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Formulation and sequential numerical algorithms of coupled
fluid/heat flow and geomechanics for multiple porosity materials

J. Kim*, E. Sonnenthal, and J. Rutqvist

Earth Sciences Division, Lawrence Berkeley National Labayatb Cyclotron Road 90R1116, Berkeley, CA 94720,
USA

SUMMARY

We generalized constitutive relations of coupled flow andngechanics for the isothermal elastic double
porosity model in the previous study to those for the nomhisomal elastic/elastoplastic multiple porosity
model, finding coupling coefficients and constraints of thdtiple porosity model, and determining the
upscaled elastic/elastoplastic moduli as well as relatlmtween the local strains of all materials within a
gridblock and the global strain of the gridblock. Furthersydhe coupling equations and relations between
local and global variables provide well-posed problemg|yimg that they honor the dissipative mechanism
of coupled flow and geomechanics. For numerical implememtatve modified the fixed-stress sequential
method for the multiple porosity model. From the a priorbdity estimate, the sequential method provides
numerical stability when an implicit time stepping algbnt is used. This sequential scheme can easily be
implemented by using a modified porosity function and itsogidy correction.

In numerical examples, we observe clear differences ambagsingle, double, and multiple porosity
systems, and the multiple porosity model can reflect higbrogeneity that exists within a gridblock. We
also identify considerably complicated physics in cougled and geomechanics of the multiple porosity
systems, which cannot accurately be detected in the uneddiplv simulation.

KEY WORDS: double porosity, multiple porosity, poromeclwan multiple interacting continua
(MINC), fractured reservoirs, fixed-stress split

1. INTRODUCTION

Coupled fluid, heat, and mechanical processes are important in manyeeng fileds. In
mechanical engineering, coupled heat and mechanics (e.g., thermoelatigityoplasticity) are
considered to analyze interactions between deformation of a material mdyharmal stress
[1, 2]. Rapid movement of the body such as vibration can be a sourceainfloe,, and heat
induces additional stress in mechanics, which can expand the bodyninther expanded body
affects accumulation in heat flow because of the change in material voluongled fluid, heat,
and mechanical processes are also critically important in geo-engind8tintn geotechnical
engineering, an increase (or decrease) of pore pressure aiilages (or shrinkage) of porous
media, which changes strain and stress fields [4, 5, 6, 7, 8]. Thesgehalso affect pore-volume,
resulting in variation of pore-pressure, again. In petroleum engirggechmanges in permeability
as well as porosity induced by geomechanics are critical issues in orgeedat fluid flow and
production accurately, for example, in hydraulic fracturing, resem@inpaction, and gas-hydrate
recovery [9, 10, 11, 12, 13, 14]. In geological carbon storage effect of large scale injection
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and pressure changes and associated potential for inducing e&dbdaaa key technical issue
that needs to be addressed [15]. The effect of temperature is importapplications involving
substantial temperature changes, such as in nuclear waste dispogeb#imetmal energy extraction
[16, 17]. Especially, in geothermal engineering, rigorous modeling vpliog between fluid, heat,
and geomechanics, named thermoporomechanics, for fractured poeoliss is necessary, because
those physics are highly nonlinear and closely interacted with each other.

Significant efforts have been made to find an appropriate modeling of tpenmmmechanics. The
theory of poroelasticity was developed for single porosity conceptl]2820], and several authors
have extended Biot’s theory to generally coupled fluid, heat, and ge@miestproposing slightly
different constitutive relations and the corresponding experimental geffifh, 22, 23, 24]. These
studies are directly applicable to coupled problems with the single porositepbridowever, in
large fractured or composite porous media, the theory of single porostgigaificant limitation
not only in coupled flow and geomechanics [25, 26, 27] but also in floly-eimulations [28].
In particular, in coupled flow and geomechanics problems, [26] condltidat neglecting the
importance of the fracture deformation may cause substantial errors inaittared rock media,
where the fracture and rock matrix coexist. To solve this problem, a doobdsify concept (or its
generalization such as multiple interacting continua method (MINC)) was pegbfmr modeling
the regularly fractured reservoirs, first in the uncoupled flow simula{f@®s29]. Later, for coupled
flow and geomechanics, [27] extended poroelasticity of the single ponositiel to that of the
double porosity model. [25] and [27] proposed constitutive relations idoldle porosity systems
and the design of the corresponding experimemtge constitutive relations in [25] determine
geomechanical and flow properties of a gridblock from the given phigseof subelements within
the gridblock. On the other hand, extending the single porosity model intg2h& double porosity
model, [30] proposed different constitutive relations from the givesngechanical properties of
the gridblock, emphasizing on continuum principles of thermodynarfigowing the approach
by [25] and [27], [31] studied thermoporomechanics with the doublegitr concept, using
a variant of the undrained sequential method in numerical implementation. idowgeneral
formulations and numerical algorithms on thermoporomechanics in multiple poruositgrials,
which can encompass multiphase flow and plasticity, are still lacking in the piewtudies.
Even though some discussion was made in [27], numerical developmensimunthation on
coupled flow and geomechanics in the multiple porosity systems have rarelyrivestigated. In
addition, even though the numerical algorithm used in [31] is numericallynditonally stable,
it causes considerable inaccuracy for high coupling strength and roeayném-convergence for the
incompressible fluid and solid grains [6, 32, 33]. The undrained split ndettsm produces two stiff
sub-problems, which require strong linear solvers and high computatiostito solve them [6].
Coupled multiphase flow and geomechanics for fractured media were sttatiedample, in [34]
and [35], but geomechanical properties of the fractured medium vgsrereed to be ignored.

With this motivation at hand, in this paper, we investigate coupled flow and gd@wmis in
multiple porosity systems for regularly fractured or composite reservadrsemglizing the double
porosity model proposed by [27] to the multiple porosity model. We first deterrooupling
coefficients between fluid flow and geomechanics. Especially, when fitkagional terms of the
total compressibility matrix associated with the flow problem are zero, a typacaiulation in
reservoir simulation [28, 36], an upscaled drained bulk modulus of alggkilbised for mechanics is
a volume-fraction weighted harmonic average of drained moduli of the miatesithin a gridblock.
Furthermore, using the coupling coefficients and constraints, we deteth@ngpscaled drained
elastic/elastoplastic moduli from the moduli of all materials within the gridblock fidrelations
between local and global (upscaled) strains, which provide communidagioveen the local and
global elastic/plastic variables when mechanics is in the elastic/plastic regiméioAdty, the
analyses of poromechanics can immediately be extended to thermomechanwvedl. shlow that all
the proposed relations for the multiple porosity model can also generate egeltiproblems, just
as constitutive relations of the single porosity model (i.e., contractivityg contractivity implies
that the constitutive relations honor the dissipative mechanism in thermodys)aaititough an
approximation of the upscaling method might not honor conservation laws s$,neaergy, or



momentum exactly, which can be accomplished by the fine scale single porosigy that defines
the exact configurations of all subelements.

Then, in the numerical implementation, we introduce a sequential implicit method for
thermoporomechanics in multiple porosity systems. Specifically, we extend thd-diress
sequential method for single porosity systems to multiple porosity systems. ningda norm
for the multiple porosity systems, the fixed-stress sequential method modifigtdefanultiple
porosity model still provides unconditional stability (i.e., B-stability), just asdimgle porosity
model rigorously shown in [32, 37]. This sequential scheme can alsty dmsimplemented
by constructing an interface between existing flow and geomechanics simsulatyoducing
the Lagrange porosity function and its corresponding porosity corretion that corrects the
inconsistency between the porosity function in flow and strain values in meshalhe return
mapping in modeling elastoplasticity is performed at all materials within a gridblock.

We employ the finite volume/finite element methods for flow and mechanics in space
discretization, respectively, and the backward Euler method in time disdietizee implement
the proposed formulation and numerical algorithms to TOUGHREACT (flow sitm)laoupled to
ROCMECH (geomechanics simulator) at Lawrence Berkeley Nationalraatny, and test 1D and
2D small scale problems.

From numerical results, we observe clear differences between thie sind double/multiple
porosity systems such as fracture-rock matrix systems. For example jitheréiasure in the fracture
continuum for the five-porosity model (a model with five interacting porosystesms) becomes
higher than that for the single porosity because the bulk modulus of theurfeacontinuum is
lower than the upscaled bulk modulus used in the single porosity. For elagtoipyawhere we
adopt the Mohr-Coulomb model, the fluid pressure in the fracture mediurbeamre supported
by compaction when the fracture medium enters the plastic region. In a 2bafabe five-
porosity system, we compare results between the conventional uncoupledifhulation and
thermoporoelasticity, and find significant differences between them. Welisdluss more details
on these complicated physics of coupled problems in the section of numewrapkes.

