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Abstract: Uncertainty quantification (UQ) and global sensitivity analysis (GSA) of 12 

dynamic characteristics of complex systems subjected to uncertainty are jointly investigated 13 

in this paper. An efficient approach based on arbitrary polynomial chaos expansion (aPCE) 14 

is presented for analytical, unified implementation of UQ and GSA in structural dynamics. 15 

For UQ of dynamic characteristics, statistical moments and probability distributions of 16 

dynamic characteristics are analytically derived. Specifically, the aPCE is used to 17 

analytically calculate the statistical moments, and then the maximum entropy principle 18 

(MEP) is adopted to derive the closed-form expressions of the probability distributions 19 

using the obtained statistical moments. As an extension of UQ, GSA, which aims to assess 20 

the quantitative contributions of different structural parameters to the resultant variations of 21 

dynamic characteristics, is also analytically achieved by simply post-processing the aPCE 22 

coefficients. The present aPCE UQ and GSA method is highly computationally efficient for 23 

large-scale, complex structures, and it is also generally applicable independent of parameter 24 
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distributions. The proposed aPCE-based approach for UQ and GSA is validated through a 25 

numerical truss bridge by the brute-force Monte Carlo simulation (MCS), and then is 26 

applied to a long-span steel arch bridge. 27 

Keywords: Structural dynamics; Uncertainty quantification; Global sensitivity analysis; 28 

Arbitrary polynomial chaos expansion; Maximum entropy principle; Bridge structure. 29 

1. Introduction 30 

Our understanding of the dynamic behavior of structural and mechanical systems relies 31 

largely on representative computational (typically finite element) models that involve a 32 

large number of physical and geometric parameters such as material constants, stiffnesses, 33 

length, connectivity, and cross-sectional shape characteristics. Although the continuous 34 

development of more powerful and efficient computational capabilities allows for execution 35 

of very sophisticated and high-fidelity numerical models, it is common that these 36 

model-based predicted dynamic responses do not correlate well with the measured 37 

counterparts [1]. A variety of uncertainty sources exists associated with the structural model 38 

properties, including (but not limited to) manufacturing-induced tolerances, inherent random 39 

variation of materials, ill-defined boundary conditions, load variation, etc. These uncertainty 40 

sources are broadly classified into two categories, namely aleatory (also named stochastic, 41 

or irreducible, uncertainty resulting from inherent variation or randomness), and epistemic 42 

(also named subjective, or reducible uncertainty, due to lack of knowledge) [2].  43 

Thus, the structural model parameters should be regarded as uncertain rather than 44 

deterministic, and in response the impact of uncertainty in structural parameters on 45 

structural dynamic characteristics is important to characterize. In recent years, uncertainty in 46 
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structural dynamics has received considerable attention from engineers as an active research 47 

branch [3, 4]. A surge of work has demonstrated that uncertainty quantification (UQ) and 48 

sensitivity analysis (SA) are two essential ingredients of quantitative uncertainty 49 

management of physical systems subjected to uncertainty [5]. UQ refers to evaluation of the 50 

uncertainty in model outputs propagated from the uncertainty in model inputs, whereas SA 51 

refers to the determination of the contributions of individual model inputs (or a subset of 52 

them) to the resultant variations of model outputs. 53 

Specifically, the realization of UQ in linear structural dynamics is to quantify 54 

uncertainty in the eigencharacteristics (natural frequencies, mode shapes, and possibly 55 

damping) and frequency response functions in terms of confidence intervals, statistical 56 

moments, or probability distributions. There has been a large volume of work dedicated to 57 

this research direction, and a broad spectrum of UQ methods have been developed such as 58 

stochastic finite element method [6, 7], perturbation method [8, 9], interval analysis [10-13], 59 

surrogate modeling techniques [14-21], and Monte Carlo simulation (MCS) [1, 22]. On the 60 

other hand, comparatively little work has been conducted on SA in structural dynamics. The 61 

limited research work done on this area can be found in [23-25]. In general, SA techniques 62 

can be typically divided into two families, local and global. Local SA (LSA) measures 63 

effects of small variations of the model inputs in the vicinity of central (nominal) values 64 

through perturbing each single input slightly in turn while all other inputs are kept constant. 65 

In contrast to LSA, global SA (GSA), as its name indicates, assesses the impacts of the 66 

whole variations of the model inputs over their entire domain on model outputs. GSA is 67 

strongly recommended by researchers for performing SA of model output responses to 68 

uncertain model inputs, especially when the model under consideration is nonlinear, the 69 
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uncertainty level of model inputs is large, or interaction effects among model inputs cannot 70 

be ignored [26, 27]. In the literature, a variety of GSA techniques are available, including 71 

variance-based technique (e.g., Sobol method [28]), screening method (e.g., Morris method 72 

[29]), and regression method (e.g., standardized regression coefficients [30]), to name a few. 73 

Among them, the variance-based technique has been widely recognized as a powerful tool 74 

for reliable assessment of impacts of uncertain model inputs on model response. Thus, the 75 

variance-based GSA is the focus of this paper. 76 

Of particular interest in this study is to conduct UQ and variance-based GSA together 77 

in structural dynamics. For large-scale complex structures, UQ and variance-based GSA can 78 

pose severe computational challenges, which will limit the applicability of traditional 79 

methods that are computationally expensive, such as MCS. For instance, the brute-force 80 

MCS implementation of UQ for a complex arch bridge run on a Dell desktop machine with 81 

Pentium (R) D CPU 2.80 GHz takes around 45 days (3.6×10
5
 model evaluations) [17]. It 82 

should be noted that, with the MCS implementation, the computational cost of the 83 

variance-based GSA is several times higher than that of UQ because apart from estimation 84 

of the total variance, the variance-based GSA also has to compute a collection of partial 85 

variances arising from each parameter alone and the interaction effect with other parameters. 86 

