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A Composite Axion
from a Supersymmetric Product Group

Benjamin Lillard and Tim M.P. Tait
blillard@uci.edu, ttait@uci.edu

Department of Physics and Astronomy, University of California, Irvine, CA 92697,
USA

Abstract

A global U(1)PQ symmetry is protected from gravitational effects in the s-confining SU(N)k

product group theory with A+4Q+NQ matter. If the SU(4) family symmetry is gauged and
an appropriate tree-level superpotential is added, then the dynamically generated superpo-
tential spontaneously breaks SU(4)× U(1)PQ → SU(3)c and produces a QCD axion. Small
values of the CP -violating θ parameter are then possible without any fine-tuning, as long as
the product group is suitably large. By introducing a second copy of the s-confining SU(N)
product group also coupled to the gauged SU(4), we find that values as small as N = 7
are consistent with θ̄ < 10−10, even under the pessimistic assumption that the dominant
contribution to the axion quality is at tree level.

1 Introduction

Despite its success at predicting the results of particle experiments, the Standard Model remains
widely unloved. Its unpopularity is due in part to a few inexplicably small parameters, including the
O(10−16) ratio between the electroweak and Planck scales, the puzzling array of Yukawa couplings,
and the degree to which QCD conserves the discrete charge (C) and parity (P ) symmetries,
|θ| < 10−10. In addition, the Standard Model is clearly incomplete, failing to describe gravitation,
dark matter, and neutrino masses.

Prominent solutions to these theoretical shortcomings include supersymmetry (susy), which
stabilizes the electroweak scale and can support dark matter; extra dimensions and composite
models, which can generate hierarchies dynamically; and axions, which explain the smallness of
the QCD CP parameter θ while supplying a dark matter candidate. In this paper we consider
a hybrid of these elements, a supersymmetric composite axion model, as a solution to the strong
CP problem that is free from fine-tuning.

At issue (for more complete discussion, see Refs. [1, 2]) is the θ term of the QCD Lagrangian,

L =
g2

32π2
θ̄ εµνρσGa

µνG
a
ρσ ≡

g2

32π2
θ̄ Ga

µνG̃
aµν , (1.1)

which violates both P and CP . θ̄ is the physical combination of the intrinsic coefficient θ and a
phase in the quark mass matrix,

θ̄ ≡ θ + arg detMQ. (1.2)
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Measurements of the neutron electric dipole moment require
∣∣θ̄
∣∣ < 10−10 [3]. Such a tiny value

appears to require an extraordinary cancellation between two apparently unrelated quantities.
In a simple axion model, θ̄ is associated with the transformation parameter of an approximate

global U(1)PQ symmetry [4–10]. U(1)PQ is spontaneously broken at some high scale fa by the
expectation value of a U(1)PQ-charged scalar field or the formation of a U(1)PQ-charged fermion
condensate, resulting in a pseudo-Nambu–Goldstone boson (pNGB): the axion a. Due to the
nonzero SU(3)2

c-U(1)PQ anomaly, non-perturbative QCD dynamics induce an expectation value
for the axion such that CP is a symmetry of the vacuum, and the axion acquires a small mass.

At energies below fa, the effective Lagrangian contains the term:

L =
g2

32π2

(
θ̄ +A a

fa

)
Ga
µνG̃

aµν , (1.3)

where A is the SU(3)2
c-U(1)PQ anomaly coefficient. Nonperturbative QCD generates a periodic

potential for the axion which can be heuristically described by

V [a] = m2
πf

2
π

(
1− cos

[
A a

fa
+ θ̄

])
, (1.4)

where mπ and fπ are the pion mass and decay constant, respectively. This potential is minimized
when 〈a〉 = −faθ̄/A, leading to CP conservation in the vacuum. We choose to normalize the
U(1)PQ charges so that A = 1, for which the axion mass is1,

m2
a =

m2
πf

2
π

f 2
a

. (1.5)

Experimental observations set bounds on the value of fa. A lower bound fa & 109 GeV is derived
from constraints on stellar and supernova cooling [12], while the axion relic abundance suggests
fa . 1012 GeV in the absence of cosmological fine tuning [13].

Axion Quality Problem: Simple axion models are plagued by the theoretical inconsistencies
endemic to theories containing fundamental scalar fields. The expectation value of the new complex
scalar 〈φ〉 ∼ fa receives additive corrections from high-energy physics which, while less severe than
the electroweak hierarchy [14], remains a concerning source of fine-tuning. Models of axions also
suffer from a different concern which is potentially much more troubling: the axion quality problem.
Any U(1)PQ-violating effects in the scalar potential can shift the axion VEV away from θ = 0,
inducing the strong CP problem rather than solving it. In particular, non-perturbative quantum
gravity is expected to violate global symmetries [15–20], leading to terms in the low energy effective
action of the form

Lg ∼
|φ|p (φ+ φ?)

Mp−3
P

, (1.6)

which is inconsistent with |θ| < 10−10 unless the p = 4 term has a coefficient smaller than O(10−55).
Considering that the axion is introduced to explain fine-tuning of O(10−10), this calls its motivation

1 More careful treatments based on the QCD chiral Lagrangian [11] result in a potential given by: V [a] =

m2
πf

2
π

(
2−

√
1 + 2mumd

(mu+md)2

(
cos
[
A a
fa

+ θ̄
]))

, where mu,d are the up- and down-quark masses, and leading to an

axion mass m2
a = mumd

(mu+md)2
m2
πf

2
π

f2
a

. The distinction between these two expressions for V [a] is unimportant in terms

of assessing the axion quality, and we use Eq. 1.4 for our analysis.
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into serious question, and any successful axion model must prevent linear shifts of the form 〈a〉 →
〈a〉+ fa∆θ with ∆θ > 10−10.

More generally, we can analyze arbitrary U(1)PQ violation by including it in the axion potential
V [a] as

δV [a] = (Q f 4
a ) cos

(
κ

[
a

fa
+ θ̄

]
+ θ0

)
, (1.7)

for a dimensionless “quality factor” Q, an integer κ and an angle θ0. Experimental measurements
of 〈θ〉 set a maximum bound on Q; we derive the general expression in Appendix A. For κ sin θ0 ∼
O(1), |θ| < 10−10 requires:

Q < 10−62

(
1012 GeV

fa

)4

= 10−50

(
109 GeV

fa

)4

. (1.8)

Consistent Axion Models: Several solutions to the axion quality problem are known, in which
the U(1)PQ is protected by associating it with new gauged symmetries. In the simplest solutions
a gauged discrete ZN symmetry [21] forbids U(1)PQ-violating operators of dimensions smaller
than N . More sophisticated models can employ discrete groups as small as Z4 while forbidding
the problematic operators [22, 23]. Solutions without gauged discrete symmetries also exist: for
example, a composite model [24] with a gauged SU(N) × SU(m) × SU(3)c protects U(1)PQ to
arbitrarily high order. More recently [25], a qualitatively different SU(N)L × SU(N)R × SU(3)c
model has been shown to suppress Planck scale corrections appropriately.

