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Abstract

Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary
forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching
morphogenesis, we used a 4 variable partial differential equation (PDE), due to Meinhardt, as our mathematical model to
describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the
model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to
explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal
(growth) direction and the other in the transverse direction. We begin by decoupling the original branching process into
two semi-independent sub-processes, 1) a classic activator/inhibitor system along the growing stalk, and 2) the spatial
growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the
stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in
this model, 1) side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the
longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It
successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side
branch; 2) tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of
the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of
the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3) when both instabilities are
satisfied, tip bifurcation occurs together with side branching.
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Introduction

Recent experimental work in lung morphogenesis has described

an elegant pattern of branching phenomena [1]. Two primary

forms of branching have been identified: side branching and tip

splitting. In the lung, these occur in sequence: first, side branching

creates the primary stalks; then, there is a change of mode to tip

splitting. These phenomena have been hypothesized to be under

genetic controls [1,2], however, how genes could possibly act to

produce these patterns is still not clear.

In a previous study of lung branching morphogenesis [3], we

used a 4 variable partial differential equation (PDE), due to

Meinhardt [4], as our mathematical model to describe the reaction

and diffusion of morphogens creating branched lung development.

When we simulated this model in 2D and 3D, we were able to

successfully reproduce the cascades of branching styles that have

been observed in the lung, including side branching and tip

splitting [1,3]. Different branching modes can be produced by

altering key parameters. However, to say ‘a change in parameter

X produces phenomenon Y’, while interesting, does not give us a

real mechanism.

Here, we attempt to explain these phenomena as growing out of

two fundamental instabilities, one in the longitudinal (growth)

direction and the other in the transverse direction.

We begin by decoupling the full Meinhardt model into two

semi-independent sub-processes: 1) a classic activator-inhibitor

system on the growing stalk, and 2) spatial extension of the stalk.

We then used a reduced activator-inhibitor model that embeds

growth of the stalk as our tool to explore these mechanisms.

We found that, in this model, side branching and tip bifurcation

occur due to distinct mechanisms. They do not contradict each

other, and can occur separately or together. The two distinct

instabilities occur in different directions, and their interaction

determines the final branched pattern.

The longitudinal instability produces periodic insertion of

activator peaks along the growing Y-stalk, each of which later
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on migrates out and forms a side branch. It does not require the

existence of a temporal oscillator, and is therefore distinct from the

mechanisms proposed in other studies of side branching, for

example, in vertebrate segmentation and plants [5,6]. Previous

models of peaks that occur in succession focused on a ‘temporal-to-

spatial’ conversion concept, ‘coordinated by a molecular clock that

converts temporal information into a periodic spatial pattern’

[5,6]. But recently, an experimental study by Dias et. al suggested

that ‘a clock-and-wavefront’ mechanism is unnecessary for somite

formation’ [7]. Here we provide a ‘no clock’ model in which

spatial peaks appear sequentially in time.

The transverse instability is a Turing-type instability that gives

rise to the splitting of the leading activator peak, into 2

simultaneously formed peaks, each of which then becomes the

leading activator peak of the daughter branches. When both

instabilities are satisfied, a mixed branching pattern of tip splitting

and side branching occurs.

Methods

Mathematical Model
We used a 4 variable reaction-diffusion PDE based on the work

of Meinhardt [4]. The PDE has 4 variables A, H, S, and Y, each of

which is a function of space and time. Three represent

concentrations of postulated morphogens: an activator A, inhibitor

H, and substrate S, while the fourth is a marker for cell

differentiation Y.

The equations of the model are:

LA

Lt
~

cA2S

H|ffl{zffl}
autotalysis of activator

requires substrate
inhibited by inhibitor

{mA|fflffl{zfflffl}
degradation

z DA+2A|fflfflfflffl{zfflfflfflffl}
diffusion

z rAY|ffl{zffl}
activator secreted by cells

LH

Lt
~ cA2S|ffl{zffl}

inhibitor produced by activator
requires substrate

{nH|fflffl{zfflffl}
degradation

z DH+2H|fflfflfflffl{zfflfflfflffl}
diffusion

z rH Y|ffl{zffl}
inhibitor secreted by cells

LS

Lt
~ c0|{z}

background production
rate

{cS|ffl{zffl}
degradation

{"YS|fflfflffl{zfflfflffl}
substrate consumed by cells

z DS+2S|fflfflffl{zfflfflffl}
diffusion

LY

Lt
~ dA|{z}

activator activates
cell commitment

{eY|fflffl{zfflffl}
degradation

z
Y 2

1zfY 2|fflfflfflffl{zfflfflfflffl}
commitment to differentiation

The model assumes that activator A, inhibitor H and substrate S

are all diffusible substances, with diffusion coefficients DA, DH and

DS , respectively. Activator A is up-regulated by itself in

autocatalytic reaction kinetics at rate c (this is the cA2 part of

the first term in the A-equation) [7]. This autocatalytic process is

augmented by substrate S, which is represented by the term cA2S.

