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Abstract

Human collaboration often involves a decision to pursue one
out of multiple comparable goals, in which case it is challeng-
ing to remain committed to the same goal collectively. Philo-
sophical theories as well as empirical evidence from devel-
opmental psychology suggest that humans, having shared in-
tentionality as an underlying cognitive structure, may be able
to form joint commitment in pursuing a collective goal with-
out communication. By conducting experiments in a real-time
cooperative hunting game that heavily relies on visual per-
ception, we demonstrated that humans established and main-
tained robust cooperation with high-quality hunting, even with
a large number of potential targets. Additionally, we showed
that a Bayesian imagined “We” (IW) model within a joint com-
mitment framework, could capture humans’ robustness in re-
sisting alternative targets with relatively high quality of hunt-
ing. This poses a contrast with a Reward Sharing (RS) model
that, despite performing proficiently in pursuing a single goal,
mostly exhibited low-quality hunting and whose teaming fell
apart as available targets increased. In a hybrid team simulation
experiment, the IW model could better mimic the intentions of
human hunters compared to the RS model. Together, the suc-
cess of the persevered group commitment in humans suggests
that shared intentionality is a pivotal element in human coop-
eration. Moreover, the similarity between the performance of
humans and the IW model sheds light on the computational
formulation of shared intentionality and further advances our
understanding of the nature of cooperation.

Keywords: Cooperative hunting; Joint commitment; Shared
intentionality; Imagined “We”; Bayesian model

Introduction

Collective hunting is a complex group activity commonly
seen in ecology, in which hunters pursue prey in a group ef-
fort. This behavior is evolutionarily significant in the animal
kingdom as it extends cooperation beyond kinship to genet-
ically unrelated group mates, including friends, nonfriends
(e.g., Seyfarth & Cheney, 2012), and even heterospecifics.
For example, Tai Chimpanzees regularly hunt for red colobus
monkeys in small groups (e.g.,/Boesch & Boesch,|1989), and
coyotes and badgers were observed to group-hunt ground
squirrels (Minta et all) [1992). Moreover, collective hunting
and foraging has been viewed as a breakthrough in hominid-
evolution and provides a basis for humans’ unique large-
group cooperation later in phylogenesis (Tomasello) 2014}
2016).

Many differences can be found between human collective
hunting and animal collective hunting at the phenomena level,
including practices involving sharing spoils, reversing roles,
and excluding free riders (Tomasello, 2014). These distinc-
tions are especially salient at the Ievel of commitment. When
participating in group activities, it is observed that chim-
panzee behavior is primarily motivated by individual desire.
An important indicator of this is the absence of obligatory ef-
fort to ensure the commitment of other participants in experi-
mental settings (Melis et al., 2006). For example, during col-
laborative tasks, human-reared chimpanzees did not attempt
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to re-engage the halfway-quitted experimenters, but instead
continued solving the task on their own (Warneken et al.,
2006); chimpanzees also stopped acting helpfully once they
had received their own shares of reward, in spite of the need
for collaboration from their partners (Greenberg et al.| 2010).
These results are vastly different from human collaborative
activities where members are committed to achieving a goal
together. Studies show that toddlers as young as 18 months
actively attempted to re-engage experimenters who refrained
from cooperation, suggesting a desire to regulate group mem-
bers’ commitment (Warneken et al., 2006; |Grifenhain et al.,
2009); 3-year-old children continued to collaborate until both
partners had received their reward even when the children
had received their shares prematurely (Hamann et al., [2012));
3-year-old children also expressed guilt when they acciden-
tally broke a promise and attempted to mend the damage
they caused with prosocial, reparative behavior (Vaish et al.|
2016)).

As shown above, collective hunting and foraging behaviors
in humans are more cooperatively structured than those of
any other species in the animal kingdom. This behavioral dif-
ference implicates deep cognitive roots underlying humans’
unique cooperation: They are collaborative interactions in
which participants “share” psychological states with one an-
other (Tomasello} 2016)). To date, both philosophical theories
(e.g., Bratman, [2014; [Tuomelal [2007}; [Searle, |1990; |Gilbert,
2013)) and empirical research in psychology (e.g.,/Tomasello}
2014) have pointed out that the species-specific structure at
the core of this cognitive representation, is shared intention-
ality, also known as collective intentionality or joint inten-
tionality.

