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ARTICLE

Automated NMR resonance assignments and
structure determination using a minimal set of 4D
spectra
Thomas Evangelidis1, Santrupti Nerli2,3, Jiří Nováček1, Andrew E. Brereton4, P. Andrew Karplus4,

Rochelle R. Dotas5, Vincenzo Venditti5,6, Nikolaos G. Sgourakis3 & Konstantinos Tripsianes1

Automated methods for NMR structure determination of proteins are continuously becoming

more robust. However, current methods addressing larger, more complex targets rely on

analyzing 6–10 complementary spectra, suggesting the need for alternative approaches. Here,

we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure

determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two

4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz

where common NOEs between different spin systems supplement conventional through-

bond connectivities to establish assignments of sidechain and backbone resonances at high

levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are

then used to guide automated assignment of long-range NOEs and structure refinement in

autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate

that the structures of proteins can be determined accurately and in an unsupervised manner

in a matter of days.
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Nuclear magnetic resonance (NMR) structure determina-
tion relies on recording a network of nuclear Overhauser
enhancement (NOE) restraints from multidimensional

spectra1. Obtaining near-unambiguous assignments of long-range
NOEs is challenging due to substantial overlap in the spectra
which becomes more pronounced for larger proteins. This is
typically addressed through first establishing the chemical shift
assignments of backbone and sidechain atoms using multiple
(6–10) triple-resonance spectra2, 3, which are then used as
anchors to guide the assignment of NOEs during iterative
structure refinement4. State-of-the-art tools such as FLYA5,
PINE6 and UNIO7 can automate the resonance assignment and
structure determination process. In principle, recording a smaller
number of higher dimensionality spectra can provide a com-
plementary approach to increase signal dispersion and resolve
ambiguities8. With the emergence of non-uniform sampling and
reconstruction methods, such datasets can be recorded in rea-
sonable time9. Recent approaches for automated resonance
assignments based on three- and four-dimensional (3D and 4D)
NOE data make use of a known structure to guide the assignment
process10, 11. However, for de novo structure determination,
further development is needed to perform resonance assignments
at the high levels of completeness and correctness that are
required for NOE data-driven structure determination.

Recent methods allow for structure modeling guided by NMR
chemical shifts, used as a means to optimize a physically realistic
energy function that reproduces the native features of protein
structures12, 13. Chemical shift Rosetta (CS-Rosetta) relies on
backbone assignments along with Rosetta’s Monte Carlo frag-
ment assembly protocol to model protein structures in the 10–12
kDa range12. CS-Rosetta was superseded by resolution-adapted
structural recombination (RASREC)-Rosetta, extending the size
limit to 25 kDa using backbone residual dipolar couplings (RDCs)
and amide NOEs14, or to 40 kDa using sparse NOE data acquired
on methyl-labeled, perdeuterated NMR samples, assigned
manually15. In addition, the use of evolutionary information in
conjunction with NMR chemical shift data can be used to model
protein targets in the 25–40 kDa range16–18. Finally, autoNOE-
Rosetta performs automated assignment of long-range NOEs and
structure refinement using iterations of parallel RASREC-Rosetta
calculations19. In all these methods, the use of advanced con-
formational sampling methodologies enables protein structure
determination using a sparse network of restraints20. However, a
significant bottleneck remains in establishing correct sidechain
assignments at sufficient completeness levels to drive the auto-
mated assignment of long-range NOEs20. Moreover, the use of
methyl-labeled samples requires extensive deuteration, which can
be challenging for several biologically important systems21.

Here we combine the powerful autoNOE-Rosetta approach
with a new automated assignment algorithm (4D-CHAINS) in a
complete pipeline for NMR structure determination. First, 4D-
CHAINS utilizes two complementary experimental datasets, a
4D-TOCSY (Total Correlated Spectroscopy) and a 4D-NOESY
(Nuclear Overhauser Effect Spectroscopy), to obtain near-
complete resonance assignments of backbone and sidechain 1H,
13C and 15N atoms. The resonance lists provided by 4D-CHAINS
form the basis for iterative assignment of long-range NOEs and
structure determination using autoNOE-Rosetta, which exploits
through-space correlations recorded in two 4D-NOESY datasets,
one amide to aliphatic, and one aliphatic to aliphatic. The com-
bined approach allows us to obtain structural ensembles for
proteins up to 27 kDa, without the need for deuteration or
selective labeling, by leveraging the well-resolved spectral features
of the 4D datasets together with Rosetta’s energy function. Our
NMR data and detailed analysis, performed for one benchmark
case with known X-ray structure and three additional blind

targets, illustrate that the new approach can consistently deliver
high-resolution structural ensembles of biologically relevant
proteins by greatly reducing the number of required experiments
and human time spent.

Results
Development of the 4D-CHAINS assignment algorithm.
Towards developing 4D-CHAINS, we recorded for four different
protein targets of size from 15.5 to 27.3 kDa, a 4D HC(CC-
TOCSY(CO))NH, and a 4D 13C,15N edited HMQC-NOESY-
HSQC (HCNH) experiment. The largest protein target of size
27.3 kDa was chosen based on its apparent correlation time of
~15 ns that still allows for TOCSY transfer to occur (Supple-
mentary Figure 1). We also recorded a 4D 13C,13C edited
HMQC-NOESY-HSQC (HCCH) experiment to further assist in
structure determination. To address the assignment problem, 4D-
CHAINS uses 2D probability density maps of correlated 13C–1H
chemical shifts to effectively identify possible spin systems (Fig. 1,
Supplementary Figure 2). In particular, 4D-CHAINS combines
sequential information present in the 4D-HCNH TOCSY and
intraresidue information present in 4D-HCNH NOESY 13C–1H
planes, respectively, by clustering TOCSY or NOESY peaks to
Amino Acid Index Groups (AAIGs) via their common 15N–1H
frequency (Supplementary Figure 3). 4D-CHAINS computes
probability scores at several steps (amino acid-type prediction,
sequential AAIG relations based on TOCSY–NOESY con-
nectivities, alignment of peptides to the protein sequence) to yield
a confidence score for a given AAIG being assigned to a specific
protein residue. Finally, 4D-CHAINS uses an Overlap Layout
Consensus (OLC) assembly approach adopted from genome
assembly22 to match continuous AAIG segments along the pro-
tein sequence (Fig. 2). The final assignment solutions are con-
sistent with both the joined probability score and the OLC model.

A uniform 4D-CHAINS protocol was applied to all four targets
(Fig. 3a). The algorithm mapped correctly all AAIGs to the
respective protein sequences with >95% completeness (Supple-
mentary Figure 4). The TOCSY-based assignments alone covered
approximately 80% of all aliphatic chemical shifts with an error
rate of <0.5% (Fig. 3b, Supplementary Figure 5). To increase the
overall assignment completeness, we obtained additional infor-
mation from the HCNH NOESY spectrum by employing the
concept of common NOEs between successive residues21. The
TOCSY–NOESY combination enabled more complete assign-
ments with 94% correct aliphatic chemical shifts and a combined
error rate of 1.3% (Fig. 3b, Supplementary Figures 5–7,
Supplementary Table 1). The concept of common NOEs in
obtaining assignments was further tested by providing 4D-
CHAINS fixed 15N–1H assignments and the HCNH NOESY
spectrum alone (Supplementary Figure 8). This assignment
scenario (NOESY) allows users to extend existing backbone
assignments, obtained conventionally, to cover sidechain atoms
with 86% accuracy and an error rate of approximately 5%
(Fig. 3b, Supplementary Figure 5).