The production of activator A is inhibited by inhibitor H, which is

modeled by placing the H term in the denominator (
cA2S

H
in the A

equation). Differentiated Y cells secrete activator A at a rate rA

(rAY in the A equation). The production of inhibitor H is

increased by activator A, again requiring the presence of substrate

S (cA2S in the H equation). Differentiated Y cells also produced

inhibitor H at a rate rH (rH Y in the H equation). Substrate S is

produced at a rate c0, and is consumed by differentiated Y cells at

a rate ". The fact that substrate is consumed by cells in a

stoichiometric reaction is modeled by the product term {"YS in

the S-equation. Cell commitment (Y = 1 means a committed cell)

is irreversibly activated when the concentration of activator A

grows over a certain threshold, as formulated by the sigmoidal

term in the Y equation. A, H, Y and S are all subject to first-order

degradation, at rates m, n, e, and c, respectively.

Decoupling the branching process
The 4 variables in the PDE model play distinct roles in the

branching process. The interaction between Y (differentiated cells)

and S (substrate) produces the spatial extension of the Y-stalk (and

the depletion of the substrate at the same time). The dynamics

between activator A and inhibitor H are responsible for the local

patterns formed on the Y-stalk. Therefore, the branching process

can be decoupled into two semi-independent sub processes:

1) Classic activator-inhibitor dynamics (A/H local dynamics)

2) Extension of the Y-stalk (Y/S dynamics)

We illustrate the decoupling method in the case of side

branching. (Fig. 1)

Note that the spatial patterns of A and H overlap (Fig. 1 top
row): whenever there is an activator peak, there will also be an

inhibitor peak at the same spot. This is because activator produces

inhibitor. The inhibitor peaks are flatter and have less sharp

boundaries, due to the more rapid diffusion of the inhibitor

(Dh..Da).

The Y/S dynamics produce the extension of the stalk in a three-

step process: (1) Y cells are activated to irreversibly differentiate (Y

goes from 0 to 1) at sites where activator concentration is high. (2)

However, this cell commitment occurs at the expense of

consuming local substrate S ({"YS term in S equation), which

is required for the maintenance of the activator peak. (3) This

substrate depletion drives the activator peak to migrate forward,

toward fresh substrate, which in turn drives new cells to

commitment. As a result, the spatial pattern of Y is a recording

of the path of activator peaks. Commitment pins down and

‘freezes’ the path of activator peaks, and sculpts the substrate S to

have a spatially complementary pattern (Fig. 1 bottom row).

Therefore, we reduce the 4 variable model by making the Y-

stalk and the substrate S to be controllable parameters in the local

A/H dynamics. We approach this by setting Y and S to be

parameters that are functions of space and time, Y (x,y,t) and

S(x,y,t), that we designate. Note that they are not part of the PDE

iteration. The specific form of the functions Y (x,y,t) and S(x,y,t)
will be provided in the numerical simulation section, and in the

figure legends of related simulations, as well as related text.

LA

Lt
~

cA2S

H
{mAzDA+2AzrAY

LH

Lt
~cA2S{nHzDH+2HzrHY

LS

Lt
~c0{cS{"YSzDS+2S

LY

Lt
~dA{eYz

Y 2

1zfY 2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

[

LA

Lt
~

cA2S(x,y,t)

H
{mAzrAY (x,y,t)zDA+2A

LH

Lt
~cA2S(x,y,t){nHzrH Y (x,y,t)zDH+2H

8>><
>>:
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Strategy of this paper
In this paper, we will use this decomposition into the A/H and

Y/S subsystems to analyze branching dynamics. We find that

there are two distinct pattern forming instabilities at work in the

A/H system, one in the longitudinal direction (the direction of

stalk growth) and the other in the direction transverse to the

growth axis.

N the longitudinal instability is a time-dependent, nonlinear

bifurcation beyond the Turing instability, that is, far from

equilibrium.

N the transverse instability is a Turing bifurcation in the A/H

subsystem that is produced by increased domain width.

These two instabilities, working in the longitudinal and

transverse directions, are responsible for the main phenomena of

branching. We will use these dynamical principles and simulations

to address the following questions:

1) One parameter that controls the switch from side to tip

branching is the consumption rate of substrate by Y cells, E
(Fig. 2 a–c). What is the mechanism of this dependence?

2) Several parameters control the spacing interval between side

branches, for example, the rate of inhibitor production by

differentiated Y cells, rH. As rH is increased, the spacing

interval between side branches increases to the point where no

side branching occurs at all (Fig. 2 d, e). Why is this the case?

