
UC Berkeley
UC Berkeley Previously Published Works

Title
Bootstrap‐Based Inference for Cube Root Asymptotics

Permalink
https://escholarship.org/uc/item/3wn9z3b9

Journal
Econometrica, 88(5)

ISSN
0012-9682

Authors
Cattaneo, Matias D
Jansson, Michael
Nagasawa, Kenichi

Publication Date
2020

DOI
10.3982/ecta17950
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wn9z3b9
https://escholarship.org
http://www.cdlib.org/


Econometrica, Vol. 88, No. 5 (September, 2020), 2203–2219

BOOTSTRAP-BASED INFERENCE FOR CUBE ROOT ASYMPTOTICS

MATIAS D. CATTANEO
Department of Operations Research and Financial Engineering, Princeton University

MICHAEL JANSSON
Department of Economics, University of California at Berkeley and CREATES

KENICHI NAGASAWA
Department of Economics, University of Warwick

This paper proposes a valid bootstrap-based distributional approximation for M-
estimators exhibiting a Chernoff (1964)-type limiting distribution. For estimators of
this kind, the standard nonparametric bootstrap is inconsistent. The method proposed
herein is based on the nonparametric bootstrap, but restores consistency by altering
the shape of the criterion function defining the estimator whose distribution we seek
to approximate. This modification leads to a generic and easy-to-implement resam-
pling method for inference that is conceptually distinct from other available distribu-
tional approximations. We illustrate the applicability of our results with four examples
in econometrics and machine learning.

KEYWORDS: Cube root asymptotics, bootstrapping, maximum score, empirical risk
minimization.

1. INTRODUCTION

IN A SEMINAL PAPER, Kim and Pollard (1990) studied estimators exhibiting “cube root
asymptotics.” These estimators not only have a non-standard rate of convergence, but
also have the property that, rather than being Gaussian, their limiting distributions are of
Chernoff (1964) type; that is, the non-Gaussian limiting distribution is that of the maxi-
mizer of a Gaussian process. Kim and Pollard’s results cover not only celebrated examples
such as the maximum score estimator of Manski (1975) and the isotonic density estimator
of Grenander (1956), but also more contemporary estimators arising in examples related
to classification problems in machine learning (Mohammadi and van de Geer (2005)),
nonparametric inference under shape restrictions (Groeneboom and Jongbloed (2018)),
massive data M-estimation framework (Shi, Lu, and Song (2018)), and maximum score
estimation in high-dimensional settings (Mukherjee, Banerjee, and Ritov (2019)). More-
over, Seo and Otsu (2018) recently generalized Kim and Pollard (1990) to allow for n-
varying objective functions (n denotes the sample size), further widening the applicability
of cube-root-type asymptotics. For example, their results cover the conditional maximum
score estimator of Honoré and Kyriazidou (2000).

Matias D. Cattaneo: cattaneo@princeton.edu
Michael Jansson: mjansson@econ.berkeley.edu
Kenichi Nagasawa: Kenichi.Nagasawa@warwick.ac.uk
A previous version of this paper circulated under the title “Bootstrap-Based Inference for Cube Root Con-

sistent Estimators.” For comments and suggestions, we are grateful to Mehmet Caner, Andreas Hagemann,
Kei Hirano, Bo Honoré, Guido Kuersteiner, Mykhaylo Shkolnikov, Ronnie Sircar, Ulrich Müller, Whitney
Newey, and participants at various conferences, workshops, and seminars. Cattaneo gratefully acknowledges
financial support from the National Science Foundation through Grants SES-1459931 and SES-1947805, and
Jansson gratefully acknowledges financial support from the National Science Foundation through Grants SES-
1459967 and SES-1947662 and the research support of CREATES (funded by the Danish National Research
Foundation under Grant DNRF78).

© 2020 The Econometric Society https://doi.org/10.3982/ECTA17950

https://www.econometricsociety.org/
mailto:cattaneo@princeton.edu
mailto:mjansson@econ.berkeley.edu
mailto:Kenichi.Nagasawa@warwick.ac.uk
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA17950


2204 M. D. CATTANEO, M. JANSSON, AND K. NAGASAWA

An important feature of Chernoff-type asymptotic distributional approximations is that
the covariance kernel of the Gaussian process characterizing the limiting distribution
often depends on an infinite-dimensional nuisance parameter. From the perspective of
inference, this feature of the limiting distribution represents a nontrivial complication
relative to the conventional asymptotically normal case, where the limiting distribution is
known up to the value of a finite-dimensional nuisance parameter (namely, the covariance
matrix of the limiting distribution). The dependence of the limiting distribution on an
infinite-dimensional nuisance parameter implies that resampling-based distributional ap-
proximations seem to offer the most attractive approach to inference in estimation prob-
lems exhibiting cube root asymptotics. Unfortunately, however, the standard nonpara-
metric bootstrap is well known to be invalid in this setting (Abrevaya and Huang (2005),
Léger and MacGibbon (2006), Kosorok (2008), Sen, Banerjee, and Woodroofe (2010)).
The purpose of this paper is to propose a generic and easy-to-implement bootstrap-based
distributional approximation applicable in the context of cube root asymptotics.

As does the familiar nonparametric bootstrap, the method proposed herein employs
bootstrap samples of size n from the empirical distribution function. But unlike the non-
parametric bootstrap, which is inconsistent, our method offers a consistent distributional
approximation for estimators exhibiting cube root asymptotics. Consistency is achieved by
altering the shape of the criterion function defining the estimator whose distribution we
seek to approximate. Heuristically, the method is designed to ensure that the bootstrap
version of a certain empirical process has a mean resembling the large sample version of
its population counterpart. The latter is quadratic in the problems we study, and known
up to the value of a certain matrix. As a consequence, the only ingredient needed to im-
plement the proposed “reshapement” of the objective function is a consistent estimator
of the unknown matrix entering the quadratic mean of the empirical process. Such esti-
mators turn out to be generically available and easy to compute.

