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Formulation and sequential numerical algorithms of coupled
fluid/heat flow and geomechanics for multiple porosity materials

J. Kim ∗, E. Sonnenthal, and J. Rutqvist

Earth Sciences Division, Lawrence Berkeley National Laboratory. 1 Cyclotron Road 90R1116, Berkeley, CA 94720,
USA

SUMMARY

We generalized constitutive relations of coupled flow and geomechanics for the isothermal elastic double
porosity model in the previous study to those for the non-isothermal elastic/elastoplastic multiple porosity
model, finding coupling coefficients and constraints of the multiple porosity model, and determining the
upscaled elastic/elastoplastic moduli as well as relations between the local strains of all materials within a
gridblock and the global strain of the gridblock. Furthermore, the coupling equations and relations between
local and global variables provide well-posed problems, implying that they honor the dissipative mechanism
of coupled flow and geomechanics. For numerical implementation, we modified the fixed-stress sequential
method for the multiple porosity model. From the a priori stability estimate, the sequential method provides
numerical stability when an implicit time stepping algorithm is used. This sequential scheme can easily be
implemented by using a modified porosity function and its porosity correction.
In numerical examples, we observe clear differences among the single, double, and multiple porosity
systems, and the multiple porosity model can reflect high heterogeneity that exists within a gridblock. We
also identify considerably complicated physics in coupledflow and geomechanics of the multiple porosity
systems, which cannot accurately be detected in the uncoupled flow simulation.

KEY WORDS: double porosity, multiple porosity, poromechanics, multiple interacting continua
(MINC), fractured reservoirs, fixed-stress split

1. INTRODUCTION

Coupled fluid, heat, and mechanical processes are important in many engineering fileds. In
mechanical engineering, coupled heat and mechanics (e.g., thermoelasticity, thermoplasticity) are
considered to analyze interactions between deformation of a material body and thermal stress
[1, 2]. Rapid movement of the body such as vibration can be a source in heat flow, and heat
induces additional stress in mechanics, which can expand the body. In turn, the expanded body
affects accumulation in heat flow because of the change in material volume. Coupled fluid, heat,
and mechanical processes are also critically important in geo-engineering[3]. In geotechnical
engineering, an increase (or decrease) of pore pressure causesdilation (or shrinkage) of porous
media, which changes strain and stress fields [4, 5, 6, 7, 8]. These changes also affect pore-volume,
resulting in variation of pore-pressure, again. In petroleum engineering, changes in permeability
as well as porosity induced by geomechanics are critical issues in order topredict fluid flow and
production accurately, for example, in hydraulic fracturing, reservoircompaction, and gas-hydrate
recovery [9, 10, 11, 12, 13, 14]. In geological carbon storage, the effect of large scale injection
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and pressure changes and associated potential for inducing earthquakes is a key technical issue
that needs to be addressed [15]. The effect of temperature is importantin applications involving
substantial temperature changes, such as in nuclear waste disposal andgeothermal energy extraction
[16, 17]. Especially, in geothermal engineering, rigorous modeling of coupling between fluid, heat,
and geomechanics, named thermoporomechanics, for fractured porousmedia is necessary, because
those physics are highly nonlinear and closely interacted with each other.

Significant efforts have been made to find an appropriate modeling of thermoporomechanics. The
theory of poroelasticity was developed for single porosity concept [18,19, 20], and several authors
have extended Biot’s theory to generally coupled fluid, heat, and geomechanics,proposing slightly
different constitutive relations and the corresponding experimental settings [21, 22, 23, 24]. These
studies are directly applicable to coupled problems with the single porosity concept. However, in
large fractured or composite porous media, the theory of single porosity has significant limitation
not only in coupled flow and geomechanics [25, 26, 27] but also in flow-only simulations [28].
In particular, in coupled flow and geomechanics problems, [26] concluded that neglecting the
importance of the fracture deformation may cause substantial errors in the fractured rock media,
where the fracture and rock matrix coexist. To solve this problem, a double porosity concept (or its
generalization such as multiple interacting continua method (MINC)) was proposed for modeling
the regularly fractured reservoirs, first in the uncoupled flow simulations[28, 29]. Later, for coupled
flow and geomechanics, [27] extended poroelasticity of the single porositymodel to that of the
double porosity model. [25] and [27] proposed constitutive relations in thedouble porosity systems
and the design of the corresponding experiments.The constitutive relations in [25] determine
geomechanical and flow properties of a gridblock from the given properties of subelements within
the gridblock. On the other hand, extending the single porosity model in [24]to the double porosity
model, [30] proposed different constitutive relations from the given geomechanical properties of
the gridblock, emphasizing on continuum principles of thermodynamics.Following the approach
by [25] and [27], [31] studied thermoporomechanics with the double-porosity concept, using
a variant of the undrained sequential method in numerical implementation. However, general
formulations and numerical algorithms on thermoporomechanics in multiple porositymaterials,
which can encompass multiphase flow and plasticity, are still lacking in the previous studies.
Even though some discussion was made in [27], numerical development andsimulation on
coupled flow and geomechanics in the multiple porosity systems have rarely been investigated. In
addition, even though the numerical algorithm used in [31] is numerically unconditionally stable,
it causes considerable inaccuracy for high coupling strength and may face non-convergence for the
incompressible fluid and solid grains [6, 32, 33]. The undrained split method also produces two stiff
sub-problems, which require strong linear solvers and high computationalcost to solve them [6].
Coupled multiphase flow and geomechanics for fractured media were studied, for example, in [34]
and [35], but geomechanical properties of the fractured medium were assumed to be ignored.

With this motivation at hand, in this paper, we investigate coupled flow and geomechanics in
multiple porosity systems for regularly fractured or composite reservoirs, generalizing the double
porosity model proposed by [27] to the multiple porosity model. We first determine coupling
coefficients between fluid flow and geomechanics. Especially, when the off-diagonal terms of the
total compressibility matrix associated with the flow problem are zero, a typical formulation in
reservoir simulation [28, 36], an upscaled drained bulk modulus of a gridblock used for mechanics is
a volume-fraction weighted harmonic average of drained moduli of the materials within a gridblock.
Furthermore, using the coupling coefficients and constraints, we determinethe upscaled drained
elastic/elastoplastic moduli from the moduli of all materials within the gridblock, andfind relations
between local and global (upscaled) strains, which provide communicationbetween the local and
global elastic/plastic variables when mechanics is in the elastic/plastic regime. Additionally, the
analyses of poromechanics can immediately be extended to thermomechanics. We will show that all
the proposed relations for the multiple porosity model can also generate well-posed problems, just
as constitutive relations of the single porosity model (i.e., contractivity).The contractivity implies
that the constitutive relations honor the dissipative mechanism in thermodynamics, although an
approximation of the upscaling method might not honor conservation laws of mass, energy, or
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momentum exactly, which can be accomplished by the fine scale single porosity model that defines
the exact configurations of all subelements.

Then, in the numerical implementation, we introduce a sequential implicit method for
thermoporomechanics in multiple porosity systems. Specifically, we extend the fixed-stress
sequential method for single porosity systems to multiple porosity systems. Introducing a norm
for the multiple porosity systems, the fixed-stress sequential method modified for the multiple
porosity model still provides unconditional stability (i.e., B-stability), just as thesingle porosity
model rigorously shown in [32, 37]. This sequential scheme can also easily be implemented
by constructing an interface between existing flow and geomechanics simulators, introducing
the Lagrange porosity function and its corresponding porosity correction term that corrects the
inconsistency between the porosity function in flow and strain values in mechanics. The return
mapping in modeling elastoplasticity is performed at all materials within a gridblock.

We employ the finite volume/finite element methods for flow and mechanics in space
discretization, respectively, and the backward Euler method in time discretization. We implement
the proposed formulation and numerical algorithms to TOUGHREACT(flow simulator) coupled to
ROCMECH (geomechanics simulator) at Lawrence Berkeley National Laboratory, and test 1D and
2D small scale problems.

From numerical results, we observe clear differences between the single and double/multiple
porosity systems such as fracture-rock matrix systems. For example, the fluid pressure in the fracture
continuum for the five-porosity model (a model with five interacting porosity systems) becomes
higher than that for the single porosity because the bulk modulus of the fracture continuum is
lower than the upscaled bulk modulus used in the single porosity. For elastoplasticity, where we
adopt the Mohr-Coulomb model, the fluid pressure in the fracture medium canbe more supported
by compaction when the fracture medium enters the plastic region. In a 2D case of the five-
porosity system, we compare results between the conventional uncoupled flow simulation and
thermoporoelasticity, and find significant differences between them. We willdiscuss more details
on these complicated physics of coupled problems in the section of numerical examples.

2. MATHEMATICAL FORMULATION

We use a classical continuum representation, where the fluid and solid skeleton are viewed as
overlapping continua. The governing equations for heat and fluid flow,and mechanics are obtained
from energy, mass and linear-momentum balances, respectively. For multiphase fluid flow, the mass-
conservation equation is expressed as

dmJ

dt
+ DivwJ = qJ , (1)

where the subscriptJ denotes a particular fluid phase.mJ is fluid mass,qJ is a source term,Div(·)
is the divergence operator, andwJ is the mass-flux of fluid phaseJ relative to the motion of the
solid skeleton. The accumulation term,dmJ/dt, describes the time variation of fluid mass relative
to the motion of the solid skeleton, as well. From here on, we denote byd(·)/dt the change in a
quantity(·) relative to the motion of the solid skeleton.