3) Why does tip splitting occur (Fig. 2 c)?

Other models of lung branching morphogenesis
Since Meinhardt’s 1976 paper, there have been several other

mathematical models that study lung branching phenomena. The

model of Menshykau et al. [8] is based on the reaction and

diffusion of FGF10 and SHH as well as the SHH receptor patched

(Ptc). They showed that side branching and tip bifurcation can be

distinguished by choosing different growth speeds of the lung bud.

But in their model, the growth of the lung bud is not caused by the

morphogens, instead, it is imposed by a command that the

cylinder-shaped lung bud grow as a function of time. Therefore,

their model is not a model of morphogenetic growth, but rather, a

model of periodic spots appearing surrounding the lung bud; they

have branching points but not actual branching. Thus, Menshy-

kau’s paper is not a model for what Clement et al. [9] call ‘shape

emergence’ or morphological growth.

Clement et al. [9,10] approach branching morphogenesis

through diffusion-based mechanisms. Their work addresses the

importance of ‘shape emergence’. Their model considered two

factors during lung development, the spatial diffusion of FGF10,

and the epithelial growth response to an FGF10 gradient. Their

simulations showed that different epithelial growth functions could

produce branching patterns with different morphological features,

including side branching and tip splitting. However, why a certain

kind of growth function can produce one kind of branching rather

than the other was not investigated. Instead, the importance of

side branching was dismissed, by saying ‘‘It is unsure that side-

branching plays a significant role in lung development’’ [10].

Figure 1. Spatial pattern of each variable in side branching. The spatial pattern of activator A (top left) and inhibitor H (top right) overlap,
while the Y-stalk (bottom left) and substrate S (bottom right) are spatially complementary. (morphogen concentrations are denoted as z-axis height).
doi:10.1371/journal.pone.0102718.g001
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Later on, Clement et al extended their diffusion-based model

into 3 dimensions [11]. They showed that ‘the self-avoiding

branching pattern’ generated by their model is robust in both 2-

and 3-dimensional simulations. They also showed that, different

growth responses to morphogen gradients (such as linear or

sigmoidal functions, similar to their 2-dimensional approach)

could generate branching morphologies with different morpho-

logical details. However, the fundamental relationship between

different types of growth response and different branching patterns

was not explained. While Clement et al focused on the self-

avoidance feature, the issue of side branching vs. tip splitting was

not investigated.

On the contrary, the PDE model in our paper [3] includes

morphological growth as a causal response to fundamental

mechanisms, a differential equation rather than a stipulated

function. Therefore, cascades of branching events can naturally

emerge from our model or others of this kind. Side branching and

tip splitting can be distinguished by altering simple key parame-

ters. The branches also show self-avoidance features.

Numerical simulation
Our models were numerically simulated using a forward Euler

method with no-flux boundary conditions. The spatial domain was

discretized into a uniform grid with space step dx = 0.3. The

domain size for simulations was 2006200. For the diffusion

operator, we used a four-point Laplacian. The initial conditions

were as follows:

Figure 2. Different branching patterns produced by altering key parameters. (a, b, c) as one of the key parameters " gradually increases,
the branching mode produced by the full model changes from (a) side branching with left-right alternating order to (b) side branching with
symmetry, and then to (c) tip splitting. rH = 0.0001 and "= 0.025/0.08/1.0 from left to right respectively. (d, e) as another key parameter rH increases,
the spatial distance between side branches increased. "= 0.025, rH goes from 0.000025 to 0.0002. (f) mixed pattern formation of tip splitting and side
branching, when "= 0.85, rH = 0.00003, and and d = 0.004. Parameters: c = 0.002, m = 0.16, n = 0.04, rA = 0.03, c0 = 0.02, c = 0.02, d = 0.008, e = 0.1,
f = 10, DA = 0.02, DH = 0.26, DS = 0.06.
doi:10.1371/journal.pone.0102718.g002
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For the 4 variable model, at the beginning of the simulation,

activator A, inhibitor H and substrate S are uniformly distributed

in space. Activator and inhibitor have very small values: A = 0.001,

H = 0.01, while substrate has a high value: S = 1.0. For the initial

condition of Y, almost all sites are set to Y = 0, except for a small

rectangularly-shaped region at the left edge of the simulation

boundary.

For the reduced A/H model, at the beginning of the simulation,

activator A, and inhibitor H are uniformly distributed in space.