In addition, the large-scale, complex structures (i.e., spacecraft, automobiles, bridges, and 87 

wind turbines) are commonly modeled as the high-resolution finite element (FE) models 88 

achieved by using commercial FE analysis packages, such as ANSYS and ABAQUS. This 89 

fact may exclude the use of the direct structural matrices (stiffness, mass, and damping 90 

matrices)-based UQ methods, such as the aforementioned perturbation method and interval 91 

analysis, since repeatedly extracting structural matrices from these FE analysis programs 92 
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and then conducting a series of calculations on these structural matrices for subsequent 93 

analysis is computationally prohibitive and thus impractical. In this circumstance, the 94 

surrogate modeling method can be seen as an effective tool for solving the issue of the high 95 

computational cost involved in UQ and variance-based GSA of dynamic characteristics of 96 

complex systems. 97 

Polynomial chaos expansion (PCE) has received considerable attention recently in a 98 

wide range of applications [31-37], since it maintains great capability in modeling highly 99 

complex systems with a relatively low computational cost. PCE is a surrogate model to 100 

represent the probabilistic response as a series expansion of orthogonal polynomials of the 101 

input random variables. The PCE idea was originally proposed by Wiener [38] to model 102 

stochastic processes exclusively governed by Gaussian random variables. It was later 103 

extended by Xiu and Karniadakis [39] to a generalized PCE (gPCE) in which several 104 

classical probability distributions (i.e., Gamma, Beta, and uniform) specified random 105 

variables could be utilized. Most recently, PCE is further extended by Wan and Karniadakis 106 

[40] and Witteveen and Bijl [41] so that it can be suitable for modeling the arbitrary 107 

probability distributed random variables. This more generalized PCE is called arbitrary 108 

PCE (aPCE). Because of its substantial generality in dealing with arbitrary probability 109 

distributions, aPCE has been successfully applied to solve a wide range of engineering 110 

problems [42-46]. This paper proposes the use of aPCE for a unified implementation of UQ 111 

and variance-based GSA in structural dynamics. The main contributions of this study are 112 

threefold: (1) the implementation of aPCE, which enables to handle arbitrary probability 113 

distributions that are beyond these four aforementioned classical ones (i.e., Gaussian, 114 

Gamma, Beta, and uniform), is detailed; (2) UQ and variance-based GSA of dynamic 115 
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characteristics of complex systems are analytically implemented in a simultaneous fashion; 116 

and (3) for UQ consideration, in addition to the high-order statistical moments of dynamic 117 

characteristics, their probability distributions are also analytically derived by using 118 

maximum entropy principle (MEP). The present aPCE allows for generalizing the analytical 119 

implementation of UQ and variance-based GSA of stochastic dynamic systems with 120 

arbitrary probability distributed random variables. Although the applications in this paper 121 

are all structural dynamic problems, we stress that the aPCE approach is applicable to UQ 122 

and variance-based GSA of physical systems with arbitrary probability distributions in 123 

general. 124 

2. Arbitrary polynomial chaos expansion 125 

2.1. Formulation of arbitrary polynomial chaos expansion 126 

Polynomial chaos expansion (PCE) is a spectral decomposition method that expands 127 

the model output to an infinite series of orthogonal polynomials in random model inputs. 128 

The arbitrary PCE (aPCE) is a generalized PCE that is suitable for the physical models 129 

whose input random variables are arbitrarily distributed. Assume ( )y    is a physical 130 

model, which is usually an expensive-to-run black-box function, where 
1 2={ , , , }d  

 
is 131 

a collection of input random variables. Provided that the model output y  has a finite 132 

variance, it can be written as an aPCE representation 133 

1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

0 0 1 2 3

1 1 1 1 1 1

( ) ( ) ( , ) ( , , )
d d d  

           
     

            
     

        (1) 

or in a compact form 134 

( ) ( )d  
 


   (2) 
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where the multi-dimensional indices  ’s are d -tuples in 
d

;   are the PCE 135 

coefficients; and ( )   are the basis functions belonging to the Askey scheme of 136 

orthogonal polynomials, satisfying  137 

2( ), ( ) ( )m n m mn           (3) 

where 
mn  represents the Kronecker delta that is one if m n  and zero otherwise; and 138 

,   defines the inner product 139 

 ( ), ( ) ( ) ( ) ( ) ( ) ( )m n m n m n p d                  (4) 

where ( )  stands for the expectation operator; and ( )p 
 
denotes the PDF. 140 

The basis functions ( ) 
 
are multivariate polynomials constructed by tensor product 141 

of their univariate counterparts 142 

1
( ) ( )

i

d

ii   


  (5) 

where the subscript 
i  refers to the i -th degree of the  -th univariate polynomial basis; 143 

and ( )
i i   is univariate polynomials orthogonal with respect to the probability 144 

distribution ( )ip  .  145 

In practice, the aPCE representation of the model response is truncated such that the 146 

total degree does not exceed the finite degree r , expressed as  147 

,

,
1( ) ( ),   { :|| || }p d

p d d r 
  


    x


 . (6) 

This leads to the total number of terms in the truncated aPCE equal to  148 

( )!
1

! !

d r d r
K

d d r

  
   

 
, (7) 

where K represents the number of polynomials. 149 

The methods for computation of the aPCE coefficients can be either intrusive or 150 

non-intrusive [47]. Since we often encounter physical models that are highly complicated 151 
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and only available as a black-box, the non-intrusive schemes are of our interest. Two 152 

non-intrusive solutions are the least-square estimator and the non-intrusive spectral 153 

projection (NISP) route. The latter may become impractical when the input dimensionality 154 

is high and the model is expensive. In such situation, the regression method is more 155 

effective. Let  
1

N

i i
  be N  samples of random variables, known as the experimental 156 

design, which is usually implemented by the space-filling sampling schemes, such as Latin 157 

hypercube sampling (LHS) and quasi-random Sobol sequence. Then the original model 158 

solver is executed at each sample point to collect the corresponding target responses 159 

 
1

( )
N

i i i
y


  . The determination of the aPCE coefficients involves solving the 160 

minimization problem of the 
2
-norm of the residual 161 

1
,

2

1

ˆ arg min ( )
K

p d

N

i i

i

y


  




 


 

 
  

 
   . (8) 

Denoting 162 

0 1 1 1 1 1

0 2 1 2 2 2

0 1

( ) ( ) ( )

( ) ( ) ( )
, =

( ) ( ) ( )

K

K

N N K N N

y

y

y

   
   
   
   
   
   

H y

  

  

  

  

  

  

, (9) 

the well-known least square solution of Eq. (8) is 163 

1ˆ ( )

 H H H y . (10) 

2.2. Construction of univariate orthogonal polynomials 164 

The aPCE is a sum of a finite set of multivariate polynomials ( )   that are 165 

formulated by the univariate orthogonal polynomials, and the univariate orthogonal 166 

polynomials
 

( )
i i   depend on the distribution type of the i -th random variable i . 167 

Therefore, the fundamental of formulating aPCE is to construct the arbitrary univariate 168 

orthogonal polynomials, which satisfy the well-known three-term recurrence relation [48] 169 
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1 1

1 0

( ) ( ) ( ) , 0,1,2,

            ( ) 0,  ( ) 1

i i i i ia b i     

   

 



    

 
. (11) 

with the recurrence coefficients determined by 170 

,
0,1,2,

,

i i
i

i i

a i
 

 

 
  

 
. (12) 

0 0

1 1

, 0,

,
1,2, .