The volumetric flux of phaseJ , vJ = (w/ρ)J , is given by Darcy’s law as

vJ = −kp,JK

µJ
(Grad pK − ρKg), (2)

wherekp,JK is the effective-permeability tensor (for two fluid phases,J andK). µJ andρJ denote
the viscosity and density at the current state for fluid phaseJ , respectively.Grad(·) is the gradient
operator. Double indices (e.g.,K in Equation 2) indicate summation in this section. Typically in
reservoir simulation,kp,JK is split into an (absolute) permeabilitykp and a relative permeability
kr

JK , which is expressed askp,JK = kpk
r
JK , wherekr

JK = 0 if J 6= K.

3



The governing equation for heat flow comes from energy balance, which is written as

dmθ

dt
+ Div fθ = qθ, (3)

where the superscriptθ indicates the heat component.mθ, fθ , andqθ are heat, and its flux and
source terms, respectively. The heatmθ is expressed as

mθ = (1 − φ)ρRCRT + φ(Sρ)JeJ , (4)

whereρR andCR are the density and heat capacity of the porous media.SJ is saturation for fluid
phaseJ . T is temperature.eJ is the specific internal energy of phaseJ . φ is the true porosity, defined
as the ratio of the pore volume to the bulk volume in the deformed configuration. The heat fluxfθ

is driven by conduction and convection, written as

fθ = − ((1 − φ)KR + φSJKJ)GradT + hJwJ , (5)

whereKR andKJ are the thermal conductivity tensors of the porous media and fluid phaseJ ,
respectively.hJ is the specific enthalpy for phaseJ .

The governing equation for mechanics is given by the quasi-static assumption as

Divσ + ρbg = 0, (6)

whereσ is the Cauchy total-stress tensor.ρb(= φSJρJ + (1 − φ)ρR) is the bulk density. Here, we
assume the infinitesimal transformation, from which the strain tensor is the symmetric gradient of
the displacement vector, written as

ε = Grad
s u =

1

2
(Gradu+ Grad

t u), (7)

whereε andu are the strain tensor and the displacement vector, respectively. From here on, tensile
stress and strain are positive.

For mathematical completeness, we determine initial and boundary conditions onthe domainΩ
with the boundary∂Ω. For fluid flow, we consider the boundary conditionspJ = p̄J (prescribed
pressure) on the boundaryΓp, andwJ · n = w̄J (prescribed mass flux) on the boundaryΓf , where
Γp ∩ Γf = ∅, andΓp ∪ Γf = ∂Ω. The boundary conditions for heat flow areT = T̄ (prescribed
temperature) on the boundaryΓT , andfθ · n = f̄θ (prescribed heat flux) on the boundaryΓθ, where
ΓT ∩ Γθ = ∅, andΓT ∪ Γθ = ∂Ω. The boundary conditions for the mechanical problem areu = ū

(prescribed displacement) on the boundaryΓu andσ · n = t̄ (prescribed traction) on the boundary
Γσ, whereΓu ∩ Γσ = ∅, andΓu ∪ Γσ = ∂Ω. The initial stress field should satisfy mechanical and
thermodynamic equilibriums, and be consistent with the fluid pressure, temperature, and history of
the stress-strain paths. Here, we take the initial conditions of the coupled problem aspJ |t=0 = pJ,0,
T |t=0 = T0, andσ|t=0 = σ0.

3. DISCRETIZATION

In this study we use a mixed space discretization. We employ the finite volume methodfor fluid
and heat flow in space discretization, typically used in reservoir simulation [36, 38, 39], where
pressure and temperature are located at the cell center (the left of Figure 1). On the other hand,
space discretization for mechanics is based on a nodal-based finite-element method, widely used
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Figure 1. Element shape functions for (a) pressure and temperature (left) and (b) displacement (right) in 2-D.
The pressure/temperature and displacement fields are approximated with piecewise constant and piecewise

continuous interpolation functions, respectively.

in mechanical and geotechnical engineering, where the displacement vector is located at vertices,
shown in (the right of Figure 1) [40].

This mixed space discretization has (1) local mass and heat conservationsat the element level,
(2) continuous displacement field, which allows for tracking the deformation, (3) convergent
approximations with the lowest order discretization [41], and (4) relativelystable approximations,
compared with a piecewise continuous interpolation for fluid pressure whenwe use the finite
element method for flow [8, 41, 42, 43]. In time discretization, we use the backward Euler method.
We use TOUGHREACT and ROCMECH simulators, developed in Lawrence Berkeley National
Laboratory, for fluid-heat flow and geomechanics, respectively [39]. These simulators adopt the
aforementioned space and time discretizations.

4. CONSTITUTIVE RELATIONS FOR SINGLE POROSITY SYSTEMS

The constitutive relations for thermoporomechanics in a single porosity modelare based on [18],
[21], and [44], where fluid, heat, and mechanics are tightly coupled. The total stressσ, fluid mass
mJ , and entropȳS in the elastic coupled system are functions of the total strainε, fluid pressurepJ ,
and temperatureT , written as

δσ = Cdr : δε
︸ ︷︷ ︸

δσ′

− αJδpJ1 − 3αT KdrδT1, (8)

(
δm

ρ

)

J

= αJδεv + NJKδpK − 3αm,JδT, (9)

δS̄ = s̄JδmJ + 3αT Kdrδεv − 3αm,JδpJ +
Cd

T
δT, (10)

whereCdr is the drained-isothermal elastic moduli,N = {NJK} is the inverse matrix of the Biot
moduli M = {MJK} (i.e.,N = M−1), whereN andM are positive definite. The Biot coefficient
αJ for multiphase flow takesαJ = αSJ , whereα is the Biot coefficient for single phase flow [20].
We defineσ′, the effective stress, in the incremental form asδσ′ = Cdr : δε, whereσ′ = 0 atε = 0.
3αT is the volumetric skeleton thermal dilation coefficient,Kdr is the drained isothermal bulk
modulus,1 is the rank-2 identity tensor,εv is the total volumetric strain, and3αm,J = 3αφ + φ3αJ ,
where 3αφ and 3αJ are the coefficients of thermal dilation related to porosity and phaseJ ,
respectively.̄sJ is the internal entropy per unit mass of phaseJ (i.e., specific entropy of phase
J). Cd = C + mJCp,J is the total volumetric heat capacity, whereC is the skeleton volumetric heat
capacity andCp,J is the volumetric specific heat capacity at constant pressure for phaseJ . Double
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indices in Equations 8 – 10 indicate summation.δ implies variation relative to the motion of the
solid skeleton.

For a two-phase fluid system (such as oil and water), an appropriate (i.e., admissible)N, which
is typically used in engineering, is given as (e.g., [22])

N =








φSoco − φ
dSw

dpco
+ So

b − φ

Ks
So φ

dSw

dpco
+ So

b − φ

Ks
Sw

φ
dSw

dpco
+ Sw

b − φ

Ks
So φSwcw − φ

dSw

dpco
+ Sw

b − φ

Ks
Sw








, (11)

where the subscript(·)o indicates the oil phase,cJ is the compressibility of the fluid phaseJ , pco is
the capillary pressure between oil and water, andKs is the intrinsic solid grain bulk modulus.

Equations 8– 10 and the corresponding definition of effective stress honor the first and second
thermodynamic laws in physics and, in mathematics, provide wellposed problems and unconditional
numerical stability when fully coupled methods are used [21, 37, 44].

5. EXTENSION TO MULTIPLE POROSITY SYSTEMS

5.1. Poroelasticity

The single porosity theory in poromechanics has limited applicability for fractured or composite
reservoirs because they are highly heterogeneous within a gridblock, arepresentative elementary
volume [25, 26, 27]. To overcome such limitations, the double porosity (also called dual porosity)
model was proposed and investigated, introducing dual continua such asfracture and rock matrix
porous media.

[25] and [27] extended the single porosity theory of poromechanics in isothermal single fluid
phase to the double porosity model, and determined the coupling coefficients.The constitutive
relations proposed by [27] are

(
δεv

δζ

)

=

(
a −bT

−b D

)(
δσv

δp

)

, (12)

ζ =

(
ζf

ζm

)

, p =

(
pf

pm

)

, b =

(
bf

bm

)

,D =

(
dff dfm

dmf dmm

)

, (13)

whereσv is the total volumetric (mean) stress (i.e.,trσ/3), and the subscriptsf andm indicate
fracture and rock matrix media, respectively.ζ implies the fluid content at each medium, where
δζ = δm/ρ. The coefficients ofa, b, andD are expressed as

a =
1

Kdr
, bf =

αf

Kf

1 − Km/Kdr

1 − Km/Kf
, bm =

αm

Km

1 − Kf/Kdr

1 − Kf/Km
, (14)

dff =
ηfαf

BfKf
−
(

αf

1 − Kf/Km

)2(
ηf

Kf
+

ηm

Km
− 1

Kdr

)

, (15)

dmm =
ηmαm

BmKm
−
(

αm

1 − Km/Kf

)2(
ηm

Km
+

ηf

Kf
− 1

Kdr

)

, (16)

dfm =
KfKmαfαm

(Km − Kf )
2

(
ηm

Km
+

ηf

Kf
− 1

Kdr

)

, dmf = dfm, (17)

whereKf , αf , Bf andηf are the drained bulk modulus, Biot coefficient, and Skempton coefficient,
volume fraction of the fracture medium, whileKm, αm, Bm, andηm are those corresponding to the
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rock matrix medium. For example, the Biot and Skempton coefficients for the fracture are defined
as

αf = 1 − Kf

Ks
, Bf =

Mfαf

Kf + α2
fMf

,
1

Mf
= φcf +

αf − φ

Ks
, (18)

wherecf is the intrinsic fluid compressibility, andMf is the Biot modulus.
Kdr is a drained bulk modulus of a gridblock used for mechanics, upscaled from drained bulk

moduli of the fracture and rock matrix media within a gridblock.b is the coupling coefficient
vector between fluid flow and mechanics.D implies the coupling coefficient matrix between
fluid variables, which corresponds to the total compressibility matrix in conventional reservoir
simulation.

