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Abstract
The paper reports on the development of an explicit, algebraic model for the turbulent sca-
lar fluxes which properly reflects the dependence of these fluxes on the gradients of mean 
velocity and on gravitational acceleration. Such dependencies are required by the exact 
equations governing the conservation of the turbulent fluxes but are absent from models 
which are based on the notion of eddy diffusivity and constant Prandtl or Schmidt number. 
In the present contribution, tensor representation theory is used to express the scalar fluxes 
in terms of its vector and tensor dependencies and then by applying a few assumptions to 
arrive at a model that includes the proper dependencies while being sufficiently compact 
and robust to be of use in practical applications. Model calibration was accomplished by 
reference solely to data from Large-Eddy Simulations of homogeneous turbulence in neu-
tral and stable stratification while model performance was assessed by comparisons with 
experimental data from two-dimensional heated plane and free jets and buoyant plumes. In 
all cases, the model’s performance was found to be better than an alternative implicit alge-
braic model, and on par with that of a differential scalar-flux transport closure.

Keywords Scalar flux modeling · Buoyant flows · Stable stratification · Turbulence closure

List of symbols
Cn  Model constants (−)
Gij  Rate of production of uiuj by buoyancy  (m2/s3)
gi  Gravitational acceleration (m/s2)
k  Turbulence kinetic energy (m2/s2)
Pij  Rate of production of uiuj by shear (m/s3)
p  Pressure (Pa)
p′  Fluctuating pressure (Pa)
Pi�,1  Production of −ui� by mean shear (m2/s3)
Pi�,2  Production of −ui� by scalar gradients (m2/s3)
Pi�,3  Production of −ui� by gravitational body force (m2/s3)
Pr  Prandtl number (−)
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Ri  Gradient Richardson number (−)
Ricr  Critical gradient Richardson number (−)
Re  Reynolds number (−)
Ret  Turbulent Reynolds number (−)
Sij  Mean rate-of-strain tensor (1/s)
St  Shear time (−)
t  Time (s)
Ui  Mean velocity component (m/s)
ui  Fluctuating velocity component (m/s)
uiuj  Reynolds stress tensor (m2/s2)
ui�  Turbulent heat flux (mK/s)
Wij  Vorticity tensor (1/s)
xi  Spatial coordinate (m)

Greek letters
�  Model coefficient
�  Volumetric thermal expansion coefficient (1/K)
��  Half width of thermal layer (m)
�  Dissipation rate of turbulence kinetic energy (m2/s3)
�  Thermal diffusivity (m2/s)
�t  Turbulent (eddy) diffusivity (m2/s)
�ij  Kronecker delta (−)
�  Fluctuating temperature (K)
�2  Temperature variance (K2)
�  Mean temperature (K)
�  Kinematic viscosity (m2/s)
�  Density (kg/m3)
�t  Turbulent Prandtl number (−)
�ij  Reynolds stress tensor (m2/s2)

1 Introduction

Accounting for the effects of buoyancy on the turbulent transport of contaminants in the 
atmospheric and aquatic environments is arguably amongst the most important and most 
difficult aspect of the computational modeling of such flows. Buoyancy-related terms that 
represent these effects appear explicitly in the exact differential transport equations gov-
erning the conservation of the momentum fluxes (the Reynolds stresses) and the fluxes 
of heat or concentration (hereafter the turbulent scalar fluxes) and hence models based on 
the solution of these equations have shown considerable success in capturing the influence 
of buoyancy on the rate of spread of shear layers, and on the rate of dilution of contami-
nants [1]. As these models require considerable computational effort (in three-dimensional 
flows, the solution of 11 differential transport equations consisting of 6 equations for the 
components of the Reynolds-stress tensor, 3 equations for the components of the turbulent 
scalar fluxes, an equation for the dissipation rate of the turbulence kinetic energy, and one 
for the scalar variance), considerable efforts have been directed towards the formulation 
of models consisting of algebraic expressions from which the Reynolds stresses and the 
turbulent scalar fluxes can be obtained (e.g. [2, 3]). A desirable feature in an algebraic 
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model is that it should be explicit in the turbulent scalar fluxes. The designation explicit is 
used in this work to describe a model wherein the flux component in a particular direction 
can be obtained directly from an equation that does not contain the flux components in the 
other two directions (contrast Eqs. 8 and 10 in the next section). Both explicit and implicit 
models will by necessity depend on turbulence parameters (such as the turbulence kinetic 
energy k and its rate of dissipation � ) which, in buoyant flows, will themselves depend on 
the scalar fluxes. Thus iterations would be required, but their purpose now would be to pro-
cure solutions that simultaneously satisfy the coupled sets of equations for the scalar fluxes 
and the turbulence parameters. Another desirable feature in the algebraic model is for it 
to be consistent with the exact differential equations governing the conservation of these 
fluxes. Specifically, and as will be shown in the next section, a consistent algebraic model 
for the turbulent scalar fluxes is one which provides for the fluxes to depend on the gradi-
ents of the scalar being transport and, in addition, on both the gradients of mean velocity 
and on the gravitational acceleration [4]. Such dependencies are not present in many of 
the models used for the computation of turbulent buoyant flows such as, for example, the 
gradient-transport models represented by Fourier’s and Fick’s laws for the turbulent heat 
and mass fluxes respectively:

