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Multi-Channel Direct Detection of Light Dark Matter: Target Comparison
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1Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Department of Physics, University of California, Berkeley, CA 94720, USA
4Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

5Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125,USA

Direct detection experiments for light dark matter are making enormous leaps in reaching pre-
viously unexplored model space. Several recent proposals rely on collective excitations, where the
experimental sensitivity is highly dependent on detailed properties of the target material, well be-
yond just nucleus mass numbers as in conventional searches. It is thus important to optimize the
target choice when considering which experiment to build. We carry out a comparative study of tar-
get materials across several detection channels, focusing on electron transitions and single (acoustic
or optical) phonon excitations in crystals, as well as the traditional nuclear recoils. We compare
materials currently in use in nuclear recoil experiments (Si, Ge, NaI, CsI, CaWO4), a few which
have been proposed for light dark matter experiments (GaAs, Al2O3, diamond), as well as 16 other
promising polar crystals across all detection channels. We find that target- and dark matter model-
dependent reach is largely determined by a small number of material parameters: speed of sound,
electronic band gap, mass number, Born effective charge, high frequency dielectric constant, and op-
tical phonon energies. We showcase, for each of the two benchmark models, an exemplary material
which has a better reach than in any currently proposed experiment.

I. INTRODUCTION

Direct detection experiments have traditionally fo-
cused on dark matter (DM) with mass near the weak
scale. Cosmologically, however, thermal particle DM may
inhabit a much broader mass range between a keV and
10 TeV. Recent years have seen bold advances in the ef-
forts to probe DM in the range below 10 GeV, which
was less explored previously. Here, despite the existence
of well-motivated candidates – including MeV dark mat-
ter [1–3], WIMPless miracle DM [4], GeV hidden sec-
tor dark matter [5–7], asymmetric DM [8, 9], freeze-in
DM [10], Strongly Interacting Massive Particles [11], and
many others – conventional detection techniques based
on nuclear recoils lose sensitivity as the energy deposi-
tion falls below detector thresholds. This has motivated
an extensive exploration of novel detection channels using
a variety of target systems. These include electron tran-
sitions in atoms and semiconductors [12–25], supercon-
ductors [26–28], Dirac materials [29–31], via the Migdal
effect [32–36], molecular dissociation or excitation [37–
39], multi-excitation production in superfluid helium [40–
43], defect production [44], single phonon [45, 46] and
magnon [47] excitations in crystals (see also Refs. [48–
55] for other recent proposals).

As new experiments are being planned and detection
technologies are being discussed and improved, it is im-
portant to identify the most promising targets in order
to prioritize the experimental program. There are two
questions in this respect: (i) what types of excitations
can be utilized as efficient detection paths with current
and developing technologies, and (ii) what materials have
the strongest response to DM scattering?

It is the purpose of this paper to initiate a discussion
on these questions, and provide theory input to the op-

timization of experimental strategy. We consider several
complementary detection channels:

• nuclear recoils, sensitive to the heaviest DM
masses, down to O(100 MeV) at best;

• electron transitions across band gaps in crystals,
covering DM masses down to O(100 keV);

• single phonon excitations in crystals, reaching the
lightest DM masses, down to O(keV).

The last two detection channels rely on collective prop-
erties of the target, which makes calculating the DM
model reach more involved than the standard nuclear re-
coil calculation. While nuclear recoil was proposed long
ago [56, 57], electron transitions in semiconductors (pro-
posed in Refs. [12, 13, 16]) and phonon production from
sub-MeV DM in crystals (put forth in Refs. [19, 45, 46])
have a much shorter history. Now that all these ideas are
available, we hope to find materials which have a strong
response in all channels, in order to cover a broad range
of DM masses.

We begin in Sec. II with a brief review of each de-
tection channel. A common framework to calculate the
reach via all three channels is presented in a compan-
ion paper [58], which makes it clear that the detection
rate factorizes into the particle-level scattering matrix
element squared and a material specific dynamic struc-
ture factor that captures the target response. Here we
summarize the main results of Ref. [58]. Our goal is to
find materials with strong responses (a large dynamic
structure factor) in each channel over the kinematically
allowed mass region.

Toward this goal, in Secs. III and IV, we carry
out a detailed comparison of target materials, focus-
ing on two benchmark DM scenarios to illustrate how
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Target Eg [eV] cLAs [10−5] Aj Z
∗

ε∞ ωO [meV] Q [10−7]

Si 1.11 2.84 28.1 - - 62.3 -

Ge 0.67 1.61 72.6 - - 34.8 -

NaI 5.8 0.90 23.0, 127 1.20 3.27 12.4 - 20.0 23

CsI 6.14 0.46 133, 127 1.22 2.70 6.9 - 10.0 12

CaWO4 5.2 1.42 40, 184, 16 2.84, 4.67 3.84 8.48 - 106 45

GaAs 1.42 1.57 69.7, 74.9 2.27 10.9 31.8 - 34.9 2.4

Al2O3 8.8 3.51 27.0, 16.0 2.97 3.26 35.6 - 104 130

Diamond 5.47∗ 5.98 12.0 - - 161 -

SiO2 9.2 5.76 28.1, 16.0 3.38 2.41 13.7 - 149 200

PbTe 0.19∗ 1.17 207, 128 5.69 26.3 3.91 - 13.5 1.3

InSb 0.24∗ 1.13 115, 122 2.40 23.7 20.5 - 21.5 0.34

AlN 6.20 5.70 27.0, 14.0 2.57 4.54 29.4 - 109 78

CaF2 11.81 2.15 40, 19.0 2.36 2.26 28.4 - 55.6 130

GaN 3.43∗ 4.17 69.7, 14.0 2.74 6.10 16.7 - 88.9 23

GaSb 0.720 1.32 69.7, 122 1.92 21.6 26.4 - 27.3 0.33

LiF 14.2 2.17 6.9, 19.0 1.05 2.02 33.5 - 77.2 270

MgF2 12.4 2.43 24.3, 19.0 2.00 1.97 12.1 - 73.7 130

MgO 7.83 3.11 24.3, 16.0 1.97 3.38 46.3 - 82.6 110

NaCl 8.75 1.19 23.0, 35.5 1.09 2.44 19.1 - 30.6 80

NaF 11.5 1.78 23.0, 19.0 0.98 1.78 29.6 - 49.9 140

PbS 0.29∗ 1.41 207, 32.1 4.45 15.0 7.27 - 26.9 4.9

PbSe 0.17∗ 1.27 207, 79.0 4.86 19.5 4.86 - 17.1 2.2

ZnO 3.3 4.18 65.4, 16.0 2.17 6.13 11.1 - 63.4 19

ZnS 3.80∗ 1.53 65.4, 32.1 2.03 5.91 32.8 - 41.0 14

Table I. Target materials studied in this work and their key parameters. The four blocks contain materials currently in use
in nuclear recoil experiments, those considered for proposed near-future experiments, those with superior properties for some
specific DM models discussed in this paper, and the remaining ones in alphabetical order, respectively. Sensitivity of electron
transitions relies heavily on the band gap Eg, for which experimental values are shown (those with asterisks are measured at low
temperature). Nuclear recoils and acoustic phonon excitations in the nucleon-coupling benchmark model are largely determined
by the speed of sound of longitudinal acoustic phonons cLA

s and atomic mass numbers Aj . For optical phonon excitations in the

light dark photon mediated model, relevant parameters are the Born effective charges Z
∗
, high-frequency dielectric constant