[27] discussed a possible extension of the double porosity constitutive model to the multiple
porosity system, and concluded that the uniform expansion and contraction scenario can carry over
to the multiple porosity model just as it does in the double porosity model, but that the extension
to the multiple porosity model still remains an open question because the scenariodoes not provide
the sufficient equations to determine all the coefficients of the constitutive relations.

In this section, we focus on determining the coupling coefficients between fluid flow and
mechanics in the multiple porosity system, as shown in Figure 2, assuming the coefficients between
fluid flow variables (i.e.,D) to be given. To this end, we first introduce the same form of the
constitutive relations of the double porosity model as follows.

(
δεv

δζ

)

=

(
a −bT

−b D

)(
δσv

δp

)

, (19)

ζ =






ζ1

...
ζnm




 ,p =






p1

...
pnm




 ,b =






b1

...
bnm




 ,D =






d11 · · · d1nm

...
...

...
dnm1 · · · dnmnm




 , (20)

where nm is the number of materials per gridblock.D is known from the assumption that the
coefficients between fluid pressure and mass are given. This assumptionis relevant becauseD
represents interrelations between fluid pressures of different materialsin the fluid flow simulation
uncoupled to mechanics (i.e., total compressibility matrix of the multiple porosity model),
determined by a given formulation of the flow problem itself. Double indices donot indicate
summation in this section. We specify the summation symbolΣ separately. We call ‘sub-element’
an element occupied by a material within a gridblock (e.g., fracture or rock matrix).

Figure 2. Schematic diagrams for the multiple porosity model. Left: a composite porous medium which
consists of several distinct types of porous materials. Right: a conceptual diagram of the MINC model, as

an example of the multiple porosity model [28].

Consider that each material is assumed to be what we call “Gassmann material”[27], a
microhomogeneous porous medium, satisfying
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(
δεk

v

δζk/ηk

)

=
1

Kk

(
1 αk

αk αk/Bk

)(
δσk

v

δpk

)

, (21)

where the subscript or superscriptk means a material index.ηk is the volume fraction of materialk
within a gridblock. Considering the uniform expansion and contraction scenario just as used in the
double porosity model [27], we obtain

δεv = δε1
v = · · · = δεk

v = · · · = δεnm
v , (22)

δσv = δσ1
v = · · · = δσk

v = · · · = δσnm
v . (23)

Then, Equations 22 and 23 provide

1

Kk
(δσv + αkδpk) =

1

Kl
(δσv + αlδpl) , (k 6= l), k, l = 1, · · · , nm, (24)

where the subscriptl is another material index. Rearranging Equation 24, we obtain

δpl = − 1

αl

{(

1 − Kl

Kk

)

δσv − Kl

Kk
αkδpk

}

. (25)

Note thata = 1/Kdr, already obtained from the double porosity model, shown in Equation 14. The
first row of Equation 19 can be rewritten by using Equation 25 as

δεv =
1

Kdr
δσv −

nm∑

l=1

blδpl

=
1

Kdr
δσv +

nm∑

l=1

bl
1

αl

{(

1 − Kl

Kk

)

δσv − Kl

Kk
αkδpk

}

. (26)

Then, based on the uniform expansion and contraction scenario of Equations 22 and 23, Equation 26
must be identical to the first row in Equation 21. Comparing two equations, we obtain

1

Kk
=

1

Kdr
+

nm∑

l=1

bl
1

αl

(

1 − Kl

Kk

)

, (27)

nm∑

l=1

bl
Kl

αl
= −1. (28)

We can also substitute Equation 25 into the mass content term (i.e.,δζ) of Equation 19, and this
leads to

δζk = −bkδσv −
nm∑

l=1

dkl
1

αl

{(

1 − Kl

Kk

)

δσv − Kl

Kk
αkδpk

}

. (29)

Considering the uniform expansion and contraction scenario, again, and comparing Equation 29
with the second row of Equation 21, we obtain
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bk = −αk
ηk

Kk
−

nm∑

l=1

dkl
1

αl

(

1 − Kl

Kk

)

, (30)

nm∑

l=1

dkl
Kl

αl

αk

Kk
=

ηk

Kk

αk

Bk
. (31)

Thus, the coupling coefficientbk is determined from Equation 30 becausedkl, Kk, Kl, αk, αl,
andηk are known. Accordingly,Kdr is determined from Equation 27. Equations 28 and 31 are the
constraints that also need to be satisfied.

Typically, the off-diagonal terms ofD are zero in the conventional flow formulation for
the multiple porosity model (i.e.,dkl = 0 when k 6= l) [28]. Then, this condition yields from
Equations 30, 31, and 27, respectively,

bk = −αk
ηk

Kk
, dkk =

ηk

Kk

αk

Bk
,

1

Kdr
=

nm∑

k=1

ηk

Kk
, (32)

from which the constraint, Equation 28, is immediately satisfied. Note thatKdr is the volume-
fraction weighted harmonic average of drained bulk moduli of sub-elements. This is consistent with
the conventional up-scaling method in compressibility. Hereafter, we take theassumption that the
off-diagonal terms ofD are zero, unless noted otherwise.

5.2. Thermoelasticity

We can determine coupling between heat flow and geomechanics in the double/multiple porosity
systems, just as coupling between fluid flow and geomechanics. Let us introduce the same form of
Equations 19 and 20 as

(
δεv

δS̄

)

=

(
a −b̃T

−b̃ D̃

)(
δσv

δT

)

, (33)

S̄ =






S̄1

...
S̄nm




 ,T =






T1

...
Tnm




 , b̃ =






b̃1

...
b̃nm




 , D̃ =






d̃11 · · · d̃1nm

...
...

...
d̃nm1 · · · d̃nmnm




 , (34)

whereD̃ is assumed to be known from a heat flow model. This assumption is, again, relevant
becausẽD represents relations between temperatures of all materials in the heat flow simulation
uncoupled to mechanics, (i.e., total heat capacity matrix), determined by a given formulation of the
heat flow problem itself.

When we consider Equations 8 – 10 without fluid flow, the constitutive relations of
thermoelasticity for the single porosity model read

(
δεv

δS̄

)

=
1

Kdr

(
1 γ

γ γ/B̃

)(
δσv

δT

)

, γ = 3αT Kdr,
1

B̃
=

Cis

3αT T
, (35)

whereCis = Cd + 9α2
T KdrT is the volumetric heat capacity at constant stress [44]. We identify

that Equation 35 is the same form as the constitutive relations in coupling between fluid flow and
geomechanics, when the Biot and Skempton coefficients (i.e.,b andB, respectively) for single fluid
phase in poroelasticity are substituted byγ andB̃ in thermoelasticity, respectively.
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Thus, when determining the coupling coefficients of thermoelasticity in double and multiple
porosity systems, we can employ the same procedure and results previouslyshown in coupling
between fluid flow and geomechanics, simply replacing the Biot and Skempton coefficients withγ
andB̃. In particular, when the off-diagonal terms iñD are zero, we obtain

b̃k = −γk
ηk

Kk
, d̃kk =

ηk

Kk

γk

B̃k

. (36)

5.3. Determination of drained elasticity tensorCdr and local strainεk

The stress-strain relation for mechanics in the multiple porosity model can be written, replacingσv

andKdr of Equation 19 withσ andCup, in a tensorial form as

δσ = Cup : δε+

nm∑

l=1

blδpl1, (37)

whereCup is a drained elasticity tensor of the mechanics problem to be upscaled and determined
from the materials of sub-elements within a gridblock as follows.

We reuse the uniform expansion and contraction scenario shown in Equations 22 and 23, and
replace the volumetric stress and strain with the total stress and strain tensors, respectively. Then,
the relations among the total stress, strain, and pore-pressure can be written as

δσ = Ck : δε− αkδpk1 (38)

= Cl : δε− αlδpl1, (k 6= l), k, l = 1, · · · , nm, (39)

whereCk and Cl are drained elasticity tensors for materialsk and l, respectively. Rearranging
Equation 38, we obtain

δpl1 =
1

αl
{(Cl − Ck) : δε+ αkδpk1} . (40)

Substituting Equation 40 into Equation 37,

δσ = Cup : δε+

nm∑

l=1

bl
1

αl
{(Cl − Ck) : δε+ αkδpk1} . (41)

Comparing Equation 41 with Equation 38 and using Equation 321, we obtain

Ck = Cup +

nm∑

l=1

ηl

Kl
(Ck − Cl) . (42)

Let us multiply both sides of Equation 42 byηk/Kk and take summation fromk = 1 to k = nm.
Then, rearranging the equation, we have

nm∑

k=1

ηk

Kk

︸ ︷︷ ︸

1/Kdr

Cup =

nm∑

k=1

ηk

Kk
Ck +

nm∑

k=1

ηk

Kk

︸ ︷︷ ︸

1/Kdr

(
nm∑

l=1

ηl

Kl
Cl

)

−
nm∑

k=1

ηk

Kk
Ck

nm∑

l=1

ηl

Kl

︸ ︷︷ ︸

1/Kdr

, (43)
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which yields, using Equation 323,

Cup = Kdr

nm∑

k=1

ηk

Kk
Ck. (44)

Let us assume that variations in the global effective stressδσ′ (i.e., gridblock effective stress)
can be determined from the sum of volume fraction weighted variations in effective stresses of the
materials of sub-elements (i.e.,ηkδσ′

k), expressed as

δσ′ =

nm∑

k=1

ηkδσ′

k, (45)

which is the same type of the definition in pore-pressure for multiple fluid phases (i.e., equivalent
pore-pressurepE , whereδpE =