2. MATHEMATICAL FORMULATION

We use a classical continuum representation, where the fluid and soletskare viewed as
overlapping continua. The governing equations for heat and fluid 8od;mechanics are obtained
from energy, mass and linear-momentum balances, respectively. Forimaskifiuid flow, the mass-
conservation equation is expressed as

d
=L 4+ Divw, =g, (1)

where the subscript denotes a particular fluid phase, is fluid massg, is a source termbiv(-)

is the divergence operator, ang); is the mass-flux of fluid phasé relative to the motion of the
solid skeleton. The accumulation terdm ;/dt, describes the time variation of fluid mass relative
to the motion of the solid skeleton, as well. From here on, we denoté -bydt the change in a

quantity(-) relative to the motion of the solid skeleton.
The volumetric flux of phasé, v; = (w/p) ;, is given by Darcy’s law as

k
vJ:—Z’i‘;K(Grade—ng), (2)

wherek, s is the effective-permeability tensor (for two fluid phasg¢sndK). i; andp; denote
the viscosity and density at the current state for fluid phgsespectivelyGrad(-) is the gradient
operator. Double indices (e.gx in Equation 2) indicate summation in this section. Typically in
reservoir simulationk,, ;x is split into an (absolute) permeability, and a relative permeability
k' i, which is expressed ds, sk = kpk; i, wherek’, . = 0if J # K.
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The governing equation for heat flow comes from energy balancehvigieritten as

d 0

e+ Div s’ =", 3)
where the superscrigt indicates the heat component?, £ , and¢’ are heat, and its flux and
source terms, respectively. The hedtis expressed as

m’ = (1 - ¢)prCrT + ¢(Sp) e, (4)

wherepr andCr are the density and heat capacity of the porous meftjias saturation for fluid
phase/. T is temperature: ; is the specific internal energy of phagsep is the true porosity, defined
as the ratio of the pore volume to the bulk volume in the deformed configuratienh@at fluxs’

is driven by conduction and convection, written as

ff=—((1-¢)Kg+¢S;K;)Grad T + hjw, (5)

whereK i and K ; are the thermal conductivity tensors of the porous media and fluid phase
respectivelyh ; is the specific enthalpy for phade
The governing equation for mechanics is given by the quasi-static assaraptio

Dive + ppg = 0, (6)

whereo is the Cauchy total-stress tenspy(= ¢S;ps + (1 — ¢)pr) is the bulk density. Here, we
assume the infinitesimal transformation, from which the strain tensor is the syimgraidient of
the displacement vector, written as

e =Grad’u = %(Grad u + Grad' u), (7

wheree andw are the strain tensor and the displacement vector, respectively. Fremiegensile
stress and strain are positive.

For mathematical completeness, we determine initial and boundary conditidhe domairn
with the boundary. For fluid flow, we consider the boundary conditions= p; (prescribed
pressure) on the boundaly, andw; - n = w; (prescribed mass flux) on the boundary, where
I,NTy =0, andl, UT; = 9Q. The boundary conditions for heat flow afe=T" (prescribed
temperature) on the bounddry., andf? - n = f¢ (prescribed heat flux) on the boundaty, where
'+ NTy =, andl'r U Ty = 99. The boundary conditions for the mechanical problemare u
(prescribed displacement) on the boundBryando - n = t (prescribed traction) on the boundary
I',, wherel', N T, = (), andI',, UT, = 9. The initial stress field should satisfy mechanical and
thermodynamic equilibriums, and be consistent with the fluid pressure, tetmgerand history of
the stress-strain paths. Here, we take the initial conditions of the coumbtepr ag 7|:—0 = p.o,
T‘t:O =To, anda|t:0 = 0g.

3. DISCRETIZATION

In this study we use a mixed space discretization. We employ the finite volume nfethibaid

and heat flow in space discretization, typically used in reservoir simulation3s, 39], where
pressure and temperature are located at the cell center (the left o€ Higudn the other hand,
space discretization for mechanics is based on a nodal-based finite-elaetbiod, widely used
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(a) Pressure/temperature (b) Displacement

Figure 1. Element shape functions for (a) pressure and textyve (left) and (b) displacement (right) in 2-D.
The pressure/temperature and displacement fields arexamatted with piecewise constant and piecewise
continuous interpolation functions, respectively.

in mechanical and geotechnical engineering, where the displacemeot igelocated at vertices,
shown in (the right of Figure 1) [40].

This mixed space discretization has (1) local mass and heat consenattitreselement level,
(2) continuous displacement field, which allows for tracking the deformat{®y convergent
approximations with the lowest order discretization [41], and (4) relatis&ple approximations,
compared with a piecewise continuous interpolation for fluid pressure wigense the finite
element method for flow [8, 41, 42, 43]. In time discretization, we use thieveacd Euler method.
We use TOUGHREACT and ROCMECH simulators, developed in LawrenckeRBsy National
Laboratory, for fluid-heat flow and geomechanics, respectively. [B8ese simulators adopt the
aforementioned space and time discretizations.

4. CONSTITUTIVE RELATIONS FOR SINGLE POROSITY SYSTEMS

The constitutive relations for thermoporomechanics in a single porosity naoelddased on [18],
[21], and [44], where fluid, heat, and mechanics are tightly coupled.tdtal stress, fluid mass
m.y, and entropys in the elastic coupled system are functions of the total strdinid pressure ;,
and temperatur@, written as

o = Cdr 10 — Oéj(;p]]. — ?)OéTKdr(STl, (8)
—_——
so’
om
= ajbey + Njgdpr — 30, 10T, 9)
P/
55 = 550my + 3arKgrde, — 3o, j0py + %(ST7 (20)

whereC,, is the drained-isothermal elastic moduN,= { N,k } is the inverse matrix of the Biot
moduliM = {M;x} (i.e.,N = M~1!), whereN andM are positive definite. The Biot coefficient
ay for multiphase flow takes; = .S, wherea is the Biot coefficient for single phase flow [20].
We defines’, the effective stress, in the incremental fornrda$ = C,, : de, whereo’ = 0 ate = 0.

3ar is the volumetric skeleton thermal dilation coefficiehf,, is the drained isothermal bulk
modulus,1 is the rank-2 identity tensos,, is the total volumetric strain, argdy,, ; = 3ay + @3,

where 3o, and 3a; are the coefficients of thermal dilation related to porosity and phise
respectively.s; is the internal entropy per unit mass of phakéi.e., specific entropy of phase
J).Cq = C +m;C, ;is the total volumetric heat capacity, wheTds the skeleton volumetric heat
capacity and’”), ; is the volumetric specific heat capacity at constant pressure for ph&esuble
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indices in Equations 8 — 10 indicate summatiénmplies variation relative to the motion of the
solid skeleton.

For a two-phase fluid system (such as oil and water), an appropriatea@rissible)N, which
is typically used in engineering, is given as (e.g., [22])

ds., b—¢ dSy, b—o

¢SOCO — ¢dpco + 507350 ¢dpco + 5073 Sw
N — , (11)
dS., b—¢ dSy b—¢
¢ Ao + Sw K. So GSwCw — ¢ e + S“’T(s Sw

where the subscrift)  indicates the oil phase, is the compressibility of the fluid phask p., is
the capillary pressure between oil and water, &nds the intrinsic solid grain bulk modulus.

Equations 8- 10 and the corresponding definition of effective strasarfibe first and second
thermodynamic laws in physics and, in mathematics, provide wellposed probheimseonditional
numerical stability when fully coupled methods are used [21, 37, 44].

5. EXTENSION TO MULTIPLE POROSITY SYSTEMS

5.1. Poroelasticity

The single porosity theory in poromechanics has limited applicability for fradter composite
reservoirs because they are highly heterogeneous within a gridbloekresentative elementary
volume [25, 26, 27]. To overcome such limitations, the double porosity (aledcdual porosity)
model was proposed and investigated, introducing dual continua suciicage and rock matrix
porous media.

[25] and [27] extended the single porosity theory of poromechanics thasmal single fluid
phase to the double porosity model, and determined the coupling coefficldrgsconstitutive
relations proposed by [27] are

()= (5 W) (). w

(¢ _( pr _ [ bf _( dir dpm
c=( &)= )=t )o=(it ). o

whereo, is the total volumetric (mean) stress (i.e.g/3), and the subscriptg andm indicate
fracture and rock matrix media, respectivejyimplies the fluid content at each medium, where
d¢ = dm/p. The coefficients of, b, andD are expressed as

1 1-K,,/Kg m 11— K¢/Kg,
a=—1, by = ﬂ#, by, = s #, (14)
Ky, Ky 1-K,/Ky K, 1-K¢/K,,
Ny oy ‘(s m 1
dry = - 2L m o 15
1 Bfo (1_Kf/Km> (Kf +Km Kdr)7 ( )
MmO a 2/ nf 1
dmm: mSm m im Ny 7 16
B, K,, (1Km/Kf) (Km+Kf Kdr> (16)
KiKpopom, [ NMm nf 1
d m= -5 - ¥ ) d'm :d ms 17
f (Km _ Kf)2 (Km + Kf Kdr ! f ( )

whereKy, oy, By andr are the drained bulk modulus, Biot coefficient, and Skempton coefficient,
volume fraction of the fracture medium, whilg,,,, «,,,, B,,,, andn,, are those corresponding to the
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rock matrix medium. For example, the Biot and Skempton coefficients for tbufeaare defined
as

K Mo 1 ar—¢
2B = T |
KS Kf+Oéfo Mf

:1—
af Ks

; (18)

wherec; is the intrinsic fluid compressibility, antl/; is the Biot modulus.