where � represents temperature or mass concentration, ui� the turbulent fluxes and �t is 
the eddy diffusivity which is typically related to the eddy viscosity via a relationship of the 
form:

where k and � are, respectively, the turbulent kinetic energy and its dissipation rate and �t is 
the turbulent Prandtl or Schmidt number.

Clearly, these models, while correctly reflecting the dependence on the gradients of 
the scalar, do not include dependence on the gravitational acceleration or on the velocity 
gradients. Alternative models to Eq. (1) that do allow for the scalar fluxes to depend on 
these parameters have been reported in the literature, many being formulated by first mod-
eling the unknown correlations in the exact equations for the turbulent fluxes (Eq. 3) and 
then by introducing assumptions that neglect the advection and diffusion of the Reynolds 
stresses and the scalar fluxes [5] to reduce the differential equations to algebraic ones [6]. 
While these models have produced distinct improvements in the prediction of some buoy-
ant flows, they are not explicit in the turbulent fluxes and hence their implementation in 
numerical simulation algorithms requires that iterations are performed to obtain values of 
the scalar fluxes that satisfy the coupled, non-linear equations. Such iterations, in which 
extensive underrelaxation is employed to prevent oscillations, add considerably to the over-
all computational effort and this may explain the limited use of such models in practice. 
On the other hand, many of the recent algebraic models that are explicit in the scalar fluxes 
and that have been shown to work well in highly-idealized buoyant flows (e.g. [7–9]) suf-
fer their own drawbacks when employed in the calculation of practically-relevant buoyant 
flows. These arise from the fact that, in non-trivial flows, these models, formulated by an 
approach involving a linear expansion of tensors [10] give rise to a coupled system of poly-
nomials the solution of which renders the use of these models impractical [11]. The present 
contribution provides a proposal for a model for the turbulent scalar fluxes that is both 

(1)−ui� = �t

��

�xi

(2)�t =
C�

�t

k2

�
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consistent with the exact equations and is explicit in these fluxes. The validity of this model 
is demonstrated by comparisons with data from Large-Eddy Simulations and experiments 
on stably-stratified flows.

2  Model development

2.1  Deductions from the exact equations

We begin by consideration of the exact equations governing the conservation of the tur-
bulent scalar fluxes in buoyant flows. These are obtained by multiplying the ui fluctuating 
velocity component by the equation for the instantaneous scalar ( � + � ) and add it to the xi
-component of the instantaneous Navier-Stokes equations multiplied by � and then by time-
averaging the result to obtain:

In Eq. (3), the terms Ci� represent the advection of ui� and Di� is the rate of transport (dif-
fusion) of ui� by turbulent processes. The terms Pi� represent the rates of production of ui� 
by interaction with the mean shear, by gradients of the scalar quantity itself, and by buoy-
ancy. The terms �i� and �i� represent, respectively, the rates of dissipation by molecular 
processes, and of interactions with the fluctuating pressure field.