∑
SJδpJ ) [5, 37, 44]. Using Equation 44 and considering the local

effective stress-strain constitutive relation (i.e.,δσ′

k = Ck : δεk), we obtain from Equation 45

δσ′ =
Kdr

Kk
Ck : δε, δεk =

Kdr

Kk
δε. (46)

5.4. Poroelastoplasticity

Changes in total-stress and fluid pressure in elastoplasticity for single fluid phase and isothermal
conditions are related to changes in strain and fluid content as follows [21,44]:

δσ = Cdr : (δε− δεp)
︸ ︷︷ ︸

δσ′

− αδp1, (47)

δp = M




−α(δεv − δεv,p) + (δζ − δφp)

︸ ︷︷ ︸

δζe




 , (48)

whereδζe is the variation of the elastic fluid content of phaseJ . The subscriptse andp denote
elasticity and plasticity, respectively. The plastic porosityφp and plastic volumetric strainεv,p can
be related to each other by assuming that [6]

δφp = αδεv,p. (49)

Then, introducing elastoplastic tangent moduliC
ep
up into Equation 47 [45], Equations 47 and 48 can

be rewritten as

δσ = C
ep
dr : δε− αδp1, (50)

δp = M (−αδεv + δζ) , (51)

where the superscript ‘ep’ implies elastoplasticity. Note that Equations 50 and 51 are expressed by
total stress/strain and total fluid mass/fluid pressure. Thus, we can extendthe previous analyses of
elasticity to elastoplasticity immediately. Accordingly,α in Equations 50 and 51 for elastoplasticity
becomesα = 1 − Kep

dr/Ks, whereKep
dr is the drained elastoplastic bulk modulus. Furthermore, we

rewrite Equation 32 as

bk = −αk
ηk

Kep
k

, dkk =
ηk

Kep
k

αk

Bep
k

,
1

Kep
dr

=

nm∑

k=1

ηk

Kep
k

, (52)
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where we use the elastoplastic drained bulk modulus in the coupling coefficient bk instead of the
elastic drained bulk modulus. Then the gridblock elastoplastic tangent moduli upscaled from the
materials of sub-elements can be obtained as

C
ep
up = Kep

dr

nm∑

k=1

ηk

Kep
k

C
ep
k . (53)

According to Equation 46, the local effective stress, elastic and total strains of materialk are
determined, respectively, as

δσ′

k =
Kep

dr

Kep
k

C
ep
k : δε, δεe

k =
Ke

dr

Ke
k

δεe, δεk =
Kep

dr

Kep
k

δε, (54)

where the superscripte implies elasticity. As a result, the local and global plastic strains are related
as follows:

δεp
k =

(
Kep

dr

Kep
k

− Ke
dr

Ke
k

)

δε+
Ke

dr

Ke
k

δεp. (55)

6. A SEQUENTIAL SCHEME IN NUMERICAL SIMULATION

6.1. The fixed-stress sequential method and porosity correction

We consider numerical algorithms to solve coupled flow and geomechanics combined with the
constitutive relations proposed in this study. Let us assume the off-diagonal terms in D of
Equation 20 to be zero, following the conventional flow formulation for the multiple porosity model,
such as MINC [28]. Then, the second row in Equation 19 can be written as

δζl = −blδσv + ηl

(
α2

l

Kl
+

1

Ml

)

δpl. (56)

In the conventional reservoir simulation for flow only [36], the accumulationof the fluid mass is
formulated as

δml = ρlηl (δΦl + Φlcfδpl) , (57)

whereΦl is Lagrange’s porosity for materiall, defined as the ratio of the pore volume in the
deformed configuration to the bulk volume in the reference (initial) configuration [23]. Comparing
Equation 56 with Equation 57, Lagrange’s porosity can be written as

δΦl =

(
α2

l

Kl
+

αl − φl

Ks

)

δpl −
bl

ηl
δσv, (58)

whereφl may be replaced byΦl because the difference can be ignored [14].
Then, we employ the fixed-stress sequential method for a stable and convergent sequential

method [33], which will be discussed in Sections 6.3 and 6.4. This method splits the original
operator into the two subproblems (i.e., flow and mechanics) as

[
un

pn
l

]
Ap

ss−→
[
u∗

pn+1
l

]
Au

ss−→
[
un+1

pn+1
l

]

, where

{

Ap
ss : ṁl + Divwl = (ρf)l, δσ̇ = 0,

Au
ss : Divσ + ρbg = 0, pl : prescribed,

(59)
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where the initial condition of the flow problemAp
ss is determined from the original coupled problem

satisfying

Div σ̇t=0 = 0 , Div σt=0 + ρbg = 0. (60)

In this fixed-stress split method, when we solve the flow problemAp
ss, we evaluate the term

associated with the total volumetric (mean) stress in Equation 58 explicitly. Thus,the fixed-stress
split method yields from Equation 58 and the first row of Equation 19

Φn+1 − Φn =

(
α2

l

Kl
+

αl − Φn

Ks

)(

pn+1
l,J − pn

l,J

)

− ∆Φl
c, (61)

∆Φl
c =

bl

ηl
Kdr

{

(
εn
v − εn−1

v

)
−

nm∑

k=1

bk

(
pn

k − pn−1
k

)

}

︸ ︷︷ ︸

(σn
v −σn−1

v )

, (62)

where the superscriptn indicates time level in time discretization, and∆Φl
c is called porosity

correction. We use the coupling coefficientbk described in Equation 32 because the off-diagonal
terms ofD are zero. The Lagrange porosity function and correction modified for the multiple
porosity model (i.e., Equations 61 and 62) can easily be implemented in conventional reservoir
simulators. Furthermore, the calculation of the porosity correction is local, sothe computational
cost is negligible, compared with the global calculation, such as linear (matrix)solvers.

6.2. Multiphase flow with elastoplasticity

Considering constitutive relations for single porosity systems with elastoplasticity [6, 21, 44], the
previously described constitutive relations can be extended to those of multiphase flow systems with
elastoplasticity for the multiple porosity model, as follows.

δσ =

δσ′

︷ ︸︸ ︷

Cup : δ (ε− εp)
︸ ︷︷ ︸

εe

−b∗l,Jδpl,J1, b∗l,J = −KdrblSl,J (63)

δζl,J − δφ(l,J)p
︸ ︷︷ ︸

δζ(l,J)e

= b∗l,Jδεv,e + L−1
l,J,m,Iδpm,I , (64)

δκl = −Hl · δξl, (65)

where the subscriptse andp denote elasticity and plasticity, respectively. In this section, we retrieve
double indices to indicate summation.εe andεp are the elastic and plastic strains, respectively.κl

andξl are the internal stress-like and strain-like plastic variables for materiall, respectively.Hl is
a positive definite hardening modulus matrix for materiall. ζ(l,J)e

andφ(l,J)p
are the elastic and

plastic fluid contents for the materiall and phaseJ , respectively. Similar to the previous single
phase flow and single porosity model, we take

δφ(l,J)p
= b∗l,Jδεv,p. (66)

L = {Ll,J,m,I} is a positive-definite tensor, extended from the Biot modulus in single phaseflow.
For example, whendij = 0, i 6= j, L for an oil-water phase with a fracture-rock matrix (double
porosity) system can be written in a matrix form as
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L−1 =

[
ηfNf 0

0 ηmNm

]

, (67)

whereNf andNm become the same asN in Equation 11, when replacingα of Equation 11 with
αf andαm, respectively. Accordingly, Equations 63 and 64 can be rewritten, respectively, as

δσ =

δσ′

︷ ︸︸ ︷

C
ep
drδε−b∗l,Jδpl,J1, (68)

δζl,J = b∗l,Jδεv + L−1
l,J,m,Iδpm,I . (69)

Then, we can follow the same procedure of the poroelastic porosity function (Equation 61) and its
correction (Equation 62), by simply replacingKdr with Kep

dr , which yields

Φn+1
l − Φn

l =

(
α2

l

Kep
l

+
αl − Φn

l

Ks

) np∑

J=1

Sn+1
l,J

(

pn+1
l,J − pn

l,J

)

− ∆Φl
c, (70)

∆Φl
c =

bl

ηl
Kep

dr

{

(
εn
v − εn−1

v

)
+

nm∑

k=1

np∑

J=1

bn
k,J

(

pn
k,J − pn−1

k,J

)
}

︸ ︷︷ ︸

(σn
v −σn−1

v )

, (71)

where np is the number of fluid phases.

6.3. Well-posedness and admissibility of the constitutive relations

The constitutive relations proposed in this study are desired to satisfy well-posedness just as those
in single porosity systems because thermoporomechanics is dissipative physically and thus well-
posed mathematical statements are required. We analyze the contractivity properties for the given
mathematical problems and constitutive relations to investigate well-posedness.The analysis of
contractivity was employed in the previous study of [37] for the single porosity model in order to
determine a proper definition of pore-pressure for multiphase flow (i.e., anupscaled pressure from
fluid phase pressures) between the equivalent and average pore-pressures, and it is found that the
equivalent pore-pressure honors well-posedness, while the average pore-pressure, widely used in
many engineering fields, does not.

Following the procedure of [37], in this section, we first evaluate admissibilityof relations
between local and global variables (i.e., Equations 45, 46, 52 – 55) and constitutive relations shown
in Equations 63 – 66. Then, in the next section, we investigate whether the fixed-stress sequential
scheme modified for multiple porosity systems is still contractive and numerically stable.