Ky, is a drained bulk modulus of a gridblock used for mechanics, upscaleddrained bulk
moduli of the fracture and rock matrix media within a gridblotkis the coupling coefficient
vector between fluid flow and mechanidd. implies the coupling coefficient matrix between
fluid variables, which corresponds to the total compressibility matrix in cdioeal reservoir
simulation.

[27] discussed a possible extension of the double porosity constitutivelrntmdhe multiple
porosity system, and concluded that the uniform expansion and contracgoario can carry over
to the multiple porosity model just as it does in the double porosity model, but thatxtension
to the multiple porosity model still remains an open question because the sadoesinot provide
the sufficient equations to determine all the coefficients of the constitutisttormes.

In this section, we focus on determining the coupling coefficients betwedh flaw and
mechanics in the multiple porosity system, as shown in Figure 2, assuming tfieieoef between
fluid flow variables (i.e..D) to be given. To this end, we first introduce the same form of the
constitutive relations of the double porosity model as follows.

0&y a —bT 0oy
(5)-(5% 3 ) (%) a9
G p1 by dyg o - din,,

Cn,n Pn,, bn,, dn,1 - dn.n,,

where n, is the number of materials per gridblock. is known from the assumption that the
coefficients between fluid pressure and mass are given. This assurngptielevant becaus®
represents interrelations between fluid pressures of different materids fluid flow simulation
uncoupled to mechanics (i.e., total compressibility matrix of the multiple porosity model)
determined by a given formulation of the flow problem itself. Double indicemadindicate
summation in this section. We specify the summation symbséparately. We call ‘sub-element’
an element occupied by a material within a gridblock (e.g., fracture or rotixna

Fracture
Material 1
Rock
) Matrix-1
Material 2
Rock
Material 3 Matrix-2
Rock
Material 4 Matrix-3

Figure 2. Schematic diagrams for the multiple porosity nhodeft: a composite porous medium which
consists of several distinct types of porous materialshRig conceptual diagram of the MINC model, as
an example of the multiple porosity model [28].

Consider that each material is assumed to be what we call “Gassmann maf@rigl'a
microhomogeneous porous medium, satisfying

7



Sek L/ ag Sok 21)
6Ck /i K \ ar ap/Bg opr )’
where the subscript or superscripieans a material indey;, is the volume fraction of materia

within a gridblock. Considering the uniform expansion and contractionasaejust as used in the
double porosity model [27], we obtain

ey = 0ep =+ = bl =+ = dem, (22)
b0, =00t = =¥ =... = 5o, (23)

Then, Equations 22 and 23 provide

1 1
F (50"1) + ak5pk) = K

— (50’1) + Oll(spl) 5 (k # l)a kvl = 17 e ;nnu (24)
k l

where the subscrigtis another material index. Rearranging Equation 24, we obtain

1 K K;
510[ *al { (1 — [(k) 501) - [(kaképk} . (25)

Note thate = 1/K,., already obtained from the double porosity model, shown in Equation 4. Th
first row of Equation 19 can be rewritten by using Equation 25 as

Ny

1
0ey, = EéUW - lzzlblépl
1 | K, K,
= —_ — 1 - y 9 . 2
T b0y + ; b p { ( Kk) do, &, Oqﬁpk} (26)

Then, based on the uniform expansion and contraction scenario afi&gsi22 and 23, Equation 26
must be identical to the first row in Equation 21. Comparing two equationspiaeno

1 1 o] Kl>
==+ (1= L), 27
K,  Kar ; Yo ( K, @7)
n
N
Son=t =1 (28)
- "

We can also substitute Equation 25 into the mass content ternv(jef Equation 19, and this
leads to

n

- 1 K; K; }
0C, = —bdo, — dp;— 1——)do, — —ayud . 29
Ck e ; klal{( Kk) v = g, CROPK (29)

Considering the uniform expansion and contraction scenario, agalnc@nparing Equation 29
with the second row of Equation 21, we obtain
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bkz—akni—idmi (1—Kl>, (30)
Ky = " Ky,

N
Ko np oy

kl—

= —=—. 1
(67} Kk Kk Bk (3 )

=1

Thus, the coupling coefficier, is determined from Equation 30 becaukg, K, K;, as, oy,
andn; are known. AccordinglyK, is determined from Equation 27. Equations 28 and 31 are the
constraints that also need to be satisfied.

Typically, the off-diagonal terms oD are zero in the conventional flow formulation for
the multiple porosity model (i.edr; =0 when k # 1) [28]. Then, this condition yields from
Equations 30, 31, and 27, respectively,

N
Nk M 1 Z ul
k akKk7 kk K. B,' Ky, £ 1Kk’ (32)

from which the constraint, Equation 28, is immediately satisfied. Note Ahatis the volume-

fraction weighted harmonic average of drained bulk moduli of sub-elemEhnitsis consistent with
the conventional up-scaling method in compressibility. Hereafter, we takasthenption that the
off-diagonal terms oD are zero, unless noted otherwise.

5.2. Thermoelasticity

We can determine coupling between heat flow and geomechanics in the /duulbfde porosity
systems, just as coupling between fluid flow and geomechanics. Let uduoé&rthe same form of
Equations 19 and 20 as

N

whereD is assumed to be known from a heat flow model. This assumption is, agaivarele
becauseD represents relations between temperatures of all materials in the heat flolatgmu
uncoupled to mechanics, (i.e., total heat capacity matrix), determined bgmfgkmulation of the
heat flow problem itself.

When we consider Equations 8 — 10 without fluid flow, the constitutive relatioh
thermoelasticity for the single porosity model read

by \ 1 1~ e - 1 G
( S > Kar ( v ~/B )( orT ) 7 = 3arKar, B 3arl’ (35)

whereC;s = Cy + 902 K4, T is the volumetric heat capacity at constant stress [44]. We identify
that Equation 35 is the same form as the constitutive relations in coupling befluebflow and
geomechanics, when the Biot and Skempton coefficientsiieed B, respectively) for single fluid
phase in poroelasticity are substitutechbgnd B in thermoelasticity, respectively.
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Thus, when determining the coupling coefficients of thermoelasticity in doutdenaultiple
porosity systems, we can employ the same procedure and results presbasly in coupling
between fluid flow and geomechanics, simply replacing the Biot and Skempédiicients withy
andB. In particular, when the off-diagonal termslhare zero, we obtain

7 N 5 Nk Yk
b == — ST ) d . = T = 36
k Yk Kr kk K1, B, (36)

5.3. Determination of drained elasticity tendDy,- and local straine;,

The stress-strain relation for mechanics in the multiple porosity model canitbenyreplacing,
and K, of Equation 19 witho andC,,,, in a tensorial form as

N

§o = Cup:de+ Y biopl, (37)

=1
whereC,,, is a drained elasticity tensor of the mechanics problem to be upscaled anaidete
from the materials of sub-elements within a gridblock as follows.
We reuse the uniform expansion and contraction scenario shown ini&ma2 and 23, and

replace the volumetric stress and strain with the total stress and strain tesspetively. Then,
the relations among the total stress, strain, and pore-pressure caiitee as

o = Ck : 0e — ak5pk1 (38)
- Cl :65705[6])[17 (k#l); kalzlv 7nm7 (39)

where C;,, and C; are drained elasticity tensors for material&nd/, respectively. Rearranging
Equation 38, we obtain

1
(Spl]. = 071 {(Cl — Ck) 1 0e + aképkl}. (40)
Substituting Equation 40 into Equation 37,

N

5o = Cyp : 0e + Zbl—{ (C; — Cy) : 0e + apdppl}. (41)

Comparing Equation 41 with Equation 38 and using Equatign &2 obtain

Cp,=Cyu + Z Ck -C). (42)

Let us multiply both sides of Equation 42 lyy /K, and take summation froth =1 to k = n,,.
Then, rearranging the equation, we have

N Nin N N
Mk Mk m Nk Ul
Cup C E E —C; | — —C —_— 43
= Kk ' <z1 Ky l) = K * =1 K @
—— H,—/ ——
1/Kar 1/ Kar 1/Kqg,
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which yields, using Equation 32

N

Cup = Ky, Z %Ck (44)
k=1

Let us assume that variations in the global effective stées(i.e., gridblock effective stress)
can be determined from the sum of volume fraction weighted variations ictieestresses of the
materials of sub-elements (i.@,d00’.), expressed as

Nim

(50’, = anéa'k, (45)
k=1

which is the same type of the definition in pore-pressure for multiple fluid gh@se, equivalent
pore-pressurgg, wheredpr = > S;0p;) [5, 37, 44]. Using Equation 44 and considering the local
effective stress-strain constitutive relation (i&r/, = Cy, : &), we obtain from Equation 45

Ka, Ka,
r_ 24 Cy : e, de = & se. (46)