Activator and inhibitor have very small values: A = 0.001,

H = 0.01. The initial condition of Y and S will differ depending

on the experimental setup. Basically, when we are testing the

pattern formation of the AH system on a stationary Y stalk, the

spatial distributions of Y and S are Y(x,y,t) = 1.0, S(x,y,t) = 0.6

inside the stalk, and Y(x,y,t) = 0.0, S(x,y,t) = 0.0 outside the stalk;

when we are testing the pattern formation of the AH system with a

growing Y stalk, Y and S will have high values inside the rectangle,

and low values outside. The only difference will be that the length

of the rectangle grows over time. When we are testing the

migration of the activator peaks, we set a high concentration of

substrate S(x, y, t) = 1.0 surrounding the Y stalk. (The spatial

distribution of Y and S in different experiments will be addressed

in detail in the relevant text or legends.)

Programs were written in CUDA for GPU implementation. 2D

contour plots were done in Mathematica. All codes were run on a

platform with a CPU from Intel (Model: Intel Core i7–2600),

GPU from NVIDIA (Model: NVIDIA GTX580), and 8GB

memory. (Code S1)

Results

Side branching: the longitudinal instability
Periodic activator peaks along the Y-stalk determine pre

branch sites (Fig. 3). In side branching, two things happen, in

sequence: 1) new activator peaks are periodically inserted on the

Y-stalk, always immediately behind the leading activator peak

(Fig. 3 a–f). 2). Then, each newly-inserted activator peak migrates

outward and gives rise to a side branch (Fig. 3 g, f).

The first activator peak (Fig. 3a), at the tip of Y-stalk, results

from inhomogeneous initial conditions (the rectangularly shaped

Y-stalk at the boundary of the domain). We call this the leading

activator peak (marked by *). It consumes the local substrate, and

migrates forward toward fresh substrate. As a result of this

migration, the Y-stalk elongates. This creates more space, which

enables a new activator peak to be inserted right behind the

leading activator peak (Fig 3b, marked by a double arrow). Several

rounds of peak insertion result in a periodic pattern of activator

peaks along the Y-stalk (Fig 3c–f). These peaks become the source

of future side branches.

We then studied how this periodic pattern is created, and the

how the spacing between them is controlled.

A/H pattern formation along the Y-stalk creates periodic

activator peaks. Since periodic activator peaks only exist on

the Y-stalk, we asked whether this is due to the profile of Y and S

on the stalk. We noted that Y and S concentrations are almost

constant along the Y-stalk: Y,1.0 and S,0.6 (Fig. S1).

So we asked what pattern would the A/H system form when Y

and S are homogeneously distributed in space, S(x,y,t) = 1.0, and

Y(x,y,t) = 0.6, and the initial conditions of A and H are close to

their equilibrium values, with a small (2%) random perturbation.

Under these conditions, no pattern formed (Fig. S2 a). This rules

Figure 3. Periodic activator peaks along the Y-stalk determines pre branch sites. (a) the leading activator peak emerges at the growing tip,
marked by *. (b) Forward migration of the leading activator peak produces the elongation of the Y-stalk. When enough space is created behind the
leading activator peak, a new activator peak will be induced right behind it, marked by double arrow. (c–f) After several rounds of peak insertion,
activator peaks line up along the Y-stalk. (g, h) later on, these activator peaks migrate out in the transversal direction, each of which becomes the
leading activator peak of the newly formed side branches, marked by *. Parameters: c = 0.002, m = 0.16, n = 0.04, rA = 0.03, rH = 0.0001, c0 = 0.02,
c = 0.02, "= 0.0025, d = 0.008, e = 0.1, f = 10, DA = 0.02, DH = 0.26, DS = 0.06.
doi:10.1371/journal.pone.0102718.g003
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Figure 4. Activator peaks march inward and evolve periodic patterns along the YS domain. (a) initial condition of Y and S: high
concentrations (Y = 1.0 and S = 0.5) inside the rectangle (5 space steps wide680 space steps long) and low concentrations (Y = 0.0 and S = 0.0) outside
that rectangle. (b, c) a first activator peak emerges at the open end of the rectangularly-shaped YS domain, marked by the asterisk. (d, e, f, g) this
first activator peak induces new activator peaks to form along the YS domain, marked by double-arrows, in a wave-like manner, until the YS domain is
filled up. Parameters: c = 0.002, m = 0.16, n = 0.04, rA = 0.03, rH = 0.0001, DA = 0.02, DH = 0.26.
doi:10.1371/journal.pone.0102718.g004
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out a linear Turing instability, which is further confirmed by the

dispersion relation: there is no wavenumber (k) window that has a

positive growth rate over time (Fig. S2 b).