This paper is not the first to propose a consistent resampling-based distributional ap-
proximation for cube-root-type estimators. For canonical cube root asymptotic problems,
the best known consistent alternative to the nonparametric bootstrap is probably sub-
sampling (Politis and Romano (1994)), whose applicability was pointed out by Delgado,
Rodriguez-Poo, and Wolf (2001). Related applicable methods are the m-out-of-n boot-
strap (Bickel, Götze, and van Zwet (1997)), whose applicability was discussed and ex-
tended by Lee and Pun (2006) and Lee and Yang (2020), the rescaled bootstrap (Dümb-
gen (1993)), and the numerical bootstrap (Hong and Li (2020)). In addition, case-specific
(smooth or non-standard) bootstrap methods have been proposed for leading examples
such as monotone density estimation (Kosorok (2008), Sen, Banerjee, and Woodroofe
(2010)), maximum score estimation (Patra, Seijo, and Sen (2018)), and the current sta-
tus model (Groeneboom and Hendrickx (2018)). For the more generic cube-root-type
estimators analyzed in Seo and Otsu (2018), subsampling appears to be the only method
available, and indeed the authors discussed in their concluding remarks the need for (and
importance of) developing resampling methods based on the standard nonparametric
bootstrap. Our paper appears to be the first to provide one such method.

Like ours, each of the resampling methods mentioned above can be viewed as offering
a “robust” alternative to the standard nonparametric bootstrap but, unlike ours, existing
methods achieve consistency by modifying the distribution used to generate the boot-
strap sample. In contrast, our bootstrap-based method achieves consistency by means of
an analytic modification of the objective function used to construct the bootstrap-based
distributional approximation. As further discussed below, this approach results in a pro-
cedure that is conceptually related to the bootstrap methods developed by Andrews and
Soares (2010) and Fang and Santos (2019) in other econometrics contexts.
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Implementation of our procedure is not computationally demanding. Indeed, the only
ingredient needed to implement our modification on the objective function is a consistent
estimator of a certain Hessian matrix. We propose a generic estimator based on numerical
derivatives and present a consistency result as well as an approximate mean squared error
expansion for that estimator. In addition, we illustrate how example-specific features can
be sometimes exploited to construct alternative estimators.

The paper proceeds as follows. Section 2 is heuristic and outlines the main idea under-
lying our approach in the M-estimation setting of Kim and Pollard (1990). Section 3 then
makes that heuristic discussion rigorous in a more general setting similar to that of Seo
and Otsu (2018). Section 4 illustrates our bootstrap-based inference method with four ex-
amples: the maximum score estimator of Manski (1975, 1985), the conditional maximum
score panel data estimator of Manski (1987), the conditional maximum score dynamic
panel data estimator of Honoré and Kyriazidou (2000), and the classification estimator of
Mohammadi and van de Geer (2005). Section 5 reports simulation evidence for the case
of the maximum score estimator, and Section 6 concludes. Section 7 describes the proof
of our main result, while the Supplemental Material (Cattaneo, Jansson, and Nagasawa
(2020)) contains omitted proofs and details.

2. HEURISTICS

Suppose θ0 ∈Θ ⊆R
d is an estimand admitting the characterization

θ0 = argmax
θ∈Θ

M0(θ)� M0(θ)= E
[
m0(z�θ)

]
� (1)

where m0 is a known function, and where z is a random vector of which a random sample
z1� � � � � zn is available. Studying estimation problems of this kind for non-smooth m0, Kim
and Pollard (1990) gave conditions under which the M-estimator

θ̂n = argmax
θ∈Θ

M̂n(θ)� M̂n(θ)= 1
n

n∑
i=1

m0(zi�θ)�

exhibits cube root asymptotics:

3
√
n(θ̂n − θ0)� argmax

s∈Rd

{
G0(s)+Q0(s)

}
� (2)

where � denotes weak convergence, G0 is a non-degenerate zero-mean Gaussian process,
and Q0(s) = −s′H0s/2, where H0 = −∂2M0(θ0)/∂θ∂θ

′.
Whereas the matrix H0 governing the shape of Q0 is finite-dimensional, the covariance

kernel of G0 in (2) typically involves infinite-dimensional unknown quantities. As a con-
sequence, the limiting distribution of θ̂n tends to be more difficult to approximate than
Gaussian distributions, implying in turn that basing inference on θ̂n is more challenging
under cube root asymptotics than in the more familiar case where θ̂n is

√
n-consistent and

asymptotically normally distributed.
As a candidate method of approximating the distribution of θ̂n, consider the nonpara-

metric bootstrap. To describe it, let z∗
1�n� � � � � z∗

n�n denote a random sample from the em-
pirical distribution of z1� � � � zn and let the natural bootstrap analogue of θ̂n be denoted
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by

θ̂
∗
n = argmax

θ∈Θ
M̂∗

n(θ)� M̂∗
n(θ)= 1

n

n∑
i=1

m0

(
z∗
i�n�θ

)
�

Then, the nonparametric bootstrap estimator of P[θ̂n −θ0 ≤ ·] is given by P
∗
n[θ̂

∗
n − θ̂n ≤ ·],

where P
∗
n denotes a probability computed under the bootstrap distribution conditional

on the data. As is well documented, however, this estimator is inconsistent under cube
root asymptotics (Abrevaya and Huang (2005), Léger and MacGibbon (2006), Kosorok
(2008), Sen, Banerjee, and Woodroofe (2010)).

For the purpose of giving a heuristic, yet constructive, explanation of the inconsistency
of the nonparametric bootstrap, it is helpful to recall that a proof of (2) can be based on
the representation

3
√
n(θ̂n − θ0)= argmax

s∈Rd

{
Ĝn(s)+Qn(s)

}
� (3)

where, for s such that θ0 + sn−1/3 ∈Θ�

Ĝn(s) = n2/3
[
M̂n

(
θ0 + sn−1/3

) − M̂n(θ0)−M0

(
θ0 + sn−1/3

) +M0(θ0)
]

(4)

is a zero-mean random process, while

Qn(s) = n2/3
[
M0

(
θ0 + sn−1/3

) −M0(θ0)
]

(5)

is a non-random function that is correctly centered in the sense that argmaxs∈Rd Qn(s)= 0�
In cases where m0 is non-smooth but M0 is smooth, Ĝn and Qn are usually asymptotically
Gaussian and asymptotically quadratic, respectively, in the sense that

Ĝn(s)� G0(s) (6)

and

Qn(s) →Q0(s)� (7)

Under regularity conditions ensuring among other things that the convergence in (6) and
(7) is suitably uniform in s� (2) then follows from an application of a continuous mapping-
type theorem for the argmax functional to the representation in (3).