)
7 Ky, Ky,

5.4. Poroelastoplasticity

Changes in total-stress and fluid pressure in elastoplasticity for single fiaskepand isothermal
conditions are related to changes in strain and fluid content as follow4421,

do = Cg : (0 —de,) — adpl, (47)
—_—
do’
5}7 = M _O‘((SE’U - 6511,[)) + (6C - 6¢p) ) (48)
—_———
6¢Ce

whered(. is the variation of the elastic fluid content of phaseThe subscripte andp denote
elasticity and plasticity, respectively. The plastic porosityand plastic volumetric straig, , can
be related to each other by assuming that [6]

5y = adey . (49)

Then, introducing elastoplastic tangent modifff, into Equation 47 [45], Equations 47 and 48 can
be rewritten as

do = C:de—adpl, (50)
op = M (—ade, +6C), (51)

where the superscriptp’ implies elastoplasticity. Note that Equations 50 and 51 are expressed by
total stress/strain and total fluid mass/fluid pressure. Thus, we can akepdevious analyses of
elasticity to elastoplasticity immediately. Accordinglyin Equations 50 and 51 for elastoplasticity
becomesy =1 - KV /K, whereK" is the drained elastoplastic bulk modulus. Furthermore, we
rewrite Equation 32 as

Nk Ne Ok 1 Nk
b — — dir — _ = I 52
BT Ok O T Rer pere KOP (52)
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where we use the elastoplastic drained bulk modulus in the coupling coeffigiamstead of the
elastic drained bulk modulus. Then the gridblock elastoplastic tangent mqabdaled from the
materials of sub-elements can be obtained as

N
C? = K K”fp cer. (53)
k=1 ’

According to Equation 46, the local effective stress, elastic and totahstrd materialk are
determined, respectively, as

ep

So'y = =L CP : Je, def = Kir 0e°, dep = ﬁ5€ (54)
c KZP k I K; I sz I

where the superscriptimplies elasticity. As a result, the local and global plastic strains are related
as follows:

K? ke K¢
el = (Ldr _ Ddr ) 5o 4 Ddrsep 55
€k <K,§P K,g) TR (59)

6. A SEQUENTIAL SCHEME IN NUMERICAL SIMULATION

6.1. The fixed-stress sequential method and porosity correction

We consider numerical algorithms to solve coupled flow and geomechaniasireed with the
constitutive relations proposed in this study. Let us assume the off-dihgerms inD of
Equation 20 to be zero, following the conventional flow formulation for the mlelgprosity model,
such as MINC [28]. Then, the second row in Equation 19 can be written as

56 = —bibow+m (L + 25 (56)
= 100y m Kl ]\/[l Pi-

In the conventional reservoir simulation for flow only [36], the accumuladibtihe fluid mass is
formulated as

dmy = pym (6@ + Picpdpy) (57)

where @, is Lagrange’s porosity for materid) defined as the ratio of the pore volume in the
deformed configuration to the bulk volume in the reference (initial) conftqurd23]. Comparing
Equation 56 with Equation 57, Lagrange’s porosity can be written as

a? oy — by
b, = i -t _
0, (Kl + K. ) opy m 00, (58)

where¢; may be replaced b$, because the difference can be ignored [14].

Then, we employ the fixed-stress sequential method for a stable andrgenveequential
method [33], which will be discussed in Sections 6.3 and 6.4. This method sgiteriginal
operator into the two subproblems (i.e., flow and mechanics) as

nlo4r 1A ntl P 1y + Di = (pf), 06 =0
wl A A L] where At D = (00 00 =0, g
P P P A, Dive + ppg = 0, p; : prescribed,
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where the initial condition of the flow problent?, is determined from the original coupled problem
satisfying

Divéi—g =0, Divos—g+ ppg = 0. (60)
In this fixed-stress split method, when we solve the flow problétn we evaluate the term

associated with the total volumetric (mean) stress in Equation 58 explicitly. THeigixed-stress
split method yields from Equation 58 and the first row of Equation 19

n n C)é2 ap — o n+1 n l
Pl _pn — (Kfl + 7 ) (plj —le) — ADL, (61)

Agl =

N
c= mKdr{(Eﬁﬁl) - b (PZPZ_l)}a (62)

where the superscript indicates time level in time discretization, addd’ is called porosity
correction We use the coupling coefficienf described in Equation 32 because the off-diagonal
terms of D are zero. The Lagrange porosity function and correction modified mihltiple
porosity model (i.e., Equations 61 and 62) can easily be implemented in comadnt&servoir
simulators. Furthermore, the calculation of the porosity correction is locahescomputational
cost is negligible, compared with the global calculation, such as linear (matilv@rs.

6.2. Multiphase flow with elastoplasticity

Considering constitutive relations for single porosity systems with elastoppa$6¢c 21, 44], the
previously described constitutive relations can be extended to those of maskifilow systems with
elastoplasticity for the multiple porosity model, as follows.

o’
—_——
do = Cup:6(e—ep)—b] 0p 51, b ; = —KabiSi g (63)
——
€e
8¢5 — 0600, = bis0ve+ Ly OPm.1, (64)
—— —
0C(1,0)e
5K/l = _HZ ' 6€l7 (65)

where the subscriptsandp denote elasticity and plasticity, respectively. In this section, we retrieve
double indices to indicate summatian. ande,, are the elastic and plastic strains, respectively.
andg, are the internal stress-like and strain-like plastic variables for materespectivelyH, is

a positive definite hardening modulus matrix for matefial; ), and¢ ), are the elastic and
plastic fluid contents for the materialand phase/, respectively. Similar to the previous single
phase flow and single porosity model, we take

5¢(z,.f)p = b;,J(ng,p- (66)
L = {L; m.1} is a positive-definite tensor, extended from the Biot modulus in single dlage
For example, wher,;; = 0,: # j, L for an oil-water phase with a fracture-rock matrix (double
porosity) system can be written in a matrix form as
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—1_ | nyNy 0
L a 0 nmNm ’ (67)

whereN; andN,,, become the same @§ in Equation 11, when replacing of Equation 11 with
ay anda,,, respectively. Accordingly, Equations 63 and 64 can be rewrittepeively, as

so’
—~ =
bo = CPoe—b ,opil, (68)
5CZ,J = bzk7J551) + LZ},m’](Spm,,I- (69)

Then, we can follow the same procedure of the poroelastic porosity fun@iguation 61) and its
correction (Equation 62), by simply replacitg,, with K5”, which yields

Np

P+l _ pn — al2 T ap — (I)Zl Z grtl (prtl o ) APl (70)
l l KP K 1,0 \PrJ brg e
s J=1

Ny Np
sl = UK {(a:} —er )+ YN s (v - et } (7)

n k=1 J=1

, n—1
(a;j —0y )

where n, is the number of fluid phases.

6.3. Well-posedness and admissibility of the constitutive relations

The constitutive relations proposed in this study are desired to satisfy asddpess just as those
in single porosity systems because thermoporomechanics is dissipativegfiiyand thus well-
posed mathematical statements are required. We analyze the contractipigytig® for the given
mathematical problems and constitutive relations to investigate well-posediesanalysis of
contractivity was employed in the previous study of [37] for the single giranodel in order to
determine a proper definition of pore-pressure for multiphase flow (i.eipacaled pressure from
fluid phase pressures) between the equivalent and averagerneseengs, and it is found that the
equivalent pore-pressure honors well-posedness, while thegavprae-pressure, widely used in
many engineering fields, does not.

Following the procedure of [37], in this section, we first evaluate admissikfityelations
between local and global variables (i.e., Equations 45, 46, 52 — 55)aastittitive relations shown
in Equations 63 — 66. Then, in the next section, we investigate whether #dwedixess sequential
scheme modified for multiple porosity systems is still contractive and numericatliesta

Let us introduce a norm extended from the single porosity model in [37Etonthitiple porosity
model, as follows.

N

1 K’ . .
HX”?—[ = 5/ (anf(lep (57 : Clsf + gl : Hlﬁl) + (Ce -b Ev,e) L (Ce -b 51},6)) an (72)
=1 dr

Ny N
. R e e Nint Nint Np XNm
H={x:= (61,... en €, fnwce) €9S...8 x RMint ... RNint xR
teri; € L*(Q),&.: € L*(Q),¢q,0. € L* ()}, (73)
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whereS = R®aim+t1)xnaim/2 gnd ny;,,, and n,,; are the dimension of the domain and the number
of components of,, respectivelyef = {a,ﬁij}, & ={&;} and¢, = {(u0.}, b = {b;ﬁj}. Note
that¢, contains the number of materials of sub-elements. 3

Let us introduce two arbitrary initial conditionayd, po, §;,) and @, po, &;,), respectively,
wherep = {p; ;}. We also let @, p, &;) and @, p, él) be the corresponding solutions from the
two different initial conditions, which yields, ¢, ;) and €¢, ¢., K1). The difference between
the two solutions is denoted ky-) = (-) — (-). Then, contractivity is defined as [1, 46, 47, 48, 49]

d
Xl < 0. (74)

Let the corresponding solutions from two arbitrary initial conditions beeckErsough, such that
they follow the incremental forms of the constitutive relations and relationsdagtvocal and global
variables. Specifically,” in the relations such as Equations 45, 46, 54, 55, and 63 —66 can be
replaced byd'.