The notion of collective intentionality—a collective rep-
resentation of the self and others, or “individuals as a
group” (Schweikard & Schmid| 2013)—has been concep-
tualized throughout history. The idea traces back to early
philosophers, such as Aristotle’s concept of common striv-
ing (koinonia) and Rousseau’s collective will (ionvolonté
générale). Sociologists in the last two centuries, such as
Durkheim ([1895] 1994)) and Weber ([1922] 2009), both have
developed their own conceptions of shared intentionality un-
der different labels. More recently, following Collingwood’s
(1947) definition of “practical social consciousness,” Sellars
(1974)) proposed the concept of “We-intention,” emphasizing
a non-private attitude involving a shared perspective that can
be later used for normative evaluation of contribution. This
view has been commonly acknowledged as the predecessor to
the modern notion of “collective intentionality” (Schweikard
& Schmid, 2013)), which was first officially labeled by Searle
(1990).

One consensus regarding shared intentionality is that it is
irreducible to a sheer summation, aggregation, or distributive
pattern of individual intentionality, but rather is a qualitatively
different structure of the mind (Schweikard & Schmid, 2013)).
Among many possible ways to interpret the irreducibility
claim, Gilbert focused on what she believed as a definitive
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feature of the shared intentionality structure—joint commit-
ment, proposing that a joint intention is only realized when
two or more individuals are willing to be “jointly committed
to espousing a goal as a body” (Gilbert, |2013). The “goal”
here may include a variety of intentions, beliefs, and accep-
tance (Schweikard & Schmid, 2013, whereas “as a body”
indicates an indivisible whole. For example, when individu-
als A and B jointly believe X as a body, they are committed
to forming a single supraindividual agent C that believes X.
A and B, in this case of joint commitment, constitute a plural
subject that possesses the shared intentional state and can-
not be broken down into two single subjects. This notion of
plural subject, as we will articulate in detail later, can be un-
derstood as a distinct agent with its own actions and mind,
including a full set of belief, desire, and intention. Moreover,
once the joint commitment to the plural subject is established,
any member cannot rescind this commitment unilaterally, and
all members in the commitment are normatively responsible
for each other. That is, each of them is obligated to act in ac-
cordance with their joint goal and entitled to demand others’
continuation of the joint action.

Another well-accepted idea, the individual ownership
claim, emphasizes that shared intentionality is fundamentally
“had by individuals”—it is one’s own shared intentionality
(Schweikard & Schmid, |2013)). This claim clarifies two things
about shared intentionality. First, there is no dictatorship—
every participant voluntarily forms a joint commitment. Sec-
ond, shared intention makes sense at the individual level. In-
stead of blindly executing a subsection of the shared intention
that only manifests at a holistic level, each individual owns
and understands their intention. These two points correspond
to Gilbert’s idea that shared intentionality does not require
a “single centre of consciousness” or a “distinctive form of
‘subjectivity’.” Instead, to establish a joint commitment, each
individual needs to express a “readiness” for the joint activity,
indicating that they are ready and willing to commit, which
appeals to all as common knowledge (Gilbert, 2006)).

To date, a rich variety of accounts have been proposed re-
garding how to interpret the “collectiveness” in shared inten-
tionality, as well as how to realize the two claims. For exam-
ple, alongside Gilbert’s focus on joint commitment and the
conception of a “body,” Bratman (2014) highlights the co-
ordination of plan states of individual agents as the central
element in shared intention. Instead of being an intention of
a single collective agent, shared intention, on Bratman’s ac-
count, is an intricate mesh of individual plan-embedded in-
tentions and their interrelations, aligned with each other and
commonly known to all. It takes the form of “I intend that
we J,” where J stands for a joint activity participated in by all
intended agents.

Theoretical discussions remark that humans will engage
in “whatever behavior” to demonstrate their “readiness” to
jointly commit to a goal, as a body, in a shared activity
(Gilbert, |2006). As shown in empirical findings, this behav-
ior can be as simple as eye contact(e.g.,|Siposova et al.,|2018).
Moreover, based on a rich body of literature on how humans
can perceive intentions from motions alone, (e.g.,|Gao et al.,
2009), it is highly likely that the readiness for initiating, as
well as maintaining, joint commitment can be expressed sim-
ply from coordinated motions. Collectively, these pieces of
evidence suggest that humans may be able to establish a sus-
tained joint commitment in a real-time visual-grounded col-
lective hunting task without explicit communication.