Other constructions protect U(1)PQ by gauging a related Abelian group. In one model [26] with
a compact extra dimension, a gauged U(1) symmetry is spontaneously broken by fields localized on
two separated four-dimensional branes. One combination of the fields is eaten by the gauge field,
while the other acts as the QCD axion and is protected from gravitational corrections. A related
model [27] gauges a product group of the form U(1)k with k ≥ 14, which can also be interpreted
as a k site deconstruction of a compact fifth dimension. In a different class of models [18, 28],
the fields are assigned large and relatively prime U(1) charges, so that an accidental U(1)PQ is
protected from low-dimensional operators.

Some of these models, while successful at forbidding low-dimensional U(1)PQ-breaking opera-
tors, still suffer from a hierarchy problem. One resolution is supersymmetry (susy), which protects
fa from loop-level corrections, so that the theory is technically natural if the susy-breaking scale
is not much larger than fa. Another compelling direction is composite models, which can suppress
dangerous gravitational contributions to the axion potential while additionally offering the poten-
tial to determine the scale of U(1)PQ breaking from the confining dynamics. For asymptotically
free gauge theories the confinement scale is expected to be exponentially suppressed compared to
MP, so the hierarchy between fa and MP can be naturally generated dynamically.

In this article, we present a qualitatively new supersymmetric composite axion model which
tames both the quality and hierarchy problems. The axion is a composite formed of large prod-
uct of fundamental fields, such that the quality problem is ameliorated by a sufficiently large
power of (Λ/MP)n, where fa ∼ Λ is dynamically generated by the confinement of a product of
non-Abelian gauge theories. Supersymmetry allows for control over the low energy physics of the
non-perturbative confining dynamics, and additionally stabilizes any other mass scales (including,
perhaps, the electroweak scale). Our work is laid out as follows: in Section 2, we explore a minimal
construction in terms of its UV degrees of freedom. In Section 2.1, we analyze its low energy behav-
ior after confinement, with Section 2.2 discussing the breaking of the global symmetries, including
U(1)PQ. Section 2.3 estimates the size of the leading gravitational corrections, and determines
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A
•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1

eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

1

Figure 1: Moose diagram indicating the matter content and gauge interactions of the SU(N)` ×
SU(4)×SU(N)r composite axion model. Each Gi and G̃i corresponds to a gauged SU(N), whereas
SU(N) flavor symmetries are represented by dashed circles. The bifundamental fields Q, Qi, q,
and qi are depicted as directed line segments connecting adjacent groups, while the field A (A)

transforms under G1 (G̃1) in the antisymmetric two-tensor representation.

parameters such that the axion quality problem is ameliorated to a sufficient degree. In Section 3,
we show how a simple extension of the basic model can dynamically generate superpotential terms
on which the basic module relies, resulting in a theory in which all of the essential mass scales are
dynamically generated. In Section 4, we conclude. As we shall see, solving the quality problem
can imply that a theory whose low energy limit looks like a rather standard invisible axion model
may blossom at high energies into a rich interlocking structure of gauge dynamics.

2 Axion from a Supersymmetric Product Group

We consider theories in which the axion emerges as a composite in the low energy description
of confining supersymmetric gauge dynamics. In order to generate the scale fa dynamically as a
by-product of confinement, we further specialize to s-confining theories [29, 30], in which a set of
gauge-invariant operators provides a smooth description of the moduli space (valid at the origin),
and a dynamically generated superpotential enforces the classical constraints. Our basic building
blocks are SU(N) gauge theories with one antisymmetric A, four fundamental quarks Q, and N
antifundamental antiquarks Q; and Sp(2n) gauge theories with (2n+ 4) quarks Q. Both of these
theories have been shown to s-confine [31–34], and the A+ 4Q+NQ module has an SU(4) flavor
symmetry (acting on the Q fields) into which SU(3)c QCD can be embedded.

Gauging the SU(4) flavor symmetry requires an additional four quarks q transforming in the
antifundamental representation of SU(4) to cancel the SU(4)3 anomaly. Supplemented by an
appropriately chosen external superpotential, the SU(N) confines and an appropriate U(1)PQ can
be spontaneously broken. However, the resulting axion quality from this simple module is far from
sufficient to accommodate |θ| < 10−10.

High axion quality can be enforced by expanding the SU(N) into a product group. It has
recently been demonstrated that s-confining product group models can be constructed by gauging
the SU(N) flavor symmetry of the A + 4Q + NQ1 theory, such that the field Q1 transforms as a
bifundamental under SU(N)×SU(N), with N quarks Q2 canceling the anomalies [35]. Iterating to
SU(N)k, the matter fields include the SU(N)(1)-charged A+4Q; a string of SU(N)(i)×SU(N)(i+1)

bifundamentals Qi; and N fields Qk charged only under the gauged SU(N)(k). The gauge-invariant
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operators include “mesons” of the form (QQ1Q2 . . . Qk) and (AQ
2

1 . . . Q
2

k); “baryons” (Q
N

i ) for each

i = 1 . . . k; and special baryons (A
N−p

2 Qp) for 0 ≤ p ≤ 4, subject to the condition that (N − p) is
even. An axion living in a combination of these fields enjoys the feature that increasing k and N
results in increasingly suppressed gravitational corrections.

Extending the gauge symmetries on both sides, we arrive at a theory in which the full matter
content is {A,Q,Q1 . . . Qr;A, q, q1 . . . q`}, with the gauge group SU(N)` × SU(4)× SU(N)r. The
gauge structure and matter assignments is represented as a moose diagram in Figure 1, and is
vaguely reminiscent of a deconstructed extra dimension with a bulk SU(N) broken to SU(4)

on a defect. For convenience, we introduce the notation SU(N)` = G̃1 × G̃2 × . . . × G̃` and

SU(N)r = G1 ×G2 × . . .×Gr, where G̃i and Gi confine at scales Λ̃i and Λi respectively. Up to a

constant, the holomorphic scales Λ̃i and Λi are defined as

Λ̃b
i ≡ µb exp{−8π2/g̃2

i + iθ̃i}, Λb
i ≡ µb exp{−8π2/g2

i + iθi}, (2.1)

where g̃i and gi are the coupling constants of the gauge groups G̃i and Gi. In the dynamically
generated superpotential for each group there is an overall constant that is not determined by
symmetry arguments; to simplify the notation, we absorb these constants into Λ̃b

i and Λb
i .