,

i i i

i i

i

b
i

 

 

  

  


  
 

 
 

(13) 

uniquely determined by probability distribution ( )p  .  171 

2.3. Calculation of recurrence coefficients 172 

The key to formulating univariate orthogonal polynomials is to calculate the recurrence 173 

coefficients. Although several standard probability distributions (e.g., normal, uniform, and 174 

Gamma) have analytical recurrence coefficients [44, 49], there exist many commonly-used 175 

probability distributions (e.g., Lévy, Weibull, and Chi-square) without exact recurrence 176 

coefficients. Therefore, there is a strong demand for finding the effective technique to 177 

compute the recurrence coefficients 1

0{ , }n

i i ia b 

  associated with arbitrary probability 178 

distributions.  179 

The Moment-based method and the Stieltjes procedure are two classical approaches for 180 

calculation of the recurrence coefficients. The moment-based method uses the fact that the 181 

recurrence coefficients are explicitly expressed as the ratio of the Hankel determinants 182 

consisting of moments of probability distribution ( )p  . More details about the 183 

moment-based method can be found in [48]. Unfortunately, the moment-based method is 184 

numerically problematic since it gives rise to the issue of the severe ill-conditioning. As a 185 

result, the moment-based method is not recommended as a method for calculating the 186 

recurrence coefficients [48]. The Stieltjes procedure is a method that evaluates the 187 
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recurrence coefficients in an iterative fashion, forming the sequence 188 

0 0 0 1 1 1 2 1 1{ } { , } { } { , } { } { , }.n n na b a b a b            (14) 

The Stieltjes procedure, however, also tends to be unstable, since the solution of the 189 

resultant set of algebraic equations for the recurrence coefficients in terms of moments of 190 

probability distribution ( )p   can be severely ill-conditioned [48]. Apart from the demerit 191 

of the numerical instability, for some measures ( )p  , the classical two methods fail to 192 

compute the high-order Gaussian quadrature rules with enough precision [50]. 193 

The discretization method is widely recognized as a general-purpose and 194 

unconditionally stable scheme that is effective for calculating the recurrence coefficients 195 

associated with arbitrary probability distribution and the numerical comparison of these two 196 

procedures (Stieltjes and moment-based ones) and the discretization method is detailed in 197 

[48, 50]. The fundamental idea underlying the discretization approach is that the given 198 

continuous measure can be approximated by a discrete n -point measure with the form of 199 

 
1

( )
n

n i i

i

     


  . (15) 

With the nodes 
i  and weights 

i , we form the vector   and diagonal matrix D  200 

defined by 201 

1 1

22 ,

n
n

 





   
   
       
   
    

D  (16) 

Then, it exists an orthogonal matrix 
1Q  such that [48] 202 

0

1 1 0 1

11 11 b

b

      
       
         

e

Q Q e JD

 

 
 (17) 
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where 
1[1,0, ,0] n e  and 

1J  is the Jacobi matrix associated with ( )p  , expressed by 203 

0 1

1 1 2

1 2

2 1

1 1

.

n n

n n

a b

b a b

b

a b

b a

 

 

 
 
 
 

  
 
 
 
 

J  (18) 

Eq. (17) is the expression of an orthogonal similarity transformation, written in a 204 

general form 205 

Q AQ J  (19) 

with  206 

0

1 0 1

11 1
=

b

b

    
     
       

e
Q A J

Q e JD
， ，

 

 
 (20) 

where J  is the “extended” Jacobi matrix. The orthogonal matrix Q  and the “extended” 207 

Jacobi matrix J  are uniquely determined by A  and the first column of Q  [51]. 208 

Apparently, the weights 
i  and abscissae 

i  with respect to the discrete measure 209 

( )n   are the basis of the determination of the recurrence coefficients. The core of 210 

calculating 
1

{ , }i i

n

i
 


 is to select a sequence of measures that are able to converge to the 211 

measure ( )p d  . Herein, we adopt the fast Fejér Type-2 integration scheme, which can be 212 

efficiently implemented by the inverse fast Fourier transform. Fejér Type-2 rules are very 213 

similar to the well-known Clenshaw-Curtis ones with the support [ 1,1] , but Fejér Type-2 214 

rules are open-ended, which makes them more suitable for measures with non-compact 215 

support. To use the fast Fejér Type-2 integration for ( )   with an arbitrary domain [l, u] (l 216 

and u may be either finite or infinite), a suitable transformation scheme can be adopted to 217 

scale [l, u] into the interval [-1, 1], expressed as 218 
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 
1

1
( ) ( ) ( )

u

l
dx d       


   (21) 

where the transformation function ( )   is given by [48] 219 

2

if
2 2

1
if

1
( )

1
if

1

if
1

u l u l
l u

u l u

l l u

l u






 









 
     


      

 
 

      
 

     


,
 (22) 

and its derivative is given by 220 

 

2

2

2

2
2

if
2

2
if

(1 )

( ) 2
if

(1 )

1
if

1

u l
l u

l u

l u

l u


 








    


     
 


  
    


 

    
 


.
 (23) 

Subsequently, the abscissae and weights in Eq. (15) are obtained from 221 

( )

( ) ( )

i i

i i i i

z

q z z

 

  




 (24) 

where { , }i iz q  are the abscissae and weights of the Fejér Type-2 rules. The expressions of 222 

the nodes and the weights of the Fejér Type-2 rules are given in Appendix A. 223 

Once we obtain the abscissae and weights 
1

{ , }i i

n

i
 


, the recurrence coefficients can 224 

be obtained by the orthogonal similarity transformation. Since the traditional Lanczos 225 

algorithm is numerically unstable, Givens rotation technique developed by Gragg and 226 

Harrod [52] is utilized to perform the orthogonal similarity transformation. The 227 

implementation details about conducting the orthogonal similarity transformation ( A J ) 228 

are given in their pseudocode RKPW algorithm. Finally, the recurrence coefficients included 229 
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in the “extended” Jacobi matrix J  are obtained. To ensure the high accuracy in the 230 

recurrence coefficients, they are computed iteratively using the following stopping criterion 231 

[53] 232 

1| | , 1,2, ,s s s

i i ib b b i n    , (25) 

where s  is the iteration step; and   is the defined error tolerance (say 10
-13

). A flowchart 233 

outlining the computational procedures of the recurrence coefficients is given in Fig. 1.  234 