In developing an algebraic model for ui� , we proceed to express these correlations in 
terms of parameters obtained in Eq. (3):

By retaining the Reynolds stresses, a direct link is established between the details of the 
turbulence field and the turbulent scalar fluxes. It is noted that the Reynolds stresses are 
very sensitive to the effects of buoyancy viz. the case of strong stabilizing stratification 
when the turbulent shear stress vanishes at a critical value of Richardson number [12, 13]. 
Another reason for retaining this dependence is that the trace of the Reynolds stresses is the 
turbulent kinetic energy ( k ≡ 1∕2uiui ) - a scalar quantity that is convenient to characterize 
the velocity scale of turbulence. The gradients of mean velocity are retained so that changes 

(3)

Ci�
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in the mean velocity field are directly reflected in the turbulent scalar fluxes. It should also 
be useful to retain this term in the case of buoyant flows developing over a curved surface 
since the extra rates of strain associated with streamline curvature that are essential for the 
accurate prediction of these flows emerge directly from this term [14, 15]. Retention of 
gradients of the scalar � in the manner shown in Eq. (4) is essential in order that fluxes are 
generated both in the direction of the gradient, and in the directions normal to it. Retention 
of the scalar variance �2 is needed to incorporate the time scale of the scalar fluctuations. 
Of the remaining parameters in Eq. (3), the scalar fluxes themselves are excluded since that 
would render the model implicit in these quantities, while it is assumed that modeling the 
terms that are representative of diffusion and interactions with the fluctuating pressure will 
introduce terms similar to those already included in Eq. (4). Following usual practice, the 
dissipation term is neglected on the basis that it is small at high Reynolds number [1].

The procedure for modeling the scalar fluxes, a vector quantity, in terms of its vec-
tor and second-order tensor dependencies is well established [16]. The complete repre-
sentation of ui� produces many terms some of which will have zero coefficients while 
many others will be finite and their retention would render the model far too com-
plex to be of practical use. However, simplifications can be made to render the model 
practical from a computational standpoint while retaining the essential dependencies 
required by the exact equation. Specifically, it can be assumed that terms that are quad-
ratic in the mean velocity gradients or in the Reynolds stresses can be neglected on the 
basis that they represent a second-order effect that is not present in the original equa-
tion. With these simplifications, the following representation is obtained:

The �′s in Eq. (5) contain combinations of the scalar quantities k, the turbulence kinetic 
energy, � , the energy dissipation rate and �2 , the scalar variance. Collectively, these serve 
the dual purposes of incorporating a characteristic time scale for turbulence (k/� ) and a 
characteristic thermal time scale ( �2∕�� ). Combinations of these parameters ensure that the 
terms of Eq. (5) are dimensionally consistent.

With the �′s determined for each term, the proposed model takes the form:

It is interesting to see that the first term of the model in Eq. (6) corresponds exactly to the 
familiar Fourier and Fick’s laws: the imposition of a scalar gradient in the i-direction pro-
duces a scalar flux in the same direction. The remaining terms are also functions of the sca-
lar gradient but in directions other than that of the fluxes. The implications here is that the 
imposition of a scalar gradient in the j- or k-directions can generate a flux in the i-direction 
irrespective of whether or not a gradient of the scalar exists in that direction. This aspect 
of the present model, which is supported by all experiments and Direct or Large Eddy 
Simulations, is not obtainable in the simpler models where the generation of a flux in a 
particular direction is only possible by the presence of a finite gradient of the scalar in the 
same direction.

(5)−ui� = �1�,i + �2�ij�,j + �3(�ikUk,j + �jkUk,i)�,j + �4gi

(6)
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2.2  Determination of model coefficients

The new model contains 4 coefficients that need to be determined. This is done here by refer-
ence to data from a study of homogeneous turbulence in neutrally and stably-stratified condi-
tions. The study is that of Kaltenbach et al. [17] who performed Large-Eddy Simulations for 
the case of turbulence in the domain shown in Fig. 1. Gradients of velocity and temperature 
were applied as shown.

For the flow arrangement shown in Fig.  1, the model of Eq. (6 ) yields the following 
expressions for the scalar fluxes:

In assessing this model’s performance, it is useful to compare its results with those from an 
alternative algebraic model. The model chosen for comparison is that of Gibson and Laun-
der [6] which was shown to capture the effects of buoyancy on the atmospheric boundary 
layer. The model was obtained by approximating unknown correlations and then by assum-
ing local equilibrium to reduce the differential equations to algebraic ones. This model’s 
expressions for the scalar fluxes for the same conditions as for the LES of Kaltenbach et al. 
[17] are:

where the � ’s are model constants given in full in [6]. Like the model of Eq. (6), this 
model indicates that the gradients of mean velocity are present and enter into determina-
tion of the streamwise component only.