Let us introduce a norm extended from the single porosity model in [37] to the multiple porosity
model, as follows.

‖χ‖2
H =

1

2

∫
(

nm∑

l=1

ηl
Kep

l

Kep
dr

(εe
l : Clε

e
l + ξl · Hlξl) + (ζe − b∗εv,e) · L (ζe − b∗εv,e)

)

dΩ, (72)

H = {χ : =
(
εe
1, · · · , εe

nm
, ξ1, · · · , ξnm

, ζe

)
∈

nm
︷ ︸︸ ︷

S · · · S×
nm

︷ ︸︸ ︷

Rnint · · ·Rnint ×Rnp×nm

: εe
l,ij ∈ L2(Ω), ξl,i ∈ L2(Ω), ζ(l,J)e

∈ L2(Ω)
}

, (73)
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whereS = R(ndim+1)×ndim/2, and ndim and nint are the dimension of the domain and the number
of components ofξl, respectively.εe

l =
{

εe
l,ij

}

, ξl = {ξl,i}, andζe =
{
ζ(l,J)e

}
, b∗ =

{

b∗l,J

}

. Note

thatζe contains the number of materials of sub-elements.
Let us introduce two arbitrary initial conditions, (u0, p0, ξl0) and (̃u0, p̃0, ξ̃l0), respectively,

wherep = {pl,J}. We also let (u, p, ξl) and (̃u, p̃, ξ̃l) be the corresponding solutions from the
two different initial conditions, which yield (εe

l , ζe, κl) and (ε̃e
l , ζ̃e, κ̃l). The difference between

the two solutions is denoted byd(·) = (·) − (̃·). Then, contractivity is defined as [1, 46, 47, 48, 49]

d

dt
‖dχ‖H ≤ 0. (74)

Let the corresponding solutions from two arbitrary initial conditions be close enough, such that
they follow the incremental forms of the constitutive relations and relations between local and global
variables. Specifically, ‘δ’ in the relations such as Equations 45, 46, 54, 55, and 63 –66 can be
replaced by ‘d’.

Considering that the solutions from two arbitrary initial conditions satisfy the governing
equations and the boundary conditions, the governing equations for multiphase flow and
geomechanics yield

Div dσ = 0, dṁl,J + Div dwl,J = 0, (75)

where non-negative plastic dissipation is satisfied for elasto-plasticity, andhomogeneous boundary
conditions are obtained.

Then, the given mathematical problems based on the proposed constitutive relations yield
contractivity, as follows.

d

dt
‖dχ‖2

H =

∫






nm∑

l=1

ηl
Kep

l

Kep
dr




dεe

l : Cl
︸ ︷︷ ︸

=dσ′

l

: dε̇e
l + dξl · Hl

︸ ︷︷ ︸

=dκl

dξ̇l




+ (dζe − b∗dεv,e)

︸ ︷︷ ︸

=dζ−b∗dεv

·L
(

dζ̇e − b∗dε̇v,e

)




 dΩ,

(from Equations 45, 65, and 66 for dσ′

l, dκl, and dζ − b∗dεv, respectively)

=

∫








nm∑

l=1

ηldσ
′

l :
Kep

l

Kep
dr

dε̇l

︸ ︷︷ ︸

=dε̇

+(dζ − b∗dεv) · L
︸ ︷︷ ︸

=dp

(dζ̇ − b∗dε̇v)








dΩ

−
∫
(

nm∑

l=1

ηl
Kep

l

Kep
dr

(

dσ′

l : dε̇p
l + dκl · dξ̇l

)
)

dΩ

︸ ︷︷ ︸

denoted by Dd
p

,

(from Equations 54 and 64 for dε̇ and dpl,J , respectively)

=

∫




 dσ′

︸︷︷︸

=
∑nm

l=1 ηldσ′

l

: dε̇+ dp · (dζ̇ − b∗dε̇v)




 dΩ − Dd

p, (from Equation 45 for dσ′) ,

=

∫

dσ : dε̇dΩ

︸ ︷︷ ︸

=0

+

∫

dp · dζ̇dΩ − Dd
p, (from Equations 63 and 751)

= −
∫

dvl,J · k−1
p,lJmIdvm,JdΩ − Dd

p ≤ 0, v(l,J)i
∈ H (div,Ω), (76)

where the Darcy law (i.e., Equation 2) and divergence theorem are applied to the last expression,
and non-negative plastic dissipation leads toDd

p ≤ 0. Thus, Equation 76 implies that the
proposed constitutive relations (i.e., Equations 63 – 67), and globalization and localization
(i.e., Equations 45, 46, 52 – 55) are admissible, honoring the dissipative mechanism in
thermoporomechanics.
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6.4. An a-priori stability estimate of the sequential scheme

Sequential schemes are typically limited by numerical stability and convergence. In particular,
typical (obvious) sequential methods in coupled flow and geomechanics donot provide
unconditional stability and the numerical instability cannot be fixed by reducing time step size
[43]. Additionally, the typical methods may suffer from non-convergence, even in the case that
they are numerically stable [32, 33]. According to [33], the fixed stress split method can provide
unconditional stability and convergence with high accuracy for coupled flow and geomechanics in
single porosity systems. In this section, for completeness, we will find that thefixed stress split
modified for the multiple porosity model is still B-stable. As an a-priori estimate in numerical
stability, we employ B-stability [1, 46, 47, 48, 49, 50], defined as

∥
∥dχn+1

∥
∥
H

≤ ‖dχn‖H , (77)

where the corresponding mathematical statements satisfy contractivity. Following the definition of
B-stability, we first investigate contractivity of the fixed-stress operator splitting modified for the
multiple porosity model.

When the flow step is taken, the mathematical statements for multiphase flow are written as

dṁl,J + Div dwl,J = 0, δdσ̇ = 0, Div dσ̇t=0 = 0, Div dσt=0 = 0, (78)

where homogeneous boundary conditions and non-negative plastic dissipation are satisfied. Same
as the previous studies of single porosity systems [33],δdσ̇ = 0 with the initial conditions of
Equation 78 yields

Div dσ = 0. (79)

Then, at the flow step, we obtain

d

dt
‖dχ‖2

H =

∫

dσ : dε̇dΩ

︸ ︷︷ ︸

=0

+

∫

dp · dζ̇dΩ − Dd
p, (From Equation 79) ,

= −
∫

dvl,J · k−1
p,lJmIdvm,JdΩ − Dd

p ≤ 0. (80)

When we take the mechanics step, the mathematical statements are written as

Div dσ = 0, dpl,J = 0,⇒ Div dσ′ = 0, (81)

where non-negative plastic dissipation and homogeneous boundary conditions are satisfied. Then,
we obtain

d

dt
‖dχ‖2

H =

∫

dσ′ : dε̇dΩ

︸ ︷︷ ︸

=0

−Dd
p, (From Equation 81) ,

= −Dd
p ≤ 0. (82)

From Equations 80 and 82, the fixed-stress operator splitting holds contractivity. Since the
operator splitting is contractive, we study the algorithmic numerical stability at thediscrete time
level (i.e., B-stability).

Consider the generalized midpoint rule in time discretization (evaluation at timetβ with β ∈
(0, 1]). We also consider typical return mapping algorithms for elastoplasticity for the associated
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flow rule (maximum plastic dissipation) [45], which satisfies for materiall within a gridblock

≪ Σtr,n+β
l − Σn+β

l , Πl − Σn+β
l ≫

︸ ︷︷ ︸

denoted by DA
l

≤ 0 ∀Πl ∈ El, (83)

where the bilinear form≪ ·, · ≫ is defined as

≪ Σl,Πl ≫:=

∫

Ω

(
σ′

l : C
−1
l ψ′

l + κl ·H−1
l ωl

)
dΩ, (84)

and its associated norm‖ · ‖El
is

‖Σl‖2
El

:=
1

2
≪ Σl,Σl ≫, (85)

whereΣl = (σ′
l,κl) is a generalized effective-stress constrained to lie within the elastic domainEl,

andΠl = (ψ′
l,ωl) is another (arbitrary) generalized effective stress.Σ

tr,n+β
l from the elastic trial

step is defined as(σ′n
l + βCl∆ε

n
l ,κn

l ).
Introducing the corresponding solutions,Σ and Σ̃, from two arbitrary initial conditions and

letting those be close enough, Equation 83 yields [32, 47]

≪ dΣn
l − dΣn+β

l , −dΣn+β
l ≫ + ≪ (βCl∆dεn

l , 0), (−dσ′n+β
l ,−dκn+β

l ) ≫
︸ ︷︷ ︸

=DA
l

≤ 0, (86)

where the first term can identically be expressed as

≪ dΣn
l − dΣn+β

l , −dΣn+β
l ≫= β

(∥
∥dΣn+1

l

∥
∥

2

El
− ‖dΣn

l ‖2
El

)

+ β (2β − 1)
∥
∥dΣn+1

l − dΣn
l

∥
∥

2

El
. (87)

The second term of Equation 87 yields

nm∑

l=1

ηl
Kep

l

Kep
dr

≪ (βCl∆dεn
l , 0), (−dσ′n+β

l ,−dκn+β
l ) ≫

= −β

∫ nm∑

l=1

ηl
Kep

l

Kep
dr

∆dεn
l

︸ ︷︷ ︸

∆dεn

: dσ′n+β
l dΩ = −β

∫ nm∑

l=1

ηldσ
′n+β
l

︸ ︷︷ ︸

dσ′n+β

: ∆dεndΩ

= −β

∫

∆dεn : (dσn+β + b∗l,Jdpn+β
l,J 1)dΩ, (88)

where Equation 63 is applied to the last expression. Then, from Equations87 and 88, we obtain

nm∑

l=1

ηl
Kep

l

Kep
dr

(∥
∥dΣn+1

l

∥
∥

2

El
− ‖dΣn

l ‖2
El

)

=

nm∑

l=1

ηl
Kep

l

Kep
dr

(
1

β
DA

l − (2β − 1)
∥
∥dΣn+1

l − dΣn
l

∥
∥

2

El

)

+

∫

∆dεn : (dσn+β + b∗l,Jdpn+β
l,J 1)dΩ. (89)

When we solve the flow problem first, the algorithmic counterpart of Equation78 at the discrete
time level is written as

L−1
lJmI(dpn+1

m,I − dpn
m,I) + b∗l,J

∆dεn
v

︷ ︸︸ ︷

(dεn+1
v − dεn

v ) +
∆t

ρJ
Div(dwn+β

l,J ) = 0, (90)

dσn+1 − dσn = dσn − dσn−1, Div
(
dσ1 − dσ0

)
= 0, Div dσ0 = 0, (91)
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where we consider maximum plastic dissipation in the flow step because we use the elastoplastic
moduli.