 235 

Figure 1. Flowchart of calculation of recurrence coefficients. 236 
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The model validation process should be carried out to check the predictive capability of 238 

the constructed aPCE before being applied for subsequent analyses. In this study, the 239 

well-known leave-one-out cross-validation (LOOCV) is adopted for model diagnosis. 240 

LOOCV takes a single data point from the entire data set as the test data, and then the 241 

remaining data points are used as training data for building the aPCE. This LOOCV 242 

procedure is repeated such that each of data points is used once for validation, and the 243 

validation error-specific measure criterion is utilized for model validation. 244 

The error at i-th data point 
i  between the model evaluation and the aPCE prediction 245 

is 246 

ˆ( ) ( )
ii i i     , (26) 

where ( )i  is the model evaluation; and ˆ ( )
i i   is the aPCE prediction using the 247 

entire data set excluding the data point 
i . The corresponding generalization leave-one-out 248 

(LOO) error is then estimated by the mean predicted residual sum of squares [54] 249 

2

LOO

1

1 N

i

i

Err
N 

  . (27) 

The standardized LOO error is given by 250 

LOO
LOO

( )

Err

y
  , (28) 

and the measure criterion associated with the LOOCV is defined as 251 

2

LOO1Q   . (29) 

The larger the value of Q
2
, the more accurate the constructed aPCE. Here, a threshold of 252 

0.95 is used to determine whether the predictive quality of the aPCE is satisfactory or not. 253 

3. Uncertainty quantification and global sensitivity analysis by aPCE 254 

3.1. Uncertainty quantification 255 
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Uncertainty quantification (UQ) is the process of estimating metrics of uncertainty in 256 

quantities of interest that derives from uncertainty in model inputs. UQ is usually done in a 257 

probabilistic framework, in which the input uncertainties are parameterized by random 258 

variables following specific probability distribution functions (PDFs), and the resultant 259 

response uncertainties are characterized with probabilistic characteristics, such as statistical 260 

moments, confidence intervals, and PDF. Among these probabilistic features, PDF is the 261 

most valuable quantity since it contains the most substantial information for characterizing 262 

the response uncertainty. Once we obtain the PDFs of responses, other probabilistic 263 

characteristics can be readily calculated. Traditionally, the PDF is estimated from a large 264 

number of model evaluations by MCS procedure; however, this leads to the issue of high 265 

computational cost. In this section, we propose the aPCE-based approach for efficiently 266 

estimating the PDFs of responses. Specifically, the aPCE is proposed for analytical 267 

calculation of fundamental moments of responses, and then maximum entropy principle is 268 

utilized to infer their PDFs in light of the obtained moments. 269 

3.1.1. Analytical calculation of fundamental moments 270 

The aPCE is used to map the input-output relationship of the target model ( )y   . 271 

Therefore, according to probability theory, the moments of the aPCE-derived responses can 272 

be written as 273 

 ( ) ( )( ) ( )d

k k

y

k

p d p d  


    
      , (30) 

where k

y  denotes the k -th moment. 274 

By applying the orthogonal identities of multivariate polynomials of aPCE, the 275 

analytical expressions of the first- and second-order moments can be attained as follows 276 
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1

0y   (31) 

2 2

0

K

y ii
 


 . (32) 

Unlike the first two order moments, the high-order ones do not have compact expressions 277 

since the higher powers of aPCE become complex. Since aPCE is a polynomial function 278 

with the random variables of all the terms being separable, its powers are also polynomials 279 

with separable random variables. Due to this fact, the higher-order moments of model 280 

responses can be finally expressed in terms of the moments of univariate distributions 281 

associated with input random variables, written as 282 

1 2
( , , , )

d

k

y kf        (33) 

where ( )kf   is the simplest forms of the k -th power of the aPCE; and 
i

  is the moment 283 

of the i -th input random variable. 284 

Therefore, the use of the aPCE enables the analytical calculations of the fundamental 285 

moments of the model outputs, i.e., the moments of the model outputs are finally converted 286 

to simply post-processing the aPCE coefficients and moments of input random variables. In 287 

this regard, the analytical expressions of moments of input random variables will lead to 288 

analytical calculation of moments of the model outputs. Fortunately, most widely-used 289 

standard probability distributions have analytical expressions of the moments, which are 290 

provided in Appendix B. The resultant moments of the responses will serve as the basis for 291 

inferring their PDFs by using the maximum entropy principle. 292 

3.1.2. Estimation of probability distribution by the maximum entropy principle 293 

The idea behind the maximum entropy principle (MEP) [55] is that the most unbiased 294 

probability distribution of a random variable is the one that maximizes the Shannon entropy 295 

subjected to constraints supplied by the available information, e.g., a random variable’s 296 
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statistical moments. The MEP provides a particularly useful tool for PDF characterization 297 

since generally the statistical moments of a random variable can be achieved more easily 298 

than its probability distribution. Let model output y  be a random variable, and the entropy 299 

of its PDF ( )p y  can be expressed as 300 

- ( )ln ( )H p y p y dy   . (34) 

According to the MEP, the best probability distribution is the one with maximal 301 

entropy, which comes up with an optimization problem below 302 

 

maximize   

s.t.   ,   0,1, ,

- ( ) ln ( )

( ) ( ) ( ) j

j j j m

H p y p y dy

y y p y dy  

 

  
 (35) 

where ( )j y  denotes the basis function associated with the moment constraints and 303 

0 0 1( ) 1,y   . In this study, the geometrical moments of the model output y  are taken 304 

as the constraints of the optimization problem, so the constraint conditions become 305 

 ,   0,1, ,( ) ( )j j j

y j my y p y dy     . (36) 

The above optimization problem defined in Eq. (35) can be solved by introducing 306 

Lagrangian function, expressed as 307 

 
0

( , ) ( )( ) - ( ) ln ( )
m

j j

j y

j

L y dyp y p y p y dy y p 


     (37) 

where 
1, , m     are the Lagrangian multipliers. Then the optimization problem is 308 

reduced to solving the maximum of the Lagrangian function under the following constraints 309 

 0

( , )
1 ln ( ) 0

( )

( ) m j

jj

L
p y y dy

p y

p y





    





. (38) 

Finally, the solution of the optimization problem defined with the spirit of MEP leads to a 310 

closed-form expression of PDF, given as 311 

 0
exp 1( )

m j

jj
yp y 


   . (39) 
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The Lagrangian multipliers   can be determined by using the constraint conditions 312 

given in Eq. (36). It becomes the solution of multiple nonlinear equations below 313 