Performance of 4D-CHAINS relative to existing methods. To
test the performance of 4D-CHAINS relative to existing assign-
ment programs, we performed calculations using a popular
assignment method, FLYA5, for all protein targets used in the
current study. While 4D-CHAINS relies exclusively on the
combination of 4D-HCNH TOCSY and 4D-HCNH NOESY, the
FLYA algorithm is designed to combine peak patterns from any
number of input spectra. Therefore, we provided FLYA with all
available spectra (4D-HCNH TOCSY, 4D-HCNH NOESY, 4D-
HCCH NOESY). Notwithstanding, 4D-CHAINS outperforms
FLYA consistently for all four protein targets in our benchmark.
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For three proteins, namely RTT, ms6282 and Enzyme I (nEIt),
FLYA outputs 90% correct assignments with 7-8% error rate,
while for α-lytic protease (aLP) the number of correct assign-
ments is limited to 25% (Supplementary Figure 5). Finally, we
manually inspected and extended the 4D-CHAINS results to
establish the maximum number of highly accurate assignments
for all 13C–1H correlations that can be observed in our 4D spectra
(>98%), as a “best-effort” resonance list requiring a modest time
investment by a trained user. These supervised assignment lists
also contain aromatic and sidechain amide chemical shifts, not
considered by the automated 4D-CHAINS protocol (Supple-
mentary Figure 6).

Iterative structure calculations using autoNOE-Rosetta. We
evaluated the performance of assignments obtained using 4D-
CHAINS in driving Rosetta structure determination of a 20 kDa
target, aLP, for which several known X-ray structures are avail-
able in the Protein Data Bank23. Inspection of the X-ray struc-
tural ensemble shows a highly complex all-β fold, with two sub-
domains each containing a 6-stranded antiparallel β-sheet. In
order to establish a “best effort” limit of the Rosetta automated
NOE assignment and structure determination protocol, we first
performed autoNOE-Rosetta calculations19 using the supervised
assignments together with both NOE datasets (HCNH+HCCH).
Additionally, we carried out automated 4D-CHAINS/autoNOE-
Rosetta structure calculations (Fig. 3a, Supplementary Figure 9)
under four different scenarios, as described above
(TOCSY–NOESY or NOESY assignments, each using HCNH
alone or HCNH+HCCH NOEs). To evaluate the quality of the

resulting structural ensembles, we used the following criteria: (i)
fraction of residues converged within 2.0 Å backbone heavy atom
root-mean-square deviation (RMSD) in the final ensemble, (ii)
average Rosetta all-atom energies and (iii) RMSD to X-ray
structure. Since the Rosetta energy function24 has a global
minimum at the native fold, lower-energy models should also
exhibit higher convergence towards the native structure. We
observed a good correlation between Rosetta all-atom energy,
degree of convergence and structural accuracy (correlation coef-
ficient of 0.93, Fig. 3c). Specifically, using the supervised assign-
ments and HCNH or HCNH+HCCH NOEs, we obtained highly
converged structural ensembles (>98%, computed over the core
secondary structure regions) that are within 0.7 Å RMSD from
the X-ray structure.

Notably, ensembles calculated using the 4D-CHAINS
(TOCSY–NOESY or NOESY) automated assignments using both
NOE datasets also achieved a high level of convergence (>90%),
to within 1.3 and 1.7 Å RMSD from the X-ray, respectively. Using
the same 4D-CHAINS assignment lists and the HCNH NOEs
alone, the accuracy relative to the X-ray was slightly reduced to
1.7 and 1.9 Å, respectively, while the convergence decreased to
approximately 86%, but the models still recapitulated the protein
fold and β-sheet topology. This trend is highlighted in a
superposition of the lowest-energy aLP model sampled in each
calculation on the X-ray structure reference (Fig. 3d).

Convergence of aLP structures towards the X-ray reference. To
evaluate the relative accuracy and precision of NOE-driven
structure determination approaches using different input
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assignments and NOE datasets (HCNH or HCNH+HCCH), we
performed a single joint Ensemblator25, 26 analysis of the 12
resulting aLP structural ensembles (six each using Rosetta or
CYANA27) and a set of 51 X-ray structures from the CoDNaS28

database (see Methods). A dimensionality-reduced visualization
of the relationships between the models (Fig. 4a) reveals that the
Rosetta models are consistently closer to the X-ray models than
the corresponding CYANA models generated using the same
datasets. Overall, the Rosetta models show better convergence,
and convergence for all groups correlates strongly with their
similarity to the X-ray structures (Fig. 4b). The two Rosetta-
generated ensembles based on supervised assignments are nearly
equivalent and show the best convergence and greatest similarity
to the X-ray structures (Fig. 4a, b). Here, the fragment-based
structure refinement in Rosetta allows the generation of highly
accurate ensembles from HCNH NOEs alone, which is not

feasible using standard simulated annealing in CYANA. In par-
ticular, poor convergence and low similarity to the X-ray
ensemble are seen for models calculated by CYANA from the
HCNH NOEs alone (Fig. 4a, b; orange and red circles). Con-
versely, the Rosetta ensembles produced from a single NOESY
dataset (HCNH) are in good agreement with the X-ray ensemble
(Fig. 4c), and quantitative comparison shows that the structural
variability pattern along the protein chain is rather similar,
although the NMR ensemble typically has a greater variability
than the X-ray ensemble (Fig. 4d). These results suggest that the
uncertainty of atom positions in solution correlates with varia-
bility associated with different crystal packing environments.

Consistent blind structure determination of protein targets. To
further test our method in a fully unbiased manner we performed
blind structure calculations for three additional protein targets,
RTT29, 30, ms6282 and nEIt of sizes 133, 145 and 248 amino acids
(aa), respectively (Table 1). To establish a baseline performance,
we carried out CS-Rosetta calculations guided by chemical shifts
alone15, as well as reference CYANA calculations using both
input NOE datasets (HCNH+HCCH). With the exception of the
smallest target (RTT), the resulting CS-Rosetta models failed to
converge (Supplementary Figure 10) and instead sampled con-
formations with sub-optimal energies (Fig. 5; right column,
black). Conformational sampling is drastically improved in
autoNOE-Rosetta calculations guided by both supervised or
automated 4D-CHAINS assignments, and the resulting structural
ensembles are very similar for all targets (Fig. 5; left column). For
the largest target, the 27.3 kDa Enzyme I from Thermo-
anaerobacter tengcongensis, NOE contacts provided sufficient
constraints to elucidate the structure of the individual domains,
but the overall orientation of the two domains was not converged
due to the lack of contacts at their interface (domain A, defined
by residues 1–143 and domain B, defined by residues 144–248)
(Supplementary Figure 11). Here, the use of 15N–1H residual
dipolar couplings allowed us to sample further lower energies,
and obtain better convergence by restraining the relative orien-
tation of the two domains (Fig. 5d, Supplementary Figure 11d).