ε∞, optical phonon energies ωO as well as Aj , all of which combine into a quality factor Q, defined in Eq. (27), which determines
the reach at high mass. Barred quantities are properly averaged values; see Appendix A 3 for details.

to optimize target choice for the best sensitivity. Our
study covers a total of 24 crystal materials, whose
key properties that determine sensitivity to DM scat-
tering are summarized in Table I. Six of the targets
we consider are already used in existing nuclear re-
coil experiments, including Si (DAMIC [59], Super-
CDMS [60, 61]), Ge (CDMSlite [62], SuperCDMS [60,
61]), NaI (DAMA/LIBRA [63], KIMS [64], ANAIS [65],
SABRE [66], DM-Ice [67]), CsI (KIMS [68]), Al2O3

(CRESST-I [69]), CaWO4 (CRESST-II-III [70]), but
their responses over all channels have not been studied.
Two other targets – GaAs and diamond – have been pro-
posed for near-future experiments. We then choose a
representative sample of well-known polar semiconduc-

tors comprising 16 materials. Our work utilizes state-of-
the-art density functional theory (DFT) calculations of
material properties. Technical aspects of these calcula-
tions are discussed in Appendix A, where we also present
our calculated electron band structures and phonon dis-
persions for the target materials. In the main text, we
will highlight a subset of these materials, chosen accord-
ing to those currently (previously) in use in direct de-
tection (Si, Ge, CsI, CaWO4, (Al2O3)), as well as one or
two new materials which demonstrate particularly strong
sensitivity to each benchmark model. In particular, for
the dark photon mediator, we highlight SiO2 and InSb.
Results for the materials not presented in the main text
can be found in Appendix B.
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II. DETECTION CHANNELS

We begin by briefly reviewing the detection channels,
which are discussed thoroughly in our companion pa-
per [58]. Generally, for a DM particle χ, the event rate
per unit target mass is given by

R =
1

ρT

ρχ
mχ

∫
d3v fχ(v) Γ(v), (1)

where ρT is the target mass density, ρχ is the local DM
energy density, mχ is the DM mass, and fχ(v) is the
incoming DM’s velocity distribution in the target rest
frame. The event rate Γ(v) for an incoming DM particle
with velocity v is usually normalized against a reference
cross section, defined from the particle-level scattering
matrix elementM (in the nonrelativistic normalization)
evaluated at a reference momentum transfer q0. Here we
adopt the following definitions,

σn ≡
µ2
χn

π
|Mχn(q0)|2q0=mχv0 , (2)

σe ≡
µ2
χe

π
|Mχe(q0)|2q0=αme , (3)

for DM-nucleon and DM-electron interactions, respec-
tively, where µχn, µχe are the reduced masses, and v0
is the dispersion of the DM’s velocity distribution. They
coincide with the total particle-level scattering cross sec-
tions in the case of a heavy mediator. As we show in
Ref. [58], for spin-independent (SI) scattering off a tar-
get material via tree-level exchange of a mediator, the
matrix element factorizes into a DM component that is
universal, and a target response component captured by
a dynamic structure factor S(q, ω) that is target and ex-
citation specific, such that

Γ(v) =
πσ

µ2

∫
d3q

(2π)3
F2

med(q)S
(
q, ωq

)
. (4)

Here σ, µ represent either σn, µχn or σe, µχe, q is the
momentum transfer from the DM to the target, and

ωq =
1

2
mχv

2 − (mχv − q)2

2mχ
= q · v − q2

2mχ
(5)

is the corresponding energy deposition. The mediator
form factor is given by1

Fmed(q) =

{
1 (heavy mediator) ,

(q0/q)
2

(light mediator) .
(6)

The dynamic structure factor, which captures the tar-
get’s response to a general energy-momentum transfer

1 When present, in-medium screening effects are incorporated in
the dynamic structure factor S(q, ω) instead of the mediator form
factor Fmed(q).

ω, q, is given by

S(q, ω) ≡ 1

V

∑
f

∣∣〈f |FT (q)|i〉
∣∣2 2π δ

(
Ef − Ei − ω

)
, (7)

where V is the total volume, |i〉, |f〉 are the initial and
final states of the target system, and FT is the quantum
mechanical operator acting on the target Hilbert space
that the DM couples to.

For an isotropic target, the dynamic structure factor
depends only on the magnitude but not the direction of q,
so the velocity integral can be evaluated independently,
giving

η(vmin) ≡
∫
d3v

fχ(v)

v
Θ(v − vmin) , (8)

vmin =
q

2mχ
+

∆E

q
, (9)

for which analytic expressions can be obtained assuming
a boosted truncated Maxwell-Boltzmann (MB) distribu-
tion. On the other hand, for the more general case of
anisotropic target response, the dynamic structure fac-
tor depends on the direction of q, and we can utilize the
delta function in Eq. (7) to evaluate the velocity integral
first, giving

g(q, ω) ≡
∫
d3vfχ(v) 2π δ(ω − ωq), (10)

which can be computed analytically for the usually as-
sumed boosted truncated MB distribution.

In the following subsections, we consider each detection
channel in turn, summarizing the formalism presented in
Ref. [58] on the dynamic structure factors and detection
rates, building on the discussion in previous works (par-
ticularly [16, 46, 71]).

A. Nuclear Recoils

For each nucleus species,

S
(
q, ω

)
= 2π

ρT
mN

f2N
f2n

F 2
N (q) δ

(
q2

2mN
− ω

)
, (11)

where mN is the nucleus mass, fn, fp and fN = fpZ +
fn(A − Z) are the DM-neutron, DM-proton and DM-
nucleus couplings respectively, and FN (q) is the Helm
form factor

FN (q) =
3 j1(qrn)

qrn
e−(qs)

2/2 , (12)

rn ' 1.14A1/3
n fm , s ' 0.9 fm , (13)

which approaches 1 in the q → 0 limit. The differential
rate with respect to energy deposition, generalized to the
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case of multiple nucleus species, is

dR

dω
=

ρχ
mχ

σn
2µ2

χn

1∑
N AN[∑

N

AN
f2N
f2n

F 2
N F2

med η(vmin)

]
q2=2mNω

, (14)

where vmin = q
2µχN

.

The conventional nuclear recoil calculation is valid
when each nucleus can be considered independent of the
other nuclei. In a crystal target, this is true if the scat-
tering happens at a timescale 1/ω much shorter than
the inverse phonon frequencies 1/ωph, i.e. if the energy
deposition ω � ωph ∼ O(100 meV), or equivalently,
q � √mNωph (note that this momentum cutoff is essen-
tially the inverse of the spatial extent of nucleus wave-
functions in a harmonic potential). For lower energy de-
positions, the scattering event proceeds by direct produc-
tion of (single or multiple) phonons. We discuss single
phonon excitations in Sec. II C. We will see that single
phonon excitation rates are suppressed by the Debye-
Waller factor for q &

√
mNωph, which shows the comple-

mentarity between the two channels.