 0
exp 1 ,   0,1, ,( )

mj j j

m j yj
y j my dy 


      . (40) 

In general, these equations can be effectively solved by the standard Newton-Raphson 314 

method that is an iterative method for finding the roots of a differentiable function. 315 

Specifically, it starts with expanding objective function in Taylor series around an initial 316 

guess of the unknown parameters dropping terms of order higher than linear, and then 317 

solves the resulting linear system iteratively. The first-order Taylor series expansion of the 318 

objective function ( )   around an initial guess 
0  is  319 

0

0 0

( )
( ) ( )+( ) m

m m




 




 

 


   


. (41) 

Combining Eqs. (40) and (41), one has 320 

=G  (42) 

with 321 

0

0

0

0 0 0

0 0 0

0 1

1 1 1

0 1

0 1

)
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= ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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m

 

  
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



   
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 
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 
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  

  



G

 

(43) 

where  0
exp 1

( )
( )

mp p q j

pq j p qj
q

y yy dy





      







G .  322 

The linear equation Eq. (42) is solved for the perturbation   to determine the new 323 

initial guess 0 +=   . The iteration process will continue until the perturbation   324 
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becomes substantially smaller, and the final solution of   is obtained. Eventually, the 325 

closed-form expression of PDF can be readily attained based on Eq. (39). 326 

3.2. Variance-based global sensitivity analysis 327 

Variance-based GSA is to quantify the contributions of individual parameters or 328 

parameter groups to the variance of the model output of interest. The fundamental 329 

philosophy of variance-based GSA is the functional analysis of variance (ANOVA) that the 330 

total variance of the model output can be decomposed into a collection of partial variances 331 

attributed to the main effects of individual inputs as well as their interaction effects. The 332 

decomposition of the total variance of model output ( )y    into partial variances has 333 

the following form [28] 334 

, , , 1,2, ,

1 1 1

i i j i j k d

i d i j d i j k d

V V V V V 

        

        (44) 

where 335 

, ,

, , , , , , ,

( )

( ( | ))

( ( | ))

( ( | ))

i i

i j i j i j

i j k i j k i j i k j k i j k

V y

V y

V y V V

V y V V V V V V







  

      





 (45) 

in which 
i  is single input; ,i j is input set of 

i  and j ; , ,i j k  is input set of 
i , j  336 

and k ; and ( )  and ( )  denote the expectation and variance operators, respectively.  337 

Normalizing the partial variances by the total variance V  leads to the fractional 338 

contribution to the variance of each input, which are named as the variance-based sensitivity 339 

indices 340 

[0,1]u
u

V
S

V
   (46) 

where subscript {1,2, ,d},u u  . Apparently, all sensitivity indices sum up to one 341 
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, , , 1,2, ,

1 1 1

1i i j i j k d

i d i j d i j k d

S S S S 

        

      . (47) 

The first-order sensitivity index 
iS  assesses the amount of partial variance accounted for 342 

by 
ix  alone; the second-order sensitivity index 

,i jS  measures the amount of partial 343 

variance due to the interaction effect of 
ix  and 

jx ; and the higher order sensitivity index 344 

, , ,i j pS 
 quantifies the joint influences from larger sets of inputs. In this sense, the total 345 

sensitivity index, which evaluates the total effect of single input, is defined as 346 

:

Ti

v i

v

v

S S


 , (48) 

where v  are all the subsets of indices including index i. For example, in the case of a 347 

model with 3 inputs, we have 
1 1 1,2 1,3 1,2,3TS S S S S    . 348 

When the system under consideration has a large number of inputs, the computation of 349 

total sensitivity index 
TiS  using Eq. (48) is daunting. In this situation, one can resort to a 350 

more simplified expression in the form 351 

1 i
Ti

V
S

V

   (49) 

where ( ( | ))i iV y   , in which 
i  indicates the set of all inputs except 

i . 352 

Variance-based GSA is a powerful and robust means for assessment of the relative 353 

importance of inputs since it accounts for the effects of the entire parameter variation and 354 

interaction effects on the model output. However, the main difficulty encountered when 355 

performing variance-based GSA of the expensive-to-run physical model is a huge number 356 

of model executions required, which excludes the traditional MCS estimator. To address the 357 

problem of the high computational cost, the computationally cheap surrogate models are 358 

widely adopted in GSA community. Owing to the orthogonal nature of the basis functions 359 

of aPCE, the sensitivity indices can be calculated analytically [47, 56]. To be specific, the 360 
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variance-based sensitivity indices can be readily attained by post-processing aPCE 361 

coefficients, such that 362 

 

2

2

1

,
ˆ

,

i
k k kk

i K

k k kk

S
  

  









 (50) 

2

2

1

,
ˆ

,

Ti
k k kk

Ti K

k k kk

S
  

  









 (51) 

where index sets ,{ : 0, 0, }i i

p dk k k i     ; and ,{ : 0}Ti i

p dk k   . 363 

4. Assessment of aPCE-based method using MCS 364 

A numerical truss bridge is used as the test-bed to validate the feasibility of the 365 

proposed aPCE-based UQ and variance-based GSA method in structural dynamics. As 366 

shown in Fig. 2, this truss bridge is 72 m long, 10 m wide, and 16 m high. The truss 367 

components, including main chords, struts between top and bottom chords, horizontal and 368 

lateral bracings connecting the main chords are all made of steel beams with I-shaped cross 369 

section, while the bridge deck, which is supported on the two main girders and five cross 370 

girders at an interval of 12 m, is made of concrete. A total of five uncertain parameters are 371 

assumed for this numerical truss bridge. The specifications of parameter uncertainties are 372 

given in Table 1, in which the means are their nominal values and the coefficient of 373 

variation (COV) is the ratio of the standard deviation to the mean. The selection of uncertain 374 

parameters’ probability distributions should reflect the judgment of how plausible it is that 375 

the parameters have certain values. Although the specifications of uncertain parameters 376 

associated with this truss bridge are somewhat subjective, it does not violate the purpose of 377 

the assessment of the aPCE-based method. 378 
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×

×

 379 

Figure 2. Configuration of truss bridge (unit: m) 380 

 381 

Table 1. List of uncertain parameters associated with the truss bridge. 382 

Parameter Distribution Mean COV 

Elastic moduli of steel truss frame (
sE ) Lognormal 2.1e11 (Pa) 0.15 

Density of steel truss frame (
s ) Weibull 7850 (kg/m

3
) 0.10 

Elastic moduli of concrete deck (
cE ) Lognormal 3.5e10 (Pa) 0.15 

Density of concrete deck (
c ) Weibull 2500 (kg/m

3
) 0.10 

Thickness of concrete deck (T ) Uniform 0.3 (m) 0.10 

 383 

The finite element (FE) model and the first four vibration modes of the truss bridge are 384 

shown in Fig. 3. The FE model is built using general-purpose mathematical software 385 