The Large-Eddy Simulations were performed for 5 values of the gradient Richardson num-
ber Ri:
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Fig. 1  Domain of Large Eddy 
Simulations
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where � is the constant volumetric expansion coefficient. This parameter was varied in 
the range 0 - 1. In each of these simulations, values of the scalar fluxes u� and w� were 
reported at 3 time intervals. For the case of Ri = 0 , this yields 6 values that can serve to 
evaluate the coefficients C1 , C2 and C3 . This makes the system of equations for the turbu-
lent heat fluxes overdetermined though a unique set of values for these coefficients can be 
obtained by eliminating the sets of values that include negative C1 s or infinite coefficients. 
Determination of the value of C4 , the coefficient of the only term that explicitly depends on 
gravitational acceleration, was determined with reference to the LES results for Ri 0.13 and 
0.5. The values thus obtained are listed in Table 1.

With the coefficients assigned the values of Table 1, the model of Eq. (6) predicts the 
evolution of the scalar fluxes for Ri = 0 as shown in Fig. 2. The horizontal axis is a non-
dimensional time St ( = dU∕dz t ). It can be seen in Fig. 2 that for both u� and w� the rela-
tive error for the non buoyant case can be reduced to a tolerable number between 0 and 5% 
which was the goal of the new calibration.

3  Comparisons with LES and measurements

We first check the model’s performance against data from two benchmark two-dimensional 
heated free shear flows namely the plane jet and the axisymmetric jet that are discharged 
into stagnant surroundings. A schematic of these flows is shown in Fig. 3 which defines the 
coordinates. In the experiments, the jets are allowed to develop in the streamwise direc-
tion until a self-similar state is attained wherein the flow properties, appropriately non-
dimensionalized, become independent of the initial conditions. Also, the rates of spread of 
the shear layer ( d�U∕dx ) and of the thermal layer ( d��∕dx ) become constant. These flows, 
which are well documented by experiments, are ideal for the testing of models for the tur-
bulent scalar fluxes since uncertainties regarding the specification of the initial conditions 
do not arise.

Table 1  Model coefficients as 
deduced from LES data of [17]

C
1

C
2

C
3

C
4

0.01 0.19 −0.06 −0.07

Fig. 2  Variation of heat fluxes with non-dimensional time St:   Kaltenbach et al. [17],  Eq. (6)
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The computations were performed using the computer program EXPRESS [18] which 
solves the time-averaged forms of the equations governing the conservation of mass, 
momentum and thermal energy. In buoyant flows, the Boussinesq approximation is used 
wherein the density differences are ignored except where they appear in the source terms:

The governing equations were discretized by integration over finite volumes formed on a 
computational grid that adapts to maximize the spatial resolution of the expanding shear 
layers. Second-order accurate discretisation is employed for both streamwise and cross-
stream directions using weighted average approximation for the former and central differ-
encing for the latter. Typically, the simulations were carried out with 60 nodes that were 
evenly distributed in the cross-stream direction. Virtually identical results were obtained on 
grids utilizing 30 and 90 nodes. The solution was started from uniform velocity and tem-
perature profiles and was advanced step by step in the direction of flow until the profiles of 
all the dependent variables became self similar. The size of the forward step was limited 
to 1% of the local width of the shear layer. At each streamwise location, iterations were 
performed until the absolute sum of the residuals for all the dependent variables fell to 
below 10−3 . In calculating the velocity field, the unknown Reynolds stresses were obtained 
from the solution of a complete Reynolds-stress transport model in which each of the three 

(12)
�Ui
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�Ui
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�
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�
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�
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��
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Fig. 3  Schematic of the free jet flows showing the coordinates system and the jet’s velocity and thermal half 
widths
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normal-stress components and the non-zero component of shear stress were obtained from 
the solution of its own diffrential transport equation. These equations take the form:

In the above, Pij and Gij are the rates of production by shear and buoyancy. These terms are 
exact and in no need of modeling. The turbulent diffusion term is modeled as proposed by 
Daly and Harlow [19] i.e. by assuming that the diffusion of a component of the Reynolds 
stress tensor is proportional to its spatial gradient:

The coefficient Cs is assigned its usual value of 0.22.
The pressure-strain correlations term ( �ij ), whose role is to redistribute the turbulence 

energy amongst the three normal-stress components and to reduce the shear stresses, was 
modeled along the proposals of [20, 21]:

where Sij
(

=
1

2

(

�Ui

�xj
+

�Uj

�xi

))

 is the mean rate of strain, bij
(

= uiuj∕uquq −
1

3
�ij

)

 is the turbu-

lence anisotropy and IIb
(

= bijbij
)

 is the second invariant of anisotropy. The model coeffi-
cients were assigned their usual values (Table 2).

To place the present model’s results in some perspective, comparative predictions were 
obtained with a complete differential transport model for the scalar fluxes based on the 
solution of the modelled forms of Eq. (3). For the present two-dimensional flows, equa-
tions were solved for each of the fluxes u� and w� . In these equations, the fluctuating pres-
sure–scalar–gradient correlation term ( �i� ) was modeled as the sum of two elements:

(15)
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the separate contributions arising respectively from purely turbulence interactions, and the 
interactions between the mean strain and fluctuating quantities. Following Monin [22] and 
Gibson and Launder [6], these contributions are modeled as:

The coefficients C1� and C2� were assigned the values of 2.85 and 0.55, respectively. These 
values were determined by reference to measurements of streamwise and cross-stream flux 
components in homogeneous shear flows [1].

Tables  3 and 4 list the predicted and measured rates of spread of the thermal layer 
( d��∕dx ) for the heated plane jet and the axisymmetric jets, respectively. Also included in 
the tables are results obtained by using the differential model for the scalar fluxes as well 
as results from other algebraic models specifically those of Rogers et al. [25], Rubinstein 
and Barton [26], and the more familiar Fick’s law with constant Prandtl number of 0.85. 
The Reynolds-stress transport model results were used to provide the necessary inputs to 
all the scalar-flux models considered thus differences in their performance are entirely due 
to their formulation. For the case of the plane jet, the experiments show some variance in 
the measured spreading rate which is to be expected considering the difficulty in attaining a 
self-preserving state for the thermal layer. The present model yields the closest correspond-
ence with the data while the performance of Fick’s law appears to be the least satisfactory. 
The same is the case for the axisymmetric flow though here all the models appear to under-
predict the measured spreading rate.

The predicted and measured cross-stream profiles of mean temperature and the turbu-
lent heat fluxes for the plane and the axisymmetric jets are presented in Fig. 4. For the 
mean temperature profile, the model of Eq. (6) shows a close agreement with the experi-
mental results of Ramprian and Chanrasekhara [24] for a plane free jet and with Chen 
and Rodi [27] and Darisse et al. [28] for the axisymmetric jet. Regarding the streamwise 
heat flux component u� , a quantity which is obtained as exactly zero with Fick’s law, 
both the algebraic and the differential models, while yielding very similar results, yield 

(18)�i� = �i�,1 + �i�,2

(19)�i�,1 = − C1�
�

k
ui�

(20)�i�,2 = − C2�Pi�,2

Table 2  Coefficients of the 
pressure-strain model [20]

C
1

C
∗
1

C
2

C
3

C
∗
3

C
4

C
5

C�1 C�2 C�

4.0 3.0 0 0.8 2.0 0.6 0.3 1.45 1.9 0.18

Table 3  Heated plane jet. 
Predicted and measured growth 
of thermal layer

d��∕dx

Measurements [23, 24] 0.128, 0.140
Present model (Eq. 6) 0.131
Differential model 0.118
Rogers et al. [25] 0.125
Rubinstein and Barton [26] 0.117
Fick’s Law (Eq. 1) 0.110
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Table 4  Heated axisymmetric 
jet. Predicted and measured 
growth of thermal layer

d��∕dx

Measurements [27] 0.11
Present model (Eq. 6) 0.102
Differential model 0.098
Rogers et al. [25] 0.064
Rubinstein and Barton [26] 0.091
Fick’s Law (Eq. 1) 0.084

