress term is of vital importance. More precisely,

the modest level of mean E!B shear in L-mode plasmas
potentially allows for alternate contributions to the residual
stress term to enter, which are likely subdominant in H-mode
plasmas. In this paper we present a careful analysis of the
transport of parallel momentum induced by electrostatic mi-
croturbulence in a simplified geometry. Our motivation
throughout this work is to investigate the role of ostensibly
higher order nondiffusive terms in the momentum flux which
have been neglected in existing theoretical analyses. In par-
ticular, the evolution of parallel momentum can be described
via the first moment of the gyrokinetic equation, i.e.,

#%P-&
#t

+ $! ·./
s

ms, d3v̄v-Ẋ!$Fs0
=./

s
ms, d3v̄V̇-$Fs0 ,

where 1d3v̄22%1d&dv-B, &2!1 /2"v!
2 /B, and the rest of

the notation is standard. The second term on the left-hand
side !LHS" of this expression can be shown to induce mo-
mentum transport via E!B convection of parallel momen-
tum and is the origin of the aforementioned mean E!B
shear driven momentum transport. In the electrostatic limit,
the right-hand side !RHS" can be rewritten as

f - =./
s

ms, d3v̄V̇-$Fs0
= −./

s
qs, d3v̄$Fsb̂ · $J0!k!'!"$"0 .

Here we emphasize that $Fs represents the distribution of
gyrocenters rather than particles. In order to understand the
distinction between the gyrocenter distribution function and
the particle distribution function, it is useful to consider the
quasineutrality relation, i.e., $ne=$ni, where $ne and $ni rep-
resent the electron and ion perturbed particle densities. Re-
writing the ion density perturbation in terms of an integral
over the gyrocenter distribution function gives

$ni 3, d3v̄4J0!k!'!"$Fi + Fi
!0"#J0

2!k!'!" − 1$
e$"

Ti
5 ,

where the presence of the second term results from the po-
larization drift. Substituting this result back into the
quasineutrality relation, rearranging terms, allows the
quasineutrality condition to be written in the suggestive
form31,32

(!$!
2 $" = − 4%/

s
qs, d3v̄J0!k!'!"$Fs,

where (!3c2 /vA
2 ='s

2 /)De
2 , and we note that for ions

'!26v!6 /*ci, whereas for electrons, we take the limit
me→0, such that J0=1. Thus, it is clear that even in the limit
of vanishing Debye length, gyrocenter quasineutrality is not
satisfied. The violation of gyrocenter quasineutrality is well
known to follow from the polarization drift appearing in the
theory as an effective polarization shielding in the gyroki-
netic Poisson equation, rather than explicitly appearing in the
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gyrocenter equations of motion. Similarly, for !k!'s"231 it
is easy to see that the LHS and RHS of the gyrokinetic
Poisson equation contribute at the same order.

The general form of the gyrokinetic Poisson equation
can be easily seen to be closely analogous to the Poisson
equation for a dielectric medium.33 In order to demonstrate
this more explicitly, it is useful to write the latter in the form

($!
2 $" = − 4%/

s
qs, d3v$fs.

Thus, while not precisely isomorphic to the gyrokinetic
Poisson equation, this expression has a very similar struc-
ture. This observation naturally raises the question as to the
fate of the gyrokinetic analog of the parallel component of
the Maxwell stress tensor, i.e., for a dielectric medium the
parallel force density is given in terms of the electrostatic
field as f - =#+x,- /#x, where +x,- 2( / !4%"ExE-,

34 x is a radial
variable, and we are only considering radial fluxes. In the
following, the gyrokinetic analog of the Maxwell stress ten-
sor for an electrostatic plasma is derived. It is shown that the
momentum flux induced by this mechanism is independent
of both the mean toroidal velocity and its gradient, and hence
can be classified as a residual stress term. Terms of this form
have been shown to have an ideal mathematical form for
driving intrinsic rotation.

This mechanism, while naively appearing to be higher
order in ,+'i /Ln, is not tied to radial electric field shear in
contrast to its more familiar mean E!B shear driven coun-
terpart. More specifically, the mean E!B shear driven com-
ponent of the residual stress can be shown to be proportional
to the spectrally averaged parallel wave number %k- /ky&.

6

This quantity in turn is proportional to the shift in the radial
eigenmode off its rational surface, which typically scales as

%k-/ky& + x0/Ls 3 As*ci
−1vE! ,

where vE! is the mean E!B flow shear and As is a mode
dependent parameter whose magnitude based on simple
models typically satisfies Ln /Ls- 6As6-Ls /Ln !see Appendix
B". If we estimate vE! via the diamagnetic term in the radial
force balance equation, this yields vE! 3vthi'i!1+.i" /Ln

2, so
we may estimate the spectrally averaged k- /ky by

%k-/ky& 3 As!'i/Ln"2!1 + .i" .

Hence, while a naive ordering would suggest k- /ky +,, it is
clear that after summation over the turbulence spectrum
%k- /ky&+,2 !i.e., one order higher than would be naively
anticipated". This simple analysis suggests that the contribu-
tion to the residual stress emanating from E!B convection
can enter at the same order as contributions due to the polar-
ization drift. Thus, the self-consistent determination of the
turbulent residual stress term, which is likely necessary for
describing elements of the aforementioned phenomena, re-
quires the inclusion of contributions to the turbulent momen-
tum flux emanating from the polarization drift.

The remainder of this paper is organized as follows. In
Sec. II a systematic derivation of the parallel momentum
conservation theorem from a phase space conserving gyroki-
netic equation is carried out to fourth order in ,+'i /Ln.

