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Abstract 

We present the project aimed at creating a database of 
detailed architectural process models of memory-based 
decision models. Those models are implemented in the 
cognitive architecture ACT-R. In creating this database, we 
have identified commonalities and differences of various 
decision models in the literature. The model database can 
provide insights into the interrelation among decision models 
and can be used in future research to address debates on 
inferences from memory, which are hard to resolve without 
specifying the processing steps at the level of precision that a 
cognitive architecture provides. 

Keywords: inference from memory; process model; ACT-R; 
decision making; model database 

Introduction 

How do we infer which of two cars will be more durable? 

Which company will be more successful in the coming 

year? To address such questions, in a typical two-alternative 

forced-choice task of inference from memory (Gigerenzer & 

Goldstein, 1996), two objects (e.g., two companies) are 

presented on a computer screen. A subject has to infer 

which of the two objects scores higher on a criterion of 

interest (e.g., the company growth in the next year) by 

relying on knowledge stored in memory.  

Models of inference describe how subjects make 

inferences by using attributes of objects (e.g., who is the 

company’s CEO) as cues. Many inferential models have 

focused on describing not just what the outcome of the 

inference would be, but also which processing steps a 

decision maker would take to reach a decision. These 

models include, among others, the various fast-and-frugal 

heuristics from the adaptive toolbox of heuristics 

(Gigerenzer, Todd, & the ABC Research Group, 1999), 

parallel constraint satisfaction (PCS; Glöckner & Betsch, 

2008) and sequential sampling models (e.g., Lee & 

Cummins, 2004).  

Such process models have increased substantially our 

understanding of how people make inferences (e.g., Bröder, 

2012) and why the inferential process is successful 

(Gigerenzer & Brighton, 2009), but perhaps more 

importantly they have raised other questions and fueled 

important debates: Do people rely on a repertoire of 

strategies or on a single strategy (e.g., Lee & Cummins, 

2004; Marewski, Schooler, & Gigerenzer, 2010; Newell, 

2005; Glöckner & Betsch, 2008)? Which types of models 

(e.g., heuristics vs. more complex models) describe better 

people’s decision processes (e.g., Goldstein & Gigerenzer, 

2002; Newell & Bröder, 2008) and under what 

circumstances? When do people rely on non-compensatory 

as opposed to compensatory strategies (Glöckner & Bröder, 

2011)?   

One major barrier to addressing those and related 

questions is that many models are almost always 

underspecified compared to the data that they are tested 

against. Specifically, process models of decision making 

often remain silent about components of cognition that are 

the foundation of decision making, such as perception, 

motor action, or memory. We argue that specifying relevant 

cognitive-behavioral processes will help those models make 

more precise predictions about, for example, response time 

and other process data. The increased precision, in turn, will 

not only allow researchers to more easily tell potentially 

competing models apart, but also aid in addressing ongoing 

debates and open research questions.  

In fact, a significant amount of research has already 

started to embed existing decision models into detailed 

cognitive theories (Dimov, Marewski, & Schooler, 2013; 

Fechner, Pachur, Schooler, Mehlhorn, Battal, Volz, & Borst, 

2016; Marewski & Mehlhorn, 2011; Marewski & Schooler, 

2011; Nellen, 2003; Thomas, Dougherty, Sprenger, & 

Harbison, 2008; Schooler & Hertwig, 2005). The aim of the 

current line of work is to expand upon these efforts by 

systematically implementing existing models of inference in 

the cognitive architecture ACT-R (Anderson, 2007).  

In what follows, we will briefly introduce ACT-R and 

present a summary of the model database that we are in the 

process of constructing. We will then explain in detail what 

knowledge each of the decision strategies requires for its 

functioning. We will conclude by discussing the advantages 

and shortcomings of our models. Once finalized, we plan to 

make the database of architectural process models of 

decision making available to the public.  

ACT-R 
ACT-R is arguably the most advanced integrated theory 

of cognition. It has been used to construct models of very 

diverse tasks and phenomena, which include, among others, 

associative recognition (Schneider & Anderson, 2012), 

analogy making (Salvucci & Anderson, 2001) and 

multitasking (Salvucci & Taatgen, 2008).   
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Table 1: Outline of the database of architectural process models of decision making, together with summaries of 

hypothesized procedural and declarative, symbolic and subsymbolic knowledge.   