Towards evaluating the effect of different levels of assignment
completeness on the performance of autoNOE-Rosetta, we
carried out benchmark calculations by randomly removing
entries from our “best effort” supervised assignment lists for
target aLP and found that autoNOE-Rosetta can identify correct
protein fold from as low as 60–70% sidechain assignments. In
addition, we performed a detailed comparison of assigned NOE
contacts and Rosetta energy distributions, relative to control
calculations guided by the supervised assignments. We observe
that the use of fully automated assignments results in a small
decrease in the total number of NOE contacts identified by
Rosetta (approximately 80% for all targets). Furthermore, we
obtain similar distributions of assigned NOE contacts among
residue pairs in the protein sequence (Fig. 5; middle column). The
respective lowest-energy models are built using hundreds of
automatically assigned, long-range NOE restraints and exhibit a
minimal number of violations (1–4%) involving pairs of atoms
that are typically within 1 Å from their estimated upper distance
limits (Supplementary Table 2). Given that methyl–methyl NOE
contacts play a critical role in defining the hydrophobic core of
the protein, we found that ∼25% of the total contacts identified by
autoNOE-Rosetta are contributed by methyl NOEs for structure
calculations using supervised or automated 4D-CHAINS assign-
ments (Supplementary Table 3). Finally, the distributions of
energies among the 100 best sampled structures are generally
shifted relative to RASREC-Rosetta and show good overlap with
their supervised counterparts (Fig. 5; right column).
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Discussion
NMR remains the only biophysical technique that can deliver
high-resolution structures of proteins and other biomolecules in
their functional, aqueous environment, which constitutes the
basis for studying interactions with other molecules and ther-
apeutic compounds. However, standard approaches for NMR
resonance assignment rely on recording several complementary
datasets which can be limiting for larger, more complex systems
due to increased resonance overlap and require a significant time
investment by a trained expert to analyze the spectra and estab-
lish a complete list of resonance assignments aided by compu-
tational tools31. Established methods to overcome this problem
utilize selective isotopic labeling32, which can be limiting in terms
of the information content present in the NMR data, expensive
and challenging to perform for certain systems.

Here, we propose an automated approach for full structure
determination using 2–3 4D NMR spectra recorded on a 13C, 15N
uniformly labeled sample. First, 4D-CHAINS addresses the
assignment problem in an efficient and highly robust manner,
yielding the correct assignments for at least 95% of residues and

error rates of less than 1.5% (Supplementary Table 1). It is further
worth noting that the vast majority of resonances corresponding
to sidechain methyls, which are important probes in identifying
the protein fold, are correctly assigned by our method. Therefore,
the use of 4D-CHAINS allows near-complete assignment of
sidechain methyls without the need for site-specific labeling on a
perdeuterated background33 (Supplementary Table 4). Second,
autoNOE-Rosetta uses a highly parallelizable iterative algorithm
run on a computer cluster to perform assignment of long-range
NOEs alongside the structure determination process. The full
pipeline takes approximately 10–12 days to execute for a typical
protein sample, including the time needed for NMR data acqui-
sition, and requires minimum supervision.

In addition to recapitulating the correct protein fold,
autoNOE-Rosetta models obtained using the 4D-CHAINS
assignments show accurate placement of sidechains for most
residues in the protein structure (Supplementary Table 5). Spe-
cifically, close inspection of sidechain conformations in the
Rosetta ensembles computed using the supervised assignments
shows good overall agreement with the X-ray rotamers for most
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buried residues (>10 Å2 BSA), while using the fully automated
assignments results in a small decrease (<10%) in accuracy
relative to the models derived using supervised assignments
(Supplementary Figure 12 and Supplementary Table 5). Finally,
an analysis of long-range NOEs assigned by autoNOE-Rosetta
versus predicted from the X-ray structure using a 5.5 Å distance
cutoff between all pairs of protons shows good recovery of
crystallographic contacts at levels of 67–86%, which are dis-
tributed across the entire protein fold (Fig. 6). Taken together,
our results underpin that the automated 4D-CHAINS/autoNOE-
Rosetta approach yields models that accurately capture the cor-
rect global fold as well as atomic features of the native structure.

Overall, the convergence of structures obtained using super-
vised assignments for the three target proteins, RTT, ms6282 and
aLP, are better than or comparable to the convergence of struc-
tures obtained using 4D-CHAINS automated assignments, as
expected (Table 1). Notably, for Enzyme I, autoNOE-Rosetta
achieves a higher level of structural convergence using automated
assignments due to enhanced resampling of the correct protein
fold during the early stages of the autoNOE-Rosetta structure
calculation process. Overall, our results suggest that the fully
automated assignment process introduced by 4D-CHAINS has a
minimal impact on the performance and quality of the derived
structural ensembles by autoNOE-Rosetta, which remain highly
consistent with all available input data.

Relative to CYANA, autoNOE-Rosetta can achieve a similar
degree of structural convergence using the same input resonance

assignments with both the aliphatic and amide NOE peak lists.
Although the total number of structurally degenerate HCNH
+HCCH long-range NOE contacts identified by CYANA is
higher by (i) ∼10% for aLP and ms6282 and (ii) ∼25% for RTT
and nEIt (Supplementary Figure 13), for three targets, RTT,
ms6282 and aLP, the degree of structural convergence achieved
by autoNOE-Rosetta is comparable to CYANA; while for the
largest target, Enzyme I (nEIt), the autoNOE-Rosetta ensemble is
significantly more converged towards the correct fold (Supple-
mentary Figure 14). Generally, the structural ensembles deter-
mined using autoNOE-Rosetta are closer to the nearest PDB
reference structures by approximately 0.5 Å for RTT, 0.2 Å for
ms6282, 0.5 Å for aLP and >2.2 Å for nEIt relative to the struc-
tures predicted by CYANA (Supplementary Figure 14). When
using the amide NOEs alone together with either automated or
supervised resonance assignments, CYANA does not yield con-
verged models, while autoNOE-Rosetta can still deliver models
showing the correct protein fold, albeit with reduced convergence
relative to calculations performed using both input peak lists, as
shown in detail for aLP (Fig. 3) and as outlined for all other
targets (Table 1).

In summary, we demonstrate that 4D-CHAINS provides
highly accurate and near-complete NMR resonance assignments
from two 4D spectra, which are effective in guiding high-
resolution structure determination using autoNOE-Rosetta. Our
results on four targets in the 15.5–27.3 kDa range indicate that the
use of our automated pipeline has a minimal impact on the
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precision and quality of the resulting structural ensembles, while
allowing for a tremendous reduction in human effort and NMR
spectrometer time. Lastly, our structural evaluation criteria, in
terms of convergence and Rosetta all-atom energy, can clearly
distinguish the correct structures, allowing our protocol to be
used extensively for generating high-quality models in a truly
unsupervised manner. Therefore, our combined approach could
be of great practical utility in both high-throughput structural
determination projects34 and NMR-based screening for small-
molecule and protein–protein interactions35.