Section III presents a discussion of momentum transport
driven by both E!B flow shear, as well as a novel mecha-
nism which arises from the parallel nonlinearity within the
gyrokinetic framework. Comparisons of these two mecha-
nisms are performed with an eye toward understanding in
which regime each mechanism is likely to dominate. Section
IV presents a brief summary.

II. MOMENTUM CONSERVATION THEOREM

In this section we present a derivation of a parallel mo-
mentum conservation theorem beginning from a phase space
conserving gyrokinetic equation. It will be convenient
throughout this analysis to utilize a multiscale perturbative
framework, which provides a systematic means of identify-
ing diverse contributions to the momentum evolution equa-
tion, as well as providing a transparent mechanism for order-
ing each contribution’s apparent magnitude. Our emphasis
here will be on determining the lowest order contributions
emanating from E!B convection, as well as the polarization
drift.

The electrostatic gyrokinetic equation can be written as

0 =
#Fs

#t
+

#

#x
· !ẊFs" +

#

#v-

!V̇-Fs" , !1a"

where

Ẋ = b̂v- +
c

B
b̂ ! $!%$"&/ + 0" , !1b"

V̇- = −
qs

ms
b̂ · $%$"&/. !1c"

Here, the subscript s represents the species of particle,
%¯&/2!2%"−110

2%d/!¯", 0 is the equilibrium scalar poten-
tial !assumed to be only a function of the radial variable x",
and for simplicity, we consider cylindrical geometry.

In order to derive a general expression for the evolution
of parallel momentum it is useful to separate the temporal
and perpendicular spatial scales into a set of “fast” variables
associated with the rapidly varying microturbulence, which
we will denote by !x! , t", and a set of “slow” variables typi-
cal of equilibrium profiles denoted by !X! ,T" !see, for ex-
ample, Ref. 35". This separation allows for the decomposi-
tion of the perpendicular space and time derivatives in the
form

$! → $!
!0" + ,$!

!1",
#

#t
→ ,

#

#t
+ ,2 #

#T
. !2"

Here $!
!0" corresponds to a derivative with respect to x! and

$!
!1" corresponds to a derivative with respect to X!. We note

that while the fast and slow variables should be regarded as
independent, the fast and slow derivatives do not necessarily
commute with one another. For example, in cylindrical ge-
ometry it is easy to see that $!

!1" ·$!
!0"%$!

!0" ·$!
!1". The parallel

derivative is ordered as
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b̂ · $ + ,b̂ · $ , !3"

where ,+'i /Ln. Note that since functions of only the large
scales are assumed to be uniform along magnetic field lines,
there is no need to introduce an analogous decomposition in
the parallel direction. While for the simple geometry utilized
here, an analogous statement can be made for the poloidal
variable as well, it is convenient to introduce this scale sepa-
ration such that the expressions derived below have a greater
range of applicability and a more transparent form. If we
now assume the fluctuating fields to be approximately de-
scribed by their mixing length levels, we can introduce the
ordering

$" = ,$"!1"!x,t,X!,T" + ,2$"!2"!x,t,X!,T" + ¯ ,

Fs = Fs
!0"!X!" + ,$Fs

!1"!x,t,X!,T" + ,2$Fs
!2"!x,t,X!,T"

+ ¯ ,

where Fs
!0" is taken to be a centered Maxwellian. Further-

more, we may define a spatial and temporal average over the
fast scales such that %$1!x , t ,X! ,T"&=0, but functions of
only slow variables are left unaltered, i.e., %1!X! ,T"&
=1!X! ,T". Similarly, averages over the fast scales annihilate
derivatives of fast variables as well as derivatives along mag-
netic field lines but commute with slow derivatives, i.e.,
%$!

!0"1&= %b̂ ·$1&=0, but %$!
!1"1&=$!

!1"%1&.
Here, it is useful to derive properties of the J0!k!'!"

operator since this operator will appear frequently in the en-
suing analysis. Writing this operator in terms of the fast and
slow variables introduced above, we find

J0!)" 3 1 +
1
4

'!
2 #!$!

!0""2 + ,!$!
!1" · $!

!0" + $!
!0" · $!

!1""

+ ,2!$!
!1""2$ + ¯ ,

such that we may define

J0
!0"!)" 2 1 + !1/4"'!

2 !$!
!0""2 + ¯ ,

J0
!1"!)" 2 1

4'!
2 !$!

!1" · $!
!0" + $!

!0" · $!
!1"" + ¯ ,

where )2k!'! for ions '!26v!6 /*ci and *ci2eB / !mic".
Hence, while J0

!0" commutes with fluctuation quantities inside
averages !i.e., it involves an even number of integrations by
parts and the surface terms vanish", J0

!1" cannot be commuted
without introducing surface terms.

A general expression for the evolution of parallel mo-
mentum can be obtained by operating on Eq. !1" with
/sms1d3v̄v- and averaging over the fast scales, which yields

. #P-

#t 0 +.$ · /
s

ms, d3v̄Ẋv-Fs0
=./

s
ms, d3v̄V̇-Fs0 , !4"

where P- 2/sms1d3v̄v-Fs, 1d3v̄22%1d&dv-B, and
&2v!

2 / !2B". Equation !4" may be simplified via an
expansion in ,. Considering the first term on the LHS of Eq.
!4", this term can be simplified to

. #P-

#t 0 =.(,
#

#t
+ ,2 #

#T
)/

s
ms, d3v̄v-#F!0"!X!"

+ ,$Fs
!1"!x,t,X!,T" + ¯$0

3 ,3 #

#T
%/

s
ms, d3v̄v-$F!1"!x,t,X!,T"&

= ,3 #

#T
%$P-

!1"& . !5"

Formally $Fs
!1" vanishes upon averaging; however the mo-

mentum theorems derived below will be more transparent
with the inclusion of this term. Similarly, the second term on
the LHS of Eq. !4" may be written to lowest order as

.$ · /
s

ms, d3v̄v-ẊFs0
3 ,3 c

B
$!