Similarly to (3), the bootstrap analogue of θ̂n admits a representation of the form

3
√
n
(
θ̂

∗
n − θ̂n

) = argmax
s∈Rd

{
Ĝ∗

n(s)+ Q̂n(s)
}
�

where, for s such that θ̂n + sn−1/3 ∈ Θ,

Ĝ∗
n(s) = n2/3

[
M̂∗

n

(
θ̂n + sn−1/3

) − M̂∗
n(θ̂n)− M̂n

(
θ̂n + sn−1/3

) + M̂n(θ̂n)
]

and

Q̂n(s)= n2/3
[
M̂n

(
θ̂n + sn−1/3

) − M̂n(θ̂n)
]
�

Under mild conditions, Ĝ∗
n satisfies the following bootstrap counterpart of (6):

Ĝ∗
n(s)�P G0(s)� (8)
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where �P denotes conditional weak convergence in probability (defined as in van der
Vaart and Wellner (1996), Section 2.9). On the other hand, although Q̂n is non-random
under the bootstrap distribution and satisfies argmaxs∈Rd Q̂n(s) = 0� it turns out that
Q̂n(s)�P Q0(s) in general. In other words, the natural bootstrap counterpart of (7) typi-
cally fails and, as a partial consequence, so does the natural bootstrap counterpart of (2);
that is, 3

√
n(θ̂

∗
n − θ̂n) 	�P argmaxs∈Rd {G0(s)+Q0(s)}.

To the extent that the inconsistency of the bootstrap can be attributed to the fact that
the shape of Q̂n fails to replicate that of Qn, it seems plausible that a consistent bootstrap-
based distributional approximation can be obtained by basing the approximation on

θ̃
∗
n = argmax

θ∈Θ
M̃∗

n(θ)� M̃∗
n(θ)= 1

n

n∑
i=1

m̃n

(
z∗
i�n�θ

)
�

where m̃n is a suitably “reshaped” version of m0 satisfying two properties. First, G̃∗
n should

be asymptotically equivalent to Ĝ∗
n, where G̃∗

n is the counterpart of Ĝ∗
n associated with m̃n:

G̃∗
n(s) = n2/3

[
M̃∗

n

(
θ̂n + sn−1/3

) − M̃∗
n(θ̂n)− M̃n

(
θ̂n + sn−1/3

) + M̃n(θ̂n)
]
�

M̃n(θ)= 1
n

n∑
i=1

m̃n(zi�θ)�

Second, and most importantly, Q̃n should be asymptotically quadratic, where Q̃n is the
counterpart of Q̂n associated with m̃n:

Q̃n(s) = n2/3
[
M̃n

(
θ̂n + sn−1/3

) − M̃n(θ̂n)
]
�

Accordingly, let

m̃n(z�θ)=m0(z�θ)− M̂n(θ)− 1
2
(θ− θ̂n)

′H̃n(θ− θ̂n)�

where H̃n is an estimator of H0. Then,

3
√
n
(
θ̃

∗
n − θ̂n

) = argmax
s∈Rd

{
G̃∗

n(s)+ Q̃n(s)
}
�

where, by construction, G̃∗
n(s) = Ĝ∗

n(s) and Q̃n(s) = −s′H̃ns/2. Because G̃∗
n = Ĝ∗

n,
G̃∗

n(s) �P G0(s) whenever (8) holds. In addition, we have Q̃n(s) →P Q0(s) provided
H̃n →P H0. As a consequence, it seems plausible that if H̃n →P H0, then our pro-
posed bootstrap-based distributional approximation will be valid in the sense that

3
√
n(θ̃

∗
n − θ̂n)�P argmaxs∈Rd {G0(s)+Q0(s)}.

For the purposes of situating this paper in the literature, the following alternative
heuristic explanation of our approach may be useful. Restating the result in (2) as

3
√
n(θ̂n − θ0)� S0(G0)� S0(G)= argmax

s∈Rd

{
G(s)+Q0(s)

}
�

our procedure approximates the distribution of S0(G0) by that of S̃n(Ĝ
∗
n), where the dis-

tribution of the bootstrap process Ĝ∗
n approximates that of G0 and where the statistic
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S̃n(G) = argmaxs∈Rd {G(s) + Q̃n(s)} is an estimator of S0(G). In other words, our proce-
dure replaces the functional S0 with a consistent estimator (namely, S̃n) and its random
argument G0 with a bootstrap approximation (namely, Ĝ∗

n). The same type of generic
construction has appeared in the econometrics literature before, notably in Andrews and
Soares (2010) and Fang and Santos (2019).

Our bootstrap-based distributional approximation can be shown to be consistent also
in the more standard case where mn(z�θ) is sufficiently smooth in θ to ensure that an
approximate maximizer of M̂n is asymptotically normal and that the nonparametric boot-
strap is consistent. In fact, θ̃

∗
n is (first-order) asymptotically equivalent to θ̂

∗
n in that stan-

dard case, so our procedure can be interpreted as a modification of the nonparametric
bootstrap that is designed to be “robust” to the types of non-smoothness that give rise to
cube root asymptotics.

3. MAIN RESULT

When making the heuristics of Section 2 precise, we consider the more general situation
where the estimator θ̂n is an approximate maximizer (with respect to θ ∈ Θ⊆R

d) of

M̂n(θ)= 1
n

n∑
i=1

mn(zi�θ)�

where mn is a known function, and where z1� � � � � zn is a random sample of a random
vector z. This formulation of M̂n, which reduces to that of Section 2 when mn does not
depend on n, is adopted in order to cover certain estimation problems where, rather than
admitting a characterization of the form (1), the estimand θ0 admits the characterization

θ0 = argmax
θ∈Θ

M0(θ)� M0(θ)= lim
n→∞

Mn(θ)� Mn(θ)= E
[
mn(z�θ)

]
�

In other words, in the setting considered in this section, θ̂n approximately maximizes
a function M̂n whose population counterpart Mn can be interpreted as a regularization
(in the sense of Bickel and Li (2006)) of a function M0 whose maximizer θ0 is the object
of interest. This generalization is attractive because it allows us to formulate results that
cover local M-estimators such as the conditional maximum score estimator of Honoré
and Kyriazidou (2000). Studying this setting, Seo and Otsu (2018) gave conditions under
which θ̂n converges at a rate equal to the cube root of the “effective” sample size and
has a limiting distribution of Chernoff (1964) type. Analogous conclusions will be drawn
below, albeit under slightly different conditions.