Methods
NMR sample details. For each uniformly 13C-, 15N-labeled protein sample, the
concentration, buffer composition and NMR data collection temperature are as
follows:

The 0.8 mM RTT in 35 mM potassium phosphate (pH 6.8), 100 mM KCl, 5%
D2O, 25 °C.

The 1.2 mMms6282 in 50 mM sodium phosphate (pH 6.5), 150 mM NaCl, 7%
D2O, 25 °C.

The 2.0 mM aLP in 10 mM deuterated sodium acetate (pH 4.0), 50 mM NaCl,
8% D2O, 25 °C.

The 1.8 mM nEIt in 20 mM sodium phosphate (pH 6.5), 100 mM NaCl, 5%
D2O, 37 °C.

NMR data collection. For each protein target, a set of three sparsely sampled 4D
NMR experiments was acquired on 850 or 950MHz Bruker Avance III spectro-
meters equipped with 1H/13C/15N TCI cryogenic probehead with z-axis gradients.
All NMR spectra were recorded at CEITEC Josef Dadok National NMR Centre
using pulse sequences adopted and modified from Bruker library. The 4D HC(CC-
TOCSY(CO))NH experiment was acquired with chemical shift evolution per-
formed in semi-constant time manner in t1 (1Hali) and t3 (15N) and using
FLOPSY16 spin-lock of 12 ms that yielded the best overall signal-to-noise ratio.
The spectral widths were set to 12,500 (acq) × 2000 (15N) × 8000 (13Cali) × 6250
(1Hali) Hz and maximal acquisition times in the indirectly detected dimensions
were set to 50 ms for 15N, 10 ms for 13Cali and 16 ms for 1Hali. The experiment was
acquired with 16 scans per increment and single-scan recycling delay of 1.0 s. The
overall number of 1536 points was collected in the acquisition dimension and 2500

hypercomplex points were sparsely distributed over the indirectly detected
dimensions. Prior to recording full 4D HC(CC-TOCSY(CO))NH experiment, we
recorded the 15N/1H 2D plane of the experiment using a full (incremental) sam-
pling list since our methodology is applicable if the number of signals observed in
the 2D plane are ≥50% of expected, based on a standard, sensitivity-enhanced 2D
15N/1H HSQC experiment. In the 4D 13C,15N edited HMQC-NOESY-HSQC
(HCNH) experiment, the HMQC building block was used to transfer the mag-
netization between 1H (t1) and 13C (t2) with evolution of the 1H chemical shift in
semi-constant time manner during both transfer and refocusing of magnetization.
The magnetization transfer between 1H (t4) and 15N (t3) was designed using a
reverse HSQC building block after the 70 ms NOESY mixing time. The data were
collected with spectral widths set to 12,500 (acq) × 2000 (15N) × 8000 (13C) ×
10,000 (1H) Hz, respectively. The maximal evolution times in the indirectly
detected dimensions were set to 50 ms for 15N, 10 ms for 13C and 20 ms for 1H.
The experiment was acquired using 1.0 s single-scan recycle delay and 8-step phase
cycle with 8 scans per increment. In all, 1536 complex points were acquired in the
direct dimension and the overall number of 5000 hypercomplex points was non-
uniformly distributed over the indirectly detected dimensions. The 4D 13C,13C
edited HMQC-NOESY-HSQC (HCCH) experiment uses the same HMQC-type
building block as described for the HCNH noesy experiment (see above) within the
first 1H (t1), 13C (t2) transfer of magnetization. The second 1H (t4), 13C (t3) transfer
of magnetization following the 70 ms NOESY mixing time is performed using
HSQC building block utilizing gradients. Data were collected with spectral widths
set to 12,500 (acq) × 8000 (13C) × 8000 (13C) × 10,000 (1H) Hz, and the maximal
acquisition times in the indirectly detected dimensions were set to 20 ms for 1H (t1)
and 10 ms for 13C (t2, t3). The experiment was acquired with 8 repetitions per
increment and 1.0 s single-scan recycling delay. The overall number of 1536
complex points was collected in the acquisition dimension and 5000 hypercomplex
points were distributed over the indirectly detected dimensions. For each spectrum
the NMR acquisition time was 4 days. From our setup, we can observe that the
experimental time needed to acquire three 4D non-uniform sampling spectra is
comparable to the total acquisition time of several conventional 3D experiments.
However, the analysis of 3D experiments is laborious and further complicated by
resonance overlap, which becomes more pronounced with increasing target size.
Thus, from the user’s standpoint, it is preferable to operate using a pair of com-
plementary experiments which yield the same information in a higher-
dimensionality dataset. Finally, our benchmark data illustrate that any additional
relaxation losses during the extra chemical shift evolution step needed to acquire
the fourth indirect dimension are not prohibitive for highly concentrated samples
of stable proteins, which can still yield very rich datasets. All the pulse sequences
used in our experiments are available upon request.

Table 1 Statistics of autoNOE-Rosetta structural ensembles computed using supervised and automated 4D-CHAINS
assignments

Protein Assignment
data

Peaks RDCs
used

No. of
residues

Average Rosetta
energy (REU)

aFraction of residues
converged (%)

Mean RMSD (Å) to
average structure

RTT Supervised HCNH 133 −239.66 98 0.86
HCNH
+HCCH

−247.31 98 0.71

TOCSY–NOESY HCNH 133 −243.63 99 1
HCNH
+HCCH

−243.32 95 0.94

ms6282 Supervised HCNH 145 −263.83 92 1.15
HCNH
+HCCH

−252.8 97 0.9

TOCSY–NOESY HCNH 145 −262.95 93 1.19
HCNH
+HCCH

−262.57 93 0.94

aLP Supervised HCNH 198 −324.46 99 0.84
HCNH
+HCCH

−328.5 100 0.64

TOCSY–NOESY HCNH 198 −274.79 86 1.49
HCNH
+HCCH

−300.55 91 1.27

nEIt Supervised HCNH Yesb 248 −487.79 60 3.75
HCNH
+HCCH

Yesb −475.61 84 1.4

TOCSY–NOESY HCNH Yesb 248 −479.54 60 4.07
HCNH
+HCCH

Yesb −491.05 91 1.36

a Convergence statistics calculated over core residues
b One RDC dataset was used to improve structure convergence
Average Rosetta energies (in Rosetta Energy Units (REU)) reported over 10 lowest-energy structures
All backbone heavy-atom RMSD relative to the average structure calculated over core residues
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Sparse sampling and data processing. The on-grid Poisson disc sampling36 was
utilized in the present application to distribute individual acquisition points in the
indirectly detected dimensions. This sampling scheme introduces distances
between the generated time points and has been shown to reduce the level of
sampling artifacts in the direct vicinity of signal after the reconstruction36.

The 4D data were processed using sparse Fourier transform algorithm37 to
check the data quality. Final processing was performed in an iterative manner using
the Signal separation analysis approach as implemented in the program
cleaner4d37 (SSA package). Prior to processing with the cleaner4d program, the
data were square cosine weighted in the directly acquired dimension and zero-filled
to 2 k points using NMRPipe/NMRDraw 3.038. The 4D spectra were analyzed in
Sparky39.