Considering that the solutions from two arbitrary initial conditions satisfy tbeeming
equations and the boundary conditions, the governing equations for nasiéipAow and
geomechanics yield

Divdeo =0, diny, ; + Divdw; ; =0, (75)

where non-negative plastic dissipation is satisfied for elasto-plasticith@mdgeneous boundary
conditions are obtained.

Then, the given mathematical problems based on the proposed constielétens yield
contractivity, as follows.

d ) . Non Kep ) )
Lldxl? = / MLt | deg : C; : de + de, - Hy d€, | + (¢, — bde, )L (d(j‘e - b*dév,e) dQ,
dt H ; de ~— T ng_/

=do’, =dr; =d¢{—b*de,

(from Equations 45, 65, and 66 for do’;, dk;, and d¢ — b*de,,, respectively)

MNm ep

K .

= / > mdo’y : ﬁdéﬂr(dcfb*daq,)~L(d§—b*dév) o
=1 dr —_—

(St

- N ~-e

=1 de

(from Equations 54 and 64 for dé and dp; s, respectively)

=dp
=dé

(do-’l L dEP + dry - dél)) a0,

denoted by D¢

= / do’ :dé +dp - (¢ —b*de,) | dQ — Dg, (from Equation 45 for do’),

=Y M qde’
= /da s dedf) + / dp - dédy — Dl‘f, (from Equations 63 and 75;)

=0

= — / dvy. g - k;lljmldvm”]dﬁ — DI <0, v, € H (div,Q), (76)

where the Darcy law (i.e., Equation 2) and divergence theorem are applibe last expression,
and non-negative plastic dissipation Ieadslﬁjgo. Thus, Equation 76 implies that the
proposed constitutive relations (i.e., Equations 63 — 67), and globalizatidnlaralization
(i.e., Equations 45, 46, 52 — 55) are admissible, honoring the dissipativénamiem in
thermoporomechanics.
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6.4. An a-priori stability estimate of the sequential scheme

Sequential schemes are typically limited by numerical stability and convergéngarticular,
typical (obvious) sequential methods in coupled flow and geomechanicsotioprovide
unconditional stability and the numerical instability cannot be fixed by redutine step size
[43]. Additionally, the typical methods may suffer from non-convergereven in the case that
they are numerically stable [32, 33]. According to [33], the fixed strpsmethod can provide
unconditional stability and convergence with high accuracy for coupteddihd geomechanics in
single porosity systems. In this section, for completeness, we will find th&ixbe stress split
modified for the multiple porosity model is still B-stable. As an a-priori estimate imarical
stability, we employ B-stability [1, 46, 47, 48, 49, 50], defined as

x|, < lldx" [l , (77)

where the corresponding mathematical statements satisfy contractivity. Fgltdve definition of
B-stability, we first investigate contractivity of the fixed-stress operagtbtting modified for the
multiple porosity model.

When the flow step is taken, the mathematical statements for multiphase flow ara asitte

d’fnl,J + Div dwg,J =0, ddo =0, Divddi—g =0, Divdo;—g = 0, (78)
where homogeneous boundary conditions and non-negative plasijatizs are satisfied. Same

as the previous studies of single porosity systems [83}, = 0 with the initial conditions of
Equation 78 yields

Divdo = 0. (79)
Then, at the flow step, we obtain
d .
dx|?, = [ do:dedQ+ [ dp-dédQ — DY, (From Equation 79),
dt H p
0
= —/dvu ko | p @0, 7 — DY < 0. (80)

When we take the mechanics step, the mathematical statements are written as
Divdo =0, dp;;j = 0,= Divde’ =0, (81)

where non-negative plastic dissipation and homogeneous boundaiifiaos are satisfied. Then,
we obtain

d
% ldx|;, = /da" : dédQ)—DY, (From Equation 81),
SN—————
=0

= -Di<o. (82)

From Equations 80 and 82, the fixed-stress operator splitting holds ctwvitsa Since the
operator splitting is contractive, we study the algorithmic numerical stability atliderete time
level (i.e., B-stability).

Consider the generalized midpoint rule in time discretization (evaluation atttjméth 5 €
(0,1]). We also consider typical return mapping algorithms for elastoplasticity oa#isociated
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flow rule (maximum plastic dissipation) [45], which satisfies for maténaithin a gridblock

< yirntl s tB oy oyt s <0 VI e &, (83)

denoted by DZA

where the bilinear forrx -, - > is defined as
< XL I0 = / ( :C, ¢z +r - H wl) dQ, (84)
Q
and its associated norfn ||¢, is
9 1
IZlle, = 5 < %, % >, (85)

whereX; = (o, k;) is a generalized effective-stress constrained to lie within the elastic d@inain
andIl; = (v, w;) is another (arbitrary) generalized effective str@ﬁ:"“} from the elastic trial
step is defined agr;” + 3C;Ael, K}).

Introducing the corresponding solutiors, and X, from two arbitrary initial conditions and
letting those be close enough, Equation 83 yields [32, 47]

< dnp —detP ) —dni P > b < (BCALE],0), (—do' P —dr] TP > <0, (86)

—DA
,Dl

where the first term can identically be expressed as

I ’ ’ [ 2 n n n
< dsp —do'P, —dnit >= (Hdzl Yz = s ||Z) +8(28—1)|[durt — dx Hg (87)
The second term of Equation 87 yields
N, KeP
> ek < (BCAL,0), (~do' ™+, —dni ) >
=1 dr
nWl
- / D m e o Adep - o’ a0 = 5 / Zmda’fﬂ’ Ade"d2
1=1 Kar
Ade™ —/_’do-’n-%—ﬁ
= 7ﬁ/Ad5h . (do‘nJrB + bl Jdp;LJrBl)dQ (88)

where Equation 63 is applied to the last expression. Then, from Equ&fossd 88, we obtain

ZmKep (i 2, - laspi) = ZmKep( f— @0 - 1)z - axt )
+ / Ade™ : (do™ ™ + b} 4dp}71)d9. (89)

When we solve the flow problem first, the algorithmic counterpart of Equagoat the discrete
time level is written as

Adey;
n n * n n At . n
lJmI(dp7Irj_Il - dpm,]) + bl,J (dau+1 - dav) +p7 Dlv(dwh}_ﬁ) = 0’ (90)
do"t! —do" = do" — do" ™!, Div (do' — do”) =0, Divde® =0, (91)
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where we consider maximum plastic dissipation in the flow step because weeuskstoplastic
moduli.
From Equation 91, we obtain

Divde"t? = 0,= / do™P : Ade™d = 0. (92)
Let us define a norm fgp as

1 -
12 = 5 [ oLty it (93)

Consider the following identity
M®“w3www®=4@ﬁ%mwwﬁﬁ—maﬁnww—www“—wija

Then, at the flow step, adding Equations 89 and 94 with Equations 90 arice9@volution of the
norm is described as

, Im o geP
o+ e = S (17 = 1912 + (1 I~ o 2)
=1 T
N Klep 1 A n+1 nll2 n nt 8
= ZmKep 5&—(25—1)”@ -zt +/Ads’:da s

=1 dr

<0
=0

— (28 -1) ||dp"*" — dp””i — / ?t Div(dw] )0
J ’

€

b Klp n+1 n 2 n+1 n 2
2013 g 577 = a2, - 25 1) b - "
=1 T

IN

— At / dvoyt ke pdun R,

m,.

from which B-stability is obtained at the flow step whén> 0.5.
When we solve the mechanics problem at the next step, the algorithmic quamtef
Equation 81 at the discrete time level is written as

Divdo™? =0, dp,;"*? = 0,= Divde"" "’ =0, (96)

where the maximum plastic dissipation is satisfied. Then, at the mechanicgistieg, Bquations 89
and 94 with Equation 96, we obtain the evolution of the norm as

lax+[7, = llax"13, = i B L pp 05— 1) ||asy+ — asp?
H H ”lep 3L ! Ulle,
=1 " <0

+ /Ade” : (do'™+0)dQ — (26 — 1) ||dp™*t — dp™|| 5, (97)
=0

from which B-stability is obtained at the mechanics step whken0.5. Thus, from Equatins 95 and
97, the fixed-stress sequential method modified for multiple porosity systemsaonditionally
stable wherg > 0.5.
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Equation 83 implies that the return mapping is performed for all materials oékaubents. In
solution procedure, after we obtain the global total strain, we calculate ¢aétlatal stain from
Equation 54, followed by the return mapping, which determines local plastic variabledehig
moduli, and elastoplastic tangent moduli. Then, we can determine globalrpespich as global
elastic and plastic strains from Equations 54 and 55. Since return mappmgasped at each sub-
element, we can employ different plastic models, yield conditions, and hagliemvs for different
materials.