So far, current psychophysics works on the perception of
intention have been primarily conducted in individual settings
and do not concern interactions between multiple agents. For
example, a line of studies shows that humans are able to iden-
tify the intentions of prey and predators in an online, real-time
chasing paradigm (e.g.,|Gao et al., 2009} 2012; Meyerhoff et

al) [2013). These works heavily revolve around the tension
between predators and prey, but rarely involve cooperation
between predators. Additionally, participants mostly took the
role of observers but not actual players, with a few exceptions
where they actually controlled the prey (Gao et al.,2009). Of
the few studies that did use displays of cooperative chasing
(Yin et al.} 2016} |Duan et al., 2018), their focus was on per-
ception alone, instead of generating cooperative actions based
on perception. Moreover, in these cases, the goal of chas-
ing was fixed to a single target and did not involve the chal-
lenge of maintaining joint commitment among many possible
goals. These studies generated fruitful results that provide in-
valuable evidence for humans’ ability to infer others’ inten-
tions in hunting tasks. However, they cannot be easily gener-
alized to cooperative hunting scenarios in which individuals
are not only observers but also participants that generate co-
operative behaviors. In such cases, aside from inferring oth-
ers’ intentions and generating action plans accordingly, it is
equally important to constantly align one’s own intention with
others’ to converge on a collective goal “as a body” in an en-
during fashion. It is thus worth exploring whether humans as
engaging players can achieve good cooperation in a real-time
hunting task by overcoming such challenges.

Building on currently available studies, we first aim to ex-
amine whether a group of three humans can exhibit robust
joint commitment while playing a virtual collective hunting
game. Following this, we built a computational model of
shared intention, named imagined “We,” directly inspired by
Gilbert’s theory of commitment. Our goal is to show that this
model can indeed capture important aspects of human cooper-
ative hunting. As a baseline, we also employ a Reward Shar-
ing model without any representation of shared intention. By
revealing human performance and comparing it with model
performance, we aim to better understand whether joint com-
mitment plays an important role in human cooperation.

Collective Hunting Experiment

To test the joint commitment in cooperative hunting, we de-
veloped a real-time game in a 2-D environment (Fig. [1)) with
3 hunters played by humans and 1, 2, or 4 stags as targets
which are played by a machine. We want to explore whether
human participants consistently converge on the same goal
even without communication during the hunting process. Fur-
thermore, we aim to test whether their cooperation can be
resistant to an increase in the number of available targets, fol-
lowing the logic that once the joint commitment is achieved,
participants should at least be able to secure one target, if
not more. Demos of the cooperative hunting process can
be found at https://www.youtube.com/playlist?list=
PLe 7BbCETnjAnCsTkcBEk4k_zuMlpdwZ 91

Cooperative Hunting Task

Hunters aim to successfully catch the stags, while the stags
aim to avoid the hunters. The stags move faster than the
hunters, thus requiring hunters to collaborate by persistently
chasing a single stag. In multiple-target scenarios, hunters
have no predetermined target. Nevertheless, simply for the
purpose of improving performance and maximizing accumu-
lated rewards, it is best for them as a group to go after one
target at a time. Agents in the environment can take actions
within a range of magnitude of force from any direction at a
given time step in order to achieve their respective goals. Task
performance is evaluated through achieved rewards in a fixed
period. The hunters receive a joint reward (+1) upon any suc-
cessful touch of a stag. The accumulated reward at the end
of each trial is used as a dependent measure of the model’s
performance.
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Fig. 1. Cooperative Hunting Task.

Computational Model

To model human performance, we built an imagined “We”
model with a shared intentionality framework to test whether
joint commitment is indeed the pivotal mechanism underly-
ing human cooperation.