From Equation 91, we obtain

Div dσn+β = 0,⇒
∫

dσn+β : ∆dεndΩ = 0. (92)

Let us define a norm forp as

‖p‖2
L =

1

2

∫

pl,JL−1
lJmIpm,IdΩ. (93)

Consider the following identity

(
∥
∥dpn+1

∥
∥

2

L
− ‖dpn‖2

L) =

∫

Ω

dpn+α
l,J LlJmI

(
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Then, at the flow step, adding Equations 89 and 94 with Equations 90 and 92, the evolution of the
norm is described as
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from which B-stability is obtained at the flow step whenβ ≥ 0.5.
When we solve the mechanics problem at the next step, the algorithmic counterpart of

Equation 81 at the discrete time level is written as

Div dσn+β = 0, dpl,J
n+β = 0,⇒ Div dσ′n+β

= 0, (96)

where the maximum plastic dissipation is satisfied. Then, at the mechanics step, adding Equations 89
and 94 with Equation 96, we obtain the evolution of the norm as
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from which B-stability is obtained at the mechanics step whenβ ≥ 0.5. Thus, from Equatins 95 and
97, the fixed-stress sequential method modified for multiple porosity systems are unconditionally
stable whenβ ≥ 0.5.
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Equation 83 implies that the return mapping is performed for all materials of sub-elements. In
solution procedure, after we obtain the global total strain, we calculate the local total stain from
Equation 543, followed by the return mapping, which determines local plastic variables, hardening
moduli, and elastoplastic tangent moduli. Then, we can determine global properties such as global
elastic and plastic strains from Equations 54 and 55. Since return mapping is performed at each sub-
element, we can employ different plastic models, yield conditions, and hardening laws for different
materials.

6.5. Porosity correction in thermoporoelasticity

Let us incorporate Equations 19 and 33 into the following equation for thermoporomechanics:




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δζ
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 , (98)
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...
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 , (99)

whereD̄ is determined by coupling beween fluid flow and heat transfer, regardless of geomechanics.
The off-diagonal terms ofD̄ are typically zero, just asD and D̃. The diagonal terms of
D̄ are determined by3αl

T αl,J − 3αl
m,J for material l and phaseJ . Then, we can determine

all the coefficients in Equation 98 from the results obtained previously in poromechanics and
thermomechanics.

For numerical simulation in non-isothermal condition, we can extend the fixed-stress split method
straightforwardly, when employing one-way coupling from heat flow to mechanics. This one-way
coupling implies that a direct contribution from mechanics to heat flow is neglected (i.e.,b̃ = 0

of the third row of Equation 98). The one-way coupling can be justified when a heat capacity of
material or fluid is high, or direct heat generation from deformations is negligible [22]. However,
mechanics can still affect heat flow coupled to fluid flow because fluid flowand mechanics are tightly
(two-way) coupled. Then, based on one-way coupling from heat flowto mechanics and the fixed-
stress split method, at the flow step where fluid and heat flow problems are solved simultaneously
for flow, the porosity function and its correction for the non-isothermal condition become
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. (101)

From the mathematical standpoint, one-way coupling from heat flow to mechanics implies
decoupling between heat flow and mechanics, so we infer that the a prioristability estimate shown
previously for isothermal condition can still validate the unconditional stability of the fixed-stress
split for this non-isothermal condition. However, finding sequential methods that hold B-stability
when b̃ in the third row of Equation 98 is not neglected is an open question, which cannot be
encompassed by the a priori stability estimate in this study.
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7. NUMERICAL EXAMPLES

We introduce three cases for testing poroelasticity, poroelastoplasticity, and thermoporoelasticity in
multiple porosity systems. We use fracture-rock matrix systems for the multiple porosity systems.
The fracture-rock matrix systems are representative of any composite systems that consist of a high
permeable material transporting fluid over the domain and the other materials storing fluid and
conveying it to the high permeable material, as shown in Figure 3. Thus, the fracture medium in
these numerical examples does not need to be a physical fracture, but represents a high permeable
material.

Figure 3. A representative fracture-rock matrix system (i.e., MINC) is described [28]. Fluid flows through
the fractures, while the rock matrices provide fluid into thefracture continuum. The arrow,↔, implies fluid

flow.

7.1. Poroelasticity

We introduce a 1D consolidation problem for single phase fluid flow and isothermal condition, using
the MINC method for flow. The domain has 9 gridblock, where the grid spacing ∆x, ∆y, and∆z are
1 m, 1 m, and 2 m, respectively. Each gridblock has five interacting continua (i.e., 5 sub-elements):
one fracture and four rock matrix media, as shown in Figure 4. Accordingly, the flow problem has
45 elements, while the mechanical problem has 9 elements. Volume fractions of Fracture, Matrices
1, 2, 3 and 4 are 0.02, 0.08, 0.2, 0.35, and 0.35, respectively. An observation gridblock is located at
the bottom.

For flow, the initial permeability and porosity of the fracture continuum arekf,0
p = 598 md,

where1 md = 9.87 × 10−16 m2, andφf,0 = 0.5, while those for each rock matrix continuum are
km,0

p = 0.0598 md andφm,0 = 0.3. We assume constant permeability during simulation, focusing
on interactions between mechanical deformation and fluid pressure for theproposed constitutive
relations of multiple porosity systems, although appropriate permeability models for dynamic
permeability would be necessary for real simulation. There is no gravity. The fluid (water)
compressibility iscw = 4.7 × 10−10 Pa−1. The fluid density and viscosity areρw = 1000 kg m−1

andµw = 1.0 cp (1.0 cp = 10−3Pa · s). We have a no-flow boundary at the bottom and a drainage
boundary on the top, at which the boundary fluid pressure isPbc = 10 MPa. Initial fluid pressure
is Pi = 10 MPa.

For mechanics, linear elasticity is considered. The global (upscaled) drained bulk modulus is
Kdr = 300 MPa and the shear modulus isG = 450 MPa, from which Poisson’s ratio isν = 0.0.
We consider different drained bulk moduli for numerical tests of different porosity systems. We
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Figure 4. 1D consolidation problem with five interacting continua in flow. We test three porosity systems
in mechanics: single, double, and five porosity systems. Allthe porosity systems yield the same upscaled

drained bulk modulus for mechanics (i.e.,Kdr = 300 MPa).

have no displacement at the bottom, horizontally constrained boundary conditions at sides, and the
overburden,̄σ = 20 MPa on top. Initial total stress isσ0 = 10 MPa. Note that this consolidation
problem is a modification from Terzaghi’s problem, where the fluid pressure rises instantaneously
at t = 0 due to the instant loading effect, and then decreases due to the drainage of the fluid from
the domain to the top boundary.

We consider the single, double, and five porosity systems. For the single porosity system, we
assign a single drained bulk modulus300 MPa to the five continua. For the double porosity
system, the drained bulk moduli of FractureKf and Matrix 1 KM1

are 31.25 MPa, while
those of Matrices 2, 3, and 4 (i.e.,KM2

, KM3
, andKM4

) are 6.75 GPa. For the five porosity
system, we haveKf = 7.125 MPa, KM1

= 154.1 MPa, KM2
= 30 GPa , KM3

= 675 GPa, and
KM4

= 2363 GPa. Poisson’s ratios for all materials for all porosity systems are0.0. We assign the
five different drained bulk moduli to represent a wide range for high heterogeneity within a gridblock
as well as to achieve clear differences from the single and double porosity systems. Note that all the
porosity systems yield the same global drained bulk modulus of the gridblock,Kdr = 300 MPa.
This implies that the three different porosity systems can exhibit same apparent geomechanical
properties when physical experiments at the gridblock level (i.e., macroscopic view) are conducted,
even though there are different degrees of heterogeneity within a given gridblock (i.e., microscopic
view).

From the left of Figure 5, the single porosity system shows the same instantaneous pressure
buildup between fracture and rock matrix media because the two bulk moduli are the same. Then,
the (fluid) pressure in Fracture decreases rapidly because of high permeability, while the pressure in
Matrix 1 also decreases, but slowly because of low permeability.

On the other hand, the double porosity system shows different instantaneous pressure buildup
between (Fracture, Matrix 1) and (Matrices 2, 3 and 4) because the two bulk moduli are different
(the right of Figure 5). Then the pressure in Fracture decreases at aslower rate than that of the single
porosity system because the bulk modulus of Fracture in the double porositysystem is lower than
that of the single porosity system.