B. Electron Transitions

In solids, electrons form band structures with energy
eigenstates labeled by a band index i and a wave vector
k within the first Brillouin zone (1BZ). In an insulator
or semiconductor, all electrons occupy the valence bands
at low temperatures, and can be excited across the band
gap to conduction bands. The dynamic structure factor
encapsulates all such transitions from i1,k1 to i2,k2:

S
(
q, ω

)
= 2

∑
i1,i2

∫
1BZ

d3k1d
3k2

(2π)6
2π δ

(
Ei2,k2

− Ei1,k1
− ω

)
×
∑
G

(2π)3δ3(k2 − k1 +G− q)
∣∣f[i1k1,i2k2,G]

∣∣2,
(15)

up to screening effects. Here G = n1b1 + n2b2 + n3b3,
with n1, n2, n3 ∈ Z and b1,2,3 are reciprocal primitive
vectors. The crystal form factor is defined by

f[i1k1,i2k2,G] ≡
∑

G1,G2

δG2−G1,G

u∗i2
(
k2 +G2

)
ui1
(
k1 +G1

)
, (16)

where ui(k+G) are Bloch wavefunction coefficients com-
puted from DFT (see Appendix A 1). We neglect possi-
ble spin dependence of the electron band structures, and
simply sum over contributions from the degenerate spin

states. The total rate is given by

R =
2

ρT

ρχ
mχ

πσe
µ2
χe

∑
i1,i2

∫
1BZ

d3k1d
3k2

(2π)6∑
G

g(q, ω)F2
med(q)

∣∣f[i1k1,i2k2,G]

∣∣2 , (17)

where q = k2 − k1 + G and ω = Ei2,k2 − Ei1,k1 are
assumed. Note that unlike in nuclear recoils, the dy-
namic structure factor for electron transitions is generally
not isotropic in q for all energy-momentum depositions.
When anisotropies are significant, the rate cannot be ex-
pressed in terms of η(vmin), and the g function in Eq. (10)
should be used instead. The physical implication is that
the rate depends on the direction of the DM wind and ex-
hibits daily modulation. An example of this is discussed
in Ref. [58].

C. Single Phonon Excitations

Phonons are quanta of lattice vibrations in crystals.
For a three-dimensional crystal with n atoms/ions in the
primitive cell, there are 3n phonon branches, with dis-
persions ων,k (ν = 1, . . . , 3n), where the wave vector k is
in the 1BZ. The dynamic structure factor has the general
form

S
(
q, ω

)
=
π

Ω

∑
ν

δ
(
ω − ων,k

)
×

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x
0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2, (18)

where Ω is the volume of the primitive cell, j = 1, . . . , n
runs over the atoms/ions in the primitive cell, x0

j are
their equilibrium positions, and mj are their masses. Y j

contains the DM-atom/ion couplings, whose general def-
inition is given in Ref. [58]. We explicitly state the ex-
pression of Y j for each benchmark model below. εν,k,j
are the phonon polarization vectors. k is the momentum
within the 1BZ that satisfies q = k +G for some recip-
rocal lattice vector G — only those phonon modes that
match the momentum transfer up to reciprocal lattice
vectors can be excited, as a result of lattice momentum
conservation. At large q, the dynamic structure factor is
suppressed by the Debye-Waller factor, given by

Wj(q) =
Ω

4mj

∑
ν

∫
1BZ

d3k

(2π)3
|q · εν,k,j |2

ων,k
. (19)

We obtain the total rate

R =
1

mcell

ρχ
mχ

πσ

2µ2

∫
d3q

(2π)3
F2

med(q)
∑
ν

g(q, ων,k)

1

ων,k

∣∣∣∣∑
j

e−Wj(q)

√
mj

eiG·x
0
j
(
Y j · ε∗ν,k,j

)∣∣∣∣2 , (20)
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where mcell = ρTΩ is the mass contained in a primi-
tive cell. The phonon dispersions ων,k and polarization
vectors εν,k,j that enter this equation are obtained from
DFT calculations (see Appendix A 2).

1. Acoustic vs. Optical Phonons

It is useful to distinguish acoustic and optical phonons,
as they are sensitive to different types of DM interac-
tions. Among the 3n phonon branches, three are gapless
with linear dispersions ων,k ∼ cs|k| near |k| = 0 (with cs
the sound speed), as a result of spontaneous breaking of
translation symmetries; these are acoustic phonons that,
in the long wavelength limit, correspond to in-phase oscil-
lations of atoms/ions in the same primitive cell. The re-
maining 3(n−1) branches are gapped “optical” phonons,
corresponding to out-of-phase oscillations.

Due to the nature of in-phase oscillations, acoustic
phonons can be efficiently excited if DM couples to dif-
ferent atoms/ions in a correlated way. An example is a
DM particle coupling to nucleons via a scalar or vector
mediator. In this case, Y j is proportional to a linear
combination of Aj and Zj , and can have the same sign
and similar magnitudes for all j.

By contrast, the out-of-phase oscillations associated
with gapped phonon modes have enhanced sensitivity
to DM coupling to the atoms/ions in the same primi-
tive cell differently. This is the case for dark-photon-
mediated DM scattering with polar materials. The dark
photon mediator kinetically mixes with the SM photon,
and as a result, Y j point in opposite directions for op-
positely charged ions. We follow convention and call all
gapped phonon modes “optical,” though only in polar
materials where there are both positively and negatively
charged ions in the primitive cell (e.g. GaAs) do these
modes couple strongly to the (dark) photon via the oscil-
lating dipole. Diamond, Si and Ge, for example, all have
gapped phonon modes, but none of these materials has a
strong coupling to the dark photon as the primitive cell
does not contain oppositely charged ions.

III. TARGET COMPARISON: KINETICALLY
MIXED LIGHT DARK PHOTON MEDIATOR

A well motivated model of light dark matter involves
interaction with the SM via a light dark photon A′ that
kinetically mixes with the photon:

L = −1

4
F ′µνF ′µν +

1

2
κFµνF ′µν +

1

2
m2
A′A′2

+
(
|Dµχ|2 −m2

χ|χ|2
)

or
(
iχ /Dχ−mχχχ

)
, (21)

where Dµ = ∂µ − ie′A′µ, and the DM χ can be either
a complex scalar or a Dirac fermion. The gauge boson
kinetic terms can be diagonalized by redefining Aµ →
Aµ+κA′µ, which gives JµEM a charge under the dark U(1)

of κe. The reference cross section, utilized in present
results for this model, is given by

σe =
µ2
χe

π

κ2e′2e2

(α2m2
e +m2

A′)
2 . (22)

The projected reach on σe from electron transitions and
single phonon excitations are shown in Fig. 1, assuming
mA′ → 0. In the rest of this section, we describe in detail
the features in this plot, and also discuss nuclear recoils.

A. Single Phonon Excitations

Optical phonon excitation is the dominant detection
mode for dark photon mediated scattering. As shown in
Ref. [58], in the low q limit (which dominates the mo-
mentum integral for a light mediator since F2

med ∝ q−4),
the interaction is described via the Born effective charges
of the ions, Z∗j (which are generally 3× 3 matrices),

Y j = − q2

q · ε∞ · q
(
q ·Z∗j

)
+O(q2) , (23)

where ε∞ is the high-frequency dielectric matrix. The
total rate is given by Eq. (20). Only polar materials, or
those which have differently charged ions in the primitive
cell, can couple phonon modes to the dark photon, which
explains the absence of phonon reach curves for Si and
Ge in Fig. 1.