Peak picking. Peaks were picked automatically and curated manually using a
restricted peak picking strategy. First, the 4D-HCNH NOESY spectrum was picked
at a user-defined noise level using both 15N,1H- and 13C,1H-HSQC peaks as filters.
Then the 4D-HCNH TOCSY spectrum was picked using the 4D-NOESY peaks as
filters. Accordingly, all planes were inspected simultaneously in all spectra and
picked artifacts were removed. Synchronization of all four shared dimensions in
the spectra allows for a highly efficient peak picking and curation process.

Measurement of RDC restraints for nEIt. Backbone amide 1DNH RDCs were
measured by taking the difference in 1JNH scalar couplings in aligned and isotropic
media40. The alignment media employed was phage pf1 (16 mgml−1; ASLA
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Fig. 5 Comparison of structural ensembles calculated from supervised versus fully automated assignments. a Rtt103 (RTT, 133 aa), b KanY (ms6282, 145
aa), c α-lytic protease (aLP, 198 aa) and d Enzyme I (nEIt, 248 aa). Columns 1 and 2: autoNOE-Rosetta ensembles of 10 lowest-energy structures guided by
“best effort” supervised assignments or by automated 4D-CHAINS assignments (TOCSY–NOESY), respectively. Column 3: Sequence map of distance
restraints assigned by autoNOE-Rosetta in iterative structure refinement calculations. Here, the upper triangular region shows restraints obtained using
supervised assignments, while the lower triangular region using automated 4D-CHAINS assignments. Column 4: Rosetta energy (in Rosetta Energy Units
(REU)) distributions and total numbers of assigned long-range restraints. The energy distribution was computed from the 100 lowest-energy structures
sampled during the final stage of autoNOE-Rosetta calculations using supervised assignments (purple), 4D-CHAINS assignments (green) and chemical
shift fragment-based RASREC-Rosetta calculations without NOEs (black). The bars represent the total number of HCNH (amide to aliphatic) and HCCH
(aliphatic to aliphatic) long-range NOE restraints assigned by autoNOE-Rosetta, including ambiguous restraints derived for different stereo-specific groups.
RDCs were used to obtain converged Enzyme I structures with respect to the orientation of the two domains reported in row d. Images of structural
ensembles were produced using Chimera (https://www.cgl.ucsf.edu/chimera)
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Biotech)41, and 1JNH couplings were measured using the ARTSY pulse scheme42.
NMR measurements were performed on a Bruker 800MHz spectrometer equipped
with a z-shielded gradient triple-resonance cryoprobe. Spectra were processed
using NMRPipe38 and analyzed using the program Sparky39.

Automated resonance assignment using 4D-CHAINS. 4D-CHAINS is an
automated resonance assignment algorithm for backbone and sidechain chemical
shifts of proteins. As input it requires the protein sequence in fasta format and peak
lists from 1H,15N HSQC (root), 4D HC(CC-TOCSY(CO))NH and 4D 13C,15N
edited HMQC-NOESY-HSQC experiments in sparky format. 4D-CHAINS algo-
rithm tackles the assignment problem in a conventional way43, 44. The distinct
feature of 4D-CHAINS is that all available aliphatic 13C–1H coupled frequencies
are used for amino acid-type prediction and sequential connectivities, drastically
decreasing the ambiguity level (Supplementary Figure 9).

4D-CHAINS overall assignment accuracy depends on chemical shift statistics,
currently available in the form of one-dimensional (1D) distributions of proton or
carbon resonances for every atom of the 20 amino acids (Fig. 1a). Since the 4D
spectra provide direct information on 13C–1H correlated chemical shifts, we
reasoned that statistical correlated chemical shift distributions would improve 4D-
CHAINS performance in addressing the assignment problem. For the different
13C–1H moieties of every amino acid, correlated chemical shifts maps were
generated from the VASCO-corrected data45. VASCO dataset was chosen instead
of the larger BMRB dataset, because chemical shift values of aliphatic carbons that
were improperly referenced have been corrected, thus avoiding distortion of the
information content used. The resulting 2D probability distributions have bins with
zero frequency, due to the relatively small sample size (Fig. 1b). Therefore, we
created probability density maps by applying a Gaussian kernel function, given by
Eq. 1, to estimate the density at any point

G H0 ;C0ð Þ ¼ 1
2πnhHhC

Xn

i¼1

e
�1

2

Hi�H0ð Þ2
h2
H

þ Ci�C0ð Þ2
h2
C

h i

ð1Þ

where n is the data size, hH and hC the bandwidth for the proton and the carbon
dimension, respectively. For optimal bandwidth selection we used Scott’s rule of
thumb h = n−1/6. Based on our analysis, the 2D probability density maps of
correlated chemical shifts provide improved predictive power when compared to
joint probabilities derived from 1D histograms of proton and carbon chemical
shifts (Fig. 1c, d).

4D-CHAINS is written in Python programming language and consists of two
modules: NH-mapping module and atom-type assignment module. As output, it
provides TOCSY and NOESY (intraresidue and sequential) assignments of the
input 4D peak lists allowing visual verification of results, and a chemical shift list in
XEASY format that can be input together with NOESY peak lists to automated
structure determination software.

At first, 4D-CHAINS clusters the 4D-HCNH TOCSY and 4D-HCNH NOESY
peaks via the common root resonance (15N–1H) they share to generate AAIGs of
13C–1H correlated chemical shifts. For a given root resonance, the TOCSY AAIG
provides sequential information, that is, the 13C–1H aliphatic resonances of the
previous amino acid in the sequence (i-1), whereas the NOESY AAIG reports on
any 13C–1H moiety that is in close spatial proximity. By virtue of NOE distance
dependence, the NOESY AAIG contains most, if not all, of the intraresidue 13C–1H
resonances (i).

For each TOCSY AAIG, 4D-CHAINS calculates the probability of an amino
acid type for the preceding residue in the protein sequence using a probabilistic
model46. Let us denote any amino acid of the 20 types by AA and the set of
correlated chemical shifts in a TOCSY AAIG by CCS. The conditional probability P
(AA|CCS) to get an amino acid type given the observed C–H resonances is
highlighted in Eq. 2

P AA CCSjð Þ ¼ P CCSjAAð ÞP AAð Þ
P CCSð Þ ð2Þ

where P(CCS|AA) is the conditional probability of 13C−1H resonances for a given
amino acid type, P(AA) is the prior probability of finding the given amino acid type
in the protein sequence independent of the observed 13C–1H resonances, and P
(CCS) is the sum of the P(CCS|AA) terms over the 20 amino acid types. P(CCS|
AA) can be accurately estimated for any amino acid type using the probability
density maps of 13C–1H correlated chemical shifts (Supplementary Figure 2). For a
given number of 13C–1H frequencies in a TOCSY AAIG all permutations of atom-
type combinations are considered in calculating the probability for amino acids
with possible atom types equal or larger to the TOCSY frequencies. In practice,
however, only a small number of combinations is computed, because many 13C–1H
frequencies have non-zero probability only for distinct atom types of any amino
acid (Supplementary Figure 2). P(CCS|AA) is considered the most probable
combination, expressed as the product of probabilities of each 13C–1H pair
belonging to different atom types of a given amino acid. If the number of TOCSY
13C–1H pairs is larger than the expected atom types of a given amino acid then P
(CCS|AA) is set to zero. For every TOCSY AAIG several amino acid-type
predictions are made and ranked according to their conditional probabilities.
Depending on the TOCSY transfer efficiency, amino acids with long sidechains are
predicted rather unambiguously. In our datasets, accurate predictions defined as
the correct amino acid type being the most probable reached 89% (Fig. 1c).