 

Model Source 
Declarative 

knowledge  
Procedural knowledge  

Information at the subsymbolic  

level 

Recognition 

Heuristic 

Goldstein & 
Gigerenzer 

(2002) 

Alternatives 
Try to retrieve chunks representing alternatives. 
Select alternative corresponding to successfully 

retrieved chunk. 

Activation of chunks of alternatives 
(proportional to occurrence frequency in 

environment) 

Fluency Heuristic 
Schooler & 

Hertwig (2005) 
Alternatives 

Retrieve chunks representing alternatives and time 

retrieval using timing module. 
Select alternative with faster retrieval time. 

 

Exemplar Fluency 

Juslin & Persson 

(2002); 

Nosofksy (1984) 

Cue profiles 

Retrieve cue profile most similar to alternative’s cue 

profile and time retrieval using timing module. 
Select alternative with faster retrieval time. 

 

Exemplar Average 

Cue profiles 

Cue profiles with 

direct criterion 

knowledge 

Producing an average criterion value through 
blending over cue profiles similar to alternatives’. 

Select alternative with larger blended criterion value. 

 

Exemplar 

Individual 

Cue profiles 

Cue profiles with 
direct criterion 

knowledge 

Retrieve cue profile with direct criterion knowledge 

most similar to alternative’s cue profile . 
Select alternative with higher population of most 

similar cue profile. 

 

Set of rules 

Prototype 

Johanson & 

Kruschke (2005) 

Cue profiles 

 

Separate productions firing for each cue-profile-pair 

difference. 
Variable utility of evaluative productions 

Prototype Fluency  

Cue profiles 

High criterion 
value prototype 

Retrieve an alternative’s cue profile.  

Retrieve high-criterion-value prototype and time 

retrieval using timing module. 
Select alternative, for which high-criterion-value 

prototype was retrieved more quickly. 

 

Instance-based 

learning theory 

average 

Gonzalez, Lerch, 
& Lebiere 

(2003);  

Logan (1988) 

Cue profiles 
Cue profile pairs 

 

Retrieve cue profiles of both alternatives.  
Produce an average response by blending over 

choices with similar cue profile pairs. 

 

Instance-based 

learning theory 

individual 

Cue profiles 

Cue profile pairs 
 

Retrieve cue profiles of both alternatives.  

Retrieve cue profile pair most similar to cue profile 
pair of current alternatives. 

 

Parallel constraint 

satisfaction 

Glöckner & 
Betsch (2008) 

Cue profiles 

Cue profile pairs 
Cue profile pair 

prototypes 

Retrieve cue profiles of both alternatives.  

Retrieve cue profile pair prototype most similar to 

cue profile pair of current alternatives. 

 

Take-the-best 

reinforcement 

Gigerenzer & 
Goldstein (1996) 

Cues 

Cue values 

Determine which cue to consider by firing 

production with highest utility. 
Decide as soon as cue values differ. 

Different production utility for each cue 

Take-the-best 

declarative 

Cues 

Cue values  
Cue validity pair  

Retrieve next most valid cue. 

Decide as soon as cue values differ. 
 

Tallying 
Cues 
Cue values  

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Count positive cue values. 

 

Unit-weight linear 

model 

Cues 
Cue values 

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Count positive and subtract negative cue values. 

 

Weighted additive 

Cues  

Cue values 

Cue validities 

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Compute weighted sum of positive cue values. 

 

Weighted linear 

model 

Cues 
Cue values 

Cue validities 

Retrieve cue with highest activation. 
Stop retrieval upon retrieval failure. 

Weighted sum of positive and negative cue values. 

 

Take-the-first-cue 
Marewski & 
Schooler (2011) 

Cues  
Cue values 

Retrieve cue with highest activation. 
Decide as soon as cue values differ. 

Activation of chunks of cues proportional 
to occurrence frequency in environment 

Minimalist 
Gigerenzer & 
Goldstein (1999) 

Cues  

Cue values 

Retrieve cue with highest activation. 

Decide as soon as cue values differ. 
Activation of chunks of cues equal 

Take-the-last 
Cues  

Cue values 

Retrieve cue with highest activation. 

Decide as soon as cue values differ. 
 

Sequential 

sampling model 
Lee & Cummins 

(2004) 

Cue values 
Retrieve cue with highest activation. 
Count positive cue values. 

Stop retrieval upon reaching threshold. 

 

Weighted 

sequential 

sampling model  

Cue values  

Cue validities 

Retrieve cue with highest activation. 
Weighted sum of positive cue values. 