As explained in the previous section, optical phonon
modes involve out-of-phase oscillations and are gapped.
Because the optical modes are the dominant contribution
to the rate, the properties of the optical modes determine
the shape of the phonon excitation curves in Fig. 1: when
there are sharp changes in the reach as a function of mass,
it is because there is a transition in the dominance of a
particular optical mode. For low momentum transfer,
the dispersion of the gapped modes is approximately a
constant, such that the lowest DM mass reachable is de-
termined by setting the maximum kinetic energy of the
incoming DM, mχv

2
max/2, equal to the energy of the low-

est optical mode,2

mχ,min ∼ 3 keV

(
ωO

10 meV

)
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for

2 One has to be careful with this estimate, as the lowest optical
mode is generally not the dominant mode, rather it is the mode
which is most “longitudinal,” or maximizes q · ε. For simple di-
atomic materials, there is one precisely longitudinal mode in the
low q limit, but the same is not true for more complex materi-
als such as Al2O3, as many gapped modes have a longitudinal
component. A general rule of thumb is that the highest energy
optical mode is the most longitudinal.
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Freeze-In
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lar10-46

10-44
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10-40

10-38

10-36

10-34

10-32

10-3 10-2 10-1 1 10 102 103 104

Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb suffers from slow convergence in the electronic transition
calculation at mχ < 1 MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1 meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Ref. [72], corrected by including plasmon decay for sub-MeV DM [73]. Stellar constraints
are from Ref. [74] and existing constraint from Xenon10 is from Ref. [75].

example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.

We can also see that at higher masses, single optical
phonon production rates vary widely between materials.
This can be understood analytically. Consider first the
simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q, ω) ∝ q−1. Approximating Z∗j ' Z∗j 1,
and noting that Z∗1 = −Z∗2 ≡ Z∗, we see that the rate
is dominated by the longitudinal optical (LO) mode, for
which one can show εLO,k,1 and εLO,k,2 are anti-parallel,

and |εLO,k,j | =
√
µ12/mj in the limit k → 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and ε∞ ' ε∞ 1, the
rate simplifies to

R ∝ q40
mcell

ρχ
mχ

σe
ε2∞ωLO

Z∗2

µ2
χeµ12

log

(
mχv

2
0

ωLO

)
∝ Z∗2

A1A2ε2∞

(
meV

ωLO

)
≡ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach
in the high mass regime. More concretely, we find

R ' 1

kg yr

(
Q

10−7

)(
me

mχ

)(
m2
e

µ2
χe

)(
σe

10−39 cm2

)
× log

(
qmax

qmin

)
. (26)

Note that although we have focused on the special case
of diatomic polar crystals in order to derive analytic esti-
mates, similar considerations apply for more complicated
crystals. For example, it is not surprising that larger
Born effective charges and lighter ions are helpful. When
comparing the targets, we adopt the following prescrip-
tion for the quality factor,

Q ≡ 1

ε2∞ωO

n∏
j=1

( |Z∗j |
Aj

) 2
n

, (27)
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where n is the total number of ions in the primitive cell,
and ωO is the directionally averaged optical phonon en-
ergy of the highest mode near k = 0, given in Table I.
In our list of materials LiF has the largest quality factor,
with SiO2 second. We choose to highlight SiO2 in Fig. 1
because LiF is a less desirable experimental target due
to large backgrounds [76].

A further consideration for optimizing Q given a fixed
chemistry (atomic species) is to maximize the Born ef-
fective charges. For example, cubic tungsten trioxide
(WO3) has been reported to have anomalously high Born
effective charges of up to +12.5 and −9.1 on W and O
respectively [77]. Materials with such high Born effec-
tive charges, a manifestation of highly covalent bonding
character, provide a further route for maximizing Q.3

We comment in passing that also in the case of a heavy
dark photon mediator, the rate is largely determined by
the quality factor defined in Eq. (27) for sub-MeV DM;
for heavier DM, couplings to ions cannot be simply cap-
tured by the Born effective charges at high momentum
transfer, and the total rate is more challenging to com-
pute [58].

B. Electron Transitions

The typical band gaps between valence and conduction
bands, Eg, range from a fraction of an eV (InSb and
Ge) to as high as 10 eV (e.g. SiO2). This gap sets the
lightest DM mass to which the experiment is sensitive,
as kinematics requires that mχv

2
max/2 > Eg, implying

mχ,min ∼ 0.3 MeV

(
Eg
eV

)
. (28)

Thus, small gap materials will generally have better
reach. For example, InSb is superior to Si for mχ .
MeV, as seen in Fig. 1; in fact, the sub-eV band gap
of InSb allows for a significant G = 0 contribution that
is absent for larger gap materials, and this contribution
dominates at mχ . MeV, greatly extending the reach.
However, note that Ge, which has a smaller band gap
than Si, does not have a better reach. The difference
here is due to a direct vs indirect band gap.4 When de-
positing energy via a scattering process, there must be
some momentum transfer, and therefore, strictly speak-
ing, Eg in Eq. (28) should be replaced by the minimum
kinematically allowed energy difference. For direct gap

3 Cubic WO3 is dynamically unstable giving imaginary frequencies
in the phonon band structure. Therefore we do not include it
in phonon comparison plots, and leave a study of other stable
isomorphs for future work.

4 The HSE06 exchange-correlation functional used in our DFT cal-
culations slightly underestimates the direct band gap of Ge whilst
being a close match to the indirect band gap [78]. This leads to
the prediction of a direct band gap when optimized lattice pa-
rameters are used, contrary to experiment.

materials this means that mχ,min will increase, as it does
in Ge, which is why Ge has worse reach than Si. Note
that there is a complementarity between single phonon
excitations and electron transitions. In the phonon case,
materials with the best sensitivity tend to be insulators,
as they have small values of ε∞. However, for electron
transitions, one prefers materials with smaller band gaps,
which generally have larger values of ε∞. This is because
loop corrections to the in-medium photon propagator are
larger for a smaller band-gap: virtual electrons can be
more easily created because of the smaller energy differ-
ence.

For higher masses an analytic comparison is not
tractable. The wavefunction coefficients in Eq. (17) can-
not be modeled well analytically, and hence the reach
must be computed numerically. Note that for Si, Ge,
NaI, CsI, GaAs, and diamond, our results are roughly
consistent with previous calculations in Refs. [16, 18, 23],
where the DFT calculation is implemented differently.
However, we find discrepancies in the semi-core electron
contributions, which are subdominant for our light me-
diator benchmark, but become important for a heavy
mediator. We will investigate this issue in detail in an
upcoming publication. Another improvement of the cal-
culation that we plan to address is the treatment of in-
medium screening effects (see Ref. [58] for further discus-
sion), which we have neglected in the present calculation.
Such effects are expected to be weak for materials with
band gaps larger than about 1 eV. However, for sub-eV
gap targets such as InSb, for masses below ∼ 1 MeV, the
result here should be taken with caution, as the effects
may not be negligible.