For any n and any δ > 0, define

m̄n(z)= sup
m∈Mn

∣∣m(z)
∣∣� Mn = {

mn(·�θ) : θ ∈Θ
}
�

and

d̄δ
n(z)= sup

d∈Dδ
n

∣∣d(z)∣∣� Dδ
n = {

mn(·�θ)−mn(·�θ0) : θ ∈Θδ
0

}
�

Θδ
0 = {

θ ∈Θ : ‖θ− θ0‖ ≤ δ
}
�
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Condition CRA (Cube Root Asymptotics) For some qn > 0 with rn = 3
√
nqn → ∞, the fol-

lowing are satisfied:
(i) The class {Mn : n ≥ 1} is uniformly manageable for the envelopes m̄n and

qnE[m̄n(z)2] = O(1). Also, supθ∈Θ |Mn(θ)−M0(θ)| = o(1) and, for every δ > 0,
supθ∈Θ\Θδ

0
M0(θ) <M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 and Mn are twice continu-
ously differentiable on Θδ

0 and supθ∈Θδ
0
‖∂2[Mn(θ)−M0(θ)]/∂θ∂θ′‖ = o(1).

Also, rn‖∂Mn(θ0)/∂θ‖ = o(1) and H0 = −∂2M0(θ0)/∂θ∂θ
′ is positive definite.

(iii) For some δ > 0, the class {Dδ′
n : n ≥ 1�0 < δ′ ≤ δ} is uniformly manageable for

the envelopes d̄δ′
n and qn sup0<δ′≤δE[d̄δ′

n (z)
2/δ′] = O(1).

(iv) For every δn > 0 with δn = O(r−1
n ), q3

nr
−1
n E[d̄δn

n (z)4] = o(1) and, for all s� t ∈ R
d

and for some C0 with C0(s� s)+ C0(t� t)− 2C0(s� t) > 0 for s 	= t�

sup
θ∈Θδn

0

∣∣∣∣qn

δn

E
[{
mn(z�θ+ δns)−mn(z�θ)

}{
mn(z�θ+ δnt)−mn(z�θ)

}] − C0(s� t)
∣∣∣∣

= o(1)�

(v) For every δn > 0 with δn = O(r−1
n ),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

qnE
[
1
{
qnd̄

δ
n(z) > C

}
d̄δ
n(z)

2/δ
] = 0

and sup
θ�θ′∈Θδn

0
E[|mn(z�θ)−mn(z�θ

′)|]/‖θ− θ′‖ =O(1).

To interpret Condition CRA, consider first the benchmark case where mn = m0 and
qn = 1. In this case, the condition is similar to assumptions (ii)–(vii) of the main theorem
of Kim and Pollard (1990), to which the reader is referred for a definition of the term
(uniformly) manageable. The differences between their assumptions and Condition CRA
are technical in nature, since we need to slightly strengthen their assumptions in order to
be able to analyze the bootstrap. For instance, the displayed part of Condition CRA(iv) is
a locally uniform (with respect to θ near θ0) version of its counterpart in Kim and Pollard
(1990). More generally, Condition CRA can be interpreted as an n-varying version of a
suitably (for the purpose of analyzing the bootstrap) strengthened version of the assump-
tions of Kim and Pollard (1990). The differences between Condition CRA and the i.i.d.
version of the conditions in Seo and Otsu (2018) are also technical in nature, but for com-
pleteness we highlight two here. First, they controlled the complexity of various function
classes using the concept of bracketing entropy, while we follow Kim and Pollard (1990)
and obtain maximal inequalities using bounds on uniform entropy numbers implied by
the concept of (uniform) manageability. Second, whereas Seo and Otsu (2018) controlled
the bias of θ̂n through a locally uniform bound on Mn −M0, Condition CRA controls the
bias through the first and second derivatives of Mn −M0.

Under Condition CRA, the effective sample size is nqn = r3
n and if θ̂n is an approximate

maximizer of M̂n, then rn(θ̂n −θ0) has a limiting distribution of Chernoff (1964) type. The
heuristics of the previous section are rate-adaptive (i.e., 3

√
n can be replaced by a generic

rn), so once again it stands to reason that if H̃n is a consistent estimator of H0, then the
distribution of rn(θ̂n − θ0) can be consistently estimated by that of rn(θ̃

∗
n − θ̂n), where θ̃

∗
n
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is an approximate maximizer of

M̃∗
n(θ)= 1

n

n∑
i=1

m̃n

(
z∗
i�n�θ

)
� m̃n(z�θ) =mn(z�θ)− M̂n(θ)− 1

2
(θ− θ̂n)

′H̃n(θ− θ̂n)�

with z∗
1�n� � � � � z∗

n�n being a random sample from the empirical distribution of z1� � � � � zn.
A precise statement is given in the following theorem.

THEOREM 1: Suppose Condition CRA holds. If H̃n →P H0 and if

M̂n(θ̂n)≥ sup
θ∈Θ

M̂n(θ)− oP

(
r−2
n

)
and M̃∗

n

(
θ̃

∗
n

) ≥ sup
θ∈Θ

M̃∗
n(θ)− oP

(
r−2
n

)
�

then

rn(θ̂n − θ0)� argmax
s∈Rd

{
G0(s)+Q0(s)

}
� (9)

and

rn
(
θ̃

∗
n − θ̂n

)
�P argmax

s∈Rd

{
G0(s)+Q0(s)

}
� (10)

where G0 is a zero-mean Gaussian process with covariance kernel C0 and Q0(s)= −s′H0s/2.