MATLAB. The natural frequencies and mode shapes are extracted through eigenvalue 386 

analysis using eig function in MATLAB. Four natural frequencies of the truss bridge 387 

corresponding to the mode shapes in Fig. 3 are under consideration. Second-order PCE is 388 

usually sufficient to maintain good accuracy for engineering applications [57, 58]. Thus, the 389 

model order of the aPCE is set to 2, that is, r=2. For computer experiment, the initial 390 

number of training data points is commonly set to 10d (d=5 is the number of model inputs) 391 

based on the well-known “n=10d” rule of thumb [59, 60]. Herein, a larger the training data 392 

size of 20d is adopted to construct reliable aPCE. Thus, a total of 100 evaluations of FE 393 

model are performed for preparing the training data. In summary, the mode order (r) is set 394 
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to 2 and the training data size (n) is set to 100 for construction of the aPCE. In the following, 395 

the LOOCV procedure is performed for model validation. The measure criterion Q
2
’s of 396 

four aPCEs are 0.9999, 0.9989, 0.9988, and 0.9999, which are larger than the threshold of 397 

0.95. It is verified that the built aPCEs own good prediction performance. It is worth 398 

mentioning that when the target systems involve great complexity and strong nonlinearity 399 

(e.g., with oscillatory response), it should increase the model order (r) of the aPCE to ensure 400 

its modeling flexibility and prediction power. However, the number of the aPCE terms will 401 

grow exponentially as model order increases (the well-known as “curse of dimensionality”), 402 

which requires a large number of model evaluations (i.e., the computational cost) for 403 

determination of aPCE. Fortunately, the sparse grid and/or adaptive schemes can provide an 404 

effective remedy to alleviate the “curse of dimensionality” [54, 61]. 405 

Subsequently, the constructed aPCEs are adopted to perform UQ and variance-based 406 

GSA of the target natural frequencies in a combined manner. The feasibility of the 407 

aPCE-based approach is verified by the brute-force MCS. Note that the truss bridge is used 408 

here for methodology assessment mainly because that its FE model is quite computationally 409 

cheap, which makes the direct parameter-sampled MCS affordable and feasible. A large 410 

sample size (i.e., 100,000) for MCS is adopted to ensure the convergence of the UQ and 411 

variance-based GSA results. For performing MCS-based implementation of GSA, the least 412 

total number is ( 2)N d   [62], where N  is the sample size and d  is the number of 413 

inputs, so the resultant total number of model evaluation is 700,000. 414 

 415 
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(a) FE model 

 

(b) First-order vibration mode 

 

(d) Second-order vibration mode 

 

(d) Third-order vibration mode 

 

(e) Fourth-order vibration mode 

 416 

Figure 3. FE model and vibration modes of truss bridge with nominal parameters. 417 

Based on the theory described in Section 3.1, the moments and PDFs of the target 418 

natural frequencies can be estimated using the aPCE-based method. Specially, the aPCE 419 

surrogate model is used to map the relationship between the uncertain parameters and the 420 

natural frequencies, and one aPCE model is constructed for each natural frequency 421 

separately. Once the aPCE models are achieved, the moments of natural frequencies can be 422 

analytically calculated by simply post-processing the aPCE coefficients and moments of 423 

uncertain parameters. As reported in [63], when the first four moments are taken as the prior 424 

information about the unknown probability distribution, the MEP technique is able to well 425 

characterize the PDF of a random variable. In this regard, only the first four moments are 426 

calculated in this paper. The moments of natural frequencies obtained by the aPCE-based 427 

method are shown in Fig. 4, and the MEP-derived PDFs estimated from the obtained 428 
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moments are shown in Fig. 5. For comparison purpose, the moments and PDFs of natural 429 

frequencies calculated by the crude MCS estimator are demonstrated together. As seen from 430 

Figs. 4 and 5, the aPCE-derived moments and PDFs have a perfect match with the 431 

brute-force MCS-derived counterparts, which verifies the high capability of the proposed 432 

aPCE-based method for UQ in structural dynamics. 433 

 

(a) First natural frequency 

 

(b) Second natural frequency 

 

(c) Third natural frequency 

 

(d) Fourth natural frequency 

Figure 4. Estimation of statistical characteristics by MCS and aPCE 434 
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(a) First natural frequency 

 

(b) Second natural frequency 

 

(c) Third natural frequency 

 

(d) Fourth natural frequency 

Figure 5. Estimation of probability density by MCS and aPCE-MEP 435 

Having validated the effectiveness of the aPCE-based method in performing UQ, the 436 

next agendum is to evaluate its performance for variance-based GSA. Similar to the 437 

calculations of moments, the variance-based sensitivity indices can also be analytically 438 

computed by simply post-processing the aPCE coefficients, as expressed by Eqs. (50) and 439 

(51). Likewise, the direct MCS is employed to verify the accuracy of the aPCE-based 440 

approach in conducting GSA. The comparison of the aPCE- and MCS-derived sensitivity 441 

indices is provided in Fig. 6, from which one can see that the aPCE-derived sensitivity 442 

indices are in close agreement with the MCS-derived counterparts. Therefore, it can be 443 

concluded that the proposed aPCE-based method is also reliable for variance-based GSA.  444 
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In addition to investigation on the accuracy of the aPCE method for UQ and 445 

variance-based GSA, its computational efficiency is also of our concern. The 446 

implementations of UQ and variance-based GSA are conducted on a Dell PowerEdge T420 447 

machine with Dual Intel Xeon E5-2403V2 processor and 16 GB memory. The MCS 448 

procedure takes around 8 hours and 45 minutes, while the computational time of the 449 

aPCE-based estimator is less than 1 minute. In terms of the computational cost, the aPCE 450 

method owns an overwhelming superiority over the brute-force MCS. For this simple 451 

numerical truss bridge, its FE model is extremely computationally-efficient such that a 452 

single run takes about 0.045 sec. Consequently, the computational time of the brute-force 453 

MCS is affordable. In practice, the large-scale, complex structures are usually under 454 

investigation, and as a result, the direct MCS can become extremely expensive and 455 

unaffordable. Assume that a single FE model evaluation takes 1 minute, and then the 456 

resultant computational time of the brute-force MCS with 700,000 samples will be around 457 