6.5. Porosity correction in thermoporoelasticity

Let us incorporate Equations 19 and 33 into the following equation for thesnemechanics:

551} a —bT —BiT 607;
5 |=| b L' -D sp |, (98)
SA b -D D 6T
51 —.§17J(5mJ Cill Cil Ny XN
Sﬂm — §nm7!](5m,] Jnmxnp 1 Jnmxnp Ny, XNy

whereD is determined by coupling beween fluid flow and heat transfer, regaroiggomechanics.
The off-diagonal terms ofD are typically zero, just ad and D. The diagonal terms of
D are determined byot.a; ; —3al, ; for material/ and phase/. Then, we can determine
all the coefficients in Equation 98 from the results obtained previously iorpechanics and
thermomechanics.

For numerical simulation in non-isothermal condition, we can extend the §itteds split method
straightforwardly, when employing one-way coupling from heat flow tolmees. This one-way
coupling implies that a direct contribution from mechanics to heat flow is neglgée.,b = 0
of the third row of Equation 98). The one-way coupling can be justifiednaddeat capacity of
material or fluid is high, or direct heat generation from deformations isigielg [22]. However,
mechanics can still affect heat flow coupled to fluid flow because fluiddlodvmechanics are tightly
(two-way) coupled. Then, based on one-way coupling from heattbomechanics and the fixed-
stress split method, at the flow step where fluid and heat flow problemslassl simultaneously
for flow, the porosity function and its correction for the non-isothermabiition become

o? - o7 o
o =y = (G ) ST (0" ) s (17 < 17) — el @100

N N
AP, = bler{ €y — €y Jrzzka(ka Pr.y ) +ng’ (T]?T,:’_l)}. (101)

k=1J=1 k=1

(a’" o1 )

From the mathematical standpoint, one-way coupling from heat flow to misshanplies
decoupling between heat flow and mechanics, so we infer that the agiebiiity estimate shown
previously for isothermal condition can still validate the unconditional stabifithe fixed-stress
split for this non-isothermal condition. However, finding sequential meghbdt hold B-stability
whenb in the third row of Equation 98 is not neglected is an open question, whichotdre
encompassed by the a priori stability estimate in this study.
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7. NUMERICAL EXAMPLES

We introduce three cases for testing poroelasticity, poroelastoplastiaityhamoporoelasticity in
multiple porosity systems. We use fracture-rock matrix systems for the multipdsiposystems.
The fracture-rock matrix systems are representative of any compostensythat consist of a high
permeable material transporting fluid over the domain and the other materiaigydtard and
conveying it to the high permeable material, as shown in Figure 3. Thus,atiife medium in
these numerical examples does not need to be a physical fracturepbegents a high permeable
material.

Rock Rock Rock
Matrix-3 Matrix-3 Matrix-3
Rock Rock Rock
Matrix-2 Matrix-2 Matrix-2
Rock Rock Rock
Matrix-1 Matrix-1 Matrix-1
Fracture > Fracture > Fracture Fracture
7
Rock
Matrix-1
Rock
Matrix-2
Rock
Matrix-3

Figure 3. A representative fracture-rock matrix system (MINC) is described [28]. Fluid flows through
the fractures, while the rock matrices provide fluid into fiteeture continuum. The arrows, implies fluid
flow.

7.1. Poroelasticity

We introduce a 1D consolidation problem for single phase fluid flow andaswi&l condition, using
the MINC method for flow. The domain has 9 gridblock, where the grid spakin Ay, andAz are
1m, 1m, and 2 m, respectively. Each gridblock has five interacting contireuay sub-elements):
one fracture and four rock matrix media, as shown in Figure 4. Accaiditite flow problem has
45 elements, while the mechanical problem has 9 elements. Volume fractiorectirie, Matrices
1,2,3and 4 are 0.02, 0.08, 0.2, 0.35, and 0.35, respectively. Amvaltiea gridblock is located at
the bottom.

For flow, the initial permeability and porosity of the fracture continuum /gfé = 598 md,
wherel md = 9.87 x 107% m?, and¢;, = 0.5, while those for each rock matrix continuum are
k70 = 0.0598 md and ¢,, o = 0.3. We assume constant permeability during simulation, focusing
on interactions between mechanical deformation and fluid pressure fprapesed constitutive
relations of multiple porosity systems, although appropriate permeability modeldyfamic
permeability would be necessary for real simulation. There is no gravitg flthd (water)
compressibility isc,, = 4.7 x 1071% Pa~!. The fluid density and viscosity ayg, = 1000 kg m—!
andu.,, = 1.0 cp (1.0 cp= 1073 Pa - s). We have a no-flow boundary at the bottom and a drainage
boundary on the top, at which the boundary fluid pressug,is= 10 M Pa. Initial fluid pressure
is P, =10 M Pa.

For mechanics, linear elasticity is considered. The global (upscalethedraulk modulus is
K4, = 300 M Pa and the shear modulus @& = 450 M Pa, from which Poisson’s ratio is = 0.0.

We consider different drained bulk moduli for numerical tests of diffeggorosity systems. We
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No flow —+—> Observation
P

Figure 4. 1D consolidation problem with five interacting tiona in flow. We test three porosity systems
in mechanics: single, double, and five porosity systemsthIporosity systems yield the same upscaled
drained bulk modulus for mechanics (i.&,. = 300 M Pa).

have no displacement at the bottom, horizontally constrained boundadlitioos at sides, and the
overburdeng = 20 M Pa on top. Initial total stress isq = 10 M Pa. Note that this consolidation
problem is a modification from Terzaghi’s problem, where the fluid presdses instantaneously
att = 0 due to the instant loading effect, and then decreases due to the drafrtagdloid from
the domain to the top boundary.

We consider the single, double, and five porosity systems. For the singisityosystem, we
assign a single drained bulk modul@g0 M Pa to the five continua. For the double porosity
system, the drained bulk moduli of Fractufé; and Matrix 1 K, are 31.25 M Pa, while
those of Matrices 2, 3, and 4 (i.€5, , K, and Kyy,) are6.75 GPa. For the five porosity
system, we havé&'; = 7.125 M Pa, Ky, = 154.1 M Pa, K, = 30 GPa , Ky, = 675 GPa, and
Ky, = 2363 GPa. Poisson’s ratios for all materials for all porosity systems(abeWe assign the
five different drained bulk moduli to represent a wide range for higaregeneity within a gridblock
as well as to achieve clear differences from the single and doubleifyosgstems. Note that all the
porosity systems yield the same global drained bulk modulus of the gridblagks= 300 M Pa.
This implies that the three different porosity systems can exhibit same appggemechanical
properties when physical experiments at the gridblock level (i.e., map@seiew) are conducted,
even though there are different degrees of heterogeneity within a giigblock (i.e., microscopic
view).

From the left of Figure 5, the single porosity system shows the same insaotpressure
buildup between fracture and rock matrix media because the two bulk moduheisame. Then,
the (fluid) pressure in Fracture decreases rapidly because of Higiegkility, while the pressure in
Matrix 1 also decreases, but slowly because of low permeability.

On the other hand, the double porosity system shows different instantspeessure buildup
between (Fracture, Matrix 1) and (Matrices 2, 3 and 4) because theullkartoduli are different
(the right of Figure 5). Then the pressure in Fracture decreasesdater rate than that of the single
porosity system because the bulk modulus of Fracture in the double pasgsigm is lower than
that of the single porosity system.

Interestingly, after the instantaneous pressure buildup=ad, the pressures in all Matrices drop
at early time (1) because the decrease of the pressure in Fractues canspression of Fracture,
accompanied by dilation of Matrices to balance the overall deformation ofrttiblock, and (2)

21
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Figure 5. Results from the single (left) and double (riglt)gsity modelsP; andt, are the dimensionless

pressure and time in the 1D problem, whefe= £=1& and ¢, = (4;—)2 Py is the lower limit of

the pressure during simulation. Her&;, = P,.. ¢, is the consolidation coefficient defined as =
f,0
e fg ey e is the vertical length of the reservoir domain. When usireggimgle porosity model,
we cannot distinguish deformation of the fracture mediuonrfthose of the rock matrix medium properly,
showing the same pressure buildup. However, the doublesppraodel can capture the distinct deformation
of the fracture medium, showing different pressure buigduprac’, ‘Matl’, ‘Mat2’, ‘Mat3’, and ‘Mat4’
indicate Fracture, Matrices 1, 2, 3, and 4, respectively.

because the fluid flows into Fracture. After the pressure in Fracture gpuititgium, reaching the
boundary pressure, the pressure in Matrix 1 decreases, butlvety because of low permeability.

Five porosity system Five porosity system

o o
) ©

o
~

(P-PI(P—P)

Pd(
o
N

0 2 4 6 8 10 0 20 40 60 80 100
_ 2 _ 2
t " (—4cvtlLZ) ty (—4cvt/LZ)

Figure 6. Results from the five porosity model fgr= 10 (left) andt,; = 100 (right). The five different bulk
modulus system represents more complicated behavior thgheissure than the single and double porosity
systems because it can reflect high heterogeneity withirdalgck.