Next, sequential connectivity information is obtained by matching the 13C–1H
frequencies of every TOCSY AAIG (i-1) to 13C–1H frequencies present in any
other NOESY AAIG (i), excluding the NOESY AAIG with the same root resonance
(15N–1H) as the TOCSY AAIG (Supplementary Figure 3a). The sequential
connectivities established for each TOCSY AAIG may vary in occupancy rate,
defined as the ratio of matched frequencies versus the total number of TOCSY
frequencies (Supplementary Figure 3a). The algorithm creates a directed rooted
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Fig. 6 Comparison of assigned NOE contacts versus predicted from X-ray structure. Contacts shown as a function of residue pairs along the sequence of α-
lytic protease. Upper triangular region shows NOE contacts identified during iterative structure refinement by autoNOE-Rosetta, while that of lower
triangular region represents expected contacts as predicted from the X-ray structure (PDB ID 1P01) using a 5.5 Å distance cutoff between all possible
proton atom pairs and further removing redundancies due to chemically equivalent protons. Different combinations of input assignments and NOE datasets
used are shown as follows. a Supervised assignments with HCNH NOEs. b Supervised assignments with HCNH+HCCH NOEs. c Total number of NOE
restraints assigned in a and b (orange) versus predicted from X-ray structure (gray). d 4D-CHAINS TOCSY-NOESY automated assignments with HCNH
NOEs. e 4D-CHAINS TOCSY–NOESY automated assignments with HCNH+HCCH NOEs. f Total number of NOE restraints assigned in d and e (orange)
versus predicted from X-ray structure (gray)
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tree from each AAIG and adds progressively edges and nodes using the
connectivity information, until it reaches a maximum chain length (Supplementary
Figure 3b). As a tradeoff between efficiency and memory consumption, maximum
length is set to six. Each chain X is then assigned a probability of occurrence given
by the product of the probabilities of each connectivity type in that chain as shown
in Eq. 3 to estimate the significance of each chain

P Xð Þ ¼
YL�1

k¼1

P Xk!kþ1ð Þ ¼
YL�1

k¼1

P occupancy rateð Þ ð3Þ

where L is the chain length and k the position in the chain. In principle, chains with
higher occupancy rate of connectivities are more likely to be correct.

Subsequently, the chains are used to generate a larger number of peptide
sequence segments using the amino acid-type predictions obtained earlier. Each
peptide is aligned to the protein sequence using the Needleman–Wunsch
algorithm47. Many peptides are discarded at this stage due to alignment
mismatches. For the aligned peptides, an alignment score Salign is computed using
the BLOSUM90 similarity matrix48, which quantifies the importance of the
alignment to a specific amino acid sequence. Taken all the above into account, the
weighted probability of assigning an AAIG from chain X to a specific residue in the
protein sequence is given by Eq. 4.

S Xð Þ ¼ P AA CCSjð Þ � P Xð Þ � Salign ð4Þ

Since several different chains can be mapped at overlapping positions in the protein
sequence, multiple AAIGs may correspond to each protein residue. For each
position in the protein sequence, a confidence score (Cs) is computed for every
AAIG corresponding to the given position by summing over all the chains as
indicated in Eq. 5.

Cs ¼
Xall chainsX

SðXÞ ð5Þ

In order to identify the correct AAIGs mapped to the protein sequence from the
large pool of aligned chains, the 4D-CHAINS algorithm exploits the overlap
information by performing OLC assembly similar to DNA assembly techniques22

(Fig. 2). From N- to C-terminus of the protein sequence, series of aligned chains
are merged to contigs with identical overlap of length L-1, where L is the length of
the chains. A contig terminates if there is no overlap to extend or if it encounters an
AAIG that is already part of it. Chains that cannot be merged to contigs are
considered spurious and discarded. Finally, all contigs are aligned to the protein
sequence. For an AAIG to be assigned to a given residue in the protein sequence,
two conditions must be met. First, only the absolute consensus AAIGs among the
different contigs are taken into account for a given position in the sequence and,
second, the consensus AAIG must have the higher confidence score for the given
position (Fig. 2).

Mapping of AAIGs to the protein sequence is accomplished by a succession of
iterations that differ in three parameters used: (i) the length of chains built; (ii) a Z-
score cutoff that controls the amino acid-type predictions to be considered per
TOCSY AAIG when chains are translated to peptides; and (iii) the occupancy rate
of connectivities between a TOCSY AAIG and all matched NOESY AAIGs.

In the first iteration, stringent criteria are applied to ensure greater fidelity of
predictions and extract long chains (L = 6) that are less likely to be aligned in a
wrong position of the sequence. OLC assembly provides an additional level of
scrutiny and removes lonely chains that cannot be extended to either end and are
likely false. Accordingly, only consensus AAIGs are selected and if there is
agreement with the probabilistic model (confidence score), then are mapped to
certain positions of the protein sequence. Mapped AAIGs are restrained in
successive rounds by eliminating all amino acid-type predictions and connectivities
they participate in that are inconsistent with the NH mapping. This reduces noise
and allows us to proceed gradually with shorter chains (minimum length 3) to fill
short regions in the sequence that are flanked by gaps in connectivities or proline
residues, incorporate AAIGs in the sequence that fulfill the connectivity criteria but
have low amino acid-type probability due to abnormal chemical shifts, and finally
account for the fact that NOESY AAIGs may not match all frequencies of a TOCSY
AAIG. In each round both the OLC and the probabilistic rule must be met for
accepting additionally mapped AAIGs to be restrained in the following round.

In the present implementation of the 4D-CHAINS algorithm, no mapping
mistakes were made for the four protein targets. The NH-mapping coverage varied
between 96 and 100% (Supplementary Figure 4; left column). To better evaluate the
mapping performance of 4D-CHAINS, only the 13C-1H correlated frequencies of
α- and β-atoms were retained in the TOCSY input peak list to imitate the scenario
of using a 4D CBHBCAHA(CO)NH experiment in conjunction with the 4D
13C,15N edited HMQC-NOESY-HSQC. Interestingly, only the coverage dropped
slightly but again no mistakes were introduced (Supplementary Figure 4; right
column). This control experiment highlights the robustness of 4D-CHAINS that
stems mainly from the predictive power of 13C–1H correlated chemical shifts and
the reliability of the connectivities established when carbon and proton frequencies
are coupled.