Fig. 4  Similarity profiles of mean temperature and turbulent heat fluxes for plane (left) and axisymmetric 
jet (right):  van der Hegge Zijnen [23];  Ramaprian and Chandrasekhara [24];  Chen and Rodi [27];  
Darisse et al. [28];  Chevray et al. [29];  Eq. (6);  differential transport model
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predictions that are at variance with the measurements of [24]. At the jet’s axis, the 
algebraic model predicts a zero value for this flux since the gradients of temperature in 
both the streamwise and the cross-stream directions are zero. In contrast, the differential 
model predicts a finite value there which is maintained by the process of turbulent diffu-
sion from regions away from the axis. The same behavior is apparent in the axisymmet-
ric case where the two models succeed in reproducing the measured profile in the outer 
regions of the jet but appear to seriously underpredict the surprising high measured val-
ues in the inner region. With regards to the vertical heat fluxes v� , the correspondence 
between the results of both the algebraic and the differential models and the experimen-
tal data is closer to the measurements than was the case for the streamwise component. 
For the plane jet, the results of the two models are almost indistinguishable everywhere 
in the flow, including near the centerline where this component of the heat flux goes to 
zero in both the predictions and the measurements of van der Hegge Zijnen [23]. For the 
axisymmetric jet, the models yield predictions that lie in between the measurements of 
Chen and Rodi [27] and Chevray et al. [29] with the differences between the two experi-
ments providing a useful indication of the extent of uncertainty involved in the measure-
ment of the thermal field in self-similar free shear flows.

An exacting test of the model’s formulation is provided by examination of its behav-
ior in conditions of very strong stable stratification. Linear stability theory [12, 13] 
indicates that turbulence is extinguished at values of the gradient Richardson number 
greater than a critical value Ricr in the range 0.20 − 0.25 . Grachev et al. [30], from spec-
tral analysis of wind velocity and temperature fluctuations measurements in atmospheric 
turbulence, found that some small-scale turbulence can in fact persist for greater val-
ues of Ri, but that that turbulence is intermittent and decays rapidly with increasing 
stability. Within the constraints of a turbulence closure based on time-averaged equa-
tions, it is not possible to account for non-stationary effects, or for the fate of the small-
scale, high-frequency fluctuations. Instead, it is assumed that a state of spectral equilib-
rium exists wherein the effects of buoyancy on the turbulence can be described solely 
in terms of long-time averaged fluxes of momentum and transported scalars, and their 
spatial gradients. In the present model, the response of the turbulent fluxes to stable 
stratification can be seen from inspection of the equation for the vertical scalar fluxes 
(Eq.  8). For stable stratification, the scalar gradients are positive and w� is negative. 
The gravitational term is itself negative (since if the positive vertical direction z is posi-
tive upwards as shown in Fig. 1, then g3 = −gz ), and hence its effect is to diminish and 
eventually suppress turbulent mixing in the direction of the scalar gradient. In the LES 
of Kaltenbach et al. [17] for the temporal evolution of w� , its value at Ricr falls by 6.2% 
of its value for neutral flow. This is accurately produced by the present model as can be 
seen in Fig. 5 and in Table 5 where the predicted values of the vertical heat flux −w� at 
Ricr are compared with the LES results. 

Of further interest is the variation of the heat fluxes across a wide range of Ri. To dem-
onstrate this, the LES results which were reported at three time intervals were averaged for 
each gradient Richardson number. Figures 6 and 7 present the development of u� and −w� 
with increasing Ri. The results of Eq. (6) are compared with Fourier’s law and with the 
implicit model by Gibson and Launder [6]. For u� , the effects of buoyancy enter mainly 
through the expected reduction in the correlations involving the vertical turbulent fluctua-
tions i.e. w2 and uw since the contribution of the gi term is identically zero for this compo-
nent. Fourier’s law predicts u� to be zero for all cases, since there is no temperature gradient 
in the streamwise direction. The model by Gibson and Launder overpredicts the neutrally-
buoyant case by a significant margin but overall manages to reproduces the observed 
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Fig. 5  Comparison with 
Kaltenbach data at R

i
= 0.25 :  