In the absence of an external superpotential, there is a conserved U(1)A × U(1)B × U(1)C ×
U(1)R × SU(N)L × SU(N)R global symmetry, and an approximate U(1)PQ that is broken by the
SU(4)2-U(1) anomaly. Charges are shown in Table 1, where for convenience, we have taken the
U(1)R charges of Q and A to be equal to q and A, respectively, with qQ = N−4

N
and qA = 16−2N

N(N−2)
. By

defining U(1)PQ as in Table 1, we assume that the operator (AQ
2

1 . . . Q
2

r) is more suppressed than
(Aq2

1 . . . q
2
`), so that U(1)PQ is expected to be a better symmetry than U(1)A. Appropriate U(1)PQ

charges in the opposite limit can be recovered by performing the following outer automorphism on
the moose diagram:

`↔ r, Gi ↔ G̃i, Λi ↔ Λ̃i, A↔ A, Q↔ q, Qi ↔ qi. (2.2)

At a generic point on the moduli space the full global symmetry is spontaneously broken,
producing a number of Nambu-Goldstone bosons. Although the explicit symmetry breaking from
gravity would supply masses for the pNGBs, a tree-level external superpotential

Wtree =
(Aq2

1q
2
2 . . . q

2
`)

M2`−2
A

+
(Q

N

1 )

MN−3
B

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(2.3)

increases the pNGB masses by breaking the global symmetries more severely. This is essential
in the case of the second (MB) term, which as we shall see below determines the PQ symmetry
breaking scale fa after confinement. The remaining Mi could be safely taken to be MP without
harm. In addition, to avoid deforming the G1 confinement, we choose them to satisfy Λ1 .Mi.

In Section 3 we discuss the possibility that some of the terms in Eq. (2.3) are generated
dynamically through the s-confinement of a strongly coupled Sp(2n) gauge group, providing a
natural and completely dynamical origin for the scale fa.

2.1 Confinement

We choose the UV gauge couplings such that SU(N)` and SU(N)r confine at an intermediate scale
where SU(4) remains weakly coupled and supersymmetry is unbroken. For odd N = 2m+ 1, the
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SU(N)L G̃` . . . G̃1 SU(4) G1 . . . Gr SU(N)R UA UB UC UR U(1)PQ

q` 0 0 ±1 0 0
q`−1 0 0 ∓1 0 0

...
. . .

...
...

...
...

...
q1 0 0 1 0 0

A −4 0 −N
N−2

qA 0

q N − 2 0 0 qQ 0

Q 2−N 0 0 qQ
2−N
N

A 4 −N
N−2

0 qA 4/N

Q1 0 1 0 0 0
...

. . .
...

...
...

...
...

Qr−1 0 ∓1 0 0 0
Qr 0 ±1 0 0 0

Table 1: Representations of the matter fields under the gauged SU(N)`×SU(4)×SU(N)r symme-
tries, the flavor symmetries SU(N)L × SU(N)R × U(1)4, and the approximate U(1)PQ symmetry.

groups SU(N)` and SU(N)r confine separately to produce the following hadrons:

JL = (q`q`−1 . . . q1q), KL = (q2
`q

2
`−1 . . . q

2
1A), x1 = (A

m
q), y1 = (A

m−1
q3), zi = (qi)

N ,
(2.4)

JR = (QQ1Q2 . . . Qr), KR = (AQ
2

1Q
2

2 . . . Q
2

r), X1 = (AmQ), Y1 = (Am−1Q3), Zi = (Qi)
N .
(2.5)

Their transformation properties under the global symmetries are summarized in Table 2. These
operators obey quantum-modified equations of motion, for which we define the shorthand notation:

(Π̃`
1z) =





even `:
(z1z2z3 . . . z`)− Λ̃b

2(z3z4 . . . z`)− z1Λ̃b
3(z4 . . . z`) + Λ̃b

2Λ̃b
4(z5 . . . z`) + . . .

+ (Λ̃b
2Λ̃b

4Λ̃b
6 . . . Λ̃

b
`−2)z`−1z` + (Λ̃b

2Λ̃b
4Λ̃b

6 . . . Λ̃
b
`−2Λ̃b

`),

odd `:
(z1z2z3 . . . z`)− Λ̃b

2(z3z4 . . . z`)− z1Λ̃b
3(z4 . . . z`) + Λ̃b

2Λ̃b
4(z5 . . . z`) + . . .

+ z1(Λ̃b
3Λ̃b

5Λ̃b
7 . . . Λ̃

b
`) + . . .+ (Λ̃b

2Λ̃b
4Λ̃b

6 . . . Λ̃
b
`−1z`);

(2.6)

(Π̃r
1Z) =





even r:
(Z1Z2Z3 . . . Zr)− Λb

2(Z3Z4 . . . Zr)− Z1Λb
3(Z4 . . . Zr) + Λb

2Λb
4(Z5 . . . Zr) + . . .

+ (Λb
2Λb

4Λb
6 . . .Λ

b
r−2)Zr−1Zr + (Λb

2Λb
4Λb

6 . . .Λ
b
r−2Λb

r),

odd r:
(Z1Z2Z3 . . . Zr)− Λb

2(Z3Z4 . . . Zr)− Z1Λb
3(Z4 . . . Zr) + Λb

2Λb
4(Z5 . . . Zr) + . . .

+ Z1(Λb
3Λb

5Λb
7 . . .Λ

b
r) + . . .+ (Λb

2Λb
4Λb

6 . . .Λ
b
r−1Zr).

(2.7)

The constraint equations include:

Km
L JL = x(Π̃`

1z)

Km
R JR = X(Π̃r

1Z)

Km−1
L J3

L = y(Π̃`
1z)

Km−1
R J3

R = Y (Π̃r
1Z)

xy = 0
XY = 0.

(2.8)
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SU(4) SU(N)L SU(N)R U(1)PQ

x1 0
y1 0
zi 1 0

JL 0
KL 1 0

X1 1
Y1 −1
Zi 1 0

JR
2−N
N

KR 1 4/N

Table 2: Operators describing infrared degrees of freedom in the confined phase of SU(N)` ×
SU(N)r, and their transformation properties under the approximate SU(N)L×SU(N)R×U(1)PQ

flavor symmetries.

Not shown above, X, Y , x, and y each carry an SU(4) gauge index, which is summed over in
the expressions xαyα = XαY

α = 0. Each term in the equations above is invariant under the
SU(N)L × SU(N)R family symmetry. Combinatoric coefficients have been suppressed for clarity.

The analysis is simplified by introducing spurion superfields Xi>1, Yi>1, xi>1 and yi>1, such that
the constraints between operators follow directly from the dynamically generated superpotential
Wd = WL +WR, where

WL =
x1y1z1 − x1y2 − y1x2

Λ̃b
1

+
`−1∑

i=2

xiyizi − xiyi+1 − yixi+1

Λ̃b
1Λ̃b

2 . . . Λ̃
b
i

+
x`y`z` − x`Km−1

L J3
L − y`Km

L JL

Λ̃b
1Λ̃b

2 . . . Λ̃
b
`

(2.9)

WR =
X1Y1Z1 −X1Y2 − Y1X2

Λb
1

+
r−1∑

i=2

XiYiZi −XiYi+1 − YiXi+1

Λb
1Λb

2 . . .Λ
b
i

+
XrYrZr −XrK

m−1
R J3

R − YrKm
R JR

Λb
1Λb

2 . . .Λ
b
r

.