The previous modeling work on shared intention traces
back to early logical models in artificial intelligence, in-
cluding Grosz and Kraus’s “SharedPlans” model (1996) and
Levesque et al’s definition of a “joint persistent goal” (1990).
More recently, some promising modeling works on social
agency combined Bayesian inference and Theory of Mind
(ToM) approaches with a focus on how agents coordinate
their action plans to settle a strategic decision of whether to
cooperate or compete in the social world (Kleiman-Weiner|
et al., |2016; |Shum et al., 2019). Under this framework, their
formation of cooperation was an abstract planning procedure
that showed consistency with Bratman’s “meshing of plans”
account of shared intentionality. Specifically, the shared in-
tention was implemented as a joint policy that optimizes the
team’s joint reward, which was then turned into an individual
policy by marginalizing the actions of others.

More recently, models of human cooperation integrate the
idea of shared intention with normative power. One recent
study models multi-agent collaboration in a cooking game
using Bayesian Delegation (Wu et al.,[2021)), in which agents
infer what sub-task of a cooking task other agents are work-
ing on, and plan accordingly whether they should help with
the sub-task or not. In this model, each agent samples a ficti-
tious centralized planner that controls the actions taken by all
agents working on the same sub-task. The idea of inferring
the states of a fictitious centralized planner resonates with the
concept of a shared intention, though the focus here is not on
the joint commitment.

Imagined “We”” Model Our model builds upon the current
progress in Bayesian modeling of shared intention. In addi-
tion, our model draws inspiration from Gilbert’s plurality sub-
ject theory. In our case, human cooperation is assumed, and
the focus is on how to model cooperation with a stronger con-
straint to cohere the team. This is consistent with the perspec-
tive that cooperation is qualitatively different from competi-
tion (Tomasello, 2009). Preliminary modeling results show-
ing the feasibility of this model with only two collaborators
were reported in (Tang et al.l [2020) without comparisons to
human performance and another baseline model.

Here, we especially focus on the tension between the two
well-accepted claims about shared intentionality, being that
the collective attitude beyond an individual is, at least to some
degree, incompatible with the idea that the intention an indi-
vidual has cannot escape their own mind. Here, we aim to rec-
oncile this discrepancy by using the imaginative capacity of a
causal model (Pearl & Mackenzie, |2018]) implemented as the
Bayesian Theory of Mind (Baker et al., [2009; Jara-Ettinger
et al 2016). While “We” as a supraindividual agent is not
real, each agent can nevertheless imagine the mind of “We”
from a collective, “bird’s-eye” perspective in their own in-
dividual mind (Tomasello} |2009). Specifically, “We” reflects
the collective wills of all individuals, but is also a single au-
tonomous agent with its own mind and action just like any
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Fig. 2. Imagined “We” Representation. The graphical model
in each of the two dashed boxes represents a supraindivid-
ual agent “We”, which has its own mind containing belief,
desire, and intention. Using those mental states, it can ratio-
nally control the joint action of the individual agents consti-
tuting “We”. Each dashed box represents a unique version of
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ordinary agent, as suggested by Gilbert’s theory (2006). Its
mental states can be further parsed into belief, desire, and in-
tention which together rationally control this agent’s actions.
Thus, we can infer the mental states of “We” from its action
using ToM, where its state space and action space are sim-
ply a concatenation of the state spaces and action spaces of
individual agents.

Crucially, this supraindividual agent does not exist in re-
ality—it is ultimately realized by an individual’s own imagi-
nation about “We” through reasoning counterfactually about
“how can an agent explain its own and others’ actions if such
actions have indeed been rationally controlled by a supraindi-
vidual agent “We’?” For this reason, we call our model the
imagined “We” (IW) model (Fig. , in part following the
classic term of “imagined community,” that suggests many
communities are first constructed by the imagination (Ander-
son, |1983). Here we shift the focus from language to percep-
tion while perpetuating the same idea: Groups are first imag-
ined before they are formed through practice.

Upon the readiness for joint commitment from all collabo-
rating individuals, each of them, without communication, in-
fers their own version of the imagined “We” by observing
the joint action of themselves and their partners in the shared
environment. Each agent conceptualizes their own version of
“We” and acts by asking “what does ‘We’ expect me and oth-
ers to do?” Aside from taking its own action following the
intention of “We”, an individual agent also expects others to
take the actions demanded by “We” (Eq. (1))). Newly gener-
ated actions from all agents can be observed and used for each
individual agent to update their own inference about “We” for
the next time step. An agent’s inference is conditioned on the
environment in order to capture the intuition that the mind is
influenced by the surrounding environment (Eq. (2)). Eventu-
ally, joint commitment will be achieved when all individual
versions of “We’s” are aligned or converged.