Stop retrieval upon reaching threshold. 
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ACT-R describes cognition as a set of modules that 

communicate through a procedural module realized as a 

central production system. The production system consists 

of production rules (i.e., if–then rules) whose conditions (the 

“if”-parts) are matched against the modules. If a rule’s 

conditions are met, then the rule can fire and the specified 

action can be carried out. Modules model different cognitive 

processes, such as vision (visual module), motor action 

(motor module), declarative memory (declarative module), 

short-term information storage (imaginal module) and time 

tracking (timing module; Taatgen, van Rijn, & Anderson, 

2007). Productions send commands to modules to perform 

an action or change their state, or to access content placed in 

modules’ buffers. In fact, because productions can only 

access content placed in the buffers, these can be thought of 

as processing bottlenecks. For instance, a production rule 

cannot access all information stored in the declarative 

module, but only the information placed in its associated 

retrieval buffer.  

Productions are the representation of choice for 

procedural knowledge, while declarative knowledge, such 

as factual and episodic knowledge, is represented as chunks. 

Perceptual and memory modules, respectively, perceive and 

retrieve information in the form of chunks. A chunk consists 

of a set of slots, where each slot is (a pointer to) another 

chunk. For example, a chunk containing information about a 

company’s annual revenue will have a slot with the 

company’s name and another slot with its revenue.  

ACT-R distinguishes a symbolic and a subsymbolic 

system. Productions, modules and buffers constitute the 

symbolic system, whose dynamics are governed by a set of 

equations, describing ACT-R’s subsymbolic system. At the 

subsymbolic level, chunks’ activations determine, for 

example, retrieval time or recall probability; productions’ 

utilities reflect which productions were more successful in 

the past and therefore more likely to fire; visual parameters 

determine the time needed to shift visual attention to an 

object in the visual field, while motor parameters determine 

the time to generate a motor response.   

Each ACT-R model is essentially composed of 

specifications of how declarative and procedural knowledge 

interact, both at the symbolic and subsymbolic levels. We 

will now focus on describing the declarative and procedural 

knowledge used in defining the models in the database. We 

refer those interested in a detailed exposition of ACT-R to 

Anderson (2007). 

Model building blocks 
The models of inference that we will consider are presented 

in Table 1. In implementing these models in ACT-R, we 

relied on the building blocks that this cognitive architecture 

provides.  

Perceptual and motor processes 

All models have equivalent perceptual and motor 

processes, involving visual perception from a screen and 

manual action on a keyboard. The models first perceive 

each of the alternatives presented on a computer screen and, 

after executing a sequence of cognitive steps, they make a 

response by pressing the appropriate key on a keyboard. The 

primary contribution to behavioral predictions of the 

perceptual and motor processes in our models is to add a 

realistic estimate of perceptual-motor latency. 

Declarative chunks 

The factual knowledge (e.g., “Berlin is a capital”) that a 

model relies upon to make a decision is stored in declarative 

memory. Ten types of chunks are needed to construct the 

models in the database. Table 2 provides a summary of 

those chunk types and examples in Lisp code for each. Note 

that the examples are given for the city-size task, in which 

cities act as alternatives and subjects need to infer which of 

two cities is larger. 

The simplest chunk type contains just the name of the 

alternatives. For example, if the alternatives are cities, 

whose relative sizes need to be inferred, such a chunk 

contains the city name (e.g., “Berlin”). These chunks are all 

that is required for inferential models, which rely on 

accessibility information, such as the recognition and 

fluency heuristics. 

The second chunk type contains an entire cue profile of an 

alternative (i.e., the set of cues associated with an 

alternative). Such chunks are used, among others, by 

exemplar and prototype models. Some exemplar models 

also require chunks with direct criterion knowledge in 

addition to the cue profile. Moreover, prototype models 

require not only cue profiles, but also a stored prototype of 

an object with a high criterion value.  

 
Table 2: Declarative knowledge categories.  

 

Chunk type label Chunk examples in Lisp code 

Alternative (berlin name Berlin) 

Cue profile (berlin name Berlin airport yes capital 

yes ...) 

Cue profile with 

direct criterion 

knowledge 

(berlin name Berlin population 

4000000 airport yes ...) 

High criterion value 

prototype 

(big-city name prototype airport yes 

capital yes ...) 