!1" ·./
s

ms, d3v̄v-$Fs
!1"

!!b̂ ! $!
!0"J0

!0"!)"$"!1""0 , !6"

such that the lowest order surviving term enters at O!,3" and
can be recognized as describing momentum transported by
E!B convection.

Turning now to the RHS of Eq. !4", in the drift kinetic
limit #i.e., !k!'i"2→0$ this term trivially vanishes due to
quasineutrality. However, for the more general limit of
!k!'i"221, the RHS of Eq. !4" is in general nonvanishing
due to the violation of gyrocenter quasineutrality. This can
be transparently demonstrated by writing the gyrokinetic
Poisson equation in the form31,36

(!

4%n0
$! · !ni$!$"" = − /

s
qs, d3v̄J0!)"$Fs, !7"

where (!3c2 /vA
2 31,33 we have taken )De→0, and for sim-

plicity we assume k!'i-1 so that terms of order O!k!
4 'i

4"
may be neglected. Deviations from gyrocenter quasineutral-
ity are well known to result from the presence of the polar-
ization drift #absent from Eq. !6"$. Hence, the evaluation of
this term is required in order to compute the contribution to
the momentum flux originating from the polarization drift.

To second order, the RHS of Eq. !4" can be written as

f -
!2" =./

s
ms, d3v̄V̇-

!2"Fs
!0"0 , !8"

where

V̇-
!2" = −

qs

ms
J0

!0"!)"b̂ · $$"!1". !9"

Substituting Eq. !9" into Eq. !8" yields
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f -
!2" = −./

s
qs, d3v̄Fs

!0"J0
!0"!)"b̂ · $$"!1"0 = 0,

such that consistent with the previous two terms, the parallel
force vanishes at second order. The third order parallel force
may be written as

f -
!3" =./

s
ms, d3v̄V̇-

!2"$Fs
!1"0

+./
s

ms, d3v̄V̇-
!3"Fs

!0"0 , !10"

where

V̇-
!3" = −

qs

ms
b̂ · $7J0

!0"!)"$"!2" + J0
!1"!)"$"!1"8 , !11"

and the gyrokinetic Poisson equation is given to first order
by

(!!$!
!0""2$"!1" = − 4%/

s
qs, d3v̄J0

!0"!)"$Fs
!1". !12"

Considering the second term in Eq. !10" first, this term can
be rewritten after substitution of Eq. !11" as

./
s

ms, d3v̄V̇-
!3"Fs

!0"0 = 0. !13"

Turning now to the first term in Eq. !10", after utilizing Eq.
!9" this term can be written in the form

./
s

ms, d3v̄V̇-
!2"$Fs

!1"0
= −./

s
qs, d3v̄$Fs

!1"J0
!0"!)"b̂ · $$"!1"0 , !14"

which may be simplified via substitution of the first order
Poisson equation, i.e.,

−./
s

qs, d3v̄$Fs
!1"J0

!0"!)"b̂ · $$"!1"0
=

(!

4%
%!$!

!0""2$"!1"!b̂ · $"$"!1"&

= −
(!

4%
%$!

!0"$"!1" · !b̂ · $"$!
!0"$"!1"&

= −
(!

8%
%b̂ · $6$!

!0"$"!1"62& = 0,

such that the diagonal component of the gyrokinetic analog
of the Maxwell stress tensor can be seen to vanish upon
averaging. Continuing to fourth order, f -

!4" can be written as

f -
!4" =./

s
ms, d3v̄V̇-

!2"$Fs
!2"0

+./
s

ms, d3v̄V̇-
!3"$Fs

!1"0
+./

s
ms, d3v̄V̇-

!4"Fs
!0"0 , !15"

where

V̇-
!4" = −

qs

ms
#J0!)"b̂ · $$"$!4", !16"

with the second order Poisson equation defined as

(!!$!
!0""2$"!2" +

(!

n0
$!

!1" · !n0$!
!0"$"!1""

+ (!$!
!1" · $!

!0"$"!1" +
(!

n0
$!

!0" · !$ni
!1"$!

!0"$"!1""

= − 4%/
s

qs, d3v̄#J0
!0"!)"$Fs

!2" + J0
!1"!)"$Fs

!1"$ . !17"

f -
!4" can be simplified by following a similar analysis as for

the third order term such that Eq. !15" can be reduced to !see
Appendix A for details"

f -
!4" 3

(!

4%n0
$!

!1" · %n0$E!
!1"$E-

!2"&

−
1
2

$!
!1" ·./

s
qs, d3v̄'!

2 !$!
!0"$Fs

!1""$E-
!2"0 , !18"

where $E2−$$" and we have made the approximation
J0

!1"!)"3!1 /4"'!
2 !$!

!1" ·$!
!0"+$!

!0" ·$!
!1"". The coefficient in

front of the first term in Eq. !18" can be rewritten as
(! / !4%n0"3!c /vA"2 / !4%n0"=mi!c /B"2, which for the sim-
plified geometry employed is a constant. Thus, f -

!4" can be
easily seen to describe a turbulent flux of momentum. Equa-
tion !18" provides the relevant generalization of the electro-
static Maxwell stress tensor to the gyrokinetic framework.
While the first term can be identified as directly analogous to
an off-diagonal component of the Maxwell stress tensor, the
origin of the second term is somewhat less clear. This term
originates from the Bessel function dependence in Eqs. !7"
and !9" and will be shown below to enforce the quasistatic
limit of the polarization drift. Note that while f -

!4" naively
appears to enter one order higher in (+'i /Ln than Eq. !6" as
shown below, the residual stress term emanating from the
momentum flux described by Eq. !6" vanishes to the lowest
order, requiring consideration of both of these terms.