Joint action ~ P(Joint action|“We” mind , Environment )
ey
P(“We” mind|Joint action, Environment )oC
P(Joint action|“We” mind, Environment) (2)

P(“We” mind|Environment)
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Fig. 3. Bootstrapping Imagined “We”. In this case, there are
two agents in total, with each loop representing one agent’s
way to bootstrap an imagined “We”. Within an agent’s loop,
each “IW” node represents a unique distribution of mental
states the agent inferred from its imagined “We” agent; the
solid “a” node represents the agent’s chosen action given its
inferred distribution; the dashed “a” node is its expectation of
the other agent’s action. Actions actually taken by all agents
are then observed and used by each agent to update its imag-
ined “We” for the next time step. Here, two agents are used
for illustration purposes, while the model can be generalized
to multiple agents.

Essentially, this is a process of determining what “We” be-
lieves or what “We” wants by observing what “We” has done.
Specific to the context of the cooperative hunting task, the
environment is fully observable without any uncertainty. The
only uncertainty surrounds the intention of “We,” concern-
ing “which prey should “We’ pursue persistently?” We model
the inference of “We” intention using a bootstrapping method
following three steps of computation (Fig. [3).

1. Goal Sampling: At each time step (¢), each agent (i) main-
tains a distribution of intention of “We” as the probability
of each target being the joint goal (GW(;). To decide how
to act next, it will draw a sample from this distribution and
use it as the estimation for what is the current intention of
“We” (Eq. (3)).

GWi(y ~ P(GWy(1)) 3)

2. Planning: Given a goal, each agent forms a plan of
how “We” should pursue that goal rationally. The out-
put of this planning process is a joint action, including
its own action to take, as well as an expectation of the
other agents’ actions. Thus, each agent is simulating a
centralized planner. As an engineering solution, we im-
plemented this rational planning by using a joint pol-
icy that was learned through a Multi-Agent Deep De-
terministic Policy Gradient (MADDPG, information re-
garding the MADDPG model will be discussed in de-
tail in the following section) algorithm with only one
goal to pursue (Lowe et al., 2017). MADDPG is one of
the state-of-the-art implementations within the framework
of Multi-Agent Reinforcement Learning (MARL). This
joint policy (Eq. (4)) defines the probability of joint ac-
tions (A joins(r) = actionyy, ..., actionyyy, ..., actiony)
conditioning on the current states of “We” (S«yer() =
Statey(), ..., Statey), ..., Statey(;)) and the goal (SGWi(r))'
Each agent then samples a joint action from the policy dis-
tribution and takes its own part of the joint action. Empiri-
cally, MADDPG is an algorithm that was found to optimize
group reward when only one target was present in a hunting
scenario (Zhao et al 2021). This rational planning phase
does not necessarily imply that human cognition employs
the exact policy we utilize here. Rather, it is an approxima-

tion of the assumption that humans generally act rationally
to optimize their joint utility.

P(Ajoint|G"Vi(t)) = P(Ajoint|S“we", GW,-,) (4)

3. Inference: After taking one’s own action based on the pol-

icy determined in the planning phase, each agent observes
the actions actually taken by all agents. This enables a
Bayesian ToM inference process (Eq. (3))): Conditioning
on the observed actions, each hunter computes the poste-
rior probability of a given target being their joint goal. Af-
ter updating the posterior of the Imagined “We” mind, each
agent goes back to step 1, sampling a new goal and repeat-
ing the process.

P(GWit1)|A joint (1)) CP (A joint (1) [GWig) )P(GWiry) - (5)

Baseline Model To explore the necessity of modeling a
shared intention framework, we additionally examine coop-
eration in a Reward Sharing (RS) model as a baseline. Here
we use the MADDPG, an algorithm within the MARL frame-
work. MARL adopts the perspective that social skills are
learned through trial-and-error (Hayek, 2011). It has been
successfully applied to complex multi-agent coordination
tasks (Berner et all 2019} |Vinyals et al., [2019), in which it
splits group rewards evenly among all agents by assigning
them the same reward function. Since we used the MADDPG
algorithm to train the joint policy in the one-target scenario,
the RS model and the IW model are identical in the case of
a single target. For the multiple target conditions, we further
trained a separate RS model for each set size of targets. Note
that this separate training is not required in the IW model as
the inference of a goal is achieved by Bayesian inference and
the same one-target policy is applied to all conditions for joint
goal inference and planning.