However, when we set the initial conditions to be inhomoge-

neous, with S and Y having high concentrations inside the

rectangle and low concentrations outside that rectangle (Fig. 4a), a

Figure 5. Simulation with YS domain having two open ends. (a) initial condition of Y and S: we place the rectangular YS domain in the center,
with high concentrations (Y = 1.0 and S = 0.5) inside the rectangle (5 space steps wide 680 space steps long) and low concentrations (Y = 0.0 and
S = 0.0) outside that rectangle. (b, c) two activator peaks emerge simultaneously at the two open ends of the YS domain, marked by the asterisks. (d,
e, f, g) these two activator peaks induce more activator peaks to form along the YS domain, marked by double-arrows, in a wave-like manner, until
the YS domain is filled up. Parameters: c = 0.002, m = 0.16, n = 0.04, rA = 0.03, rH = 0.0001, DA = 0.02, DH = 0.26. Space step dx = 0.3, time step
dt = 0.4dx2.
doi:10.1371/journal.pone.0102718.g005
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periodic pattern of activator peaks evolved along the Y-stalk

(Fig. 4b–g). Since the initial distribution of the parameters Y and S

must be spatially heterogeneous, it is clear that this pattern

formation of the A/H subsystem along the Y-stalk is pattern

formation far from equilibrium.

Appearance of the first activator peak. The first activator

peak appears at the open end of the rectangularly-shaped YS

domain. (Figure 4 a–c). The first activator peak always emerges in

the geometry when the Y-stalk is surrounded by a sufficient

amount of non Y-stalk, in other words, at the open end of the

rectangle (Fig. 4a). This is due to the initial condition on the YS

domain: for cells located at the open end, less inhibition is exerted

on them because fewer cells are active in the neighborhood (where

Y = 0). Thus, the heterogeneous distribution of YS triggers the first

activator peak to form. We tested this ‘less inhibition at the open

end’ hypothesis by another simulation, in which the YS rectangle

was placed in the center of the domain, with two free ends, instead

of having one end on the domain boundary (Fig. 5a). Now, two
activator peaks emerged simultaneously at the two open ends of

the rectangle (Fig. 5 b–c).

Induction of new activator peaks. New peaks then emerge

periodically in space and time, marching inward along the stalk

(Fig. 5b–g, Fig. 6b–g) in a wave-like manner.

The wave is a response to the large perturbation created by the

initial activator peak. This peak also produces inhibitor, which

diffuses faster in space, creating an ‘inhibition zone’ for each

activator peak, inside which no other activator peak can form.

However, beyond that inhibition zone, a new activator peak can

be induced if there are sufficient local sources of A to trigger

autocatalysis. In the Y-stalk, there are such local sources of A, since

Y cells make A at a rate rA. A sufficient local source of A can only

happen when Y and S have high values, and is therefore restricted

to the Y-stalk. The size of the inhibition zone, hence the spacing

interval between activator peaks, can be altered by any parameters

that change the A/H dynamics, such as rA and also rH , the

production rate of inhibitor (Fig. 6). Our simulation shows that

when rH increases, the spatial interval between activator peaks

becomes larger (Fig. 6a, b, c), until no pattern formation forms on

the Y-stalk at all (Fig. 6d). Since the activator peaks later give rise

to side branches, the spatial interval between peaks on the Y-stalk

Figure 6. Increased rH , increased spacing between activator peaks. In the simulation of A/H dynamics, with Y and S having high
concentrations inside the rectangle (5 space steps wide 680 space steps long), and low concentrations outside (details see figure 4a). When rH

increases, the spacing between activator peaks increased. Parameters: c = 0.002, m = 0.16, n = 0.04, rA = 0.03, DA = 0.02, DH = 0.26, rH = 0.00005(a),
0.0002(b), 0.00035(c), and 0.0004(d). Space step dx = 0.3, time step dt = 0.4dx2.
doi:10.1371/journal.pone.0102718.g006
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gives the spacing of the side branches (see section below Migration
of activator peaks in the transversal direction).

The mathematical nature of the instability inducing the

secondary peaks is not immediately clear. It is not a simple

(linear) Turing instability, since it requires a large perturbation as

an initial condition and appears in time as well as space.

Stalk growth produces insertion of activator peaks
In real branching, the stalk is not stationary. It grows over time.

We therefore studied the effects of stalk growth on peak formation.

In one experiment, we commanded the rectangular YS domain to

extend over time (Fig. 7 right column). As expected, the first

activator peak emerges on the open end of the Y-talk, due to the

geometry of the initial condition (Fig. 7 first row). However, the

initial length of the YS domain is not enough for a second peak to

form, until enough space has been created by growth. Therefore,

instead of marching inward, new activator peaks insert immedi-

ately behind the leading activator peak. This phenomenon is

observed in actual lung branching [3,12]. So the growth of the YS

domain produces the insertion of new activator peaks along the Y-

stalk.