(2.10)

Each of the fields {Xi>1, Yi>1, xi>1, yi>1} is a redundant operator: that is, the equations of motion
determine the low-energy behavior of each superfield exactly, leaving no independent degrees of
freedom. For example, the constraint ∂Wd/∂Xi = 0 determines the value of Yi+1:

Y2 = Y1Z1, Y3 = Y1(Z1Z2 − Λb
2), Yi+1 = YiZi − Λb

iYi−1 = Y1(Π̃i
1Z). (2.11)

After confinement, the tree-level superpotential Eq. (2.3) leads to

Wtree →
(KL)i1i2
M2`−2

A

+
Z1

MN−3
B

+
z1

MN−3
C

+
Xα

1 Y
α

1

MN−1
R

+
xα1y

α
1

MN−1
r

, (2.12)

where the indices i and α refer to SU(N)L and SU(4), respectively. In the discussion that follows,
we assume that MB is several orders of magnitude below MP, and that MB .MA,C,R,r .MP.

2.2 Symmetry Breaking

Each term in Wtree is introduced to break an undesired global symmetry: however, the Z1 and z1

tadpoles induced by Wtree also have a significant effect on the vacuum structure. Added to the full
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superpotential,
W = Wtree +WL +WR, (2.13)

the Z1 and z1 tadpole terms in Wtree shift the moduli space away from the origin: specifically, their
equations of motion cause 〈X1Y1〉 and 〈x1y1〉 to be nonzero. In this section we consider the case
〈X1Y1〉 � 〈x1y1〉 and show that SU(4)× U(1)PQ is spontaneously broken to SU(3)c.

It is convenient to normalize the infrared operators by appropriate factors of Λi so as to give
them canonical mass dimension +1:

J̃L ≡
JL
Λ`
L

, K̃L ≡
KL

(Λ`
L)2

, x̃ ≡ x1

Λ̃m
1

, ỹ ≡ y1

Λ̃m+1
1

, z̃i ≡
zi

Λ̃N−1
i

(2.14)

J̃R ≡
JR
Λr
R

, K̃R ≡
KR

(Λr
R)2

, X̃ ≡ X1

Λm
1

, Ỹ ≡ Y1

Λm+1
1

, Z̃i ≡
Zi

ΛN−1
i

(2.15)

where

Λ`
L ≡ (Λ̃1Λ̃2 . . . Λ̃`), Λr

R ≡ (Λ1Λ2 . . .Λr). (2.16)

In terms of these operators, the tree-level superpotential Eq. (2.3) becomes

Wtree → Λ2
L

(
ΛL

MA

)2`−2

(K̃L)i1i2 + Λ2
1

(
Λ1

MB

)N−3

Z̃1 + Λ̃2
1

(
Λ̃1

MC

)N−3

z̃1

+ Λ1

(
Λ1

MR

)N−1

X̃Ỹ + Λ̃1

(
Λ̃1

Mr

)N−1

x̃ỹ, (2.17)

and the dynamically generated superpotential includes the leading terms

WL +WR = x̃ỹz̃1 + X̃Ỹ Z̃1 −
x1y2 + y1x2

Λ̃b
1

− X1Y2 + Y1X2

Λb
1

+ . . . (2.18)

The equation of motion ∂W/∂Z̃1 = 0 enforces:

X̃αỸ
α = − ΛN−1

1

MN−3
B

≡ σ2. (2.19)

By performing an SU(4) gauge transformation, the nonzero expectation values can be rotated into
the α = 4 component such that

〈X̃〉(4) = βσ, 〈Ỹ 〉(4) =
1

β
σ, 〈X̃〉α=1,2,3 = 〈Ỹ 〉α=1,2,3 = 0, (2.20)

where β parametrizes a flat direction of the degenerate vacua, which is likely to be lifted in a
particular model of susy breaking; we treat it as a free parameter. An SU(3)c subgroup of SU(4)
remains as an infrared symmetry, and the other 15−8 = 7 generators of SU(4) are broken. Through
the super-Higgs mechanism, 7 of the 8 would-be NGBs are eaten by the SU(4) superfields to make
them massive, and a single NGB remains massless. The matter fields decompose into irreducible
representations of SU(3)c as follows:

−→ ⊕ 1,

X̃α′ −→ X̃α ⊕ X̃(4),

−→ ⊕ 1,

Ỹα′ −→ Ỹα ⊕ Ỹ(4),

Adj −→ Adj⊕ ⊕ ⊕ 1,
λa −→ λ′a ⊕ λ+ ⊕ λ− ⊕ λ0.

(2.21)
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A combination of the superfields X̃α=1,2,3 and Ỹα=1,2,3 are eaten by the massive λ± vector super-

multiplets. Another linear combination of X̃ and Ỹ is eaten by the diagonal T 15 generator of
SU(4), leaving exactly one massless superfield to play the role of the axion.

We introduce the real scalar fields φ1, φ2, a and η to describe the bosonic degrees of freedom:

X̃(4) =
(
φ1√

2
+ 〈X̃(4)〉

)
exp

[
i
fa

(a+ αη)
]

Ỹ(4) =
(
φ2√

2
+ 〈Ỹ(4)〉

)
exp

[
i
fa

(
−a+ 1

α
η
)]
,

(2.22)

where fa is the axion decay constant, and α is a constant determined by requiring canonical
normalization of the scalar kinetic terms. It is convenient to define v1,2 such that

v1 =
√

2
∣∣∣〈X̃(4)〉

∣∣∣ =
√

2 |βσ| v2 =
√

2
∣∣∣〈Ỹ(4)〉

∣∣∣ =
√

2

∣∣∣∣
σ

β

∣∣∣∣ , (2.23)

so that normalization of the scalar fields requires

f 2
a = v2

1 + v2
2, α =

v2

v1

. (2.24)

In the discussion above we assume that X̃ and Ỹ are the only U(1)PQ-charged fields with nonzero
expectation values. This is not necessarily true: for example, 〈KR〉 may acquire an expectation
value without breaking SU(3)c. In the limit where 〈KR〉 � σ its contribution to the axion potential
is vanishingly small, and the physics remains approximately as discussed here. For completeness,
in Appendix B we derive the composition of the physical axion in the more general 〈KR〉 6= 0 case.

To preserve SU(3)c in the vacuum, the QCD-charged components of the scalars x̃, ỹ, J̃L and

J̃R must not acquire expectation values, which places mild constraints on the unspecified nature
of susy-breaking. Nonzero VEVs for the i = 4 components of the scalar fields are permitted.