In the five porosity system, all materials have different instantaneousyseesuildups, as shown
in Figure 6. As the drained bulk moduli of the materials are lower, the carnelpg pressure
buildups become higher. After the instantaneous pressure buildup itufgathe pressure in
Fracture decreases due to the drainage boundary on the top. Conpsiregle and double porosity
systems, the pressure drop in Fracture in this five porosity system is edtatiow, because a low
drained bulk modulus yields high total compressibility of the flow problem, mitigatieggure
diffusion. In Matrix 1, at initial time, fluid pressure decreases fast dudilédion of Matrices and
flow into Fracture, same as the double porosity system. After the presstirdture becomes
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constant, the pressure in Matrix 1 drops slowly. Matrix 2 shows that, at ititied, the pressure
decreases fast due to compression of Fracture. Then, the presseases due to influx of fluid
from Matrix 1. As the difference in fluid pressure between Matrices L2aaetreases, the rate of the
pressure increase becomes slow. Eventually, the pressure in Matreréades due to outflux into
Fracture through Matrix 1. Matrices 3 and 4 have the same behavior ax[2a®nly differences
are some degrees of the pressure value and time scale. Compared withulke foe the double
porosity system, the five porosity system can realize more various pattepnssisure, reflecting
high heterogeneity within a gridblock.

7.2. Poroelastoplasticity

We investigate elastoplastic behavior in the multiple porosity systems, employing ohe M
Coulomb model [51, 52], which is widely used to model failure of cohegiididnal materials.
The yield criterionf and the plastic potential functignare written as

fo= 1, —onsin¥y —cucos ¥y <0, (102)
g = Tn—0psin¥q—cpcosPy <0, (103)

/ / ro_
o, = % and 7/, = % (104)

wherec, ¥, and¥, are the cohesion, friction and dilation angles, respectivglyos, ando; are
the maximum, intermediate, and minimum principal effective stresses, reggctiv

(a) ®)

Drucker-Prager model

Figure 7. The yield surfaces of the Mohr-Coulomb and Drudkexger models on (a) the principle effective
stress space and (b) on the deviatoric plane. All the effestiresses are located inside the yield surfaces.

As shown in Figure 7, the yield function of the Mohr-Coulomb model includes@ners and
a common vertex on the tension side of the hydrostatic axis. The discontinomess may cause
numerical instability in return mapping [52, 53]. In order to handle the diseoity problem in
the return mapping of the Mohr-Coulomb model, we adopt the DruckerePragdel around the
discontinuous corners, as employed by [52], which is written as
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fo= Bihi+J—kp <0, (105)

9 = Bghi+J2—kg <0, (106)
wheregy, k¢, 84, andk, are given as

sin Wy

= , 107
& 0.5 (3(1 —sin W) sin 6 + /3(3 + sin W) cos §) (107)
3Ch
ky = , 108
d 0.5 (3(1 —sin W) sin 6 + /3(3 + sin W) cos 0) (108)
sin ¥y,

= , 109

s 0.5 (3(1 —sin Wy) sin@ + v/3(3 + sin ) cos 0) (109)
ky = S (110)

0.5 (3(1 —sin Wq)sinf + v/3(3 + sin ¥ ) cos §) ’

whered is the Lode angle [51, 52], written as

1 (33 J;
9 = g COSs (2 J3/2> . (111)
2
1, Jo, andJs are invariants of the effective stresses as follows
’ 1 ’ ’ ’ ’ / Il
I, = tro’, J2:§s 08, Jy=dets’, where s’ =0 731. (112)

The Drucker-Prager model has the smooth and continuous surfdce @tr/3, while the Mohr-
Coulomb model shows the discontinuity at the two points. We employ the returnimgegdgorithm
proposed by [52] for the Mohr-Coulomb plasticity simulation.

We reuse the previous one dimensional problem of the five porosity syssémg,the same fluid
and geomechanical properties. For the Mohr-Coulomb model, welbhave 0 and¥, = 0 for both
Fracture and Matrices. We use a wide range of the cohesion values ivahmdierials for high
heterogeneity within a gridblock, as shown in Table I. Note that Fractymeesents a weak and
high permeable porous medium, which does not need to be a physicallyrédatedium.

Table I. Cohesion for Fracture and Matrices

Cohesion Fracture Matrix 1 Matrix 2 Matrix 3 Matrix 4
ch 2.8 MPa 280 MPa 28 GPa 2800 GPa 2800 GPa

Figure 8 shows that pressures in Fracture and Matrices are higher @lastoplasticity is
considered than when only elastic mechanics is employed. At initial time, Feafatces failure
because of low cohesion, while Matrices are still elastic because of higesiom. This failure
of Fracture can change the mechanical properties and variables foreitiganical problem such
as elastoplastic tangent moduli and total strain. As a result, changes in miesclygeld more
compaction not only in Fracture but also in all Matrices, leading to highesspres than those
in elasticity, as shown in Figure 8.

Figures 9 (a) and (b) show vertical and horizontal plastic strains intéie@aand gridblock at
the observation gridblock. Even though we have relatively large localiplstrains at Fracture, the

24



(a) Fracture (b) Matrix 1

1 1.5
O EL O EL
=~ os8f! - x-PL = - x-PL
DI-J 1‘ DI-J \
o 06f] o
= * = X
o d o
I 04 |
Q a
T T 05
D_‘c 0'2 D-'c
09
0 0 5 10 15
_ 2 _ 2
t, (=4c tL2) t, (=4c L)
(c) Matrix 2 (d) Matrix 3
0.5
O EL
~ 04 B
- -
o o 0.2
1~ 0.3 ood @
o . X
= OOROOO =
E_\—‘ E_\—’ 0.15
0.
l g o
L [P
o 0 k=l
o a
Of — % —PL
0

_ 2 _ 2
t, (=4c UL%) t, (=4c tL?)

Figure 8. Results of the five porosity model in elasticity atestoplasticity. ‘EL’ and ‘PL’ denote elasticity

and elastoplasticity. Pressures in Fracture and Matricetastoplasticity are higher than those in elasticity

because Fracture enters the plastic regime, yielding Hargmpaction. The compaction can support the
reservoir pressure.

global (upscaled) plastic strains (i.e., gridblock strain) are still small, lsecklatrices are elastic.
This can validate the assumption of infinitesimal transformation in mechania®. Figures 9 (c)

and (d), Fracture enters elasticity after initial plasticity. Then, we reengeplstic region. Since

we have¥,; = 0.0, ¢, , = 0.0 is obtained. Material failure occurs on the edge of the Mohr-Coulomb
yield surface,d = 0, so the return mapping based on the Drucker-Prager model is used when
Fracture experiences plasticity. Note that, in this numerical example, we gbfais- 3.151 M Pa

at Fracture in plasticity, which matches the analytical solution of the Druekager model.

7.3. Thermoporoelasticity

We use a non-isothermal plane strain two dimensional (2D) problem to ins&stig
thermoporomechanics in multiple porosity systems. The 2D domain is divided2into10
uniformly-sized gridblocks in (X, z) wittAz = 10 m, Ay = 10 m, andAz = 10 m, as shown in
Figure??. Each gridblock has five porous materials: one fracture and fournmatkices. Volume
fractions of Fracture, Matrices 1, 2, 3 and 4 are 0.02, 0.08, 0.2, 83).85, respectively.

For flow, the fluid compressibility is; = 4.7 x 107! Pa~'. The fluid density and viscosity
arep,, = 1000 kg m=! andy,, = 1.0 cp. We have no-flow boundary conditions at all boundaries.
Initial fluid pressure and temperature de= 19 M Pa andT; = 146.7°C. The initial porosity of
Fracture isp; o = 0.5, while that for each Matrix i%,,, o = 0.3. The initial permeability of Fracture
is k:g,”vo = 598 md. We have a specific heat capacity uf00 J kg~' °C for both Fracture and
Matrices, and use the specific heat capacity of water for given peeasd temperature conditions.
Fluid is produced from Fracture in Well 2 of the gridblock located at (rmolumn) = (5, 1) at a
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Figure 9. Evolution of the plastic strains in (a) Fracturel éb) gridblock, (c) plastic multiplien\, also

called plastic consistency parameter, at Fracture, ang/{d)at Fractures , ande,, denote vertical and

horizontal plastic strains, respectively. The low cohesib Fracture causes initial failure, while Matrices
are still elastic.

total mass rate of), = 10 kg/s, while liquid water a0°C' is injected to Fracture in Well 1 of the
gridblock located at (row, column) = (5, 15) at a total mass ra@,qf = 10 kg/s.

The permeability is,, = 49.35 x 10~1° m?, 50 md,

heat conductivity ig:z = thermal dilation coefficienta

The permeability is constant during simulation, and there is no gravity.

For mechanics, linear elasticity is considered. Young’s modul#s-is100 M Pa, and Poisson’s
ratio is v = 0.0. We have a no-displacement boundary at the bottom, horizontally corestrain
boundary conditions at sides, and the overbur@esn, 19 M Pa on the top boundary. Then, we
have initial principal total stresses efl9 M Pa, resulting in no strain changes at 0. Biot's
coefficient ish = 1.0, which yieldsK; = ~.