III. MOMENTUM FLUX

In this section we compute the nondiffusive components
of the momentum flux induced both by E!B convection and
the polarization drift in the electrostatic limit. The first of
these two mechanisms has already been extensively studied
in the existing literature !see, for example, Refs. 6, 22–25,
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and 37–39" and we will thus limit ourselves to a brief review
with an emphasis on estimating when this term is likely to
dominate the polarization drift term.

A. EÃB convection

We begin by rewriting Eq. !6" in the form

4-
EB = i

c

B./
s

ms/
m,n

m

r
, d3v̄v-$Fm,n

!s" J0!)"$"−m,−n0
x

,

!19"

where we have neglected ordering superscripts for simplicity,
defined %¯&x21−5

5 dx!¯", x=r−rm,n, and introduced the
Fourier transform #$"!x , t" ,$Fs!x , t"$=/m,n#$"m,n!x" ,$Fm,n

!s"

!!x"$exp#i!m6−nz /R−*kt"$. An explicit quasilinear expres-
sion for the momentum flux in terms of $"m,n can be ob-
tained via linearizing Eq. !1", yielding

$Fm,n
!s" !x" = − gm,n4 c

B
ky( #Fs

!0"

#x
−

#v-
!0"

#x

#Fs
!0"

#v-
)

−
qs

Ts
v-k-Fs

!0"5J0!)"$"m,n!x" , !20a"

where the response function is given by

gm,n 2 !*k − v-k- − vE
!0"ky"−1. !20b"

Here, we have defined ky 2−i!1 /r"!# /#6"!m6−nz /R"=m /r,
k- 2−ib̂ ·$!m6−nz /R"= !B6 /Br"!m−nq", vE

!0"2!c /B"#0 /#x,
dv-

!0" /dx is the equilibrium flow gradient, and have chosen
the equilibrium distribution function to be a Maxwellian, i.e.,

Fs
!0" 2 n0( ms

2%Ts
)3/2

exp(−
B

vths
2 & −

1
2

v-
2

vths
2 ) .

For simplicity we will assume the E!B shear profile to
have the form vE

!0"!x"=vE
!0"!0"+x#vE

!0" /#x, such that the Dop-
pler shifted frequency can be written as *̄k2*k−vE

!0"!0"ky.
The nonresonant component of the velocity integral
given by Eq. !19" can be estimated by expanding the
response function given by Eq. !20" in the parameter
!vthik- +kyx#vE

!0" /#x" / *̄k-1, yielding

(*̄k − v-k- −
#vE

!0"

#x
kyx)−1

3
1

*̄k
41 +

v-k-

*̄k
+

kyx

*̄k

#vE
!0"

#x

+
1

*̄k
2(v-k- + kyx

#vE
!0"

#x
)2

+ ¯5 . !21"

Substituting Eq. !20" into Eq. !19" and utilizing the approxi-
mate response function given by Eq. !21" yield an expression
for the !nonresonant" fluid component of the momentum flux

4-
EB = in0mics

2./
m,n

*ci

*̄k
!ky's"29 e$"m,n!x"

Te
92

!4 k-

ky
(1 −

*pi
"

*̄k
) −

1
*ci

#v-
!0"

#x 50
x

+ in0mics
2./

m,n

*ci
2

*̄k
2 !ky's"2k-x

1
*ci

#vE
!0"

#x
(1 – 2

*pi
"

*̄k
)

!9 e$"m,n!x"
Te

920
x

, !22"

where *e
"2kyve

"=kycs!'s /Ln", *pi
" 2−!1+.i"*e

" /7,
Ln

−12−d ln n0 /dx, LTi

−12−d ln Ti /dx, .i2Ln /LTi
, 72Te /Ti,

cs2:Te /mi, 's2cs /*ci, and *ci2eB / !mic". We have ne-
glected finite Larmor radius corrections as well as terms qua-
dratic in equilibrium velocity gradients for simplicity, and it
is understood that only the real piece of 4-

EB is kept. The first
term in Eq. !22" possesses both a residual stress term !i.e.,
a component of the stress not proportional to the equilibrium
parallel velocity or its gradient" and a diffusive term.
Near the mode rational surface, k- may be approximated as
k- 3−!m /r"x /Ls=−kyx /Ls, where Ls

−12sgn!B6"!r /R"!1 / 6q6"
!!q! /q", such that this term vanishes for even 6$"m,n!x"62.
We also note that since Ls can be seen to have odd parity in
B6, Eq. !22" has odd parity in the plasma current.

In order to compute the relative signs of the two terms in
Eq. !22" it is useful to explicitly take the real piece, i.e., for
the first term !only writing the residual stress component"

.*k

k-
0 = − n0mics

2/
m,n

*ci8*

*̄k
2 !ky's"2 As

*ci

#vE
!0"

#x
(1 − 2

*pi
"

*̄k
)

!.9 e$"m,n!x"
Te

920
x
, !23"

where 8* is the turbulent decorrelation rate which we have
assumed to satisfy *̄k98*. For simplicity we will assume
the radial electric field to be dominated by its diamagnetic
component, i.e., #vE

!0" /#x3vthi'i!1+.i" /Ln
290, where we

note that an inversion in the sign of the radial electric field
shear would simply lead to a flip in the overall sign of Eq.
!22". The only components of Eq. !23" which are not positive
definite are As and !1−2*pi

" / *̄k". For ion temperature gradi-
ent !ITG" driven turbulence we assume 09*̄k9*pi