2.3 Gravitational Corrections

Non-perturbative gravity produces U(1)PQ-violation, which at low energies are described by local
gauge invariant operators in an effective superpotential. The leading (in 1/MP) terms are:

Wg = ρ1

(q`q`−1 . . . q1qQQ1Q2 . . . Qr)

M `+r−1
P

+ρ2

(q`q`−1 . . . q1q)(A
mQ)

M `+m−1
P

+ρ3
(A

m
q)(AmQ)

M2m−1
P

+ρ4
(AQ

2

1Q
2

2 . . . Q
2

r)

M2r−2
P

,

(2.25)
with coefficients ρi which encode the details of the unknown quantum gravitational physics. Naive
power counting would argue for ρi ∼ O(1), whereas computations based on wormhole configura-
tions or stringy realizations of quantum gravity favor ρi ∼ O (exp [−Swh]) with Swh ∼ MP/fa. To
capture the range of possibilities, we will consider a range of ρi (all taken to have roughly equal
magnitudes) in our analysis below.

After confinement, Wg maps on to:

Wg → ρ1
Λ`
LΛr

R

M `+r−1
P

(J̃LJ̃R) + ρ2
Λ`
LΛm

1

M `+m−1
P

(J̃LX̃) + ρ3
Λ̃m

1 Λm
1

M2m−1
P

(x̃X̃) + ρ4
(Λr

R)2

M2r−2
P

(K̃R)j1j2 , (2.26)

where the index j refers to the SU(N)R family symmetry.
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There are two types of tree-level corrections to the axion potential. In the supersymmetric
limit, the equations of motion from Wtree + Wd + Wg produce operators in the Lagrangian of the
form

Lg ∼
(∏

i,j

φiφ
?
j

)
(Φ + Φ?) , (2.27)

where Φ has non-zero U(1)PQ charge (and thus some of its phase is part of the axion), and φi
and φ?j are scalar fields as determined by the equations of motion. Replacing the fields with their
expectation values, Lg corrects the axion potential by:

δV [a] ∼
(∏

i,j

〈φi〉〈φ?j〉
)
〈Φ〉 cos

(
qΦa

fa
+ θ0

)
. (2.28)

Clearly this type of correction is only operative if all of the relevant fields φi,j have non-zero
expectation values.

The second type of tree-level correction arises once susy is broken, and the low energy La-
grangian contains A-terms of the form

Lg ∼ msWg + h.c. (2.29)

(where Wg should be understood to have its super-fields replaced by their scalar components, and
there is a separate susy-breaking coefficient of O(ms) for each term in Wg). In the cases where
the necessary scalar fields have zero expectation values, these terms can still correct the axion
potential at loop level.

As can be seen from Eq. (2.8), the moduli space includes vacua with 〈KR〉 = 〈JR〉 = 0. These
flat directions are lifted by susy-breaking, and thus model-dependent. Rather than getting bogged
down in the details of a specific model, we make the pessimistic assumption that the resulting
expectation values are large:

〈J̃ j(4)〉, 〈K̃j1j2〉 ∼ O(ms). (2.30)

This assumption additionally simplifies the analysis in that for such large expectation values, the
tree-level corrections to the axion potential are expected to dominate over any of the loop level
corrections.

Generically, the leading contributions to the axion potential are expected to arise from susy-
breaking rather than from the equations of motion. This is because the equations of motion
from Wd involve high-dimensional operators, which are only important at tree level if all of the
participating fields have relatively large expectation values. For example,

∣∣∣∣
∂W

∂J̃R

∣∣∣∣
2

=

∣∣∣∣∣
Λ`
LΛr

R

M `+r−1
P

(J̃L)− (X̃kJ̃
2
R)K̃m−1

R

Λm
r

− (Ỹk)K̃
m
R

Λm−1
r

∣∣∣∣∣

2

(2.31)

reduces to

Lg ∼
(

Λ`
LΛr

R

M `+r−1
P

〈K̃m
R 〉

Λm−1
r

)
〈J̃?L〉Ỹk + h.c. (2.32)

In the product 〈K̃m
R 〉, the SU(N)R indices are contracted antisymmetrically. If some of the expec-

tation values are close to zero, the entire product vanishes. Only in the case where 〈K̃〉 and 〈J̃〉
are comparable to Λr does Eq. (2.32) contribute significantly.
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Quality Factors: The susy-breaking A-term corresponding to the ρ1 term in Wg is

Lg ∼ msρ1

(
Λ`
LΛr

R

M `+r−1
P

)
(J̃L)αi (J̃R)αj + h.c., (2.33)

where the indices i and j correspond to the SU(N)L×SU(N)R global symmetry. As J̃R is charged

under U(1)PQ 〈J̃LJ̃R〉 6= 0 shifts the axion potential by

δV [a] ∼ ρ1ms

(
Λ`
LΛr

R

M `+r−1
P

) ∣∣∣〈J̃L〉〈J̃R〉
∣∣∣ cos

(
qJ
a

fa
+ θ0

)
, (2.34)

with qJ = 2−N
N

= O(1). From Eq. (1.7), consistency with
∣∣θ̄
∣∣ < 10−10 requires

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ`
LΛr

R

M `+r
P

)
< 10−62. (2.35)

A limit on r is set by the ρ4 term:

δV [a] ∼ ρ4ms
Λ2r
R

M2r−2
P

∣∣∣〈(K̃R)j1j2〉
∣∣∣ cos

(
qK

a

fa
+ θ0

)
, (2.36)

where qK = 4/N . Ignoring the O(1) number qK ,

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
ΛR

MP

)2r

< 10−62. (2.37)

From the ρ3 term

δV [a] ∼ msρ3
Λ̃m

1 Λm
1

M2m−1
P

∣∣∣〈x̃(4)〉〈X̃(4)〉
∣∣∣ cos

(
a

fa
+ θ0

)
, (2.38)

we find a constraint on N = 2m+ 1:

ρ3

msMP〈x̃(4)〉〈X̃(4)〉
(1012 GeV)4

(
Λ̃1

MP

)m(
Λ1

MP

)m
< 10−62. (2.39)

Finally, the ρ2 term sets an additional constraint on ` and N :

δV [a] ∼ msρ2
Λ`
LΛm

1

M `+m−1
P

∣∣∣〈J (4)
L 〉〈X̃(4)〉

∣∣∣ cos

(
a

fa
+ θ0

)
, (2.40)

ρ2

msMP〈JL〉〈X̃(4)〉
(1012 GeV)4

(
ΛL

MP

)`(
Λ1

MP

)m
< 10−62. (2.41)

As long as β is neither very large nor very small, Eqs. (2.35), (2.37), (2.39) and (2.41) provide
the most restrictive constraints on m, ` and r. A wide range of values is allowed for each of the
parameters, as we discuss in more detail below.
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B1 (GeV)
fa 1017

Λ1 1017

Λi>1 1015

Λ̃i 1015

ms 106

B2 (GeV)
fa 1012

Λ1 1012

Λi>1 109

Λ̃i 109

ms 104

B3 (GeV)
fa 109

Λ1 109

Λi>1 104

Λ̃i 104

ms 104

Table 3: Three benchmark points in the parameter space of Λi and Λ̃i. With the exception of 〈X̃〉
and 〈Ỹ 〉, the expectation values of the SU(3)c singlet fields are taken to be O(ms).