Kaltenbach et al. [17],  Eq. (6)

Table 5  LES and models results 
for the ratio (

w�
)

Ri=Ri
cr

∕
(

w�
)

Ri=0

LES [17] Present model (Eq. 6) Gibson and Launder [6]

0.062 0.063 0.081

Fig. 6  Predicted variation of −w� with R
i
 : :  Kaltenbach et al. [17],  Eq. 6,   Fourier law (Eq. 1),  

Gibson and Launder [6]

Fig. 7  Predicted variation of 
−w�∕u� with R

i
 . :  Kaltenbach 

et al. [17],  Eq. (6),  Gibson 
and Launder [6]
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trend for increasing buoyancy. It slightly underpredicts u� for all buoyancy affected cases 
Ri = 0.13 − 1 . The presented model shows very close alignment for the buoyancy free case 
at Ri = 0 and shows a good agreement with all buoyancy affected cases. It slightly under-
predicts the flows with mild and moderate buoyancy Ri = 0.13 − 0.25 . Severe buoyancy at 
Ri = 0.5 is predicted accurately whereas very severe buoyancy at Ri = 1 is slightly over-
predicted by the presented model. For −w� both Fourier’s law and the model by Gibson 
and Launder fail to obtain the correct level for Ri = 0 . Fourier’s law predicts a significantly 
higher −w� for all buoyancy affected cases Ri = 0.13 − 1 too. The implicit model by Gib-
son and Launder shows a good agreement for the buoyancy affected cases Ri = 0.13 − 1 . In 
contrast, the model of Eq. (6) accurately predicts −w� at Ri = 0 and moreover shows close 
to perfect alignment at mild, moderate, severe and very severe buoyancy Ri = 0.13 − 1.

The ratio between the cross-stream and streamwise heat flux w�∕u� is considered to be 
an important assessment for the influence of buoyancy [6]. In strongly buoyant flows, it is 
expected to decrease distinctly and eventually trend against 0. Figure 7 presents the varia-
tion of the ratio −w�∕u� with Ri. This ratio is considered to be a good indicator of a scalar 
flux model’s performance in buoyancy affected flows [6]. Fourier’s law results are not plot-
ted here since it would obtain this ratio as infinity. The model by Gibson and Launder pro-
duces generally good results for no and mild buoyancy Ri = 0 − 0.13 and gets the decreas-
ing trend right initially. With increasing buoyancy Ri = 0.25 − 1 the error increases and a 
reverse trend can be observed with a strong increase of −w�∕u� for severe and very severe 
buoyancy Ri = 0.5 − 1 . In contrast, the model of Eq. (6) manages to reproduce the qualita-
tive trend of the strongly decreasing ratio. It shows good alignment for Ri = 0 − 0.25 and 
a stabilization from Ri = 0.5 to Ri = 1 which is similar to the LES data, though the LES 
continues to show a small decrease of −w�∕u� for high Ri.

It has already mentioned that models for the turbulent scalar fluxes that are based on the 
notion of an effective or eddy diffusivity (Eqs. 1 and 2) usually employ a constant Prandtl 
or Schmidt number in their formulation. By definition, this number is:

It is evident from Eq. (21) that �t , far from being constant, will depend on Ri. This is borne 
out in Fig.  8 where the present model results for this parameter are compared with the 
LES results. Also plotted there are the experimental data by Grachev et al. [31] and the 
results of the implicit model of Gibson and Launder [6]. The data by Grachev et al., which 
were acquired during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA), 
although showing considerable scatter, do support the trends evident in both the LES and 
the model results of an increase in �t with Ri. The Gibson and Launder model generally 
underpredicts this parameter even for neutrally-buoyant conditions where this model yields 
a value of �t of 0.40 compared to the value of 0.74 obtained with the present model and 
values in the range 0.7 − 0.9 suggested in the literature [27]. We do not in this paper claim 
to provide a definitive statement regarding the behavior of �t with increasing stable strati-
fication. Figure 8 merely shows that �t , when plotted against the gradient Richardson num-
ber Ri, tends to increase with increasing stability. Grachev et al. [31] and Anderson [32] 
explain that the trends shown in Fig. 8 may well be due to self-correlation since dU / dz and 
d�∕dz appear in the definition of both �t and Ri. Moreover, Grachev et al. [33] point out 
that conclusions regarding the behavior of �t at high Ri may be influenced by Ri outliers i.e. 
high values of Ri formed from conditions that are actually near-neutral. While most theo-
retical studies (e.g. [34, 35]) do indeed predict an increasing �t with increasing stability, 