C. Nuclear Recoils

The dark photon mediator coupling in a target sys-
tem is momentum dependent. At very small momentum
transfers q → 0, the coupling is negligible as the total
target is assumed to have no net charge. For q . r−1ion,
where rion is the size of an atom without the binding
electrons, ionic charges, if present, can be coupled to.
As the momentum transfer increases further, outer-shell
electrons will respond incoherently, possibly transitioning
to conduction bands independent of proton and inner-
shell electron responses. On the other hand, in a nuclear
recoil event, q � √mNωph � r−1ion. In this regime, pro-
tons respond coherently as long as FN (q) ' 1, since they
are bound in the nucleus, whereas electron couplings are
irrelevant since even the core electron wavefunctions do
not have such high momentum components. Therefore,
nuclear recoils can happen in an overall neutral crystal
via coupling to the proton number of each nucleus with-
out any atomic form factor suppression.

In order to compare against phonon and electron ex-
citations, we express the reach in terms of σe instead of
σn. This corresponds to replacing (fN/fn)2 → Z2

N for
each nucleus species, and µχn → µχe, q0 → αme, and
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lastly, σn → σe in Eq. (14). While we discuss material
comparison in this subsection, nuclear recoil reach curves
have been omitted in Fig. 1 in order not to further com-
plicate the plot; they can be approximately rescaled from
the reach curves in Fig. 2 below, and are straightforward
to compute from Eq. (14).

The low mass reach of nuclear recoils is material and
threshold dependent, and can be understood from kine-
matics. The maximum momentum transfer is given by
qmax = 2µχNvmax, and therefore the maximum energy
deposited is given by ωmax = 2µ2

χNv
2
max/mN . Requiring

that this be larger than the threshold sets the minimum
DM mass. For a threshold around 500 meV (which al-
most saturates the validity bound for some of the crys-
tal targets as discussed in Sec. II A), and vmax = 10−3,
mχ � mN , the minimum DM mass within reach is

mχ,min ∼ 100 MeV
( ωmin

500 meV

) 1
2
( mN

10 GeV

) 1
2

, (29)

Therefore, materials with lighter nuclei are more favor-
able for kinematic matching.

At higher masses, kinematics is not a limiting factor,
and we can obtain an analytic approximation for the rate.
Assuming a singular nuclear species, AN = A, ZN = Z
simplifies Eq. (14) to

dR

dω
∝ σe
mχµ2

χe

Z2

A2

1

ω2
η(vmin) , (30)

and we see that the rate is dominated by small ω. At
masses above a few hundred MeV and small ω, η(vmin)
approaches η(0). The total rate then becomes

R ∝ σe
mχµ2

χe

Z2

A2

1

ωmin
, (31)

and is approximately material independent. Note that
if the dark photon mediator is heavy, the factor A2ω2 in
the denominator of Eq. (30) would be absent, and heavier
(larger Z) elements are advantageous.

IV. TARGET COMPARISON: HADROPHILIC
SCALAR MEDIATOR

As a second benchmark model, we consider a real
scalar mediator φ coupling to the proton and neutron,

L =
1

2
(∂µφ)2 − 1

2
m2
φφ

2 + fp φ pp+ fn φnn

+

(
1

2
(∂µχ)2 − 1

2
m2
χχ

2 +
1

2
yχmχφχ

2

)
or
(
iχ/∂χ−mχχχ+ yχφχχ

)
, (32)

where the DM χ is taken to be either a real scalar or
a Dirac fermion. In the absence of electron couplings,
the relevant search channels are single phonon excitations
and nuclear recoils. We will quote the reach in terms of

σn, given by

σn =
µ2
χn

4π

y2χf
2
n(

m2
χv

2
0 +m2

φ

)2 . (33)

The results are shown in Figs. 2 and 3, for a light (ef-
fectively massless) and heavy mediator respectively, as-
suming fp = fn. In the rest of this section we explain in
detail the features in these plots.

A. Single Phonon Excitations

We first consider DM creating a single phonon via the
nucleon coupling. As shown in Ref. [58],

Y j = q

(
fj
fn

)
FNj (q) , (34)

where fj = fpZj + fn(Aj − Zj) for the nucleus at site j
in a primitive cell, and FNj (q) is the nuclear form factor
given by Eq. (13). As before, the total rate is calculated
from Eq. (20). However, a major difference compared to
the dark photon mediator model is that, if fp and fn have
the same sign, the rate is dominated by acoustic and not
optical phonons, assuming the energy threshold is low
enough to access the acoustic phonons. This is because
Y j points in the same direction for all j, resulting in
stronger in-phase oscillations as discussed in Sec. II C 1.

We first discuss Fig. 2, for the light mediator case,
when the energy threshold, ωmin, is 1 meV. While such
a low threshold is experimentally challenging, the curves
are easier to understand conceptually compared to the
higher ωmin curves. In fact, over most of the mass
range, for most materials, the rate is dominated by single
longitudinal acoustic (LA) phonon production. At the
high mass end, the reach is material-independent, under-
stood analytically as follows. The mediator form factor
Fmed ∝ 1/q2, and therefore the rate is dominated by
the lowest detectable momentum transfer. In this case,
we can set G = 0 (or equivalently, q = k in Eq. (20)),
Wj ' 0, ωLA = cLAs q, FNj ' 1, and g(q, ω) ∝ q−1.

Lastly, in this limit q · εLA,j,k ' q
√
mj/mcell. Thus the

rate

R ∝
m3
χ

m2
cell

σn
µ2
χn

(∑
j

fj
fn

)2
1

ωmin
. (35)

For fp = fn, we have fj ∝ Aj ∝ mcell/mn, and the
dependence on the target properties drops out. The ref-
erence cross section σn corresponding to a given event
rate R scales with mass as µ2

χn/m
3
χ, as we see in Fig. 2.

Note that as we go to higher mχ the reach on the cou-
plings f2ny

2
χ gets worse as µ2

χnmχ; the apparent better
reach at higher mass in Fig. 2 is due to the definition of
σn ∝ m−4χ .

For DM masses below ∼ 0.1 MeV in Fig. 2, kinematics
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Fifth Force + SIDM

Fifth Force +
Pert.
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Figure 2. Single phonon and nuclear recoil reach for a light (mφ = 1 eV) hadrophilic scalar mediator. 1, 20, and 100 meV
thresholds are shown for the single phonon reach (solid, long dashes, and short dashes respectively), and 500 meV threshold
is assumed for the nuclear recoil reach (medium dashes). For mφ = 1 eV the dominant constraint on fn is from fifth force
experiments [75]. If mχ makes up all the DM then the dominant constraint on yχ is from DM self-interactions (SIDM) [75]. If
mχ is only a subcomponent, we only require perturbativity yχ < 1 (Pert.); in this case the reach curves can be easily rescaled.

causes the reach to diminish: the maximum momentum
transfer, 2mχvmax, must be large enough to reach the
minimum momentum transfer set by the detector thresh-
old, ωmin/c

LA
s . This sets the minimum reachable DM

mass

mχ,min ∼ 20 keV

(
ωmin

meV

)(
10−5

cLAs

)
. (36)

To reach the lightest dark matter particle at low thresh-
olds, an ideal material is then diamond, as it has the
highest speed of sound. AlN and SiO2 are the next best
candidates from our search.