2.4 Benchmark Models:

In this section we consider the quality of the axion potential in three particular models, with
fa = 1017 GeV, fa = 1012 GeV and fa = 109 GeV. For simplicity, we take Λ1 ∼ MB ∼ fa and
Λi 6=1 ∼ Λ̃i for each model, and we allow all QCD singlet scalar fields to acquire O(ms) expectation
values. Choices for each of these scales are shown in Table 3.

Model B1 is particularly susceptible to gravitational disruptions, as the scales Λi and Λ̃i are
taken to be relatively close to the Planck scale MP ∼ 1019 GeV. In this model even exponential
suppression of the constants ρi ∼ exp(−MP/fa) ∼ 10−44 cannot account for the high quality of
the axion potential, and large values of N , ` and r are required. Models B2 and B3 have values
of fa . 1012 GeV consistent with the axion dark matter hypothesis; with its smaller values of Λi

and Λ̃i, model B3 is more adept at suppressing gravitational corrections.
In Figure 2 we show minimum values for m ≡ N−1

2
, `, and r consistent with

∣∣θ̄
∣∣ < 10−10 for the

SU(N)` × SU(4)× SU(N)r composite axion, as a function of the parameters ρi. A wide range is
shown for ρ, to accommodate both exponentially suppressed and O(1) values. In the ρi = O(1)
limit, the minimal gauge groups for the three benchmark models are:

B1: SU(23)11 × SU(4)× SU(23)9

B2: SU(9)3 × SU(4)× SU(9)4

B3: SU(7)2 × SU(4)× SU(7)3.
(2.42)

Naturally, if after susy breaking the scalar fields J̃L,R, x̃, ỹ, and K̃R do not acquire expectation
values, then the U(1)PQ violation induced by Wg affects the axion potential only at loop level,
and smaller values for N , ` and r are permitted. In the limit where ρ is exponentially suppressed,∣∣θ̄
∣∣ < 10−10 no longer constrains m, ` or r. Although Eqs. (2.35), (2.37), (2.39) and (2.41) are

valid only for m ≥ 2, r ≥ 1 and ` ≥ 0, smaller values for m and r are shown in Figure 2 to indicate
where ρ is small enough that compositeness is no longer necessary.

3 Dynamically Generated Wtree

As described in Section 2, the SU(N)`× SU(4)× SU(N)r composite accidental axion has a high-
quality scalar potential and most of the important scales are derived from the confining dynamics,
with the exception of MB in the tree-level superpotential. This is a relatively minor shortcoming:
fa is determined by the relationship between MB, Λ1, and β2 = 〈X̃〉/〈Ỹ 〉,

f 2
a = 2

∣∣∣∣
ΛN−1

1

MN−3
B

(
β2 +

1

β2

)∣∣∣∣ , (3.1)
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Minimum Values, SUH2m+1Ll´SUH4L´SUH2m+1Lr

fa=1017 GeV

fa=1012 GeV

fa=109 GeV

Ρ=e-MP � fa

Figure 2: Minimum values for m, ` and r consistent with
∣∣θ̄
∣∣ < 10−10 are shown as a func-

tion of ρ1...4. For the first benchmark model with fa = 1017 GeV, we show only values of
ρ & exp(−MP/fa) ≈ 10−43.4. The fa = 1012 GeV and fa = 109 GeV models are depicted using
dotted and solid lines, respectively.

and the scale MB � MP is added “by hand” in the tree-level superpotential. In this section we
show how theMB term inWtree can be dynamically generated by the s-confinement of an Sp(2N−4)
gauge group, so that all of the important mass scales are determined by strong dynamics.

A gauge theory with 2N quarks ψ charged under Sp(2N−4) in the fundamental representation
s-confines [34] to form mesons Mij = εabψ

a
i ψ

b
j , with the superpotential

Wd =
PfM

Λ2N−1
0

. (3.2)

We break the SU(2N) flavor symmetry by gauging its SU(N)1 × SU(N)2 = G1 ×G2 subgroup:

−→ ( ,1)⊕ (1, ) ψai −→ (ψ1)aα ⊕ (ψ2)aβ, (3.3)

where α and β correspond respectively to the SU(N)1 and SU(N)2 gauge indices. The meson
M ∼ decomposes into irreducible representations of G1 ×G2:

M̃α1α2
1 =

(ψ1)α1
a (ψ1)α2

b εab
Λ0

, Q
αβ

1 =
(ψ1)αa (ψ2)βb εab

Λ0

, M̃β1β2
2 =

(ψ2)β1a (ψ2)β2b εab
Λ0

, (3.4)

where Λ0 is the confinement scale of Sp(2N − 4). In terms of these operators the dynamically
generated superpotential is

Wd =
Pf (ψ2)

Λ2N−3
0

=
(Λ0)N

Λ2N−3
0

[
M̃m

1 Q1M̃
m
2 + M̃m−1

1 Q
3

1M̃
m−1
2 + . . .+ M̃1Q

2m−1

1 M̃2 +Q
2m+1

1

]
, (3.5)
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A( )•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1

eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

G1 Q A( )•

SU4

q
eG1

q1 q`�1

eG`

q`
SUN

�( )

•

 1A0( )SU2
Sp2n

 2

G2

Q2 Qr�1

Gr

Qr
SUN

(1.3)

1

Figure 3: The matter content of the SU(N)`× SU(4)× Sp(2n)× SU(N)r composite axion model
is depicted in the moose diagram above, with Sp2n ≡ Sp(2N − 4). The SU(2) family symmetry
of the A′ fields is broken explicitly by the tree-level superpotential Eq. (3.7).

in the case where N = 2m+1 is odd. Combinatoric factors for each term in the expansion of PfM

such as Q
N

1 ≡ detQ1 have been suppressed.
To match this theory with the A+4Q+NQ model, the M1 and M2 degrees of freedom must be

removed. This is achieved by adding the following matter fields charged under SU(N)1×SU(N)2:

2A′ + 4Q+ χ+NQ2 = 2( ,1)⊕ 4( ,1)⊕ (1, )⊕N(1, ). (3.6)

In the SU(N)` × SU(4)× SU(N)r composite model, the SU(4) and SU(N) family symmetries of
the Q and Q2 are gauged. The full matter content of the theory is shown in Figure 3.