The algorithm for our bootstrap-based distributional approximation is as follows:
Step 1. Using the sample z1� � � � � zn, compute θ̂n by approximately maximizing M̂n(θ).
Step 2. Using θ̂n and z1� � � � � zn, compute H̃n. (See Section 3.1 for a generic estimator H̃n.)
Step 3. Using θ̂n, H̃n, and the bootstrap sample z∗

1�n� � � � � z∗
n�n, compute θ̃

∗
n by approximately

maximizing M̃∗
n(θ). (θ̂n and H̃n are not recomputed at this step.)

Step 4. Repeat Step 3 to generate draws from the distribution of rn(θ̃
∗
n − θ̂n).

3.1. Estimation of H0

A generic numerical derivative estimator of H0 is the matrix H̃ND
n with element (k� l)

given by

H̃ND
n�kl = − 1

4ε2
n

[
M̂n(θ̂n + ekεn + elεn)− M̂n(θ̂n + ekεn − elεn)− M̂n(θ̂n − ekεn + elεn)

+ M̂n(θ̂n − ekεn − elεn)
]
�

where ek is the kth unit vector in R
d and where εn is a positive tuning parameter. Condi-

tions under which this estimator is consistent are given in the following lemma.

LEMMA 1: Suppose Condition CRA holds and that rn(θ̂n − θ0) = OP(1). If εn → 0 and if
rnεn → ∞, then H̃ND

n →P H0.

Plausibility of the high-level condition rn(θ̂n−θ0)=OP(1) follows from (9). To facilitate
practical implementation, it is useful to go beyond consistency and develop a Nagar-type
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mean squared error (MSE) expansion that can be used to select εn. To state one such
result for H̃ND

n�kl, define

M̈n�kl(θ)= ∂2

∂θk ∂θl

Mn(θ)� M̈0�kl(θ)= ∂2

∂θk ∂θl

M0(θ)�

Bkl = −1
6

[
∂2

∂θ2
k

M̈0�kl(θ0)+ ∂2

∂θ2
l

M̈0�kl(θ0)

]
�

and

Vkl = 1
8
[
C0(ek + el� ek + el)+ C0(ek − el� ek − el)− 2C0(ek + el� ek − el)

− 2C0(ek + el�−ek + el)
]
�

LEMMA 2: Suppose the conditions of Lemma 1 hold and that, for some δ > 0, M̈0�kl

and M̈n�kl are twice continuously differentiable on Θδ
0 with supθ∈Θδ

0
‖∂2[M̈n�kl(θ)− M̈0�kl(θ)]/

∂θ∂θ′‖ = o(1). If C0(s�−s) = 0 and C0(s� t)= C0(−s�−t) for all s� t ∈R
d , then H̃ND

n�kl admits
an approximation ȞND

n�kl satisfying

H̃ND
n�kl = ȞND

n�kl + oP

(
ε2
n + 1√

r3
nε

3
n

)
+OP

(
1
rn

)
�

where the OP(1/rn) term does not depend on εn and where

E
[(
ȞND

n�kl −Hn�kl

)2] = ε4
nB2

kl +
1

r3
nε

3
n

Vkl + o

(
ε4
n + 1

r3
nε

3
n

)
� Hn�kl = −M̈n�kl(θ0)�

The conditions C0(s�−s) = 0 and C0(s� t) = C0(−s�−t) are satisfied in all of the ex-
amples we have analyzed. Using the lemma, the approximate MSE (AMSE), ε4

nB2
kl +

r−3
n ε−3

n Vkl, can be minimized by choosing εn proportional to r−3/7
n , the optimal factor of

proportionality being a function of Bkl and Vkl. To be specific, the optimal εn is given by
εAMSEn�kl = (3Vkl/4B2

kl)
1/7r−3/7

n , a feasible version of which can be constructed by replacing Bkl

and Vkl with preliminary estimators thereof.

4. EXAMPLES

4.1. Maximum Score

To describe a version of the maximum score estimator of Manski (1975, 1985), suppose
z1� � � � � zn is a random sample of z = (y�x′)′ generated by the binary response model

y = 1
(
x′β0 + u≥ 0

)
� Median(u|x) = 0�

where β0 ∈ R
d+1 is an unknown parameter of interest, x ∈ R

d+1 is a vector of covariates,
and u is an unobserved error term. Following Abrevaya and Huang (2005), we employ
the parameterization β0 = (1�θ′

0)
′, where θ0 ∈ R

d is unknown. In other words, we assume
that the first element of β0 is positive and then normalize the (unidentified) scale of β0 by
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setting its first element equal to unity. Partitioning x conformably with β0 as x = (x1�x′
2)

′,
a maximum score estimator of θ0 is any θ̂

MS

n approximately maximizing M̂n for

mn(z�θ)= mMS(z�θ)= (2y − 1)1(x1 + x′
2θ≥ 0)�

Regarded as a member of the class of M-estimators exhibiting cube root asymptotics,
the maximum score estimator is representative in a couple of respects. First, under easy-
to-interpret primitive conditions, the estimator is covered by the results of Section 3.
Second, in addition to the generic estimator H̃ND

n discussed above, the maximum score
estimator admits example-specific consistent estimators of the H0 associated with it.

Under standard regularity conditions (stated in Section A.2 of the Supplemental Ma-
terial), Condition CRA is satisfied with qn = 1,

H0 = HMS = 2E
[
fu|x1�x2

(
0| − x′

2θ0�x2

)
fx1|x2

(−x′
2θ0|x2

)
x2x′

2

]
and

C0(s� t)= CMS(s� t)= E
[
fx1|x2

(−x′
2θ0|x2

)
min

{∣∣x′
2s

∣∣� ∣∣x′
2t

∣∣}1(
sgn

(
x′

2s
) = sgn

(
x′

2t
))]

�

where fa|b denotes the conditional Lebesgue density of a given b. As a consequence, The-
orem 1 is applicable to θ̂

MS

n and the consistency requirement H̃n →P HMS is satisfied by the
numerical derivative estimator discussed in Section 3.1 if εn → 0 and nε3

n → ∞. Under the
additional regularity conditions of Lemma 2, MSE-optimal tuning parameter choices are
feasible. In addition, alternative consistent estimators of HMS can be constructed exploit-
ing the specific structure of this example. One option is to employ a “plug-in” estimator
of HMS based on nonparametric estimators of fu|x1�x2 and fx1|x2 . An alternative, example-
specific estimator is

H̃MS
n = −1

n

n∑
i=1

(2yi − 1)K̇n

(
x1i + x′

2iθ̂
MS

n

)
x2ix′

2i�

where, for a differentiable kernel function K and a positive bandwidth hn, K̇n(u) =
dKn(u)/du and Kn(u) = K(u/hn)/hn. In words, H̃MS

n is constructed by “smoothing out”
the indicator function entering mMS(z�θ) and then twice differentiating the corresponding
objective function (previously used by Horowitz (1992)).