We also investigated how growth speed influences the pattern

formation in the AH system along the Y stalk. By increasing the

YS domain growth speed by a factor of 5 and 25 (Fig. 8), we found,

somewhat counter-intuitively, that more activator peaks evolved

along the Y-stalk, with the interval between peaks decreasing. (See

Discussion)

Migration of activator peaks in the transversal

direction. Once activator peaks are formed on the Y stalk,

they migrate outwards to form side branches, provided there is a

significant gradient of substrate (grad S) in the transverse direction

(Fig. 9). If the transverse gradient is too small, no outward

migration takes place; if it is somewhat larger, outward migration

occurs in an alternating left-right style (Fig. 9 b, d), and if the

gradient is still larger, peak migration is symmetric (Fig. 9 c, e).

Tip splitting: the transverse instability
Widening of the Y-stalk is required for tip

bifurcation. When epsilon, the consumption rate of substrate

by Y cells, increases, the full model produces tip splitting (Fig. 10).

Similar to side branching, the first activator peak emerges at the

tip triggered by the heterogeneous initial conditions (Fig. 10 a). As

we saw, this first activator peak migrates forward toward fresh

substrate; Y cells then pin down the path of the activator by

irreversibly differentiating (Fig. 10b). However, what distinguishes

this case from side branching is that there is almost no substrate

left on the Y-stalk, because its consumption rate (the parameter ")
is high. This low substrate level abolishes the ability of the AH

subsystem to form periodic patterns on the Y-stalk, so no side

branches occur (Fig. 10 c–f).

As the leading activator peak migrates forward, it splits into two,

after which Y cells lay down the path of activator peak and form

the tip bifurcation (Fig. 10 c). Peak splitting is only seen in the

presence of the widening of the Y-stalk (Fig. 10 c, e, shown by the

arrows). This led us to suspect that the widening plays a critical

role. It is obvious that for activator peak splitting to happen, the

domain in the transversal direction must be wide enough to

support two activator peaks. The system can accomplish this either

by widening the domain, or by shrinking the inhibition zone of the

activator peak. The latter requires changing the parameters of the

A/H system. This does not happen here, so we conclude that the

widening of the stalk is the cause. This was further confirmed by a

numerical experiment. When we prevented stalk widening by

decreasing the degradation rate of the inhibitor (the parameter n),

the stalk extended but did not split.

The fact that this is a bifurcation driven by increased domain

size L suggests the possibility of a Turing-style transversal

Figure 7. Growing YS domain produces activator peak insertion. When we command the rectangular YS domain to extend over time (by
setting the length of the rectangular to be a function of time. The initial length of the rectangular area is 10 space steps. The length increases by 1
space step every 10,000 time steps; the width of the rectangular is held constant at 5 space steps, space step dx = 0.3, and time step dt = 0.4 dx2), A/H
dynamics forms the activator peak insertion. The left column is the change of activator spatial pattern over time, and the right column is the
corresponding spatial pattern of YS domain. Time increases from top to bottom. The first activator peak appears at the open end the YS domain
(marked by the asterisk). More activator peaks will be induced and emerge right behind the leading activator peak when the growth creates enough
space (marked by double-arrows).
doi:10.1371/journal.pone.0102718.g007

Figure 8. Increased growth speed, increased periodicity of the activator peaks. In the simulation of A/H dynamics with growing YS
domain, when we increased the growth speed by a factor of 5 and 25, more activator peaks evolve along the Y-stalk. Parameters: c = 0.002, m = 0.16,
n = 0.04, rA = 0.03, rH = 0.00005, DA = 0.02, DH = 0.26. Space step dx = 0.3, time step dt = 0.4dx2. The initial shape of the rectangular is 5 space steps
wide by 10 space steps long. The speed with which the rectangular extends differs. Control: every 10,000 time steps extend one space grid; 5X: every
2000 time steps extend one space grid; 25X: every 400 time steps extend one space grid.
doi:10.1371/journal.pone.0102718.g008
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Figure 9. Migration of activator peaks in the transversal direction. (a) snapshot of YS domain (the YS domain is growing over time as in
figure 7). Morphogen concentration is denoted as z-axis height. Substrate has relatively low values inside the growing rectangle, and relatively high
outside the growing rectangle. Y equals to 1.0 inside the rectangle and equal to 0.0 outside that rectangle. The initial rectangular is 5 space steps
wide by 10 space steps long. The length of the rectangular increases one space step every 10,000 time steps. Space step dx = 0.3, time step
dt = 0.4dx2. (b, c) profile of S along the dotted line as shown in panel a. The high/low value of S profile is 1.0/0.6 and 1.0/0.4 in panel b and c. Activator
peaks migrate out of the YS domain in a left-right order and a symmetrical manner under condition b and c respectively.
doi:10.1371/journal.pone.0102718.g009
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instability in the A/H subsystem. Unlike the longitudinal

instability, here the two peaks form simultaneously out of the

previous peak, and the original peak is not preserved. This

phenomenon is well-known in Turing bifurcations, where L/

wavelength determines the number of peaks that can be

supported. Therefore, we studied the A/H system dynamics as a

function of S and Y, to look for conditions that would support a

Turing-style size-dependent bifurcation.