Gauge-invariant operators of the form (A′ψ2
1) and (χψ2

2) can be added as marginal operators
in a tree-level superpotential:

Wtree = λi(A
′
i)
α1α2(ψ1)a1α1

(ψ1)a2α2
εa1a2 + λ0χ

β1β2(ψ2)a1β1(ψ2)a2β2εa1a2 , (3.7)

where the indices i, a, α and β correspond to SU(2), Sp(2N−4), SU(N)1 and SU(N)2, respectively,
and λi and λ0 are dimensionless coupling constants. After Sp(2N − 4) confines, Wtree becomes

Wtree = λiΛ0(A′i)
α1α2M̃α1α2

1 + λ0Λ0χ
β1β2M̃β1β2

2 . (3.8)

This is extremely convenient: in the limit where Λ0 � Λ1, the fields M1, M2, χ, and the linear
combination “(A′1 +A′2)” all acquire large masses and decouple. One linear combination of A′1 and
A′2 remains massless, which we define as A:

A ≡ λ2A1 − λ1A2

N , (3.9)

with some normalization factor N .
The dynamically generated superpotential simplifies greatly when we consider the fact that M̃1

and M̃2 have O(Λ0) masses from Wtree:

∂W

∂A′i
= λiΛ0M̃1,

∂W

∂χ
= λ0Λ0M̃2. (3.10)

After integrating out the heavy fields, the superpotential becomes

W =
Q
N

1

ΛN−3
0

. (3.11)
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Sp(2N − 4) SU(N)1 SU(N)2 SU(N)3 SU(4) SU(2) U(1)PQ

ψ1 −2/N
ψ2 +2/N

A′ 2 4/N

χ 1 −4/N

Q 2−N
N

Q2 0

Table 4: A subset of the matter fields in the Sp(2N − 4) model are shown with their Peccei-Quinn
charges. All of the non-Abelian groups except for SU(2) are gauged.

Not only is this the desired tree-level superpotential for the composite axion model, but all of the
extra matter fields A′, χ, M̃1 and M̃2 have decoupled, leaving only A and Q1 as infrared degrees
of freedom. In Eq. (3.1) MB is replaced by Λ0, so that

f 2
a = 2

∣∣∣∣
ΛN−1

1

ΛN−3
0

(
β2 +

1

β2

)∣∣∣∣ . (3.12)

Every important scale other than MP is now determined solely by confining dynamics.
The nonzero Sp(2N − 4)2-U(1)B anomaly breaks U(1)B explicitly, as can be seen from the

Wd of Eq. (3.5). Although in principle the new fields χ and A′ provide two additional anomaly-
free U(1) symmetries, these are broken by the tree-level superpotential Eq. (3.7), and only the
SU(N)L × SU(N)R × U(1)A × U(1)C × U(1)R global symmetry remains. Introducing

δWtree =
(Aq2

1q
2
2 . . . q

2
`)

M2`−2
A

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(3.13)

with MA ∼ MC ∼ MR ∼ Mr ∼ MP is sufficient to give masses to the additional pNGBs. In
Table 4, the Peccei-Quinn charges of each field is shown.

Axion Quality: Of the new superpotential terms which break U(1)PQ, the leading terms are

Wg ∼
χmQ2Q3 . . . Qr

Mm+r−4
P

+
∑

p

(Am−p1 Ap2Q)(qq1q2 . . . q`)

Mm+`−1
P

(3.14)

As χ has a mass of O(Λ0) and no expectation value, the χm interaction has no tree-level effect on
the axion potential. The only effects are loop-induced and receive additional suppression.

One linear combination in the (Am−p1 Ap2Q) sum corresponds to the infrared operator (AmQ),
which has the expectation value 〈X1〉. This term is already included in the Wg of Eq. (2.25). Every
other term in the sum includes a power of the massive combination (λ1A1 + λ2A2), which has no
expectation value, and is therefore less disruptive to the axion potential than the effects already
considered in Eq. (2.25).

Aside from the replacement of MB by Λ0, the quality factors calculated in Section 2.3 are largely
unchanged. Operators involving Q1 are the exception: now that Q1 = ψ1ψ2/Λ0, a suppression of
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Λ0/MP is added to the operators involving JR and KR, marginally improving Eqs. (2.35) and (2.37):

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)(
Λ`
LΛr

R

M `+r
P

)
< 10−62 (3.15)

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)2(
ΛR

MP

)2r

< 10−62. (3.16)

For many values of ρi this decreases the minimum value for r by one, as can be seen from the three
benchmark models at ρi = O(1):

B1: SU(23)11 × SU(4)× Sp(42)× SU(23)9

B2: SU(9)3 × SU(4)× Sp(14)× SU(9)3

B3: SU(7)2 × SU(4)× Sp(10)× SU(7)2.
(3.17)

Alternate Confinement Order: Thus far, we have required that Λ0 > Λ1, simply because the

dual of SU(N) : 2A + 4Q + (2N − 4)Q with the tree-level superpotential Wtree ∼ AQ
2

does not
appear in the literature. In principle the infrared behavior of the 2A+4Q+(2N−4)Q theory with
Wtree 6= 0 can be determined using “deconfinement” techniques [31] and a sequence of dualities: a
similar calculation [36] has been completed for A+ FQ+ (N + F − 4)Q with a superpotential of

the form W ∼ AQ
2
.

Without calculating the degrees of freedom and the superpotential in the infrared dual of
SU(N) : 2A + 4Q + (2N − 4)Q, it is not known how the scale fa is set in the dual theory. If in
the Λ0 � Λ1 limit U(1)PQ is still broken at the scale f 2

a ∼ ΛN−1
1 /ΛN−3

0 , then fa ∼ 1012 GeV can
be achieved with much smaller values of Λ0 and Λ1, significantly improving the axion quality. We
leave detailed exploration of this limit to future work.

4 Conclusions

In the composite axion model based on the gauge group SU(N)` × SU(4) × SU(N)r, a U(1)PQ

is spontaneously broken by the vacuum expectation values of the SU(4)-charged hadrons X1 =
(AmQ) and Y1 = (Am−1Q3), simultaneously producing the QCD axion and breaking SU(4) to
SU(3)c. All important scales in the axion model are generated dynamically from confinement, and
are naturally small compared to the Planck scale.

By calculating the disruption to the axion potential V [a] induced by Planck-scale effects, we
have demonstrated that the composite model is successful at preserving the quality of the axion
potential even when large expectation values are permitted for all of the U(1)PQ-charged QCD-
singlet scalar fields. In realistic models incorporating susy breaking with positive quadratic terms
for these scalars such that no large expectation values result, the quality of the axion potential
will improve significantly for any given N , ` and r, as the terms in Wg disrupt the axion potential
to a lesser degree. It would be worthwhile to further investigate such constructions.