486 days. In summary, it can be concluded from the comparison results that the aPCE-based 458 

approach is highly accurate and computationally efficient for UQ and variance-based GSA 459 

in structural dynamics. 460 
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(a) First natural frequency 

 

(b) Second natural frequency 

 

(c) Third natural frequency 

 

(d) Fourth natural frequency 

Figure 6. Estimation of sensitivity indices by MCS and aPCE 461 

5. Application: A long-span steel arch bridge  462 
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5.1. Bridge description 463 

The Second Hengqin Bridge under investigation is a half-through steel truss arch 464 

bridge, located in the city of Zhuhai of Guangdong province of China. This steel truss arch 465 

bridge is 600 m long, with a main span of 400 m and two identical side spans of 100 m. The 466 

bridge with a total width of 37.2 m is designed to have six traffic lanes. This truss arch 467 

bridge with 90-m-high arch ribs becomes the China’s longest and widest steel truss arch 468 

highway bridge. Fig. 7 shows the configuration of the long-span truss arch bridge. 469 

The superstructure of this truss arch bridge is comprised of two main arch ribs, lateral 470 

bracing system, suspenders, and floor system. The main arch ribs have a center-to-center 471 

distance of 36 m; and the panel height of the arch ribs ranges from 11 m at the pier to 7 m at 472 

the midpoint of the bridge and their panel lengths are also distinct with three different 473 

scenarios, specifically 12 m mainly at central span, 16 m mainly at side spans, and 14 m in 474 

between. Both top and bottom chords are with box-shaped cross sections. The size of top 475 

chords is changing from 1.2 m 1.2 m at the arch foot to 1.2 m  1.8 m at the arch dome, 476 

with thickness between 20 mm and 50 mm, and the size of bottom chords are varying from 477 

1.2 m 1.2 m to 1.8 m 2.5 m, corresponding to thicknesses of 28 mm and 56 mm, 478 

respectively. The deck system consists of main girders, stringers, cross girders, and concrete 479 

slab. The arch ribs and the deck are vertically connected through a total of 54 suspenders, 480 

which are made of a number of high-strength parallel wire strands. 481 
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Elevation

Plan of top arch rib

Plan of bottom arch rib

Plan of deck
 482 

Figure 7. Configuration of Second Hengqin Bridge (unit: m). 483 

5.2. Finite element modeling 484 

The three-dimensional FE model of the Second Hengqin Bridge is built using ANSYS 485 

package. The arch ribs, main girders, stringers, cross girders, and lateral bracing are 486 

modeled based on their actual cross-sectional properties by using 3D beam elements 487 

(BEAM188), which is good at simulating the beam with the variable cross-section. The 3D 488 

tension-only truss elements (LINK10) are used to model all suspenders and pre-stressed tie 489 

bars. The bridge slab is modeled using the shell elements (SHELL63). In summary, the 490 

constructed FE model has a total of 2352 nodes and 2039 elements, including 1615 beam 491 

elements, 368 shell elements, and 56 link elements. The resultant FE model and the first 492 

vertical and torsional vibration modes of the bridge are demonstrated in Fig. 8. 493 
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(a) FE model 

 
(b) First vertical mode 

 

(c) First torsional mode 

Figure 8. FE model and vibration modes of Second Hengqin Bridge. 494 

5.3. UQ and variance-based GSA of dynamic characteristics 495 

Uncertainty is ubiquitous in a variety of complex systems. For this long-span truss arch 496 

bridge, a total of 11 parameters of five structural components, including girders, arch ribs, 497 

lateral bracing, suspenders, and bridge deck, are selected as uncertain variables. The 498 

statistical characteristics of these random variables are given in Table 2. The choice of the 499 

probability distributions for the parameters is based on the references given in the last 500 



 32 

column, and the chosen probability distributions are able to guarantee the positive 501 

definiteness of structural properties. 502 

Table 2. Characteristics of uncertain parameters of Second Hengqin Bridge. 503 

Parameter Distribution Mean COV Source 

Elastic modulus of girder ( gE ) Lognormal 2.10e11 (Pa) 0.10 [7, 64] 

Density of girder ( gD ) Weibull 7850 (kg/m
3
) 0.10 [25, 49] 

Elastic modulus of arch rib (
rE ) Lognormal 2.10e11 (Pa) 0.10 [7, 64] 

Density of arch rib (
rD ) Weibull 7850 (kg/m

3
) 0.10 [25, 49] 

Elastic modulus of lateral bracing (
bE ) Lognormal 2.10e11 (Pa) 0.10 [7, 64] 

Density of lateral bracing (
bD ) Weibull 7850 (kg/m

3
) 0.10 [25, 49] 

Elastic modulus of suspender (
sE ) Lognormal 2.05e11 (Pa) 0.10 [7, 64] 

Density of suspender (
sD ) Weibull 8680 (kg/m

3
) 0.10 [25, 49] 

Elastic modulus of deck (
dE ) Lognormal 3.60e10 (Pa) 0.10 [7, 64] 

Density of bridge deck (
dD ) Weibull 2600 (kg/m

3
) 0.10 [25, 49] 

Tickness of bridge (
dT ) Uniform 0.40 (m) 0.10 [25, 65] 

Our target dynamic characteristics are the first vertical and torsional natural 504 

frequencies corresponding to the mode shapes shown in Fig. 8. To construct the aPCE for 505 

each natural frequency, we need a small set of training data generated by performing FE 506 

analysis of the original model. Herein, Sobol sequence sampling method, which owns an 507 

attractive space-filling feature, is used to generate input samples in terms of parameter 508 

probability distributions; and then FE analysis is conducted repeatedly to collect the 509 

dynamic characteristics at each sample point. Likewise, the training data size (n) is set to 510 

20d (220) and the mode order (r) is set to 2. The Q
2
’s of two aPCEs are 0.9998 and 0.9633, 511 

larger than the threshold of 0.95, which indicates that the constructed aPCEs are reliable. 512 

Once the aPCE surrogate modes are built, the moments of natural frequencies can be 513 

analytically calculated. The first four moments of natural frequencies are computed since 514 

they are enough for the MEP method for accurate characterization of the probability 515 
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distribution of a random variable [63]. The results of the aPCE-derived moments of the 516 

natural frequencies are exhibited in Fig. 9. The probability distributions of the natural 517 

frequencies are then estimated by the MEP approach based on the obtained moments, and 518 

the results are shown in Fig. 10. The attained probability distributions can be used to fully 519 

describe the uncertainty and variability existing in the natural frequencies arising from the 520 

parameter uncertainty. 521 

 
(a) First vertical natural frequency 

 
(b) First torsional natural frequency 

Figure 9. Statistical characteristics of natural frequencies of Second Hengqin Bridge. 522 