4.2. Panel Maximum Score

Consider the panel data binary response model

Yt = 1
(
X′

tβ0 + α+ ut ≥ 0
)
� t = 1�2�

where β0 ∈R
d+1 is an unknown parameter of interest, α is an unobserved (time-invariant)

individual-specific effect, and ut is an unobserved error term. Analyzing this model, Man-
ski (1987) gave conditions under which β0 is identified up to scale and demonstrated
consistency of a conditional maximum score estimator.

Suppose β0 is identified up to scale and that its first element is positive, in which case we
can normalize that element to unity and employ the parameterization β0 = (1�θ′

0)
′, where

θ0 ∈ R
d is unknown. To describe a version of the estimator of Manski (1987), partition Xt

conformably with β0 as Xt = (X1t �X′
2t)

′ and define z = (y�x1�x′
2)

′, where y = Y2 − Y1,
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x1 =X12 −X11, and x2 = (X22 − X21). Assuming z1� � � � � zn is a random sample of z, a panel
maximum score estimator of θ0 is any θ̂

PMS

n approximately maximizing M̂n for

mn(z�θ)= mPMS(z�θ)= y1(x1 + x′
2θ ≥ 0)�

As one would expect, the properties of θ̂
PMS

n are qualitatively similar to those of θ̂
MS

n .
To be specific, under regularity conditions (stated in Section A.3 of the Supplemental
Material), the panel maximum score estimator is covered by the results of Section 3 and
an example-specific alternative to the generic numerical derivative estimator is available,
namely,

H̃PMS
n = −n−1

n∑
i=1

yiK̇n

(
x1i + x′

2iθ̂
PMS

n

)
x2ix′

2i�

where K̇n is as in the maximum score example.

4.3. Conditional Maximum Score

Consider the dynamic panel data binary response model

Yt = 1
(
X′

tβ0 +Yt−1γ0 + α+ ut ≥ 0
)
� t = 1�2�3�

where β0 ∈ R
d and γ0 ∈R are unknown parameters of interest, α is an unobserved (time-

invariant) individual-specific effect, and ut is an unobserved error term. Honoré and Kyr-
iazidou (2000) analyzed this model and gave conditions under which β0 and γ0 are iden-
tified up to a common scale factor. Assuming these conditions hold and that the first
element of β0 is positive, we can normalize that element to unity and employ the param-
eterization (β′

0�γ0)
′ = (1�θ′

0)
′, where θ0 ∈ R

d is unknown.
To describe a version of the conditional maximum score estimator of Honoré and

Kyriazidou (2000), partition Xt after the first element as Xt = (X1t �X′
2t)

′ and define
z = (y�x1�x′

2�w′)′, where y = Y2 − Y1, x1 = X12 − X11, x2 = ((X22 − X21)
′�Y3 − Y0)

′, and
w = X2 − X3. Assuming z1� � � � � zn is a random sample of z, a conditional maximum score
estimator of θ0 is any θ̂

CMS

n approximately maximizing M̂n for

mn(z�θ)= mCMS
n (z�θ)= y1(x1 + x′

2θ ≥ 0)κn(w)�

where κn(w) = κ(w/bn)/b
d
n for a kernel function κ and a bandwidth bn.

Through its dependence on bn, the function mCMS
n depends on n in a nonnegligible way.

In particular, the effective sample size is nbd
n (rather than n) in the current setting, so to

the extent that they exist, one would expect primitive sufficient conditions for Condition
CRA to include qn = bd

n in this example. Apart from this predictable change, the proper-
ties of the conditional maximum score estimator θ̂

CMS

n turn out to be qualitatively similar
to those of θ̂

MS

n . To be specific, under regularity conditions (stated in Section A.4 of the
Supplemental Material), the conditional maximum score estimator is covered by the re-
sults of Section 3 and an example-specific alternative to the generic numerical derivative
estimator is available, namely,

H̃CMS
n = −n−1

n∑
i=1

yiK̇n

(
x1i + x′

2iθ̂
CMS

n

)
x2ix′

2iκn(wi)�

where K̇n is as in the maximum score example.
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4.4. Empirical Risk Minimization

Mohammadi and van de Geer (2005) considered two-category classification problems
in machine learning. Specifically, given a binary outcome y ∈ {−1�1} and a vector of fea-
tures x ∈ X , the goal is to estimate the θ0 that minimizes the misclassification error (or
risk) P[hθ(x) 	= y] with respect to θ ∈ Θ ⊆ R

d , where {hθ : θ ∈ Θ} is a collection of clas-
sifiers. For simplicity, we consider the case where the feature is univariate with support
X = [0�1] and the classifiers are of the form

hθ(x)=
d+1∑
�=1

(−1)�1(θ�−1 ≤ x < θ�)� θ = (θ1� θ2� � � � � θd)
′�

where Θ= {(θ1� θ2� � � � � θd)
′ ∈ [0�1]d : 0 = θ0 ≤ θ1 ≤ · · · ≤ θd ≤ θd+1 = 1}.

Assuming z1� � � � � zn is a random sample of z, an empirical risk minimizer is any θ̂
ERM

n

approximately maximizing M̂n for mn(z�θ) = mERM(z�θ) = −1(hθ(x) 	= y). Under regu-
larity conditions similar to those of Mohammadi and van de Geer (2005, Section 2.1), the
empirical risk minimizer is covered by Theorem 1 and the consistency requirement on H̃n

can be met in various ways; for details, see Section A.5 of the Supplemental Material.