Despite being a reinforcement model, the RS model dis-
plays several interesting components that can be considered
precursors of ToM. For example, it acts based on predicting
what other agents will do given their current states. Then it
evaluates the utility of its own action given the current joint
state of all agents plus its prediction of other agents’ actions.
As a type of reinforcement learning model, it has a generic
framework that can be universally applied to any multi-agent
scenario, including both cooperation and competition, which
only differ by whether agents’ rewards are aligned or op-
posed. At its core, it is the opposite of the IW model that
assumes cooperation is qualitatively different from competi-
tion and thus requires a brand new cognitive scaffold. In short,
collaborations in the RS model are encouraged by sharing re-
wards without any reference to commitment, whereas team-
ing behaviors in the IW model are enforced by shared inten-
tion.

Model Task & Prediction The same task completed by hu-
man participants was used to test the IW model and the RS
model and compare their performance to that of humans. We
aim to explore whether human performance in cooperative
hunting can be better captured by the stronger-constrained IW
model or the weaker-constrained MARL model.

Human Experiment

Thirty-three (3 participants in 1 group, 11 groups total) stu-
dents (14 females, 19 males) participated in this experiment.
All were between the ages of 21 and 28 (M e, = 23, SD =2.0)
with normal or corrected-to-normal visual acuity. All partic-
ipants signed the informed consent form and received exper-
imental rewards related to performance after the experiment
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ended.

Material & Procedure 20 trials were set up for each con-
dition with different set sizes of hunting. The hunting task
was presented on a 38.0° x 38.0° window displayed simul-
taneously on three monitors, one for each participant. Each
participant was instructed to use an Xbox controller to con-
trol the simulated physical forces they could apply to drive
the hunters on the screen. Three hunters were represented by
circular shapes with a diameter of 1.9° and colors red (205, 0,
0), green (0, 139, 0), and blue (0, 0, 205). The stags are circu-
lar shapes with a diameter of 1.3° and could be distinguished
by their colors (255, 165, 0), (255, 127, 36), (255, 165, 79),
and (255, 193, 37).

Results Overall Performance. We first analyzed the ac-
cumulated reward of the hunting game, which reflected the
overall performance of humans and models (Fig. 4). One-
way ANOVA revealed a significant main effect of set size
(F(2, 30) = 6.58, p < .01, T]?, = 0.31). The post-hoc com-
parisons showed that when the number of targets increased to
4, the performance was even higher than the 1 and 2 target
conditions (ps < .01). Overall, when the number of targets
increased, the accumulated reward of human hunters did not
decrease but increased instead. For the IW model, the main
effect of set size was not significant (F(2, 30) = 1.15, p =

331, nlz, = .07). The results revealed that the performance of

the IW model did not decrease as the number of targets in-
creased. For the RS model, a significant main effect of set

size was revealed (F(2, 30) = 87.79, p < .01, n% = .86). The

post-hoc comparisons showed that when the number of tar-
gets increased, the performance gradually decreased (ps <
.05 for both set size 1-2 and set size 2-4 comparisons).

Quality of Hunting. Besides the above quantitative analy-
sis of the overall performance, we further explore the quality
of hunting in humans and models (Fig. |5). Here we indicate
the quality of hunting by measuring the “duration of touch,”
defined by the number of consecutive time steps in which at
least one hunter touches the stag. In real life, a short touch du-
ration suggests a hit to the target, but not necessarily a catch,
whereas a long touch duration indicates a greater likelihood
for a real catch or kill, as hunter(s) may have cornered the
stag. Thus, the quality of raw rewards was categorized into 3
classes in terms of touch duration: low (1 time step), median
(2 time steps), or high (3 or more time steps). The percent-
ages of different qualities of rewards in the total rewards were
then measured. Note that this is a post-hoc analysis of hunting
quality based on previous results. The quality of hunting was
not part of the instructions for both humans and models, and
thus neither were optimizing their performance on this met-
ric. The fact that without any instruction, the quality of human
hunting was higher than those of models is further discussed
in the Discussion.