It is likely that the success of the SU(N)`×SU(4)×SU(N)r composite axion can be replicated
by embedding SU(3)c within the SU(N)R flavor symmetry of the A + 4Q + NQ model. In this
case U(1)PQ will be more closely associated with the U(1)B flavor symmetry of Table 1 rather than

U(1)A, and the axion will be generated from a linear combination of (Q
N

i ) baryons.
Compositeness can cure the axion quality problem, and as our models demonstrate, may provide

clues to the existence of interesting dynamics in the ultraviolet.

16



Acknowledgments

This research was supported in part by the NSF grant PHY-1316792. The authors are grateful for
helpful conversations with A. Rajaraman, M. Ratz, Y. Shirman, and P. Tanedo.

A Axion Quality

To leading order in a, the QCD-induced axion potential V [a] has the form

V [a] = V0 −
1

2
m2
a

(
a+ faθ̄

)
, (A.1)

which is minimized when 〈θ〉 ≡ (a/fa + θ̄) is equal to zero. It is convenient to define the shifted
field α ≡ a + faθ̄, so that 〈θ〉 = 〈α〉/fa. Explicit U(1)PQ violation elsewhere in the theory adds
corrections to V [a],

δV [a] = Qf 4
a cos

(
κ

[
a

fa
+ θ̄

]
+ θ0

)
, (A.2)

which for small values of 〈θ〉 is approximately

δV [a] = Qf 4
a

[
1− 1

2

(
κα

fa

)2
]

cos θ0 −Qf 4
a

(
κα

fa

)
sin θ0. (A.3)

As θ0 is determined by the precise manner in which U(1)PQ is broken, we do not assume that it is
smaller than O(1). Combining Eqs. (A.1) and (A.2), V [a] becomes

V [α] =
(
V0 +Qf 4

a cos θ0

)
−
(
Qf 3

aκ sin θ0

)
α− 1

2

(
m2
a +Qf 2

aκ
2 cos θ0

)
α2, (A.4)

so that the expectation value 〈α〉 shifts away from zero:

〈α〉 = − Qf 3
aκ sin θ0

m2
a +Qf 2

aκ
2 cos θ0

. (A.5)

Experimental measurements of 〈θ〉 set an upper bound 〈α〉 < fa |θmax|. Assuming |θmax|κ� sin θ0,
the corresponding bound on Q is

Q <
m2
a

f 2
a

|θmax|
κ |sin θ0|

. (A.6)

Using m2
a = m2

πf
2
π/f

2
a and assuming κ sin θ0 = O(1), Eq. (A.6) implies

Q . 10−62

(
1012 GeV

fa

)4

. (A.7)

B Axion Assignment in a General Vacuum

Suppose there exist many fields Φi, each with a Peccei-Quinn charge qi. Let us define the charge-
normalized expectation value

vi ≡ qi
√

2〈Φi〉 (B.1)
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for each field Φi. If there are n fields with nonzero expectation values, then let us define n − 1
fields ηi and the axion a, with the following assignment:

Φ1 =

(
φ1√

2
+ 〈Φ1〉

)
exp

[
iq1

fa
(a+ α1η1)

]
(B.2)

Φ2 =

(
φ2√

2
+ 〈Φ2〉

)
exp

[
iq2

fa
(a+ β1η1 + β2η2)

]
(B.3)

Φ3 =

(
φ3√

2
+ 〈Φ3〉

)
exp

[
iq3

fa
(a+ γ1η1 + γ2η2 + γ3η3)

]
(B.4)

...

Φn−1 =

(
φn−1√

2
+ 〈Φn−1〉

)
exp

[
iqn−1

fa
(a+ α

(n−1)
1 η1 + . . .+ α

(n−1)
n−1 ηn−1)

]
(B.5)

Φn =

(
φn√

2
+ 〈Φn〉

)
exp

[
iqn
fa

(a+ α
(n)
1 η1 + . . .+ α

(n)
n−1ηn−1)

]
(B.6)

In the sequence above, the first appearance of each field ηi is in the phase of Φi. The field Φn does
not introduce any new ηi fields.

Let us define the following (n− 1) constants:

x1 = β1 = γ1 = δ1 = . . . = α
(n−1)
1 = α

(n)
1 (B.7)

x2 = γ2 = δ2 = . . . = α
(n−1)
2 = α

(n)
2 (B.8)

x3 = δ3 = . . . = α
(n−1)
3 = α

(n)
3 (B.9)

...

xn−2 = α
(n−1)
n−2 = α

(n)
n−2 (B.10)

xn−1 = α
(n)
n−1. (B.11)

These equalities follow from the vanishing of the kinetic cross terms, which also give the following
relationships between the xi and {α1, β2, γ3, . . . , α

(n−1)
n−1 }:

0 = 1 + x1α1 (B.12)

0 = 1 + x2
1 + x2β2 (B.13)

0 = 1 + x2
1 + x2

2 + x3γ3 (B.14)
...

0 = 1 + x2
1 + . . .+ x2

n−2 + xn−1α
(n−1)
n−1 . (B.15)

Finally, we require that the kinetic terms (∂µηi)
2 and (∂µa)2 are canonically normalized. This leads
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to the remaining n constraints:

f 2
a

v2
1

= 1 + α2
1 (B.16)

f 2
a

v2
2

= 1 + x2
1 + β2

2 (B.17)

f 2
a

v2
3

= 1 + x2
1 + x2

2 + γ2
3 (B.18)

...
f 2
a

v2
n−1

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + (α

(n−1)
n−1 )2 (B.19)

f 2
a

v2
n

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + x2

n−1. (B.20)

These systems of equations have the solutions:

α2
1 =

f 2
a − v2

1

v2
1

x2
1 =

v2
1

f 2
a − v2

1

(B.21)

β2
2 =

f 2
a (f 2

a − v2
1 − v2

2)

v2
2(f 2

a − v2
1)

x2
2 =

v2
2f

2
a

(f 2
a − v2

1 − v2
2)(f 2

a − v2
1)

(B.22)

γ2
3 =

f 2
a (f 2

a − v2
1 − v2

2 − v2
3)

v2
3(f 2

a − v2
1 − v2

2)
x2

3 =
v2

3f
2
a

(f 2
a − v2

1 − v2
2 − v2

3)(f 2
a − v2

1 − v2
2)
, (B.23)

and so on. The general solution is

(α
(i)
i )2 =

f 2
a (f 2

a − v2
1 − v2

2 − . . .− v2
i )

v2
i (f

2
a − v2

1 − v2
2 − . . .− v2

i−1)
(B.24)

x2
i =

v2
i f

2
a

(f 2
a − v2

1 − v2
2 − . . .− v2

i )(f
2
a − v2

1 − v2
2 − . . .− v2

i−1)
, (B.25)

for i = 1 . . . (n− 1). Each α
(i)
i and xi must also obey

α
(i)
i xi < 0, (B.26)

but the signs of α(i) and xi are otherwise arbitrary.
Finally, the axion decay constant is:

f 2
a = v2

1 + v2
2 + . . .+ v2

n−1 + v2
n. (B.27)
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