As we move on to the curves with higher energy thresh-
olds, ωmin = 20 meV and 100 meV, the materials with
lower sound speed lose reach altogether. (The ωmin = 500
meV curves are derived from nuclear recoil; this is dis-
cussed in the next subsection.) The reason is that acous-
tic phonons are accessible only when ωmin . cLAs /a,
where a is the lattice spacing. For materials with lower
sound speed, the energy threshold may simply never be
low enough to have any reach with an acoustic phonon.
In addition, one can see where optical phonons start to
play a role, as the slope of the reach curve changes at
lower masses, e.g. Si with an energy threshold of 20 meV.

This feature will be present for all materials if the lowest
kinematically reachable DM mass from optical phonon
excitations, given in Eq. (24), is smaller than the lowest
kinematically reachable DM mass from acoustic phonon
excitations, given in Eq. (36).

Next we turn our attention to Fig. 3, for the same
hadrophilic scalar mediator benchmark, but with a heavy
mediator. Again, we first focus on the case of a 1 meV
threshold, as here the acoustic phonon contributions
dominate and analytic simplifications can be made since
the integrals are dominated by the high momentum be-
havior. There are four distinct regions in mass and we
now discuss the mass and material parameters depen-
dence of each of them.

In the lowest mass regime, mχ . 10−1 MeV, the reach
ends when the acoustic modes are no longer kinemati-
cally available, just as in the massless mediator case, with
minimum reachable mass again set by Eq. (36). Between
10−1 and 1 MeV, the reach curves flatten and the order
of the curves reverses: materials with a higher speed of
sound have worse reach, which can be understood ana-
lytically starting with Eq. (20). For mχ . 1 MeV the
momentum transfer is within the 1BZ, so we can take
q = k, Wj ' 0, ω = csq and g(q, ω) ∝ 1/q as in the light
mediator case. For simplicity we ignore angular depen-
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N
R
E
xp.
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Figure 3. Single phonon and nuclear recoil reach for a massive (mφ & 400 MeV) hadrophilic scalar mediator. 1, 20, and 100 meV
thresholds are shown for the single phonon reach (solid, long dashes, and short dashes respectively), and 500 meV threshold is
assumed for the nuclear recoil reach (medium length dashes). There are no stellar constraints for mφ & 400 MeV [75]. Existing
experimental nuclear recoil constraints (NR Exp.) and the neutrino floor are from Ref. [79].

dence, assume the ions are the same, Aj ≡ A, mj ≡ m,
set fn = fp, and consider only the longitudinal mode so
that q · ε ∝ q. Then we have

R ∝ σn
mcellm3

χcs

∫ 2mχv

d3k
1

k2

(
kA√
m

)2

∝ σn
cs
, (37)

where the upper cutoff is due to kinematics and manifests
in the g function, which goes to zero as k reaches the
maximum allowed momentum transfer.

A similar derivation applies to the mass dependence
in the next two regimes. For 1 MeV . mX . 10 MeV,
the dominant momentum transfer is outside of the 1BZ,
which means that ω can no longer be approximated by
csq. In fact, since ω is only a function of the phonon
momentum in the 1BZ, it will vary rapidly as q increases.
We therefore exchange ω with a q independent quantity,
roughly thought of as the average of ω over the whole
1BZ, 〈ω〉. The rate becomes

R ∝ σn
mcellm3

χ〈ω〉

∫ 2mχv

d3k
1

k

(
kA√
m

)2

∝ σnmχ

〈ω〉
. (38)

Since the rate scales inversely with 〈ω〉, materials with
lower energy phonon modes are preferred. As 〈ω〉 is usu-
ally correlated with cs, the ordering of the curves is the

same as in the previous regime. We have neglected the
Debye-Waller factor in the analytic estimates above, be-
cause the momentum transfer is on the order of mχv, and

is less than the Debye-Waller cut-off around
√
mN 〈ω〉.

However, for the last mass regime, above ∼ 10 MeV, this
is no longer the case, and the momentum integral is cut-
off by the Debye-Waller factor,

R ∝ σn
mcellmχµ2

χn〈ω〉

∫ √mN 〈ω〉
0

d3k
1

k

(
kA√
m

)2

∝ σnA
2〈ω〉2

mχµ2
χn

. (39)

Therefore, materials with heavier elements and higher
phonon energies are preferred. In our search, CaWO4 has
the highest factor of A〈ω〉, with PbTe following, which is
the reason we choose to highlight PbTe in Fig. 3.

For higher thresholds, the optical phonon modes con-
tribute to a greater degree, so the scaling arguments given
above for the first two mass regimes no longer hold, but
for the last two they do, which is why the curves are
almost parallel.
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B. Nuclear Recoils

For DM heavier than O(100 MeV), nuclear recoils of-
fer a complementary detection channel to phonon excita-
tions. The low mass behavior of the reach curves is un-
derstood in the same way as in Sec. III C (see Eq. (29)),
and lighter elements are advantageous. At higher masses,
the σn reach depends on the mediator mass. To show this
analytically we again consider a single nucleus species,
AN = A, and fn = fp. In the case of a light mediator
the differential rate in Eq. (14) becomes

dR

dω
∝
σnm

3
χ

µ2
χn

1

ω2
η (vmin) . (40)

For DM heavier than a few hundred MeV, the mN depen-
dence via η(vmin) is weak, as in the dark photon mediator
case. The rate is then

R ∝
σnm

3
χ

µ2
χn

1

ωmin
, (41)

which is material independent. This is why all the reach
curves coincide for large DM masses. We also see that as
in the case of acoustic phonons, achieving lower energy
thresholds is crucial for improving the reach.

If the mediator is heavy, we have

dR

dω
∝ σnA

2

mχµ2
χn

η (vmin) , (42)

R ∝ σnA
2

mχµ2
χn

ωmax ∝
σnAµ

2
χN

mχµ2
χn

, (43)

where for simplicity we take the η function to decrease
sharply at the kinematic bound. We reach the conclusion
that heavier nuclei are preferred, similar to the case of
single phonon excitations with a heavy mediator. Note
also that there is no threshold dependence for larger
masses. Therefore a lower threshold only helps to reach
lower DM masses, as opposed to the case of the light
mediator.

V. CONCLUSIONS

We considered spin independent DM direct detection
through three channels – single phonon excitations, elec-
tron transitions, and nuclear recoils – in a wide variety
of crystal target materials, and two well motivated DM
models. Many of these materials are already being dis-
cussed for DM detection, but we have presented some
new targets for consideration.