For all AAIGs mapped to the protein sequence 4D-CHAINS obtains the
assignment of aliphatic atoms by matching the observed 13C–1H correlated
frequencies to their distributions in the 2D probability density maps. First, the
TOCSY frequencies are assigned to atom types of the previous amino acid in the
sequence. Based on the amino acid type, pairs of 13C–1H frequencies that differ by
0.2 p.p.m. or less in the carbon frequency are grouped to methylene moieties. The
atom-type probability for these moieties is taken as the logarithmic average of the
individual probabilities. Accordingly, all combinations of permutations are
computed and the permutation with the highest probability provides the atom-type
assignments for the TOCSY observed frequencies. It has been reported before49

that automated assignments based on TOCSY-type transfer may interchange
between atoms of certain amino acids because their chemical shift distributions
overlap partially, as seen in the 2D probability density maps of correlated chemical
shifts (Supplementary Figure 2). Another source of erroneous assignments may
result from incomplete TOCSY patterns that become common as the size of the
protein increases and also depend on the isotropic mixing period. For instance, in
Leu residues, often the TOCSY observed correlations correspond to the α, β and
one of the isopropyl atoms. Due to the missing correlations, any of the methyl
groups could be wrongly assigned to the γ atom and vice versa, depending on the
observed chemical shifts. 4D-CHAINS assigned all TOCSY correlations with an
average error rate of 0.2% for 1845 13C–1H moieties in total (4 errors out of 1845
types) (Supplementary Figures 6 and 7). Minor TOCSY-based misassignments
should have in principle little impact on structure calculations driven by long-range
NOEs because they involve intraresidue atoms.

Next, all TOCSY-derived assignments are transferred to the NOESY spectra
starting from the last residue and going backwards. For every amino acid, first the
intraresidue NOE peaks are assigned (i) by matching the TOCSY assigned peaks of
the successive residue, and then any sequential NOE peaks (i-1) by matching its
own TOCSY assigned peaks. It has been noted from the early days of NMR1, and
supported later by inter-proton statistics21, that for any given amide the observed
NOE correlations to aliphatic protons are predominantly intraresidue (i) and
sequential (i-1). As a proof of that, 4D-CHAINS traced 99% of TOCSY peaks as
intraresidue NOE correlations and 89% as sequential NOE correlations. This
analysis demonstrates that for any given amide and its successive one, a large
portion of common NOEs they share correspond to the aliphatic atoms of the
former. This is particularly true for the methyl groups that in principle yield strong
NOE correlations to amides, both intraresidue and sequential. The only exception
is the distant methyl group of Met. Intraresidue NOE correlations are uniformly
present to any type of secondary structure (α-helix, β-sheet, loops), whereas
sequential NOE correlations are most prevalent in β-sheets. Yet, most of the
missing sequential NOE correlations correspond to certain atom types (δ and ε of
Lys, δ of Arg, ε of Met, and to a lower extent γ of Leu and γ1 of Ile).

Common NOEs are utilized to derive missing TOCSY-based assignments. For
every residue separately, the NOESY peak intensities are normalized and peaks
with low intensity (threshold 0.1 or specified otherwise) are left out. 4D-CHAINS
scans the sequence backwards. For each residue where there is a missing
assignment, it matches its unassigned NOE peaks with the unassigned NOE peaks
of the next residue. For each peak where there is a match, a probability is derived
for the missing atom-type assignments from the 2D density map of the particular
residue type. Atom-type probabilities must belong to the 80th percentile of the
density maps to be considered further. This filter prevents making any decisions
when the correct assignment does not belong to any of the matched peaks.
Accordingly, each probability is modified by the intensity of the corresponding
peak to a score. This process is necessary to identify the correct assignment of
methyl groups among the available options, because intraresidue methyl-amide
NOEs yield stronger correlations. Several intensity transformations were tested
extensively (see below) and the best performance for obtaining NOESY-type
methyl assignments is given by the product of the 2D histogram probability and the
intensity of the NOESY peak transformed by an exponential function, e.g.,
2Dprob×(100×intensity2). The highest score or product of scores provides the
assignments for the missing atom types.

The efficiency of 4D-CHAINS in obtaining atom-type assignments from the
4D-HCNH NOESY spectrum has been tested in three different scenarios
(Supplementary Figure 5 and Supplementary Table 1). In the current workflow 4D-
CHAINS sought assignments not present in the TOCSY spectra. For the four
different datasets, it assigned 13% of additionally assignable aliphatic atoms (277
carbon types) with an average error rate of 8.7% (24 errors out of 277 types). Then,
it operated on synthetic data of a 4D CBHBCAHA(CO)NH experiment. It
performed NH mapping successfully, assigned correctly all α- and β-atoms (1253
carbon types or 56.2% of all assignable atoms) and completed the missing
assignments from the NOESY spectrum, where it assigned 37.9% of additionally
assignable atoms (847 carbon types) with an average error rate of 5.1% (43 errors
out of 847 types). Finally, only the backbone amide 15N,1H HSQC frequencies were
provided and 4D-CHAINS was asked to assign all aliphatic atoms from the
4D-HCNH NOESY spectrum (Supplementary Figure 8). 4D-CHAINS was able
to assign 91.1% of all assignable aliphatic atoms (2033 carbon types) with an
average error rate of 5.5% (112 errors out of 2033 types). In all cases the assignment
error rate for methyl groups was lower: 7.9% for the first scenario (6 errors out
of 76 methyls assigned), 3.8% for the second scenario (15 errors out of 393
methyls assigned) and 3.3% for the third scenario (15 errors out of 457 methyls
assigned).
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Automated atom assignments using FLYA. For FLYA resonance assignment
calculations all available spectra were used as input, that is, 4D-HCNH TOCSY,
4D-HCNH NOESY and 4D-HCCH NOESY. The calculations were performed
using the demo script provided with CYANA distribution shown in the Supple-
mentary Methods.

NOE assignment and structure determination using Rosetta. NOE-based
structural ensembles were generated using the csrosetta3 toolbox integrated within
the Rosetta3 software suite. autoNOE-Rosetta19 is one of the protocols included in
the toolbox which performs automatic assignment of NOEs and structure deter-
mination based on the highly parallel RASREC-Rosetta50 conformational sampling
engine, which can successfully determine well-converged structures from sparse
NMR data19, 51. The main principle is to iterate the NOE assignment algorithm
alongside a multi-stage (I–VIII) conformational sampling process, towards
obtaining a network of long-range NOEs that drive structure refinement to the
global minimum of the Rosetta energy function24. The protocol uses as input initial
assignments of NOE cross-peaks, derived from the chemical shift lists provided by
4D-CHAINS. The selection of high-ranking initial assignments of NOE cross-
peaks depends on several factors, including: symmetry of the peaks, chemical shift
matching score and network anchoring. Long-range NOE restraints and backbone
chemical shift fragments guide the generation of batches of preliminary, low-
resolution structures, that are in turn utilized to evaluate and refine the NOE
assignments. Short and medium-range NOEs are also assigned by the program, but
not utilized in structure refinement. The autoNOE-Rosetta further eliminates peaks
during the sampling process. In the final stages, only highly converged, lowest-
energy models that satisfy the maximum number of assigned NOE distance
restraints are retained.