Cue profile pair (pair1 airport1 yes airport2 no 

capital1 yes capital2 no …) 

Cue profile pair 

prototype 

 (prototype-left airport1 yes airport2 

no capital1 yes capital2 no …) 

Cue (cue1 type airport) 

Cue value (berlin-airport city Berlin cue airport 

value yes) 

Cue validity  (airport-validity cue airport validity 

90) 

Cue validity pair   (cue-pair first airport second capital) 

Note. In these examples, chunk names, used for convenience, are 

presented in bold; slot names, indicating a specific attribute, are in 

italics, while slot values, representing the attribute values, are in 

normal font.  
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 Resembling exemplar and prototype models, instance-

based learning theory and parallel constraint satisfaction 

consider cue configurations to make inferences. However, 

they differ from the former in that they require chunks, 

which contain pairs of cue profiles. For example, the model 

“Instance-based learning theory individual” retrieves the cue 

profiles of both alternatives and then retrieves a cue profile 

pair from a successful previous trial. It then makes an 

inference based on the decision outcome of the retrieved cue 

profile pair. Similarly, our implementation of the parallel 

constraint satisfaction model requires a prototype of a 

successful cue profile pair. 

 Unlike configural models, like exemplar models, cue-

abstraction models (Newell & Bröder, 2008) operate on 

individual cues. Such models, like take-the-last, retrieve 

cues one by one. Take-the-last requires separate chunk types 

for a cue and for the values of the alternatives on that cue. In 

addition to these chunks, other models, like take-the-best, 

require information about cue validities (i.e., the probability 

of making a correct inference using only this cue if the cue 

discriminates; see, Gigerenzer, Hoffrage, & Kleinbölting, 

1991), which, if taught in the experiment (e.g., Bröder, & 

Schiffer, 2003), are stored numerical values. Finally, in 

some experiments one is provided only with the validity 

hierarchy, which can be represented as validity pairs of 

subsequent cues.  

Procedural knowledge: The sequence of processing steps 

The procedural knowledge of a model consists of a fine-

grained sequence of processing steps (i.e., productions) that 

the model relies upon to make a decision. In all models, the 

sequence of processing steps includes commands to the 

visual module to encode the information presented on the 

screen and to the motor module to press a key to respond in 

a computerized experiment. As for the rest, the exact 

sequence of processing steps follows the original model 

definitions. 

For example, fast-and-frugal heuristics usually rely on 

separate cues, on which detailed search, stopping and 

decision rules operate. Those models often theorize about 

the order, in which cues are considered. This ordering can 

be modeled through productions. In addition, productions 

can also determine if the model weighs cues equally, as in 

tallying, or differently, as in the weighted additive model, 

and execute this process. If cues are weighted equally, 

productions are required to send a request to declarative 

memory to retrieve the cue values. Productions then 

increment by 1 the number, which tracks the count of cues 

with a positive cue value of the alternative of interest. Other 

models, such as exemplar models, rely on all available cue 

information stored in a single chunk to make a decision. In 

such models, procedural knowledge is more peripheral to 

the decision process and mostly focuses on retrieval 

attempts.  

Productions not only initiate retrieval, but are also 

dependent on what is retrieved, because a key determinant 

of which productions can fire is the available declarative 

knowledge. Specifically, at each point in time only those 

productions, whose condition match the buffer states, will 

be considered to fire. Ultimately, which chunks are retrieved 

from memory will determine what could be placed in the 

buffers and therefore which productions will match.  

Information at the subsymbolic level 

At the subsymbolic level, there is continuously valued 

information, which is necessary for the execution of some 

inferential strategies. However, productions cannot directly 

read out subsymbolic values. Instead, the model needs to let 

subsymbolic values guide symbolic knowledge. Thus far, 

we have identified four ways in which subsymbolic values 

play a key role in the execution of strategies. 

First, the activation of chunks representing alternatives 

contains information about the alternatives’ occurrence 

frequency in the environment. Specifically, base-level 

activation is a function of prior history of a chunk, which 

partially depends on environmental occurrence frequency, 

which, in turn, is related to many criteria of interest 

(Hertwig, Herzog, Schooler, & Reimer, 2008). 

Accessibility-based strategies, such as the fluency heuristic, 

track the retrieval speed of alternatives as determined by 

their activation and choose the alternative, which was 

retrieved noticeably faster. 

Second, activation can order cues, because cues which 

have a higher occurrence in the environment likely will have 

a higher activation. Thus, these cues may be more likely to 

be considered first in lexicographic strategies, such as  

take-the-first-cue or a sequential sampling model. 