For each type of interaction, we specified the target
material parameters which should be optimized in or-
der to maximize the reach, and we found complemen-
tarity between targets depending on (i) the experimen-
tal threshold, (ii) the mass range, and (iii) the model.
The experimental threshold dictates which modes are

available: at higher recoil energies, only electron tran-
sitions and nuclear recoils are possible; as the thresh-
old drops, optical and acoustic phonons become acces-
sible. The phonon modes in materials with high sound
speed become kinematically available at higher thresh-
olds than in materials with lower sound speeds. Also, for
a given threshold, materials with higher sound speeds
have reach to lighter dark matter. Regarding the mass
range, the smallest detectable masses are always set by
a kinematic constraint, and the dependence on mate-
rial parameters, and detection threshold, can be found
in Eqs. (24), (28), (36), (29) for optical phonon, elec-
tron, acoustic phonon excitations, and nuclear recoils re-
spectively. As for the model, we defined a quality factor
(in Eq. (27)) for single optical phonon excitations from
dark photon mediated scattering to indicate which tar-
gets will have the best sensitivity. On the other hand,
for a hadrophilic mediator, target optimization for acous-
tic phonon excitations depends on the mediator and DM
masses. We summarize our results in Table II.

An attractive feature of phonon and electron excita-
tions is the possible daily modulation of event rates, as
the dynamic structure factors in Eqs. (15) and (18) are
generically anisotropic. In the context of phonon excita-
tions, Al2O3 has been considered in Ref. [46], and in our
companion paper [58] we have discussed hexagonal boron
nitride as an example of an O(eV)-gap target which ex-
hibits daily modulation in electron transitions. We plan
on identifying other promising targets for daily modula-
tion in the future.
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Light dark photon mediator (Sec. III, Fig. 1)

Detection channel
Quantity to maximize to reach ...

Best materials
... lower mχ ... lower σe

(Optical) phonons ω−1O (Eq. (24)) quality factor Q defined in Eq. (27) SiO2, Al2O3, CaWO4

Electron transitions E−1g (Eq. (28)) depends on details of electron wavefunctions InSb, Si

Nuclear recoils (Aωmin)
−1

(Eq. (29)) (Z/A)2 ω−1min (Eq. (31)) diamond, LiF

Hadrophilic scalar mediator (Sec. IV, Figs. 2, 3)

Detection channel
Quantity to maximize to reach ...

Best materials
... lower mχ ... lower σn

(Acoustic) phonons cs/ωmin (Eq. (36))

Light mediator: ω−1min (Eq. (35)) diamond, Al2O3

Heavy mediator: c−1s or ω−1ph or Aωph
all complementary

depending on mχ (Eqs. (37), (38), (39))

Nuclear recoils (Aωmin)
−1

(Eq. (29))
Light mediator: ω−1min (Eq. (40)) diamond, LiF

Heavy mediator: A (Eq. (43)) CsI, Pb compounds

Table II. Summary of our results. The material properties relevant for the optimization of target are: atomic mass number A,
proton number Z, electronic band gap Eg, speed of sound cs, optical phonon energy ωO, average phonon energy ωph, as well
as Born effective charges and the high-frequency dielectric constant that enter the quality factor Q. Achieving lower detector
energy thresholds ωmin is also crucial in several cases.

Appendix A: Calculations of Target Properties

We obtain the materials-specific responses using first
principles calculations based on density functional the-
ory (DFT) [80]. DFT is a standard method for obtain-
ing solutions to the many-electron interaction problem,
and can accurately predict materials properties ab ini-
tio ranging from electronic and magnetic to mechanical
and vibrational properties. For this work, we used DFT
to calculate the full electronic and phonon spectra for
a range of materials, with the calculation details given
below. However, since DFT is a ground-state method,
it suffers from the famous ‘band gap’ problem where
excited-state properties, including band gaps, are not
accurately treated using standard DFT methods. We
correct for this in two ways: (i) we performed beyond-
DFT calculations (hybrid functional calculations) for
several of the compounds where standard DFT gave a
zero band gap, and (ii) we adjusted the band gaps to
experimentally-reported values for all compounds. We
note that the convergence parameters used for the elec-
tronic and phonon calculations are different owing to the
different physical properties being calculated.

The list of materials calculated with their correspond-
ing space groups and space group numbers is given in
Table III, with the crystal structures depicted in Fig. 4.
For compounds where several structural isomorphs exist,
we considered the reported low-temperature ground state
structure. The Brillouin zones for the crystal structures

considered in this work are depicted in Fig. 5 with the
high-symmetry points labelled. Both the electronic and
phonon band structure plots take paths through these
high-symmetry points.

All DFT calculations were performed using the Vi-
enna Ab initio Simulation Package (VASP) [81–83] with
projector augmented wave (PAW) pseudopotentials [84,
85] using the Perdew-Becke-Ernzerhof (PBE) exchange-
correlation functional [86]. In the PAW scheme, we
treated s and p electrons as valence for Li, C, N, O, F,
Na, Al, Si, S, Cl, Ca, I, Cs and W, p electrons as valence
for Mg and d electrons as valence for Zn, Ga, Ge, As,
In and Sb. Below we summarize the convergence criteria
used for the (i) electronic structure and wavefunctions,
and (ii) phonon calculations.

1. Calculation details for electronic band
structures and wavefunctions

For structural optimizations, a plane wave cutoff-
energy of 950 eV was used with a 12×12×12 Γ-centered
k-point grid. The energy and force convergence criteria

were 1× 10−8 eV and 1 meV Å
−1

respectively.

All-electron wavefunction coefficients were extracted
from PAW calculations using a modification of the paw-
pyseed code [119]. This enabled recovery of the full wave-
functions as normalized single-particle Kohn-Sham states
from the pseudo-wavefunctions obtained by the PAW-
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Lattice Parameters (Å) Space group Structure Eg
Material a (el., ph., exp.) c (el., ph. exp.) (number) Calc. Eg (eV) Ref. Ref.

Al2O3 4.808, 4.805, 4.759 13.121, 13.116, 12.991 R3c (167) 5.84 [87] [88]

AlN 3.130, 3.128, 3.111 5.020, 5.016, 4.978 P63mc (186) 4.02 [89] [90]

CaF2 5.507, 5.499, 5.463 – Fm3m (225) 11.81 [91] [92]

CaWO4 5.317, 5.320, 5.243 11.534, 11.444, 11.376 I41/a (88) 4.04 [93] [94]

CsI 4.671, 4.669, 4.567 – Pm3m (221) 3.67 [89] [95]

Diamond 3.572, 3.572, 3.567 – Fd3m (227) 4.12 [89] [96]

GaAs 5.751, 5.756, 5.653 – F43m (216) 0.141 [89] [97]

GaN 3.129, 3.247, 3.189 5.246, 5.280, 5.186 P63mc (186) 1.71 [98] [99]

GaSb 6.217, 6.223, 6.118 – F43m (216) 0.47 [89] [100]

Ge 5.763, 5.782, 5.657 – Fd3m (227) 0.37 [89] [101]

InSb 6.635, 6.634, 6.478 – F43m (216) 0.06 [89] [102]

LiF 4.063, 4.065, 4.020 – Fm3m (225) 8.85 [103] [104]

MgF2 4.702, 4.684, 4.623 3.097, 3.081, 3.052 P42/mnm (136) 6.79 [89] [105]

MgO 4.258, 4.250, 4.211 – Fm3m (225) 4.43 [106] [107]

NaCl 5.670, 5.696, 5.641 – Fm3m (225) 5.05 [89] [108]

NaF 4.682, 4.619, 4.634 – Fm3m (225) 6.14 [109] [110]

NaI 6.498, 6.530, 6.473 – Fm3m (225) 3.61 [89] [111]

PbS –, 5.994, 5.936 – Fm3m (225) – [89] [112]