For the set size 2 condition, one-way ANOVA revealed a
significant main effect of player type in both low- and high-

quality conditions (F (2, 30) = 523.69, p < .001, 11127 =0.97;
F(2,30)=672.49, p < .001, ng =0.98). The post-hoc com-
parisons showed that humans received low-quality reward

ercentage of Accumulated Reward

£

Fig. 5. Results of the percentages of different quality rewards.
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Fig. 6. Results of the entropy of touched target distribution.

less often than the IW model (p < .001), which received it
less often than the RS model (ps < .001). On the contrary,
humans received high-quality reward more often than the IW
model (p < .001) , which received it more often than the RS
model (p < .001). Similar main effects of player type (F(2,

30) = 576.61, p < 001, 2 = 0.97; F(2, 30) = 803.57, p <
.001, nf) =0.98) were found in set size 4 condition with sim-

ilar post-hoc comparisons (ps < .001). These results collec-
tively suggest that human hunters achieved the largest pro-
portion of high-quality hunting, followed by the IW hunters,
while the RS hunters achieved the smallest proportion. No-
tably, the IW model had a relatively high quality of hunting,
though there was still room for improvement.

Goal Consistency. Beyond task performance, we further
analyzed the goal consistency among hunters in a team
(Fig. [6). Here we measured the entropy of the distribution
of the touched target, of which a lower entropy value indi-
cates a higher convergence or concentration on the same goal
from all hunters. Both set size 2 and 4 conditions showed a
significant main effect of agent type (F (2, 30) = 110.11, p
< .01, M3 = 0.87; F(2, 30) = 13.38, p < .001, 07 = 0.44).
For the set size 2 condition, the entropy of the touched target
distribution of humans was higher than that of the IW model
(p < .001), but was lower than that of the RS model (p <
.001). For the set size 4 condition, the difference between the
entropy of humans and that of the IW model was not signifi-
cant (p = .24), but both of them were higher than the entropy
of the RS model (ps < .01). These results suggested that the
way humans pursued their goals could be better captured by
the IW model than the RS model.

Hybrid Team Simulation

Overview Thus far we have only examined the perfor-
mance of each type of player within their homogeneous
group. Here, we take one step further to measure how well
they can cooperate with each other to investigate the compati-
bility between their hunting strategies. We conducted a hybrid
team simulation experiment based on the pre-recorded trajec-
tories of all agents in the human experiment. To see how well
they could cooperate with each other, we replaced a human
hunter with an IW or RS model hunter while leaving the tra-
jectories of all other agents untouched. As the new hunter was
“invisible” to the pre-recorded stags, we expected an over-
all increase in the performance of the hybrid team compared
to the original all-human team, but we were more interested
to discover whether the models could align their goals with
the rest of the human hunters. We examined the matching
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Fig. 7. Results of the cross entropy of the touched target
distributions between the hybrid teams and the original all-
human team.

of goal consistency by measuring the cross entropy of the
touched target distributions between the hybrid teams and the
original all-human team. If the models can successfully in-
fer the goal of human hunters and cooperate by coordinating
their hunters’ behaviors to commit to the same goal, then the
touched target distribution of the hybrid team would be simi-
lar to that of the all-human team with a low cross entropy.

Results For both set size 2 and 4 conditions (Fig. [/), the
cross entropy between the IW-human team and all-human
team was significantly lower than that between the RS-human
team and all-human team. (#(20) =-17.13, p < .001,d =7.67;
1(20) = -37.22, p < .001, d = 16.65). This shows that the
IW model could better “replicate” the intention of the human
player they replaced, than the RS model.

Discussion

The human behavioral results demonstrate a successful ex-
pansion of human social perception from individual chasing
tasks to a multi-agent cooperation task involving the integra-
tion of perception and planning. We thus show that humans
were indeed capable of, and in fact good at, achieving ef-
fective collaboration in a hunting task with multiple tempta-
tions. Moreover, this high-level performance in humans was
achieved without any form of explicit communication. In fact,
the only perceptual inputs were the dots moving on the dis-
play. This result corroborates the theory that communication
may have only emerged in environments where collaboration
already existed (Tomasellol [2010). Although we did not di-
rectly model communication, our results echo the notion that
the more we can achieve without communicating, the more
effective communication will be when we do communicate;
thus supporting that communication can be achieved with
only sparse, highly context-dependent input. This idea is also
highlighted by a recent study showing that a “We” built by
visual common sense takes on much of the heavy-lifting in
communication, thus enabling humans to produce and under-
stand indirect and ambiguous signals in and from few words
(Stacy et al.| 2020).