" , hence
1−2*pi

" / *̄k-0, and the reduced model in Appendix B yields
As90, such that %*k /k-&90. For drift wave turbulence, 1
−2*pi

" / *̄k90 and As-0, such that we again have %*k /k-&
90. Hence the sign of this term can be seen to be indepen-
dent of the underlying branch of microturbulence excited for
the simple model employed. The sign of the second term
may be computed directly by taking the real piece of the
second term of Eq. !22", i.e.,
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.*E

k-
0 = − 2n0mics

2/
m,n

*ci
2 8*

*̄k
3 !ky's"2 1

*ci

#vE
!0"

#x

!(1 − 3
*pi

"

*̄k
) ky

Ls
.x29 e$"m,n!x"

Te
920

x
. !24"

For ITG turbulence, ky / *̄k-0 and 1−3*pi
" / *̄k-0, which

results in the sign being negative. Considering drift wave
turbulence, ky / *̄k90 and 1−3*pi

" / *̄k90, such that the sign
of this term is again negative.

B. Polarization drift

In Sec. III A, a simple expression was derived for the
nondiffusive residual stress term induced by E!B convec-
tion. While a naive ordering of the strength of this term
versus that arising from the polarization drift would suggest
that E!B convection is always dominant !i.e., vp /vE
+*k /*ci", the nondiffusive residual stress terms were ob-
served to be diminished by factors of %x& /Ls and
*ci

−1#vE
!0" /#x, respectively. Furthermore, in Appendix B we

show that %x& /Ls+*ci
−1#vE

!0" /#x, so in regimes of weak radial
electric field shear, the residual stress terms described above
are significantly reduced.

The radial component of the first term in f -
!4" may be

rewritten as

(!

4%n0

#

#x
%n0$Ex$E-&x

= i
(!

4%n0

#

#x/
m,n
.n0

#$"−m,−n!x"
#x

k-$"m,n!x"0
x
. !25"

Similarly, the second term in Eq. !18" can be written in the
form

−
i

2
#

#x.e/
m,n

k-$"−m,−n!x", d3v̄'!
2 #$Fm,n

!i" !x"
#x 0

x

, !26"

where we have taken me→0 such that the electron contribu-
tion vanishes and $Fm,n

!i" is given by the approximate expres-
sion in Eq. !20". It is instructive to consider Eq. !26" in two
limits. First considering the limit vthik- / *̄k91, the response
function given by Eq. !20" can be approximated as

(*̄k − v-k- −
#vE

!0"

#x
kyx)−1

3 −
1

v-k-
(1 +

*̄k

v-k-

−
ky

k-

x

v-

#vE
!0"

#x
+ ¯) . !27"

Utilizing Eqs. !27" and !20", Eq. !26" can be approximated,
yielding

− i
(!

4%n0

#

#x.n0/
m,n

k-$"m,n!x"
#$"−m,−n!x"

#x 0
x

, !28"

where we note that the radial derivative inside the spatial
integration is a fast derivative, such that it commutes with
equilibrium quantities. Also, we have made the approxima-
tion J0!)"31, and only the lowest order term in the expan-
sion given by Eq. !27" has been utilized. After summing Eqs.
!25" and !28", it is clear that f -

!4" vanishes. Hence, in the
quasistatic limit, the polarization drift can be seen to have
negligible impact on the momentum budget.

Turning now to the limit of vthik- / *̄k-1 !typically well
satisfied for drift wave turbulence", the response function
may be approximated by Eq. !20", which allows the second
term in Eq. !18" to be estimated by

i
(!

4%n0

#

#x'n0/
m,n

*pi
"

*̄k
.k-$"−m,−n!x"

#$"m,n!x"
#x 0

x
* . !29"

Summing Eqs. !25" and !29", f -
!4" can be written as

f -
!4" = i

(!

4%n0

#

#x'n0/
m,n

(1 −
*pi

"

*̄k
)

!. #$"−m,−n!x"
#x

k-$"m,n!x"0
x
* . !30"

Equation !30" provides a transparent expression for the gy-
rokinetic analog of the electrostatic Maxwell stress tensor.
Before proceeding further, it is useful to comment on the
mathematical structure of Eq. !30". As discussed above, the
gyrokinetic Poisson equation #Eq. !7"$ can be seen to have a
form approximately analogous to that of a dielectric medium
with a permittivity given by (!. Thus, it is not surprising that
f -

!4" is proportional to $! · %n0$E!$E-&, where the factor n0

appearing inside the divergence results from the form of the
gyrokinetic Poisson equation, and the additional pressure
gradient driven term in Eq. !30" emerges from finite Larmor
radius corrections. Furthermore, Eq. !30" has even parity in x
about the rational surface and will thus be nonvanishing even
in the absence of radial electric field shear.

In order to derive an explicit expression for f -
!4" it is

useful to utilize a simple expression for the radial eigen-
modes of the underlying turbulence, i.e.,

$"m,n!x" = /
l

alHl!:i&kx"exp(−
i

2
&kx

2) , !31"

where outgoing wave boundary conditions have been utilized
to select the sign of the effective radial wave number
kr!x"=&kx. Substituting Eq. !31" into Eq. !30" yields
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f -
!4" = −

(!

4%n0

#

#x4n0/
m,n

(1 −
*pi

"

*̄k
)ky

Re#&−k$
Ls

%x26$"m,n!x"62&x5 −
(!

4%n0

#

#x

!.n0/
m,n

(1 −
*pi

"

*̄k
)ky

1
Ls

exp!− 6Im#&k$6x2" ! Re'i /
l%l!

al,l!lHl!!:i&kx"Hl!:i&−kx"*0
x

−. (!