Our survey of parameter space revealed that there is indeed a

region of (S, Y) parameter space in which the A/H system falls in

the Turing instability regime: it is the crescent moon in figure 11 a.

Note that for high S and low Y (typical outside the stalk) the A/H

system is in the oscillatory regime, below the crescent region. This

of course precludes Turing bifurcation, which requires a stable

equilibrium in the ODE (ordinary differential equation, when

there is no spatial diffusion). But cell differentiation changes Y

from 0 to 1, at the expense of depleting substrate S, which moves

the system diagonally up and to the left in (S,Y) parameter space.

This results in the system crossing the instability boundary into the

region of stable equilibria. The crescent moon of parameters that

realize the Turing instability lies just inside the stable equilibrium

region.

Thus, as each cell develops, it ‘walks’ across parameter space

from the lower-right region (oscillatory A/H) through the crescent

moon (Turing instability) to the upper left (stable equilibrium but

no pattern formation). A typical trajectory is shown by the dotted

line in figure 11 a.

We asked where these Turing-ready cells are located in the

stalk. We found that they occupy a thin strip along the front of the

growing tip (Fig 11 b). Thus the growing tip is continually in the

Turing bifurcation regime. All that is required for actual Turing

bifurcation to occur, that is, for two peaks to emerge, is that this

regime extends over a sufficient length to support the two peaks.

We found that this indeed occurs. As the tip widens, the Turing

region (shown in black in figure 11 b1, b2, b3) grows in length until

the single peak splits into 2 (Fig. 11 b4).

As a further test of the Turing hypothesis for the transverse

instability, we calculated the wavenumber that is predicted by the

Turing instability and compared it to the length of the Turing

region in the growing tip. This calculation is not exact, because the

Turing region at the tip does not have a single value, but

represents a distribution of values. We chose 3 (S, Y) pairs in the

Turing region, and calculated the wavelengths of the fastest

growth modes. These dispersion relations (Fig 11 c) give rough

Figure 10. Widening of the Y-stalk is required for tip splitting. (a) The first activator peak emerges at the growing tip. (b) forward migration
of the leading activator peak produces elongation of the Y-stalk. (c) the leading activator splits into two daughter peaks as the Y-stalk becomes wider,
shown by the arrow. (d) each of the daughter activator peaks, from the 1st generation splitting, becomes the leading activator peak of the newly
formed stalks. (e) 2nd generation of tip splitting occurs when the daughter stalks get wide enough, shown by the arrow. (f) each of the
granddaughter activator peaks becomes the leading activator peaks of the newly formed stalks, and migrates forward. Parameters: c = 0.002, m = 0.16,
n = 0.04, rA = 0.03, rH = 0.0001, c0 = 0.02, c = 0.02, "= 1.0, d = 0.008, e = 0.1, f = 10, DA = 0.02, DH = 0.26, DS = 0.06.
doi:10.1371/journal.pone.0102718.g010
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wavenumbers k between 0.4 and 1.0. This yields to a wavelength

(2p/k) of roughly 6–15 space units. We then measured the length

of the Turing region (the black stripe in figure 11 b3) and found it

to be roughly 6 space units. Therefore, the Turing region is of the

right order to produce a length-dependent bifurcation.

Discussion

We decoupled the branching process of the Meinhardt model

into two semi-independent sub processes: A/H dynamics (activa-

tor inhibitor interaction) and Y/S dynamics (Y-stalk extension and

substrate depletion). We then considered only the A/H dynamics,

treating Y and S as parameters that are distributed spatio-

temporally. We used this reduced model to explore the mecha-

nisms for side branching and tip splitting.

Our simulation results suggest that side branching results from a

longitudinal instability of the A/H subsystem along the Y-stalk, far

from equilibrium, while tip splitting is due to a Turing-style

instability of the A/H subsystem along the transversal direction,

which requires the stalk to be sufficiently wide. The two

Figure 11. A/H dynamics in tip splitting. (a) A/H dynamics as a function of S, Y. When (S, Y) pairs fall into the crescent moon region, the A/H
subsystem has a classic Turing instability (by a linear Turing-instability criterion, see [15] page 87). When the (S, Y) pairs are located below the moon
region, the temporal behavior of the A/H subsystem is oscillatory. For other (S, Y) pairs, the A/H subsystem has a stable temporal response. The
dotted line shows a typical trajectory for cell differentiation. The cell (S, Y) state goes from the bottom right, ‘walks across’ the crescent moon, and
reaches the top left. (b) Sites of Turing-ready cells formed a strip at the growing tip. When the black strip grew wide enough, it splits into two.
Parameters: "= 2.0, n = 0.04, dx = 0.01, dt = 0.4dx2, time steps between figures is 5000dt. (c) Dispersion relation of k1, k2, and k3 corresponds to the
chosen (S, Y) pairs in the crescent moon region numbed 1, 2, and 3, respectively.
doi:10.1371/journal.pone.0102718.g011
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instabilities do not contradict each other. When both of them are

satisfied, tip splitting can coexist with side branching.