From the overall performance and the entropy analysis, we
saw that cooperation in humans and the IW model were rea-
sonably robust—their teams were consistent in goal pursuit
and their accumulated rewards were well maintained, even
when the number of potential targets escalated. This result
is non-trivial as evidenced by the RS model whose perfor-
mance plummeted with increased potential targets, despite
the model’s specific training for a large set size. The sim-
ilarity in performance between humans and the IW model
was further confirmed in the hybrid team simulation, in which
the IW model aligned its goal with human hunters relatively
well. This result is especially noteworthy as the IW model
was purely trained from the MADDPG model combined with
Bayesian inference, but never from human trajectories. The
successful cooperation between humans and the IW model
indicates that both of them are better at coordinating their
actions for achieving a joint goal than the RS model, thus

supporting the claim that shared intentionality is a key mech-
anism in enabling humans to stay robustly committed in co-
operation. Moreover, even though success was defined by the
mere touch of a stag by any hunter, the majority of the human
hunts were of high quality, a characteristic partially reflected
in the IW model hunts. This phenomenon reveals that, to at
least some degree, there is a spontaneous, agreed-upon em-
phasis on the quality of cooperation in both humans and the
IW model. Cognitively, this may reflect an important strategic
and functional aspect of shared intentionality in the context
of coordination—in real life, cornering a stag is a much more
effective and sophisticated coordination of action to ensure
its capture as compared to a hit. Future behavioral paradigms
could emphasize high-quality kills over low-quality hits, for
calibrating successful cooperation.

In contrast to the IW model, overall the RS model per-
formed less proficiently as the number of targets increased,
showed much lower goal consistency between team mem-
bers, exhibited a lower level of compatibility when teaming
with humans, and made more frequent touches of lower qual-
ity. These results should not be taken lightly, as the MADDPG
algorithm is one of the best models for coordinating multi-
agent chasing when there is only one target—it is why we em-
ployed it as the base model for the IW model. Nevertheless,
this model failed to handle commitment when facing a large
number of targets, which happened to be the most important
aspect of cooperation considered by |Gilbert (2006)). These re-
sults suggest that as collaboration tasks in the real world are
often tempted by many different desires, sharing rewards only
provides a weak constraint on collective behavior. Related to
this challenge, a recent study has demonstrated MADDPG’s
difficulty in handling the free-rider problem—another major
challenge in cooperation (Zhao et al.| [2021). The difference
in how the RS model pursued goals as compared to humans is
also consistent with a recent study on human-Al teaming (Siu
et al.}2021). The RL model, based on pure learning, received
lower subjective scores on human-rated performance, team-
work, interpretability, and trust as compared to other models,
though the objective performance of the human-Al team was
identical to other models.

It is nevertheless also true that as compared to the IW
model, humans accumulated more rewards when the set size
increased to 4, achieved high-quality hunts more often, and
showed greater flexibility in goal pursuit in the set size 2 con-
dition, revealing that humans exceeded the IW model in co-
operative hunting in both quantity and quality. This reflects
greater flexibility in human cooperative behaviors and may
even reveal other higher-level aspects of shared intentionality
in humans, such as the malleable nature of joint commitment.
For example, human participants, while committed to the col-
lective superordinate intention, might have also believed that
it was not necessary nor efficient to dispatch all three hunters
to one target in cases where two hunters already had control
of the prey. The advantage of having this flexibility is espe-
cially conspicuous when there are larger numbers of prey to
hunt, providing more opportunities for humans to efficiently
allocate resources to obtain greater rewards, as evident by hu-
mans’ superior performance in the set size 4 condition over
the set size 2 condition. This performance difference between
conditions, however, is not seen in the IW model, likely due to
its rigidity in team structures—its definition of commitment
always assumed the 3 hunters as a group and thus neglected
other potential structurings that allowed for more fruitful re-
ward. We believe that addressing the challenge of how to in-
tegrate flexible task assignments while maintaining the con-
straint of shared intentionality, will be the next step in advanc-
ing cooperation modeling in the future.
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