2%n0

#

#x
n0/

m,n
(1 −

*pi
"

*̄k
)ky

1
Ls

exp!− 6Im#&k$6x2" ! Re'i /
l!%l−2

al,l!l!l − 1"Hl!!:i&kx"Hl−2!:i&−kx"*0
x

, !32"

where al,l!2alal!, Hl is a Hermite polynomial, l=0,1 ,2 , . . .,
and we have used40

x
#

#x
Hl!:i&kx" = lHl!:i&kx" + 2l!l − 1"Hl−2!:i&kx" .

A number of observations are immediately apparent. First,
this result clearly has the form of a residual stress and is
hence distinct from both pinch and diffusion terms. Perhaps
of greater importance is that f -

!4" is nonvanishing even for
regimes of zero radial electric field shear. Similarly, outgoing
wave boundary conditions can be seen to determine the
phase between $E- and $Ex, and hence the sign of Eq. !32".
Also, while the eigenmodes utilized in computing Eq. !32"
do not contain a radial shift in the mode off the rational
surface induced by radial electric field shear, this shift can
instead be accounted for via the excitation of odd parity Her-
mite polynomials. Indeed, the presence of radial electric field
shear has been shown to couple different radial mode
numbers.41,42 Thus, in regimes of strong radial electric field
shear, one might anticipate more robust contributions from
the second and third terms in Eq. !32" via the excitation of
higher l modes. Finally, in the limit of a purely growing
mode !i.e., Re#&k$→0", the first term in Eq. !32" can be
immediately seen to vanish, whereas the second and third
terms vanish due to the orthogonality of the Hermite
polynomials.

If we now consider the idealized limit in which the
l=0 mode is dominant !usually the most weakly damped for
drift waves43", the second and third terms in Eq. !32" may be
neglected, yielding the simplified expression

f -
!4" 3 −

(!

4%n0

#

#x

!'n0/
m,n

(1 −
*pi

"

*̄k
)ky

Re#&−k$
Ls

%x26$"m,n!x"62&x* ,

!33"

and we note that Re#&−k$=−Re#&k$. The sign of Eq. !33"
can be determined by noting that 'i

4ky Re#&−k$ /Ls
=−!kyvthi / *̄k"6ky6'i!'i /Ls"2, where for ITG turbulence we
have 1−*pi

" / *̄k-0 and ky / *̄k-0, such that f -
!4"90. Simi-

larly, for drift wave turbulence 1−*pi
" / *̄k90 and ky / *̄k90,

which leads to f -
!4"90. Finally, we note that since f -

!4" ap-
pears on the RHS of the momentum equation #Eq. !4"$, an
additional minus sign will be introduced, such that f -

!4" will
often compete with the first term in 4-

EB. Note that the exci-
tation of higher l modes can potentially alter this picture.
Inclusion of these terms would require a derivation of the
al,l! coefficients, which is beyond the scope of the present
work.

Comparing the magnitude of Eq. !33" with Eq. !22"
yields for the first term

f -
!4"

%*k/k-&
+

1
As

*e
"

*ci

*e
"

vE!

*̄k

8*

1
!ky's"2(Ln

Ls
)2 1

's
2

%x26$"m,n!x"62&x

%6$"m,n!x"62&x
.

!34"

If we assume that the radial electric field is dominated by the
diamagnetic term, i.e., vE! 3vthi'i!1+.i" /Ln

2, the radial extent
of the mode is set by the points of strong ion Landau damp-
ing !i.e., vthik- = *̄k", and we approximate As by its value for
drift wave turbulence !i.e., As3Ls /Ln". Equation !34" can be
rewritten as

f -
!4"

%*k/k-&
+ 7

Ln

Ls
( 7

1 + .i
)( *̄k

*e
")2 *̄k

8*
. !35"

Some comments on these orderings are appropriate at
this point. While Ln /Ls is typically small, *̄k /8* is typically
greater than one, such that neither of these terms should be
considered negligible a priori. Furthermore, the presence of
a factor of 72 suggests sensitivity to the heating mechanism
utilized. Also, while an estimation of the radial electric field
based on the diamagnetic term may at times provide a rea-
sonable approximation, contributions from the poloidal term
may significantly alter the above ordering.

While our primary focus up to this point has been the
comparison of different turbulent contributions to the mo-
mentum flux, here it is useful to compare with results from
neoclassical theory. As an instructive example we compare
the nondiffusive neoclassical term discussed in Ref. 44 !de-
rived from the high collisionality regime" with the turbulent
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contribution derived in this analysis. The momentum flux
induced by the former term can be written as

4neo 3
0.11.q2

1 + Q2/S2

B"

B6
U6

# ln Ti

#r
, !36a"

where .31.2nimi'i
2:i and

Q2

S2 2 0.51(qR:i

vthi
)B"

B6

'i

LTi

!'(vthi'i
# ln Ti

#r
)−1

U6 − 0.625!1 + 2.i
−1"* . !36b"

We take the poloidal flow to be neoclassical,45 i.e.,

U6 3 − 1.83vthi'i
# ln Ti

#r
. !37"

In order to compare the magnitude of the turbulent momen-
tum flux derived above, we estimate the magnitude of the
turbulent fluctuations by their mixing length level, i.e.,
6e$" /Te623's

2 /Ln
2. Utilizing this mixing length estimate, as

well as estimations analogous to those utilized above, the
ratio of Eq. !36" with the momentum flux induced by the
polarization drift #see Eq. !33"$ can be estimated as

4neo

4pol
+

0.24
1 + .i

,3/2:"q2.i
27−5/2

ky's

Ln

r
, !38"

where :"2,−3/2:iqR /vthi, ,2r /R, and for simplicity we
have taken Q2 /S2;1. While this estimate is clearly very
primitive, it is apparent that for sufficiently high collisional-
ity the neoclassical contribution is dominant. However, in the
limit of low collisionality it appears likely that the polariza-
tion drift contribution to the momentum flux, as well as its
E!B shear driven counterpart, is likely dominant in a wide
range of parameter regimes !see Refs. 46 and 47 for neoclas-
sical contributions to the momentum flux in low collisional-
ity regimes".