We say that the longitudinal instability is nonlinear, and

therefore non Turing, because it does not arise spontaneously out

of a homogenous initial condition. It requires a large perturbation

in the form of an initial stalk. Moreover, it arises sequentially in

time, unlike the Turing instability, it arises among cells whose

dispersion relation predict no Turing instability (Fig. S1, S2). On

the other hand, the transverse instability appears simultaneously

over its spatial domain from a homogeneous initial conditions (the

black regions in figure 11 b1–4). Moreover this region is exactly

the region of cells that are subject to the Turing instability by the

eigenvalue analysis.

Our analysis is also very consistent with the results of Crampin

et al. [13]. Their study investigated ‘‘insertion or splitting of

concentration peaks’’ in response to different types of domain

growth. In particular, they used apical growth (one end) vs.

uniform growth (both ends). When they coupled Gierer-Mein-

hardt kinetics to apical growth, new activator peaks inserted

behind the moving boundary. This is quite similar to our situation

in side branching: when we extend the growth domain of A/H

subsystem in the longitudinal direction, new activator peaks

emerged right behind the leading activator peak. When Crampin

et al. used uniform domain growth in their numerical simulation,

they saw a splitting of concentration peaks. This is the same as the

case in the transverse direction in tip bifurcation, where the stalk

widening results the splitting of the leading activator peak into two.

A/H longitudinal instability vs. temporal-to-spatial
conversion

Periodic spatial patterns occur frequently in both animals and

plants, for example in animal somitogenesis and in plant root

formation. The mechanisms generally proposed for these phe-

nomena often rely on a concept that requires ‘a molecular clock

that converts temporal information into a periodic spatial pattern’

[5,6].

Following this intuition, it might be suggested that the new

peaks on the Y-stalk are created by an oscillatory process in the

growing tip. Think of a train that is carrying a temporal oscillator.

It will create a spatially periodic pattern on the ground, whose

spatial wavelength will be the product of the train’s speed with the

temporal period of the oscillator.

In our model, however, this is not the mechanism of periodic

side branching. Along the longitudinal direction, as the stalk grows

faster, more activator peaks emerge (Fig. 8), not fewer, as would be

expected from the oscillator-on-a-train mechanism. The reason

why more peaks appear when the growth speeds up is that when

the stalk grows faster, this motion physically removes inhibitor

behind the leading activator peak: inhibitor becomes locally

reduced by physical transport (advection along the stalk), in

addition to diffusion and/or degradation. This speeds the removal

of inhibitor, allowing additional activator peaks to be inserted.

Note that when domain growth is imposed on a system, it plays the

role of physical translation of material that is characteristic of

advection, as is clearly explained in Crampin et al. [13].

As a further confirmation, we followed the temporal behavior at

the growing tip, and recorded the change of morphogen

concentration over time during growth. No oscillatory processes

were detected. Our simulation is also consistent with the results of

a recent experimental study, which shows that ‘a clock-and-

wavefront mechanism is unnecessary for somite formation’ [14].

Supporting Information

Figure S1 Cross section of each variable along the
longitudinal growth direction. We show the 3D plot of each

variable (A, H, S, Y), with the morphogen concentration as z-axis

height. The bottom panel is the profile of each variable along the

elongation direction on the Y-stalk. Y and S values are around 1.0

and 0.6, respectively.

(TIFF)

Figure S2 No pattern formed in the A/H subsystem
when Y, S are spatially homogeneously distributed. (a)

When the initial condition of A and H are at equilibrium state with

2% random perturbation (shown as the pepper-and-salt figure on

the left), and the distribution of Y and S are homogeneously

distributed in space as 1.0 and 0.6 respectively. Simulation results

show that the A/H system goes back to equilibrium (the black

figure on the right). (b) calculated dispersion relation of the A/H

system when Y = 1.0 and S = 0.6 indicates that no linear instability

exists in this system.

(TIFF)

Code S1 Numerical simulation CUDA code. Numerical

simulations in this article were written in CUDA for GPU

implementation. The Nvidia CUDA Compiler (NVCC) was used

to generate to the executable files.

(PDF)
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