5. SIMULATIONS

We illustrate the numerical performance of our proposed bootstrap-based inference
methods for the maximum score estimator. Given the setup in Section 4.1, we generate
data from that model with d = 1, θ0 = 1, x = (x1�x2)

′
∼ N ((0�1)′� I2) with I2 the (2 ×

2) identity matrix, and u generated by three distinct distributions. Specifically, DGP 1
sets u ∼ Logistic(0�1)/

√
2π2/3, DGP 2 sets u ∼ T3/

√
3, where T3 denotes a Student’s t-

distribution with 3 degrees of freedom, and DGP 3 sets u ∼ (1 + 2(x1 + x2)
2 + (x1 +

x2)
4)Logistic(0�1)/

√
π2/48.

The Monte Carlo experiment employs a sample size n = 1000 with B = 2000 boot-
strap replications and S = 2000 simulations. For each of the three DGPs, we im-
plement the standard nonparametric bootstrap, the m-out-of-n bootstrap using m ∈
{n1/2�� n2/3�� n4/5�}, and our proposed method using the two estimators H̃MS

n and H̃ND
n

of H0. We report empirical coverage for nominal 95% confidence intervals and their av-
erage interval length. For the case of our proposed procedures, we investigate their per-
formance using (i) infeasible (simulation-based) MSE-optimal choices of tuning parame-
ters (bandwidth/derivative step), denoted by hMSE and εMSE, and (ii) infeasible and feasible
AMSE-optimal choices of the tuning parameters, denoted by hAMSE, ĥAMSE, εAMSE, and ε̂AMSE;
for details, see Section A.2 of the Supplemental Material.

Table I presents the main results, which are consistent across all three simulation de-
signs. First, as expected, the standard nonparametric bootstrap (labeled “Standard”) does
not perform well, leading to confidence intervals with an average 64% empirical coverage
rate. Second, the m-out-of-n bootstrap (labeled “m-out-of-n”) performs somewhat better
for small subsamples, but leads to very large average interval length of the resulting confi-
dence intervals. Our proposed methods, on the other hand, exhibit good finite sample per-
formance in this Monte Carlo experiment. Results employing the example-specific plug-in
estimator H̃MS

n are presented under the label “Plug-in” while results employing the generic
numerical derivative estimator H̃ND

n are reported under the label “Num Deriv.” Empirical
coverage appears stable across different values of the tuning parameters for each method,
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TABLE I

SIMULATIONS, MAXIMUM SCORE ESTIMATOR, 95% CONFIDENCE INTERVALSa

DGP 1 DGP 2 DGP 3

h�ε Coverage Length h�ε Coverage Length h�ε Coverage Length

Standard
0�625 0�472 0�647 0�475 0�654 0�243

m-out-of-n
m= n1/2� 0�997 1�698 0�998 1�753 1�000 1�890
m= n2/3� 0�978 1�185 0�983 1�221 0�989 0�724
m= n4/5� 0�899 0�820 0�897 0�837 0�930 0�447

Plug-in: H̃MS
n

hMSE 0�620 0�954 0�511 0�580 0�957 0�523 0�150 0�962 0�277
hAMSE 1�108 0�972 0�590 0�480 0�951 0�518 0�123 0�942 0�263
ĥAMSE 0�443 0�940 0�508 0�409 0�946 0�518 0�155 0�957 0�278

Num Deriv: H̃ND
n

εMSE 1�400 0�936 0�483 1�360 0�938 0�485 0�290 0�939 0�249
εAMSE 0�537 0�880 0�414 0�573 0�894 0�426 0�224 0�902 0�227
ε̂AMSE 0�518 0�876 0�413 0�512 0�882 0�420 0�369 0�947 0�270

a(i) Panel Standard refers to standard nonparametric bootstrap, Panel m-out-of-n refers to m-out-of-n nonparametric bootstrap
with subsample size m, Panel Plug-in: H̃MS

n refers to our proposed bootstrap-based method implemented using the example-specific
plug-in drift estimator, and Panel Num Deriv: H̃ND

n refers to our proposed bootstrap-based method implemented using the generic
numerical derivative drift estimator. (ii) Column “h, ε” reports tuning parameter value used or average across simulations when es-
timated, and Columns “Coverage” and “Length” report empirical coverage and average length of bootstrap-based 95% percentile
confidence intervals, respectively. (iii) hMSE and εMSE correspond to the simulation MSE-optimal choices, hAMSE and εAMSE corre-
spond to the AMSE-optimal choices, and ĥAMSE and ε̂AMSE correspond to the ROT feasible implementation of ĥAMSE and ε̂AMSE
described in the Supplemental Material.

with better performance in the case of H̃MS
n . We conjecture that n = 1000 is too small for

the numerical derivative estimator H̃ND
n to lead to as good inference performance as H̃MS

n

(e.g., note that the MSE-optimal choice εMSE is greater than 1). Nevertheless, empirical
coverage of confidence intervals constructed using our proposed bootstrap-based method
is close to 95% in all cases except when H̃ND

n is used with either the infeasible asymp-
totic choice εAMSE or its estimated counterpart ε̂AMSE, and with an average interval length
of at most half that of any of the m-out-of-n competing confidence intervals. In partic-
ular, confidence intervals based on H̃MS

n implemented with the feasible bandwidth ĥAMSE

perform quite well across the three DGPs considered.

6. CONCLUSION

We developed a valid resampling procedure for cube root asymptotics based on the
nonparametric bootstrap. Whereas the standard nonparametric bootstrap is known to be
invalid in the setting we study, we show that bootstrap validity can be restored by applying
a carefully tailored reshapement of the objective function defining the estimator. Such
reshapement is easy to implement both in general and in specific cases, as illustrated by
the distinct examples we considered.

Seo and Otsu (2018) gave conditions under which results of the form (9) can be ob-
tained also when the data exhibit weak dependence; see also Bagchi, Banerjee, and Stoev
(2016), and references therein. It seems plausible that a version of our procedure, im-
plemented with a resampling procedure suitable for dependent data, can be shown to be
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consistent under similar conditions, but it is beyond the scope of this paper to substantiate
that conjecture.

7. PROOF OF THEOREM 1

The proof proceeds by first showing (9) and then using that result to establish (10). In
both cases, we employ arguments similar to those used in the proof of the main theorem
of Kim and Pollard (1990). The remainder of this section outlines the main steps in the
proof; for technical details, see Lemmas A.1–A.10 in Section A.1 of the Supplemental
Material.