IV. DISCUSSION AND CONCLUSION

In this paper, a novel nondiffusive contribution to the
radial flux of parallel momentum has been derived. This con-
tribution, which arises from the parallel nonlinearity within
the gyrokinetic framework, appears due to the polarization
drift. More specifically, the polarization drift is manifested in
gyrokinetics by a violation of gyrocenter quasineutrality. As
discussed above, the gyrokinetic Poisson equation has an
analogous form to the Poisson equation for a dielectric me-
dium, and hence this mechanism can be understood to cor-
respond to the generalization of the electrostatic Maxwell
stress tensor to the gyrokinetic framework. Furthermore, this
mechanism does not require mean radial electric field shear,
and is thus likely to be active in a wide range of plasma

regimes. We emphasize that while this contribution to the
momentum flux is nominally higher order in an expansion in
,+'i /Ln, a detailed analysis demonstrates that this term can
be comparable to its mean E!B shear driven counterpart.
Furthermore, we note that while this term has a mathematical
form, which is similar to the mean E!B shear component of
the momentum flux, it has a physically distinct origin. While
a quantitative calculation of the net residual stress term is
beyond the scope of the present analysis, the addition of a
novel contribution to the momentum flux provides a new
candidate for understanding offsets in plasma rotation, which
have been observed in a wide range of plasma devices. The
role of this polarization induced residual stress in the devel-
oping theory of intrinsic rotation will be discussed in a future
publication.
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APPENDIX A: DERIVATION OF f¸
„4…

Here we provide a detailed derivation of the form of f -
!4"

analyzed in Sec. III. The third term in Eq. !15" can be easily
seen to vanish since it is linear in a fluctuating quantity.
Considering the second term in Eq. !15", after utilizing Eq.
!11" this term can be written as

./
s

ms, d3v̄V̇-
!3"$Fs

!1"0
= −./

s
qs, d3v̄$Fs

!1"b̂ · $J0
!0"$"!2"0

−./
s

qs, d3v̄$Fs
!1"b̂ · $J0

!1"$"!1"0 . !A1"

Utilizing Eq. !12", Eq. !A1" can be rewritten as

./
s

ms, d3v̄V̇-
!3"$Fs

!1"0
=

(!

4%
%!$!

!0""2$"!1"b̂ · $$"!2"&

−./
s

qs, d3v̄$Fs
!1"b̂ · $J0

!1"$"!1"0 . !A2"

Similarly, the first term in Eq. !15" after utilizing Eqs. !9" and
!17" can be written as

052302-9 A novel mechanism for exciting intrinsic toroidal rotation Phys. Plasmas 16, 052302 "2009!



./
s

ms, d3v̄V̇-
!2"$Fs

!2"0 =
(!

4%
%!$!

!0""2$"!2"b̂ · $$"!1"& +
(!

4%
%$!

!0" · $!
!1"$"!1"b̂ · $$"!1"&

+
(!

4%n0
%$!

!0" · !$ni
!1"$!

!0"$"!1""b̂ · $$"!1"& +
(!

4%n0
%$!

!1" · !n0$!
!0"$"!1""b̂ · $$"!1"&

+./
s

qs, d3v̄J0
!1"$Fs

!1"b̂ · $$"!1"0 . !A3"

Summing Eqs. !A3" and !A2", f -
!4" can be written in the form

f -
!4" =

(!

4%
%!$!

!0""2$"!1"b̂ · $$"!2"& +
(!

4%
%!$!

!0""2$"!2"b̂ · $$"!1"& +
(!

4%
%$!

!0" · !$!
!1"$"!1""b̂ · $$"!1"&

+
(!

4%n0
%$!

!1" · !n0$!
!0"$"!1""b̂ · $$"!1"& +./

s
qs, d3v̄J0

!1"$Fs
!1"b̂ · $$"!1"0 −./

s
qs, d3v̄$Fs

!1"b̂ · $J0
!1"$"!1"0

+
(!

4%n0
%$!

!0" · !$ni
!1"$!

!0"$"!1""b̂ · $$"!1"& . !A4"

Equation !A4" can be greatly simplified. Considering the first two terms on the RHS of Eq. !A4", after multiple integrations by
parts of the first term, these terms can be written as

1st + 2nd = −
(!

4%
%b̂ · $$"!1"!$!

!0""2$"!2"& +
(!

4%
%!$!

!0""2$"!2"b̂ · $$"!1"& = 0. !A5"

Considering the third and fourth term on the RHS of Eq. !A4", after applying the product rule, and integrating by parts, these
terms can be written as

3rd + 4th = −
(!

4%
%!$!

!1"$"!1"" · !b̂ · $"$!
!0"$"!1"& −

(!

4%
%$!

!1" · !b̂ · $$!
!0"$"!1""$"!1"& +

(!

4%n0
!$!

!1"n0" · %$E!
!1"$E-

!2"&

= −
(!

4%
$!

!1" · %$"!1"b̂ · $!$!
!0"$"!1""& +

(!

4%n0
!$!

!1"n0" · %$E!
!1"$E-

!2"&

=
(!

4%n0
$!

!1" · %n0$E!
!1"$E-

!2"& . !A6"

Similarly, the fifth and sixth terms in Eq. !A4" can be simplified, i.e.,

5th + 6th = −
1
4./

s
qs, d3v̄'!