A third way in which information at the subsymbolic 

level can be used is as an implicit cue weighting 

mechanism. This weighting can take place through 

spreading activation, which is determined by the degree of 

association between the chunks placed in buffers and the 

chunks in declarative memory. If the cue profile of one of 

the alternatives is currently placed in the imaginal buffer, 

then it will activate cue profiles in memory through 

spreading activation. Those cue profiles will then have 

precedence in retrieval. Exemplar models rely on this 

process to make an inference about the alternative’s 

criterion value. 

Finally, production utility contains information about 

prior success. Production utility determines which 

production is more likely to fire when two or more 

productions are competing. If such a competition takes place 

between productions, which select which cue will be 

considered next, the utility of these productions can act as a 

cue’s importance (e.g., as its validity, see Gigerenzer, 

Hoffrage, & Goldstein, 2008, for the hypothesis that such a 

reinforcement learning process can teach cue validities) in 

lexicographic cue-abstraction models. This is the 

mechanism used in the model “Take-the-best 

reinforcement”, which encodes the selection of each cue 

with a separate production and then learns the success of 

those cues through trial and error. 
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Discussion and conclusion 

We aim to provide a database of ACT-R implementations of 

decision models used in the literature on inferences from 

memory. We have divided these models into their key 

components. The models can serve as a basis for model tests 

and further model developments. Specifically, this database 

can be used, first, in model comparison simulations on the 

outcome and process level, whereby one identifies regions 

in the parameter space where these models diverge. Second, 

this database can be used in future studies to identify 

decision processes using both behavioral and neural data. 

This is an important advantage of ACT-R, because any 

ACT-R model can generate fMRI predictions on top of 

behavioral process predictions, such as response time, 

because of the established module-to-brain mappings (for an 

introduction, see Borst & Anderson, 2015). 

In addition, we think that the systematic examination of 

the building blocks of existing decision models will help us 

gain insights into how the models are related to each other. 

For example, through these implementations, we see that the 

parallel constraint satisfaction model can be conceived as 

functionally similar to an instance-based learning model, 

which stores and retrieves prototypical cue profile pairs. 

It is important to note that in creating our ACT-R models 

we were forced to work with the mechanisms that ACT-R 

provides. For example, the original parallel constraint 

satisfaction model is cast as a connectionist network, in 

which connection weights are iteratively updated after each 

decision. This leads to cues effectively changing their 

validities as trials progress. As currently conceived, our 

model does not reproduce this behavior. Nevertheless, the 

model “Instance-based learning theory average”, which in 

our database is very similar, effectively provides such a 

mechanism and can be thought as functionally analogous to 

the original parallel constraint satisfaction. 

Such redefinitions and novel distinctions introduced in 

our modeling endeavor were due to the partial overlap 

between the various decision models in the literature. 

Another such distinction that we decided to introduce was in 

the declarative representation, which cue-abstraction 

models, like take-the-best and the sequential sampling 

model introduced by Lee and Cummins (2004), rely on. 

Originally, both models were conceived as, first, 

considering a cue, and only then examining the values of 

that cue for both alternatives. We have kept this definition 

for take-the-best and other heuristics. However, we have 

decided to label those models, which retrieve cue values 

directly, in a manner purely determined by declarative 

principles, sequential sampling models. These models can, 

for example, consider the value of cue 2 for alternative A, 

followed by the value of cue 4 for alternative B, and so on. 

Another remark concerns the high degree of detail, which 

ACT-R introduces when decision models are implemented 

in it. The fine-grained way in which ACT-R models are 

specified has forced us, in many cases, to make assumptions 

about processes, about which the original models remained 

silent. For example, we had to rely on assumptions about 

how cues are ordered in take-the-best. We have considered 

two ways to order cues in this work. Our first 

implementation relies on declarative retrieval to order cues, 

while the second one relies on procedural knowledge and 

utility learning. These assumptions reflect, so we hope, 

realistic ways of learning. On the one hand, in many 

experiments on take-the-best, one is explicitly taught the cue 

hierarchy, which is then stored as declarative knowledge. 

On the other hand, in natural settings, ordering cues 

according to validity is likely to occur through 

reinforcement learning, whereby one has had significant 

experience with considering several cues in the same 

setting.  

To conclude, we would like to stress that Table 1 does, 

naturally, not include all possible tweaks and modifications 

that one can introduce when constructing models in ACT-R. 

It will be left to input from the different researchers working 

on inference from memory to determine which of our 

current ideas will survive, and which ones will be replaced 

or extended by others.   
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