Proof of (9). The estimator θ̂n is assumed to satisfy

{
Ĝn(s)+Qn(s)

}|s=rn(θ̂n−θ0)
≥ sup

s∈Rd

{
Ĝn(s)+Qn(s)

} + oP(1)�

where

Ĝn(s)= r2
n

[
M̂n

(
θ0 + sr−1

n

) − M̂n(θ0)−Mn

(
θ0 + sr−1

n

) +Mn(θ0)
]
1
(
θ0 + sr−1

n ∈ Θ
)

and

Qn(s)= r2
n

[
Mn

(
θ0 + sr−1

n

) −Mn(θ0)
]
1
(
θ0 + sr−1

n ∈ Θ
)
�

By the argmax continuous mapping theorem (e.g., van der Vaart and Wellner (1996),
Theorem 3.2.2), it therefore suffices to show that rn(θ̂n −θ0)= OP(1) and that Ĝn +Qn �
G0 + Q0 in the topology of uniform convergence on compacta. (The other conditions
required by the argmax continuous mapping theorem are easily verified.)

To obtain the rate of convergence of θ̂n, we begin by using a standard argument to show
that θ̂n − θ0 = oP(1) under Condition CRA(i) and then strengthen that conclusion to
rn(θ̂n − θ0) = OP(1) by using Conditions CRA(ii)–(iii) and proceeding along the lines of
van der Vaart and Wellner (1996, Theorem 3.2.5). In both cases, we employ the maximal
inequality in Pollard (1989, Theorem 4.2); for details, see Lemmas A.1 and A.3 of the
Supplemental Material.

Next, because Qn is non-random, Ĝn + Qn � G0 +Q0 in the topology of uniform con-
vergence on compacta if Qn converges compactly to Q0 and if Ĝn � G0 in the topology of
uniform convergence on compacta. Compact convergence of Qn follows from Condition
CRA(ii); for details, see Lemma A.2 of the Supplemental Material. Also, to show that
Ĝn � G0 in the topology of uniform convergence on compacta, it suffices to show that Ĝn

converges to G0 in the sense of weak convergence of finite-dimensional projections and
that {Ĝn(s) : ‖s‖ ≤K} is stochastically equicontinuous for every K > 0.

Under Conditions CRA(ii)–(iv), weak convergence of finite-dimensional projections
can be shown using the Cramér–Wold device and the fact that E[Ĝn(s)Ĝn(t))] converges
to C0(s� t) for every s� t ∈ R

d; for details, see Lemma A.4 of the Supplemental Material.
Finally, under Conditions CRA(iii) and CRA(v) and employing the maximal inequality
in Pollard (1989, Theorem 4.2), stochastic equicontinuity can be shown by proceeding as
in the proof of Kim and Pollard (1990, Lemma 4.6); for details, see Lemma A.5 of the
Supplemental Material.
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Proof of (10). The proof of (10) is a natural bootstrap analog of the proof of (9). The
estimator θ̃

∗
n is assumed to satisfy

{
G̃∗

n(s)+ Q̃n(s)
}|s=rn(θ̃

∗
n−θ̂n)

≥ sup
s∈Rd

{
G̃∗

n(s)+ Q̃n(s)
} + oP(1)�

where

G̃∗
n(s)= r2

n

[
M̃∗

n

(
θ̂n + sr−1

n

) − M̃∗
n(θ̂n)− M̃n

(
θ̂n + sr−1

n

) + M̃∗
n(θ̂n)

]
1
(
θ̂n + sr−1

n ∈Θ
)

and

Q̃n(s) = r2
n

[
M̃n

(
θ̂n + sr−1

n

) − M̃n(θ̂n)
]
1
(
θ̂n + sr−1

n ∈Θ
) = −1

2
s′H̃ns1

(
θ̂n + sr−1

n ∈Θ
)
�

By the argmax continuous mapping theorem, it therefore suffices to show that rn(θ̃
∗
n −

θ̂n) = OP(1) and that G̃∗
n + Q̃n �P G0 + Q0 in the topology of uniform convergence on

compacta.
Using H̃n →P H0, to obtain the rate of convergence of θ̃

∗
n we first show that θ̃

∗
n − θ̂n =

oP(1) under Condition CRA(i) and then strengthen that conclusion to rn(θ̃
∗
n− θ̂n)=OP(1)

by using rn(θ̂n − θ0) = OP(1) and Condition CRA(iii). As in the derivation of the conver-
gence rate of θ̂n, both steps employ the maximal inequality in Pollard (1989, Theorem
4.2); for details, see Lemmas A.6 and A.8 of the Supplemental Material.

Next, because Q0 is non-random, G̃∗
n + Q̃n �P G0 +Q0 in the topology of uniform con-

vergence on compacta if Q̃n →P Q0 in the topology of uniform convergence on compacta
and if Ĝn � G0 in the topology of uniform convergence on compacta. By construction,
Q̃n is such that if H̃n →P H0 and if θ̂n →P θ0 ∈ int(Θ), then Q̃n →P Q0 in the topology
of uniform convergence on compacta; for details, see Lemma A.7 of the Supplemental
Material.

Also, to show that G̃∗
n �P G0 in the topology of uniform convergence on compacta, it

suffices to show that G̃∗
n converges to G0 in the sense of conditional weak convergence

in probability of finite-dimensional projections and that {G̃∗
n(s) : ‖s‖ ≤ K} is stochasti-

cally equicontinuous for every K > 0. Conditional weak convergence in probability of
finite-dimensional projections can be shown using the Cramér–Wold device and the fact
that the maximal inequality in Pollard (1989, Theorem 4.2) can be used to show that
E

∗
n[G̃∗

n(s)G̃
∗
n(t))] converges in probability to C0(s� t) for every s� t ∈ R

d , where E
∗
n denotes

an expectation computed under the bootstrap distribution conditional on the data; for
details, see Lemma A.9 of the Supplemental Material. Finally, employing the maximal
inequality in Pollard (1989, Theorem 4.2), stochastic equicontinuity can be shown by pro-
ceeding as in the proof of Kim and Pollard (1990, Lemma 4.6); for details, see Lemma
A.10 of the Supplemental Material.
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