2 $Fs
!1"b̂ · $!$!

!0" · $!
!1" + $!

!1" · $!
!0""$"!1"0

+
1
4./

s
qs, d3v̄'!

2 !$!
!0" · $!

!1" + $!
!1" · $!

!0""$Fs
!1"b̂ · $$"!1"0 ,

after rearranging terms, and integrating by parts this expres-
sion can be simplified as

5th + 6th = −
1
2

$!
!1" ·./

s
qs, d3v̄'!

2 !$!
!0"$Fs

!1""$E-
!2"0 .

!A7"

Considering the last term in Eq. !A4", after integrating by
parts once this term can be written as

7th = −
(!

4%n0
%$ni

!1"!$!
!0"$"!1"" · b̂ · $!$!

!0"$"!1""&

= −
(!

8%n0
%$ni

!1"b̂ · $6$!
!0"$"!1"62& = 0. !A8"

Summing Eqs. !A6" and !A7" yields Eq. !18".

APPENDIX B: RADIAL EIGENMODE ANALYSIS

In this appendix we seek to derive simple expressions
for the radial eigenmodes of the underlying electrostatic mi-
croturbulence in the presence of radial electric field shear.
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For simplicity we will utilize a simplified geometry consis-
tent with that utilized in the main body of the text and limit
ourselves to the fluid limit, i.e., vthik- / *̄k-1. From the gy-
rokinetic Poisson equation #Eq. !12"$ and the linear response
given by Eq. !20" an eigenmode equation for the electrostatic
microturbulence may be approximated as

− (!!k"k!
2 $"k = (!!k"k!

2 #k$"k, !B1a"

where

(!!k"k!
2 #k 3 kDe

2 '1 −
*e

"

*k
<0!b"(1 +

.i

2
−

.i

.c
)*

− kDe
2 ( csk-

*k
)2(1 −

*pi
"

*k
−

ky

k-

1
*ci

#v-
!0"

#x
) ,

!B1b"

where .c
−12!1 /2"+b#1− I1!b" / I0!b"$, b2−'i

2#2 /#x2+ky
2'i

2,
<0!b"2 I0!b"exp!−b", In is the nth order modified Bessel
function, and we have neglected contributions from mean
velocity gradients and finite Larmor radius corrections in the
second term in Eq. !B1". Accounting for E!B shear via
introducing the Doppler shift *k→ *̄k−kyx#vE

!0" /#x, Eq. !B1"
can be rewritten as18

0 = 's
2 #2
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where we have defined

/ 2 (1 −
*pi

"
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),

+ 2 1 + (1 + .i
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Equation !B2" can be rewritten in the form

Q!x" 2 − ky
2's
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"
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and for simplicity we consider the limit of weak equilibrium
flow gradients such that we can neglect terms proportional to
x0

2 /Ls
2. Equations !B2" and !B3" have solutions of the form

$"m,n!x" = Hl!:i&k!x − x0""exp'−
i

2
&k!x − x0"2* , !B5"

where 'i&k2!vthi6ky6 / *̄k"Ls
−1 !the magnitude ensures that the

imaginary component of &k is even in ky such that the solu-
tion is always convergent" and whose eigenvalues are deter-
mined by

0 = − i!2l + 1"(vthi6ky6
*̄k

) 'i

Ls
− ky

2'i
2 − /−1(1 −

*e
"

*̄k
) . !B6"

Equation !B6" can be solved yielding the two roots given by

*̄k
ITG 3 i!2l + 1"
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6*pi

" 6(1 + ky
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2*pi
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*e
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where the first solution corresponds to an unstable ITG
branch and the second to a stable drift wave branch. While
the above model is far too simple to provide a quantitative
description of drift wave/ITG turbulence, it does provide a
simple basis for understanding qualitative elements of these
two branches of turbulence.

In order to estimate the strength of the first term in Eq.
!22" for both drift wave and ITG turbulence it is necessary to
derive estimates for the shift in the eigenmodes off their
respective rational surfaces. Considering ITG turbulence
first, + can be estimated as

+ 3 1 − '1 − i!2l + 1"
Ln

Ls
sgn!ky"*

!'1 − i!2l + 1"
Ln

Ls
sgn!ky"(1 + .i

7
)*

3 i sgn!ky"!2l + 1"
Ln

Ls
'1 + (1 + .i

7
)* , !B8"

where we note that the first and second terms in + cancel to
lowest order in Ln /Ls. Substituting Eq. !B8" into Eq. !B4", x0
can be approximated as

x0
ITG

Ls
3

1
2

!2l + 1"2Ln

Ls
'1 + (1 + .i

7
)* 1

*ci

#vE
!0"

#x
, !B9"

where we have only kept contributions due to electric field
shear. Inclusion of parallel flow shear in this expression
would simply introduce a correction to the diffusion term in
Eq. !22". We also note that within this simple model, sym-
metry breaking is more robust for higher l modes. This result
is highly sensitive to the detailed form of the dispersion re-
lationship and is thus likely an artifact of the simple model
employed. Turning now to the drift wave branch, x0 can be
estimated to be

x0
DW

Ls
3 −

1
2
'1 + (1 + .i

7
)*−1 Ls

Ln

1
*ci

#vE
!0"

#x
, !B10"

where the strength of the symmetry breaking is amplified by
a factor of !Ls /Ln"2 in comparison to Eq. !B9". From Eqs.
!B9", !B10", and !B5" the integral over x in Eq. !22" can be
easily evaluated as
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. k-
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where we have defined
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1
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,

with As defined by the coefficients in Eqs. !B9" and !B10" for
ITG and drift waves, respectively.
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