 

(a) First vertical natural frequency 

 

(b) First torsional natural frequency 

Figure 10. Probability distributions of natural frequencies of Second Hengqin Bridge. 523 

Following the UQ process, we move on to the investigation on quantification of the 524 

contributions of individual parameters to the total uncertainty in natural frequencies, that is, 525 
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performing variance-based GSA. The variance-based GSA results associated with the 526 

natural frequencies are given in Fig. 11, from which the observations are reported as 527 

follows: 528 

 For the first vertical natural frequency, the effects of the parameters 
rE , 

dD , and 
dT  529 

are most influential, which means that their uncertainties largely dominate the variation 530 

of natural frequency; the parameters gE , gD , 
rD , 

sE , and 
dE  are slightly sensitive; 531 

the remaining parameters are almost insensitive. It is interesting to note that the 532 

interaction effects among these parameters on this natural frequency are slight since the 533 

discrepancy between their first-order sensitivity indices (
iS ) and total ones (

TiS ) is 534 

almost identical. 535 

 For the first torsional natural frequency, the parameters 
rE  and 

dD  present the most 536 

significant influences; the parameters gE , gD , 
rD , and 

dT  are second most influential, 537 

followed by the parameters 
bE  and 

sE ; the rest are non-influential. Unlike the 538 

previous the first vertical natural frequencies, the mutual effects among parameters are 539 

pronounced, which is confirmed by the fact that the total sensitivity indices are larger 540 

than the first-order ones. The phenomenon that the interaction affections do account for 541 

the certain amount of contributions to the variation of this natural frequency may be 542 

illustrated by the corresponding torsional vibration mode shown in Fig. 8, in which one 543 

will find that the vibrations of more structural components are excited. 544 

 Combined with the variance-based GSA results and the vibration modes, it may be 545 

concluded that if the structural component is largely excited by certain vibration mode, 546 

its relevant parameters will be more influential. Specifically, for both vertical and 547 

torsional modes, the arch ribs and bridge deck are significantly excited, so their 548 
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parameters 
rE , 

dD , and 
dT  are influential. The reason why more structural 549 

parameters become sensitive for the torsional natural frequency is that the vibrations of 550 

more structural components are excited by this torsional vibration mode. 551 

 
(a) First vertical natural frequency 

 
(b) First torsional natural frequency 

Figure 11. Sensitivity indices of uncertain parameters of Second Hengqin Bridge. 552 

 553 

6. Conclusions 554 

An approach based on the aPCE surrogate model is presented for analytical, unified 555 

implementation of UQ and variance-based GSA in structural dynamics of complex 556 

structures. The aPCE is employed as a fast-to-run surrogate model of the expensive FE 557 

model; and then within the aPCE framework, the UQ and variance-based GSA of dynamic 558 

characteristics are achieved in an analytical manner. To be specific, analytical 559 

implementation of UQ consists of two stages: the aPCE surrogate model is used for 560 

analytical calculation of moments of dynamic characteristics; and then taking the obtained 561 

moments as the constraints, the MEP technique is put forth to derive the closed-form 562 

expressions of the probability distributions of dynamic characteristics. For variance-based 563 

GSA, the analytical computation of the variance-based sensitivity indices is readily 564 

achieved by simply post-processing the aPCE coefficients. The aPCE-based approach is 565 
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generally suitable for analytical implementation of the UQ and variance-based GSA of 566 

dynamic characteristics of complex systems whose parameters can follow arbitrary 567 

probability distributions. The effectiveness of the aPCE-based UQ and variance-based GSA 568 

approach is verified by the crude parameter-sampled MCS estimator. 569 

A long-span steel truss arch bridge is provided to illustrate the application of the 570 

aPCE-based approach to UQ and variance-based GSA in structural dynamics. Based on the 571 

aPCE-derived UQ results, we can have a clear picture of how the structural dynamic 572 

characteristics are distributed under the parameter uncertainty. Variance-based GSA, which 573 

naturally follows UQ as it evaluates how variations of dynamic characteristics can be 574 

apportioned quantitatively to different uncertain structural parameters, is performed 575 

subsequently. The variance-based GSA results enable us to have a good understanding of 576 

how uncertain parameters influence the dynamic characteristics as well as their quantitative 577 

contributions to the resultant variations of the dynamic characteristics. In light of the 578 

variance-based GSA results, some interesting findings are obtained: (1) the sensitivity of 579 

different natural frequencies to structural parameters is different, for example, the parameter 580 

rD  has considerable influence on the torsional natural frequency but not on the vertical 581 

natural frequency; (2) certain parameters always show great sensitivity to both vertical and 582 

torsional natural frequencies, such as the parameters rE , 
dD , and 

dT ; and (3) the 583 

interaction effects among parameters on the different natural frequencies are various, 584 

specifically obvious for the torsional natural frequency but not for the vertical one, which 585 

may be illustrated by their vibration modes. The present aPCE-based UQ and 586 

variance-based GSA approach is very applicable for the large-scale, complex structures with 587 

arbitrary probability distributed random parameters since the aPCE-based method enables 588 
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analytical implementation of UQ and variance-based GSA, and thus is highly 589 

computationally efficient.  590 
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Appendix A: Fejér Type-2 rules 596 

Fejér Type-2 rules are nearly identical to Clenshaw-Curtis rules. The only difference is 597 

that the Fejér Type-2 rules omit the endpoints 1  and are thus open-ended. The explicit 598 

expressions for the nodes and the weights of the Fejér Type-2 rules are summarized by 599 

Davis and Rabinowitz [66]. The Fejér Type-2 nodes and weights are expressed by [66]  600 

 

   ( 1)/2

1
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where     is the greatest integer function, returning the nearest integer less than or equal 601 

to  . 602 

Appendix B: Analytical moments of univariate probability distributions 603 

Analytical moments of some commonly-used standard probability distributions are 604 

presented in this appendix. A total of six types of probability distributions, that is, uniform, 605 

normal, log-normal, beta, gamma, and Weibull, are shown. Note that it does not mean that 606 

other probability distributions not mentioned here do not have closed-form expressions of 607 

the moments. The moments of these probability distributions are listed in the following 608 

table. 609 

610 



 39 

Table A. Analytical moments of univariate probability distributions. 611 

Distribution PDF k -th moment 
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