In this section, we study differences between thermoporomechanics andintoupled
conventional reservoir simulation that employs a rock (pore) compressiMlgychoose the rock
compressibility that can provide results closest to those of the thermopstioalianulation. In this
2D case, the 3D drained bulk modulus is used for rock compressibility in tbeuphed reservoir
simulation, not the constrained modulus.

Case3.1 ar =0°C~' kpr =0 Wm™" °C~', andk;* = 0 md We first consider the case where
the Matrix permeabilityt;* as well as heat conductivity and thermal dilation coefficients; of
Fracture and Matrices are zero. Thus, fluid/heat flow occurs onlyacttire, and coupling between
heat transfer and geomechanics is not considered.

Figure 10 shows that liquid water pressure increases within Fracturelatt\{Figure 10 (a))
because liquid water is injected into Fracture. The increase of presgtrradture results in dilation
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Figure 10. Evolution of pressure at the monitoring wellsGase 3.1: (a) pressure in Fracture at the injection
well (Well 1), (b) pressure in Matrix 2 at the injection well/éll 1), (c) pressure in Fracture at the production

well (Well 2), (d) pressure in Matrix 2 at the production w@Nell 2). P, = £ =5 andty = Q, x t/M;,
where P;, = 16 M Pa and M; is the initial reservoir fluid mass-in-place. We observeiataons of the
pressure in Matrix 2 when employing the coupled simulaticepturing the effects from mechanics of

Fracture (i.e., compaction/dilation of Fracture).

of Fracture, which can cause compaction of Matrices to balance ovefathdation of the gridblock
(Figure 10 (b)). Then, the compaction of Matrices can induce the inerefishe pressure in
Matrices. At the production well (Well 2), the pressure in Fracture efsas because of water
production (Figure 10 (c)), which leads to compaction of Fracture. Amosgd to the injection
well, Matrices expand and cause the pressure drop (Figure 10 (d)).

In contrast with the coupled simulation, the uncoupled reservoir simulation wé&hrabk
compressibility cannot capture changes in pressure in Matrices at Wells 2. &igure 11 shows
that we observe no difference in temperature between the coupled amdntional reservoir
simulations, because there is no heat flow between Fracture and Matrixvéllaas between
Matrices due to zero heat conductivity and no thermal coupling from/to geltemécs.

Case 32 ar =7.5x107* °C~!, kp =0 Wm™"' °C~!, and k;’ =0 md We use a high
thermal dilation coefficientv; = 7.5 x 10=* °C~! with the previous test case, and examine
differences between the coupled and uncoupled reservoir simulativastigating thermal effects
in mechanics and fluid/heat floMe choose the thermal expansivity of the flow-only simulation
that can provide results closest to those of thermporoelastic simulation, saime determination
of rock compressibility.
We observe higher increase of pressure in Fracture at the injectiorPywell1.9 (21.7 M Pa)

than the previous casg; = 1.5 (20.35 M Pa), as shown in Figure 12 (a). Cold water injection
induces thermal compaction within Fracture, which contributes to larger lpuddlypressure. In
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Figure 11. Evolution of temperature at the monitoring wldisCase 3.1: (a) temperature in Fracture at the

injection well, (b) temperature in Matrix 2 at the injectiaell, (¢) temperature in Fracture at the production

well, (d) temperature in Matrix 2 at the production wél}, = %;*_% is dimensionless temperature. In this

test casey, = 20°C. We obtain the same temperature between the coupled andipladosimulations
because of no thermal coupling and zero heat conductivity.

Fracture, compaction by the cooling prevails against dilation induced byrflags injection in this
test case. Compaction of Fracture induces dilation of Matrices. As a résufiressures in Matrices
at Well 1 (injection well) drop below the initial pressure (Figure 12 (b)).

At the production well, the pressure in Fracture drops almost instantsiyedue to fluid
production (Figure 12 (c)). After the pressure drop, as the pressuFracture at the injection
well increases, the pressure in Fracture at the production well alseases because of pressure
diffusion. When cold water enters the production well, compaction of Fraatan contribute to
more pressure buildup. After the increase of the pressure in Fradteaglytimes, the pressure in
Fracture deceases again because variations of the pressure ird-eddhe injection well and of
the temperature in Fracture at the production well decrease eventually.

In Matrix 2 at the production well, we observe instantaneous pressopeb@icause of dilation of
Matrix 2 caused by compaction of Fracture due to fluid production (Figzi(d)). Afterward, as the
increase of the pressure in Fracture induces dilation of Fractomgpaction of Matrix 2 reduces the
pressure drop at early times. Then, the pressure in Matrix 2 drops festeuse compaction from
the decrease of the pressure in Fracture induces dilation of Matrix 2eTdwnplicated physical
behaviors fundamentally result from close interactions between fluidibeaand geomechanics.

Note that Matrices are impermeable, so there is no pressure diffusiondretive materials
within a gridblock. Thus, changes in the pressure in Matrices result frmreffects from the
changes in geomechanics (i.e., coupled fluid/heat flow and geomechddicshe other hands,
the uncoupled reservoir simulation cannot capture these coupled phesoshewing no change in
the pressure in Matrices at both injection and production wells.
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Figure 12. Evolution of pressure at the monitoring wellsGaise 3.2: (a) pressure in Fracture at the injection

well, (b) pressure in Matrix 2 at the injection well, (c) psase in Fracture at the production well, (d) pressure

in Matrix 2 at the production well. Due to coupled fluid/heatifland geomechanics, we observe variations

of the pressure in Matrix 2, even though the Matrix permdtghis zero, while the uncoupled simulation
cannot capture the variations.

Case3.3. ap = 7.5 x 107 °C~ 1, kp = 3.1 Wm~' °C~!, andk}* = 0.0598 md In the third case,
we employ high thermal conductivity and non-zero rock matrix permeability.oserve from
Figure 13 that results from the coupled and uncoupled simulations have sphijaical trends.
However, although the uncoupled simulation shows the similarities to the coupletagon, we
still observe differences at late times, as shown in Figure 13. Thuslezbfipw and geomechanics
need to be considered for accuracy when flow and geomechanicstahe tigupled for the cases
of highly deformable or stress-sensitive reservoirs.

8. CONCLUSIONS

We have generalized constitutive relations of poroelasticity for the doutresity model to
those for the multiple porosity model, determining coupling coefficients betwegd flow

and geomechanics. Especially, in the case of zero values in the offrdiatggms of the total
compressibility matrix for isothermal condition in fluid flow, which is typically empldyia

reservoir simulation, the upscaled drained bulk modulus for mechanicamiesca volume-
fraction weighted harmonic average of drained bulk moduli of the materiasubfelements.
For the given coupling coefficients, we also determined the upscaled atastiali. Then, we
immediately extended the coefficients and constraints of poroelasticity to thestogy and

poroelastoplasticity. Specifically, for poroelastoplasticity, elastoplasticetangoduli instead of
elastic moduli are used for the coupling coefficients. We also showed thabtistitutive equations
and relations between local and global variables proposed in this studywmdl-posedness,
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Figure 13. Evolution of pressure at the monitoring wellsGase 3.3: (a) pressure in Fracture at the injection

well, (b) pressure in Matrix 2 at the injection well, (c) psase in Fracture at the production well, (d) pressure

in Matrix 2 at the production well. We find differences betwebe coupled and uncoupled simulations to
become larger as the simulations proceed.

implying that the proposed relations are admissible in the sense of the physicssipative
mechanism of thermoporomechanics.

To solve these extremely complicated coupled problems, we employed thestiesd-sequential
method modified for the multiple porosity model and showed by the energy metlaid th
the sequential method provides unconditional stability. This sequential metodasily be
implemented in reservoir simulation by using the Lagrange porosity functioritarmbrrection
modified for the multiple porosity model. We provided formulations for the pordsitgtions and
corrections for poroelasticity, poroelastoplasticity, and thermoporomémheith single or multi-
phase flow for the multiple porosity model. In the case of elastoplasticity, thenretapping is
performed at each sub-element.

We tested three cases: poroelasticity, poroelastoplasticity, and therratgsticty for single
phase flow. In poroelasticity, single, double, and five porosity systemeswged, and we found that
the multiple porosity model can reflect the characteristics of high heteritgenignin a gridblock.
For poroelastoplasticity, using the Mohr-Coulomb failure model, we deteceepléistic behaviors
of a weak material such as the fracture medium in the five porosity systent) eidd have not
been captured if the single porosity model had been used. In thermdgmiicigy, the coupled
simulation showed extremely complicated physics for the three sub-test easkwe observed
significant differences between the coupled and uncoupled simulations.

In conclusions, neglecting geomechanics in composite materials such asuaefnanck matrix
system may cause large errors, and considering geomechanicaitg®pé composite materials
can provide an accurate modeling for coupled flow and geomechaniosxdmple, in fractured
porous media. The modeling and numerical algorithms for thermoporomeshpraposed in
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this paper are considerably useful for mechanically or thermally sensdyaarly fractured or
composite reservoirs, and readily applicable to large scale problems.
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