Interestingly, after the instantaneous pressure buildup att = 0, the pressures in all Matrices drop
at early time (1) because the decrease of the pressure in Fracture causes compression of Fracture,
accompanied by dilation of Matrices to balance the overall deformation of the gridblock, and (2)
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Figure 5. Results from the single (left) and double (right) porosity models.Pd andtd are the dimensionless
pressure and time in the 1D problem, wherePd =

P−PL

Pi−PL
and td =

4cvt
(Lz)2

. PL is the lower limit of
the pressure during simulation. Here,PL = Pbc. cv is the consolidation coefficient defined ascv =

kf,0
p

(1/Kdr+φm,0cw)µw
. Lz is the vertical length of the reservoir domain. When using the single porosity model,

we cannot distinguish deformation of the fracture medium from those of the rock matrix medium properly,
showing the same pressure buildup. However, the double porosity model can capture the distinct deformation
of the fracture medium, showing different pressure buildups. ‘Frac’, ‘Mat1’, ‘Mat2’, ‘Mat3’, and ‘Mat4’

indicate Fracture, Matrices 1, 2, 3, and 4, respectively.

because the fluid flows into Fracture. After the pressure in Fracture is in equilibrium, reaching the
boundary pressure, the pressure in Matrix 1 decreases, but very slowly because of low permeability.
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Figure 6. Results from the five porosity model fortd = 10 (left) andtd = 100 (right). The five different bulk
modulus system represents more complicated behavior in fluid pressure than the single and double porosity

systems because it can reflect high heterogeneity within a gridblock.

In the five porosity system, all materials have different instantaneous pressure buildups, as shown
in Figure 6. As the drained bulk moduli of the materials are lower, the corresponding pressure
buildups become higher. After the instantaneous pressure buildup in Fracture, the pressure in
Fracture decreases due to the drainage boundary on the top. Comparedto single and double porosity
systems, the pressure drop in Fracture in this five porosity system is relatively slow, because a low
drained bulk modulus yields high total compressibility of the flow problem, mitigating pressure
diffusion. In Matrix 1, at initial time, fluid pressure decreases fast due todilation of Matrices and
flow into Fracture, same as the double porosity system. After the pressure inFracture becomes
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constant, the pressure in Matrix 1 drops slowly. Matrix 2 shows that, at initialtime, the pressure
decreases fast due to compression of Fracture. Then, the pressureincreases due to influx of fluid
from Matrix 1. As the difference in fluid pressure between Matrices 1 and2 decreases, the rate of the
pressure increase becomes slow. Eventually, the pressure in Matrix 2 decreases due to outflux into
Fracture through Matrix 1. Matrices 3 and 4 have the same behavior as Matrix 2. Only differences
are some degrees of the pressure value and time scale. Compared with the results for the double
porosity system, the five porosity system can realize more various patterns inpressure, reflecting
high heterogeneity within a gridblock.

7.2. Poroelastoplasticity

We investigate elastoplastic behavior in the multiple porosity systems, employing the Mohr-
Coulomb model [51, 52], which is widely used to model failure of cohesive frictional materials.
The yield criterionf and the plastic potential functiong are written as

f = τ ′
m − σ′

m sinΨf − ch cos Ψf ≤ 0, (102)

g = τ ′
m − σ′

m sinΨd − ch cos Ψd ≤ 0, (103)

σ′
m =

σ′
1 + σ′

3

2
and τ ′

m =
σ′

1 − σ′
3

2
, (104)

wherech Ψf andΨd are the cohesion, friction and dilation angles, respectively.σ′
1, σ′

2, andσ′
3 are

the maximum, intermediate, and minimum principal effective stresses, respectively.

Figure 7. The yield surfaces of the Mohr-Coulomb and Drucker-Prager models on (a) the principle effective
stress space and (b) on the deviatoric plane. All the effective stresses are located inside the yield surfaces.

As shown in Figure 7, the yield function of the Mohr-Coulomb model includes six corners and
a common vertex on the tension side of the hydrostatic axis. The discontinuouscorners may cause
numerical instability in return mapping [52, 53]. In order to handle the discontinuity problem in
the return mapping of the Mohr-Coulomb model, we adopt the Drucker-Prager model around the
discontinuous corners, as employed by [52], which is written as
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f = βfI1 +
√

J2 − kf ≤ 0, (105)

g = βgI1 +
√

J2 − kg ≤ 0, (106)

whereβf , kf , βg, andkg are given as

βf =
sinΨf

0.5
(
3(1 − sinΨf ) sin θ +

√
3(3 + sinΨf ) cos θ

) , (107)

kf =
3ch

0.5
(
3(1 − sinΨf ) sin θ +

√
3(3 + sinΨf ) cos θ

) , (108)

βg =
sinΨd

0.5
(
3(1 − sinΨd) sin θ +

√
3(3 + sin Ψd) cos θ

) , (109)

kg =
3ch

0.5
(
3(1 − sinΨd) sin θ +

√
3(3 + sin Ψd) cos θ

) , (110)

whereθ is the Lode angle [51, 52], written as

θ =
1

3
cos−1

(

3
√

3

2

J3

J
3/2
2

)

. (111)

I1, J2, andJ3 are invariants of the effective stresses as follows

I1 = trσ′, J2 =
1

2
s′ : s′, J3 = dets′, where s′ = σ′ − I1

3
1. (112)

The Drucker-Prager model has the smooth and continuous surface atθ = 0, π/3, while the Mohr-
Coulomb model shows the discontinuity at the two points. We employ the return mapping algorithm
proposed by [52] for the Mohr-Coulomb plasticity simulation.

We reuse the previous one dimensional problem of the five porosity system,using the same fluid
and geomechanical properties. For the Mohr-Coulomb model, we haveΨf = 0 andΨd = 0 for both
Fracture and Matrices. We use a wide range of the cohesion values in the five materials for high
heterogeneity within a gridblock, as shown in Table I. Note that Fracture represents a weak and
high permeable porous medium, which does not need to be a physically fractured medium.

Table I. Cohesion for Fracture and Matrices

Cohesion Fracture Matrix 1 Matrix 2 Matrix 3 Matrix 4
ch 2.8 MPa 280 MPa 28 GPa 2800 GPa 2800 GPa

Figure 8 shows that pressures in Fracture and Matrices are higher when elastoplasticity is
considered than when only elastic mechanics is employed. At initial time, Fracture faces failure
because of low cohesion, while Matrices are still elastic because of high cohesion. This failure
of Fracture can change the mechanical properties and variables for themechanical problem such
as elastoplastic tangent moduli and total strain. As a result, changes in mechanics yield more
compaction not only in Fracture but also in all Matrices, leading to higher pressures than those
in elasticity, as shown in Figure 8.

Figures 9 (a) and (b) show vertical and horizontal plastic strains in Fracture and gridblock at
the observation gridblock. Even though we have relatively large local plastic strains at Fracture, the
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Figure 8. Results of the five porosity model in elasticity andelastoplasticity. ‘EL’ and ‘PL’ denote elasticity
and elastoplasticity. Pressures in Fracture and Matrices in elastoplasticity are higher than those in elasticity
because Fracture enters the plastic regime, yielding larger compaction. The compaction can support the

reservoir pressure.

global (upscaled) plastic strains (i.e., gridblock strain) are still small, because Matrices are elastic.
This can validate the assumption of infinitesimal transformation in mechanics. From Figures 9 (c)
and (d), Fracture enters elasticity after initial plasticity. Then, we reenter the plastic region. Since
we haveΨd = 0.0, εv,p = 0.0 is obtained. Material failure occurs on the edge of the Mohr-Coulomb
yield surface,θ = 0, so the return mapping based on the Drucker-Prager model is used when
Fracture experiences plasticity. Note that, in this numerical example, we obtain

√
J2 = 3.151 MPa

at Fracture in plasticity, which matches the analytical solution of the Drucker-Prager model.

7.3. Thermoporoelasticity

We use a non-isothermal plane strain two dimensional (2D) problem to investigate
thermoporomechanics in multiple porosity systems. The 2D domain is divided into20 × 10
uniformly-sized gridblocks in (x, z) with∆x = 10 m, ∆y = 10 m, and∆z = 10 m, as shown in
Figure??. Each gridblock has five porous materials: one fracture and four rockmatrices. Volume
fractions of Fracture, Matrices 1, 2, 3 and 4 are 0.02, 0.08, 0.2, 0.35, and 0.35, respectively.

For flow, the fluid compressibility iscf = 4.7 × 10−10 Pa−1. The fluid density and viscosity
areρw = 1000 kg m−1 andµw = 1.0 cp. We have no-flow boundary conditions at all boundaries.
Initial fluid pressure and temperature arePi = 19 MPa andTi = 146.7oC. The initial porosity of
Fracture isφf,0 = 0.5, while that for each Matrix isφm,0 = 0.3. The initial permeability of Fracture
is kf,0

p = 598 md. We have a specific heat capacity of1000 J kg−1 oC for both Fracture and
Matrices, and use the specific heat capacity of water for given pressure and temperature conditions.
Fluid is produced from Fracture in Well 2 of the gridblock located at (row,column) = (5, 1) at a
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Figure 9. Evolution of the plastic strains in (a) Fracture and (b) gridblock, (c) plastic multiplierλ, also
called plastic consistency parameter, at Fracture, and (d)

√
J2 at Fracture.εz,p andεx,p denote vertical and

horizontal plastic strains, respectively. The low cohesion of Fracture causes initial failure, while Matrices
are still elastic.

total mass rate ofQp = 10 kg/s, while liquid water at20oC is injected to Fracture in Well 1 of the
gridblock located at (row, column) = (5, 15) at a total mass rate ofQinj = 10 kg/s.