(21)�t ≡
uw∕(dU∕dz)

w�∕(d�∕dz)
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the analysis of experimental data by Grachev et al. [31] show that �t , when plotted against 
the bulk Richardson number with which no variables are shared, actually decreases with 
increasing stability. The definition of the bulk Richardson number requires evaluation of 
differences in the potential temperature and the specific humidity between the surface and a 
reference level above it. Thus short of performing simulations of the atmospheric boundary 
layer in stable stratification that take into account the variation of the specific humidity, a 
task which is outside the scope of the present paper, it is not possible to state whether the 
present model would also show �t decreasing with increasing bulk Richardson number.

The final comparisons made in this study are with experimental data for vertical tur-
bulent plumes. Here too both plane and axisymmetric flows are considered. In both the 
computations and experiments, the plumes were generated from a source of buoyancy 
with negligible momentum. The predicted and measured cross-stream profiles are com-
pared in Fig. 9. For the plane buoyant plume, compared to the differential model, the pre-
sent algebraic model yields overall better agreement with the measurements of Ramaprian 
and Chandrasekhara [24] especially for the vertical flux component which is the primary 
agency in determining the shape of the mean temperature profile. The algebraic model 
results for the streamwise component are less satisfactory in the inner region of the plume 
for the same reason as for the jets. For the axisymmetric plume, the predicted mean tem-
perature profiles compare favorably with the measurements of George et al. [36]. For the 
turbulent fluxes, the trends of both the models results and the measurements of are gener-
ally similar to the plane plume case except, perhaps, for the maximum value of the stream-
wise flux component obtained in the measurements of Beuther et al. [37] which appears to 
greatly exceed the plane-plume value and is significantly underpredicted by both models.

4  Concluding remarks

The exact equations governing the conservation of the turbulent scalar fluxes in buoyant 
flows provided the basis for the development of the explicit algebraic model for these 
fluxes reported in this paper. The model correctly takes into account the dependence 
of these fluxes on the gradients of mean velocity and the transported scalar, and on 

Fig. 8  Variation of the turbulent 
Prandtl number �

t
 with R

i
 : ▪ 

Grachev et al. [31],   Kaltenbach 
et al. [17],  Eq. (6),  Gibson 
and Launder [6]
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the gravitational acceleration. A number of coefficients are involved and these were 
assigned constant values deduced from Large-Eddy Simulations of homogeneous tur-
bulence with uniform gradients of mean velocity and temperature. Comparisons with 
data from neutrally-stratified two-dimensional free shear flows, namely the heated plane 
and the axisymmetric jets discharged into stagnant surroundings, show that the coef-
ficients deduced from the LES data are quite appropriate in that they closely reproduce 
the cross-stream profiles of mean temperature and both streamwise and cross-stream 
heat fluxes. With regards to buoyant flows, the model properly reproduces the variation 
of these components of the scalar fluxes with the gradient Richardson number and, also, 

Fig. 9  Turbulent buoyant plumes. Predicted and measured profiles of temperature and turbulent heat fluxes 
for the plane (left) and axisymmetric (right) plumes:  Ramaprian and Chandrasekhara [24];  George 
et al. [36];  Beuther et al. [37];  present model (Eq. 6) ;  differential transport model
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the temporal evolution of the vertical component at the critical value of this parameter. 
The turbulent Prandtl number, which is assumed to be constant in many models, is pre-
dicted to vary with the gradient Richardson number in accordance with experimental 
observations and numerical simulations. Comparisons with measurements of the tem-
perature field in plane and axisymmetric buoyant plumes show that the present model 
results are on par with those obtained with a more elaborate and computationally more 
demanding model requiring the solution of non-linear differential equations for the tur-
bulent fluxes. Work is currently in progress to assess the model’s performance in stably-
stratified wall-bounded flows for which detailed results from LES and DNS (e.g. [38, 
39]) are available for this purpose.
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