In practice, the process of setting up the protocol and generating models
involves the following steps. (1) Preparation of chemical shift, NOE peaks and
sequence files. From the 4D-CHAINS XEASY chemical shift table, we generate a
TALOS52 file and perform empirical prediction of backbone torsion angles using
TALOS-N53 for a given protein sequence. Based on the predicted chemical shift
order parameter, we retain only the rigid regions of the structure. (2) Fragment
selection54 from high-resolution structures in the PDB23. We use the TALOS-N φ,
ψ and secondary structure-type predictions to bias the selection of 3- and 9-residue
backbone fragments, excluding fragments derived from homologs to the target
sequence present in the database. (3) Automated setup of autoNOE-Rosetta
calculations for a range of restraint weight values.

According to this general procedure, we performed two sets of calculations for
each target using NOE peak lists that included either (i) amide to aliphatic
(HCNH) only, or (ii) amide to aliphatic and aliphatic to aliphatic (HCNH
+HCCH). To improve sampling for nEIt, NOEs were supplemented by one RDC
dataset. All calculations were setup with standard restraint weights of 5, 10, 25 and
50. The optimum restraint weight was selected based on an empirical cost function
that considers individual restraint weights, Rosetta all-atom energies (talaris2014.
wts24), and degree of structural convergence in each calculation. Finally, we select
an ensemble of 10 lowest-energy structures that show minimum NOE violations. A
detailed method to setup the calculations and analyze the models is available in the
Supplementary Methods.

NOE assignment and structure determination using CYANA. The 3D structural
ensembles of all four target proteins used in this study were calculated using the
CYANA27 software suite, supplied with the same input datasets as with autoNOE-
Rosetta. Depending on the size of each protein target, CYANA calculations
required 45–90 min on 4 CPUs. The script with all parameters for CYANA cal-
culations is available in the Supplementary Methods.

Ensemblator analysis. Analysis of the ensembles was performed using the
Ensemblator25, 26 software for atom- and residue-level global and local compar-
isons. The Ensemblator first iteratively overlays pairs of structures and finally
defines a “common core” of atoms that are consistently within a specified cutoff
distance. For each set of comparisons, the needed cutoff distance was automatically
determined by the Ensemblator to yield 20–40% of the atoms in the common core.
These comparisons also yield pairwise weighted distance metrics that are used to
embed the models into an N-dimensional space where N is the number of models.
Also, for any specified group of models, an exemplar was defined as the model
having the shortest average distance to all other models in its own group. Global
comparisons between groups are performed after the common core atoms are used
to overlay structures and local backbone comparisons are calculated based on the
locally overlaid dipeptide residual which converts φ, ψ differences to a single
distance25. The global and local comparisons involve quantifying the levels of
variation for each residue within and between defined groups so that the level of
intragroup variation can be compared with the intergroup variation.

Finally, the models in the crystallographic ensemble consisting of 51 aLP
structures, used for Ensemblator analysis, were obtained from the CoDNaS28

database by searching for α-lytic protease and utilizing all the available X-ray
structures.

Restraint violation analysis. NOE restraint violations among the 10 lowest-
energy models in each calculation are reported separately for different classes of

restraints assigned by autoNOE-Rosetta (Supplementary Tables 2, 6–9). First,
restraints are automatically divided into three confidence classes according to a
total assignment probability score19: highly confident (HI) (probability >70%),
confident (MED) (probability >45%) and least confident (LOW) (probability
<45%). Second, the ambiguity score reflecting assignment uniqueness19 further
classifies constraints into ambiguous (AMBIG) (ambiguity score >0.1), near
unambiguous (NEAR_UNAMBIG) (ambiguity score <0.1) or unambiguous
(UNAMBIG) (ambiguity score <0.01). Therefore, according to these criteria, each
constraint can be classified into one of the six classes: HI_UNAMBIG,
HI_NEAR_UNAMBIG, HI_AMBIG, MED_UNAMBIG, MED_AMBIG and
LOW_AMBIG. Finally, due to the lack of stereo-specific assignments by 4D-
CHAINS, the resulting autoNOE restraints are structurally degenerate and are
therefore treated using an effective distance computed as the r−6 average between
all the possible pairs of atoms55. We used a 7 Å upper distance bound to identify
violations in the resulting structurally degenerate NOE restraints, shown as an
average over the 10 lowest-energy models in each structural ensemble. The choice
of 7 Å as upper distance bound is attributed to the use of a 70 ms mixing time
where through-space magnetization transfer between closer protons can happen
within a maximum distance range of 7 Å56. This statement was found to be true by
direct observation of distances corresponding to confidently assigned NOEs in the
X-ray structure of aLP (PDB ID 1PO1).

Computational cost. 4D-CHAINS takes an average of half an hour to run on a
commodity computer. All autoNOE-Rosetta structure calculations were performed
at the UCSC Baker cluster with 13 compute nodes (AMD Opteron(tm), 2.4 GHz
Processor 6378) and 32 cores per compute node. Typical message passing interface
calculations are run in parallel on 100 cores, and depending on target size, take an
average of: (i) 6–8 h (150 aa), (ii) 12–14 h (200 aa) and (iii) 16–18 h (250 aa). A
total of approximately 2 million CPU hours was used for the various development
stages of the method.

CS-Rosetta support for NMR Exchange Format. NMR restraint datasets are now
represented using a new open standard, NMR Exchange Format (NEF)57. NEF is a
self-contained format designed to be machine readable by common NMR structure
determination software tools. The file is divided into sections where each section
corresponds to the data used for structure calculation. Full specification of each
section in NEF can be found at: https://github.com/NMRExchangeFormat/NEF/
blob/master/specification/Overview.md.

NEF provides support for a set of identifiers to be used by software tools. We
utilize the identifiers provided by the NEF specifications to design NEF converter
and NEF parser tools as part of the csrosetta3 toolbox. NEF converter is a tool that
can take sequence information, chemical shift assignments, RDC data (if available),
distance restraints and peak information used for structure calculation and convert
it to the standard NEF file format for deposition in databases (that support NEF).

Similarly, we also provide a series of tools to extract respective information from
NEF file into FASTA, NOE restraint, chemical shift and peak files for subsequent
automatic setup of CS-Rosetta for structure calculations. See supplementary
information for detailed commands to convert to NEF and parse NEF file.

wwPDB data deposition. Currently, wwPDB does not support the NEF format,
and we therefore utilized the NEF to BMRB translator program provided by
BMRB58 (https://github.com/kumar-physics/BMRBTranslator) to convert from
NEF to NMR-STAR format for data deposition. The deposited NMR-STAR file
consists of chemical shifts, peaks and RDCs used for structure calculation.

Code availability. 4D-CHAINS is available on github (https://github.com/tevang/
4D-CHAINS) for non-commercial usage. The updated CS-Rosetta (version 3.4)
software and the detailed documentation for installation and usage can be obtained
at the CS-Rosetta web server (https://csrosetta.chemistry.ucsc.edu). The current
version (3.4) of CS-Rosetta also supports conversion of data to NMR Exchange
Format for deposition to the wwPDB.

Data availability. Biological Magnetic Resonance Bank: chemical shifts, peak lists,
RDCs have been deposited under 30322, 30325, 30326, and 30327 BMRB codes.
Protein Data Bank: restraint lists and coordinates have been deposited under
5WOT, 5WOX, 5WOY, and 5WOZ PDB codes. Other data are available from the
corresponding authors upon reasonable request.
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