The permeability iskp = 49.35 × 10−15 m2, 50 md,
heat conductivity iskT = thermal dilation coefficientsαT

The permeability is constant during simulation, and there is no gravity.
For mechanics, linear elasticity is considered. Young’s modulus isE = 100 MPa, and Poisson’s

ratio is ν = 0.0. We have a no-displacement boundary at the bottom, horizontally constrained
boundary conditions at sides, and the overburden,σ̄ = 19 MPa on the top boundary. Then, we
have initial principal total stresses of−19 MPa, resulting in no strain changes att = 0. Biot’s
coefficient isb = 1.0, which yieldsKs = ∞.

In this section, we study differences between thermoporomechanics and the uncoupled
conventional reservoir simulation that employs a rock (pore) compressibility. We choose the rock
compressibility that can provide results closest to those of the thermoporoelastic simulation. In this
2D case, the 3D drained bulk modulus is used for rock compressibility in the uncoupled reservoir
simulation, not the constrained modulus.

Case 3.1: αT = 0 oC−1, kT = 0 Wm−1 oC−1, andkm
p = 0 md We first consider the case where

the Matrix permeabilitykm
p as well as heat conductivitykT and thermal dilation coefficientsαT of

Fracture and Matrices are zero. Thus, fluid/heat flow occurs only in Fracture, and coupling between
heat transfer and geomechanics is not considered.

Figure 10 shows that liquid water pressure increases within Fracture at Well 1 (Figure 10 (a))
because liquid water is injected into Fracture. The increase of pressure inFracture results in dilation
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Figure 10. Evolution of pressure at the monitoring wells forCase 3.1: (a) pressure in Fracture at the injection
well (Well 1), (b) pressure in Matrix 2 at the injection well (Well 1), (c) pressure in Fracture at the production
well (Well 2), (d) pressure in Matrix 2 at the production well(Well 2). Pd =

P−PL

Pi−PL
andtd = Qp × t/Mi,

wherePL = 16 MPa and Mi is the initial reservoir fluid mass-in-place. We observe variations of the
pressure in Matrix 2 when employing the coupled simulation,capturing the effects from mechanics of

Fracture (i.e., compaction/dilation of Fracture).

of Fracture, which can cause compaction of Matrices to balance overall deformation of the gridblock
(Figure 10 (b)). Then, the compaction of Matrices can induce the increase of the pressure in
Matrices. At the production well (Well 2), the pressure in Fracture decreases because of water
production (Figure 10 (c)), which leads to compaction of Fracture. As opposed to the injection
well, Matrices expand and cause the pressure drop (Figure 10 (d)).

In contrast with the coupled simulation, the uncoupled reservoir simulation with the rock
compressibility cannot capture changes in pressure in Matrices at Wells 1 and 2. Figure 11 shows
that we observe no difference in temperature between the coupled and conventional reservoir
simulations, because there is no heat flow between Fracture and Matrix 1 aswell as between
Matrices due to zero heat conductivity and no thermal coupling from/to geomechanics.

Case 3.2: αT = 7.5 × 10−4 oC−1, kT = 0 Wm−1 oC−1, and km
p = 0 md We use a high

thermal dilation coefficientαT = 7.5 × 10−4 oC−1 with the previous test case, and examine
differences between the coupled and uncoupled reservoir simulations, investigating thermal effects
in mechanics and fluid/heat flow.We choose the thermal expansivity of the flow-only simulation
that can provide results closest to those of thermporoelastic simulation, same as the determination
of rock compressibility.

We observe higher increase of pressure in Fracture at the injection wellPd = 1.9 (21.7 MPa)
than the previous casePd = 1.5 (20.35 MPa), as shown in Figure 12 (a). Cold water injection
induces thermal compaction within Fracture, which contributes to larger buildup of pressure. In
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Figure 11. Evolution of temperature at the monitoring wellsfor Case 3.1: (a) temperature in Fracture at the
injection well, (b) temperature in Matrix 2 at the injectionwell, (c) temperature in Fracture at the production
well, (d) temperature in Matrix 2 at the production well.Td =

T−TL

Ti−TL
is dimensionless temperature. In this

test case,TL = 20
oC. We obtain the same temperature between the coupled and uncoupled simulations

because of no thermal coupling and zero heat conductivity.

Fracture, compaction by the cooling prevails against dilation induced by fluidmass injection in this
test case. Compaction of Fracture induces dilation of Matrices. As a result,the pressures in Matrices
at Well 1 (injection well) drop below the initial pressure (Figure 12 (b)).

At the production well, the pressure in Fracture drops almost instantaneously due to fluid
production (Figure 12 (c)). After the pressure drop, as the pressure in Fracture at the injection
well increases, the pressure in Fracture at the production well also increases because of pressure
diffusion. When cold water enters the production well, compaction of Fracture can contribute to
more pressure buildup. After the increase of the pressure in Fracture at early times, the pressure in
Fracture deceases again because variations of the pressure in Fracture at the injection well and of
the temperature in Fracture at the production well decrease eventually.

In Matrix 2 at the production well, we observe instantaneous pressure drop because of dilation of
Matrix 2 caused by compaction of Fracture due to fluid production (Figure 12 (d)). Afterward, as the
increase of the pressure in Fracture induces dilation of Fracture,compaction of Matrix 2 reduces the
pressure drop at early times. Then, the pressure in Matrix 2 drops faster because compaction from
the decrease of the pressure in Fracture induces dilation of Matrix 2. These complicated physical
behaviors fundamentally result from close interactions between fluid/heatflow and geomechanics.

Note that Matrices are impermeable, so there is no pressure diffusion between the materials
within a gridblock. Thus, changes in the pressure in Matrices result fromthe effects from the
changes in geomechanics (i.e., coupled fluid/heat flow and geomechanics). On the other hands,
the uncoupled reservoir simulation cannot capture these coupled phenomena, showing no change in
the pressure in Matrices at both injection and production wells.
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Figure 12. Evolution of pressure at the monitoring wells forCase 3.2: (a) pressure in Fracture at the injection
well, (b) pressure in Matrix 2 at the injection well, (c) pressure in Fracture at the production well, (d) pressure
in Matrix 2 at the production well. Due to coupled fluid/heat flow and geomechanics, we observe variations
of the pressure in Matrix 2, even though the Matrix permeability is zero, while the uncoupled simulation

cannot capture the variations.

Case 3.3: αT = 7.5 × 10−4 oC−1, kT = 3.1 Wm−1 oC−1, andkm
p = 0.0598 md In the third case,

we employ high thermal conductivity and non-zero rock matrix permeability. Weobserve from
Figure 13 that results from the coupled and uncoupled simulations have similarphysical trends.
However, although the uncoupled simulation shows the similarities to the coupled simulation, we
still observe differences at late times, as shown in Figure 13. Thus, coupled flow and geomechanics
need to be considered for accuracy when flow and geomechanics are tightly coupled for the cases
of highly deformable or stress-sensitive reservoirs.

8. CONCLUSIONS

We have generalized constitutive relations of poroelasticity for the double porosity model to
those for the multiple porosity model, determining coupling coefficients between fluid flow
and geomechanics. Especially, in the case of zero values in the off-diagonal terms of the total
compressibility matrix for isothermal condition in fluid flow, which is typically employed in
reservoir simulation, the upscaled drained bulk modulus for mechanics becomes a volume-
fraction weighted harmonic average of drained bulk moduli of the materials ofsub-elements.
For the given coupling coefficients, we also determined the upscaled elasticmoduli. Then, we
immediately extended the coefficients and constraints of poroelasticity to thermoelasticity and
poroelastoplasticity. Specifically, for poroelastoplasticity, elastoplastic tangent moduli instead of
elastic moduli are used for the coupling coefficients. We also showed that the constitutive equations
and relations between local and global variables proposed in this study hold well-posedness,
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Figure 13. Evolution of pressure at the monitoring wells forCase 3.3: (a) pressure in Fracture at the injection
well, (b) pressure in Matrix 2 at the injection well, (c) pressure in Fracture at the production well, (d) pressure
in Matrix 2 at the production well. We find differences between the coupled and uncoupled simulations to

become larger as the simulations proceed.

implying that the proposed relations are admissible in the sense of the physicallydissipative
mechanism of thermoporomechanics.

To solve these extremely complicated coupled problems, we employed the fixed-stress sequential
method modified for the multiple porosity model and showed by the energy method that
the sequential method provides unconditional stability. This sequential methodcan easily be
implemented in reservoir simulation by using the Lagrange porosity function andits correction
modified for the multiple porosity model. We provided formulations for the porosityfunctions and
corrections for poroelasticity, poroelastoplasticity, and thermoporomechanics with single or multi-
phase flow for the multiple porosity model. In the case of elastoplasticity, the return mapping is
performed at each sub-element.

We tested three cases: poroelasticity, poroelastoplasticity, and thermoporoelasticity for single
phase flow. In poroelasticity, single, double, and five porosity systems were used, and we found that
the multiple porosity model can reflect the characteristics of high heterogeneity within a gridblock.
For poroelastoplasticity, using the Mohr-Coulomb failure model, we detected the plastic behaviors
of a weak material such as the fracture medium in the five porosity system, which could have not
been captured if the single porosity model had been used. In thermoporoelasticity, the coupled
simulation showed extremely complicated physics for the three sub-test cases, and we observed
significant differences between the coupled and uncoupled simulations.

In conclusions, neglecting geomechanics in composite materials such as a fracture-rock matrix
system may cause large errors, and considering geomechanical properties of composite materials
can provide an accurate modeling for coupled flow and geomechanics, for example, in fractured
porous media. The modeling and numerical algorithms for thermoporomechanics proposed in

30



this paper are considerably useful for mechanically or thermally sensitiveregularly fractured or
composite reservoirs, and readily applicable to large scale problems.
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