PbSe –, 6.206, 6.124 – Fm3m (225) – [89] [112]

PbTe –, 6.561, 6.454 – Fm3m (225) – [89] [112]

Si 5.469, 5.469, 5.431 – Fd3m (227) 0.75 [89] [113]

SiO2 5.038, 5.016, 4.913 5.526, 5.507, 5.405 P3221 (154) 5.66 [114] [115]

ZnO 3.288, 3.287, 3.250 5.308, 5.304, 5.207 P63mc (186) 0.72 [89] [116]

ZnS 5.449, 5.443, 5.420 – F43m (216) 2.01 [117] [118]

Table III. List of material properties used in DFT calculations. The calculated lattice parameters (a and c) are listed for both
those used in the electronic (el.) and phonon (ph.) excitation calculations, along with reported experimental values (exp.).
The space group and corresponding space group number are included for the crystal strucrures considered. The PBE-level
calculated band gaps are also listed, with details explained in the text.

method. Initial PAW wavefunctions were calculated with
a plane wave energy-cutoff of 1000 eV, from which the all-
electron wavefunctions were constructed with a minimum
energy-cutoff of 450 eV. Calculations were performed us-
ing Γ-centered Monkhorst-Pack grids, with a k-point den-

sity of at least 0.27 Å
−1

. Energy bands were included up
to 60 eV above and below the valence band maximum.
However, since there is no pseudopotential containing the
low-lying 4d -states for indium in VASP, these bands are
neglected from the calculations. In NaI and CsI the I
4d states are positioned at approximately 43 eV and 42
eV below the valence band maxima respectively. A scis-
sor operator was applied to match the experimental band
gaps given in Table I. For Ge, InSb and GaSb, the PBE
functional gave partially occupied bands due to under-
estimation of the band gap. In these cases the HSE06
hybrid functional [120] was applied in a static calcula-
tion to introduce a band gap before applying the scissor
correction. Electronic band structures were computed on
a discrete k-mesh along the high-symmetry directions.

PbS, PbSe and PbTe were excluded from the electron

calculations because spin-orbit interactions are required
to capture important features of the band structures and
spin-orbit coupling is not yet implemented within the
pawpyseed code.

Multiple k-point densities, energy-cutoffs, and energy
bands included were tested for all materials to ensure
convergence of the scattering rates to less than 2% at
mχ = 10 GeV, less than 3% at mχ = 10 MeV, and less
than 28%, 18%, 18% and 10% for GaAs, GaSb, Ge, and
Si at mχ = 1 MeV respectively. InSb was tested with a
12 × 12 × 12 and 14 × 14 × 14 k-point grid, plotted as
dotted and solid curves in Fig. 1 respectively. At mχ = 1
MeV the rate convergence is 5%, and decreases for larger
masses. However at smaller masses the G = 0 contribu-
tion, from momentum transfers within the 1BZ, and en-
ergy depositions below ∼ 1 eV, dominate the rate. The
slow convergence here is due to the fact that InSb has
rapidly changing band structure near the Γ point, and
more k-points are needed for better convergence. These
uncertainties are plotted as shaded bands in Fig. 1, and
accompanying figures in Appendix B, although most are
invisible due to the plots being log-log.
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2. Calculation details for phonon spectra

We obtained the phonon dispersions from
Phonopy [121] using the ’frozen-phonon’ method
by diagonalizing the force matrix using VASP as the
force calculator. For the VASP calculations, the elec-
tronic wavefunctions were expanded in a plane-wave
basis with a kinetic-energy cutoff of 600 eV. The Bril-

louin zone sampling was no less than 0.8 Å
−1

in each
direction of the unit cell with Monkhorst-Pack grids,
and was correspondingly scaled for phonon supercell
calculations. Born effective charges were calculated for
polar materials using density-functional perturbation
theory as implemented in VASP.

3. Parameters in Table I

The experimental electronic band gaps, Eg, are taken
from references cited in Table III. The speed of sound,
cLAs , was calculated by averaging ωLA/q over a uniform
20×20 grid on the surface of a sphere in reciprocal space
with radius q ≈ 10 eV centered at the Γ point. The same
averaging procedure was used in calculating the range of
optical modes, ωO, when a range exists. The average

Born effective charge, Z
∗
, is defined as Tr

[
Z∗+
]
/3, where

Z∗+ is the Born effective charge of the positive ion(s) (the
other charges can be found by requiring that the primi-
tive cell is neutral). The average high frequency dielectric
constant, ε∞, is defined as Tr [ε∞] /3.

Appendix B: Additional Target Comparison Plots

In this Appendix, we provide plots for the remainder
of the materials in Table I not presented in the main
text. For concreteness, in all figures we take the local
DM density to be ρχ = 0.4 GeV/cm3, and assume a
Maxwell-Boltzmann distribution with velocity dispersion
v0 = 230 km/s, truncated at the escape velocity vesc =
600 km/s, and boosted to the target rest frame by the
Earth velocity in the galactic rest frame vE = 240 km/s.
Also, we take the direction of the Earth’s velocity to be
in the ẑ direction with respect to the crystal coordinates
when computing the reach (we expect modulation effects
from the Earth’s motion to be small). The constraints on
σ correspond to a 95% confidence level assuming Poisson
distributed counts and no events are seen (equivalently,
a constraint is derived for three events). We assume an
exposure of one kg-yr.
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(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one offset by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, offset by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF2. Ca
ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) α-quartz: SiO2. Each
Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al2O3.
Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF2. Each
Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO4. Each Ca ion is
bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

Figure 4. Crystal structures of targets in Table I.
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(a) Simple cubic: CsI. (b) Face centered cubic: Diamond,
Si, Ge, GaAs, InSb, GaSb, ZnS,
NaCl, MgO, LiF, NaF, NaI, PbS,
PbSe, PbTe, CaF2.

(c) Simple tetragonal: MgF2.

(d) Body centered tetragonal: CaWO4. (e) Hexagonal: SiO2, GaN, AlN, ZnO. (f) Rhomohedral: Al2O3.

Figure 5. First Brillouin zones of targets in Table I, with high symmetry points labeled.
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Figure 6. Calculated electronic band structures of targets in Table I.
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Figure 7. Calculated electronic band structures of targets in Table I.
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Figure 8. Phonon dispersions calculated with VASP and phonopy [121] including non-analytic corrections. The path through
the high symmetry points is found using SeeK-path [122].
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Figure 9. Phonon dispersions calculated with VASP and phonopy [121] including non-analytic corrections. The path through
the high symmetry points is found using SeeK-path [122].
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Figure 10. Same as Fig. 1, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 1.
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Figure 11. Same as Fig. 1, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 1.
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Figure 12. Same as Fig. 1, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 1.
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Figure 13. Same as Fig. 2, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 2.
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Figure 14. Same as Fig. 2, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 2.
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Figure 15. Same as Fig. 2, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 2.
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Figure 16. Same as Fig. 3, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 3.
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Figure 17. Same as Fig. 3, but with different materials. For reference, gray lines are CsI, Si, and Al2O3 taken from Fig. 3.
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Figure 18. Fig. 3 with different materials. Gray lines are CsI, Si, and Al2O3 taken from Fig. 3.
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