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Toward a causal model of
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1Department of Neurosurgery, Brain and Spinal Injury Center, Weill Institutes for Neurosciences,
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Chronic low back pain (cLBP) a	icts 8. 2% of adults in the United States,

and is the leading global cause of disability. Neuropsychiatric co-morbidities

including anxiety, depression, and substance abuse- are common in cLBP

patients. In particular, cLBP is a risk factor for opioid addiction, as more than

50% of opioid prescriptions in the United States are for cLBP. Misuse of these

prescriptions is a common precursor to addiction. While associations between

cLBP and neuropsychiatric disorders are well established, causal relationships

for the most part are unknown. Developing e�ective treatments for cLBP,

and associated co-morbidities, requires identifying and understanding causal

relationships. Rigorous methods for causal inference, a process for quantifying

causal e�ects from observational data, have been developed over the past

30 years. In this review we first discuss the conceptual model of cLBP that

current treatments are based on, and howgaps in causal knowledge contribute

to poor clinical outcomes. We then present cLBP as a “Big Data” problem

and identify how advanced analytic techniques may close knowledge gaps

and improve clinical outcomes. We will focus on causal discovery, which is a

data-driven method that uses artificial intelligence (AI) and high dimensional

datasets to identify causal structures, discussing both constraint-based

(PC and Fast Causal Inference) and score-based (Fast Greedy Equivalent

Search) algorithms.

KEYWORDS

causal (structural) model, back pain, data science, clinical trials, pain

Introduction

Chronic low back pain (cLBP) is a debilitating syndrome that creates a high burden
for both individuals and societies. For example, back pain is one of the most common
reasons for medical visits (Deyo, 2015) and chronic low back pain (cLBP) is the leading
global cause of disability (Hartvigsen et al., 2018).
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The biopsychosocial model is the dominant framework
for understanding chronic low back pain (cLBP) (Hartvigsen
et al., 2018). According to this model cLBP results from an
interplay between noxious stimuli in peripheral tissues and
complex pain signal processing in the central nervous system
(CNS) that is influenced by psychological and social factors.
While widely accepted, the results from treatments inspired by
the biopsychosocial model of cLBP model are marginal. These
therapies—such as self-management, physical and psychological
therapies, and non-opioid medicationshave been tested in
numerous randomized controlled trials (RCTs) conducted over
several decades. Treatment effects are typically small, with even
the best treatments improving pain by only two points on a 0–10
visual analog scale (VAS) (Chou et al., 2016).

In order to improve outcomes for cLBP it is important
to understand why current treatments are generally ineffective
in RCT’s. This may be because of heterogeneity of treatment
effect (HTE). RCT’s estimate an average treatment effect (ATE)
for an intervention (Kent et al., 2019). The clinically relevant
question, though, is what the effect of an intervention is at a
subgroup level, among individuals with shared characteristics
that may affect treatment response (Kent et al., 2019). HTE is
a particular concern in assessing the effects of cLBP treatments,
given heterogeneity among cLBP patients (Li et al., 2021).
Another reason for the failure of cLPB treatments may be that
they do not target the causes of cLBP. Many cLBP treatments are
based on the assumption that associations between risk factors
and cLBP are causal. For example, cLBP patients often have high
fear-avoidance (they avoid activity because they fear pain the
pain that results) (Linton and Shaw, 2011). The Fear-Avoidance
model of cLBP assumes that fear-avoidance leads to cLBP, due to
disuse and deconditioning (Linton and Shaw, 2011). It is entirely
possible, however, that cLBP causes fear avoidance; i.e., the
association is due to reverse causation. Many cLBP treatments
target fear-avoidance, with at best mixed success, and there is
evidence that changes in fear-avoidance may not be responsible
for observed treatment effects (Sisco-Taylor et al., 2021). Better
understanding of cLBP causes and how treatments impact those
causes is needed to guide improvements to existing treatments
and develop new treatment strategies.

Chronic low back pain as a big-data
problem

While the term “big data” has become a popular buzzword
within disciplines with high data volume, big data is actually
defined by the three vs: volume, velocity, and variety. Any
one of these three elements can present a unique set of
opportunities and challenges. For cLBP, as with related fields
such as neurotrauma, variety may pose a bigger problem than
volume (Huie et al., 2018).

FIGURE 1

Biological factors associated with chronic low back pain (cLBP).

In 1987, well before the term “big data” was popularized,
Gordon Waddell sought to integrate the complex variety of
factors believed to influence cLBP into a single model (Waddell,
1987). Waddell’s model was based on (a) the principles of the
biopsychosocial model of illness, at that time applied primarily
in the behavioral sciences, (b) the gate control theory of pain
developed by Melzak and Wall (which introduced the concept
of neuromodulation) (Melzack andWall, 1965) and (c) evidence
that cLBP was associated primarily with psycho-social factors
rather than spinal pathology. According to Waddell’s model
cLBP, including pain related disability, results from an interplay
between noxious stimuli in peripheral tissues and complex pain
signal processing in the central nervous system (CNS) that is
influenced by psychological and social factors (Waddell, 1987).
Waddell’s conceptual model is now the dominant framework for
both researching and treating cLBP (Hartvigsen et al., 2018).

A large body of research supports the biopsychosocial
model, for the most part as originally formulated by Waddell.
Biological factors associated with pain can affect either the
periphery or the central nervous system (Figure 1). In the
periphery specialized neurons (nociceptors) in the discs,
joints, fascia and muscles can be activated by mechanical or
inflammatory stimuli. While age related spinal degeneration
is not associated with chronic low back pain (Brinjikji et al.,
2015), other potential peripheral nociceptive triggers are.
These include vertebral endplate abnormalities, disc extrusions
(Hartvigsen et al., 2018), altered biomechanics (Meir et al.,
2019), poor muscle quality (Kalichman et al., 2017), heavy
loading or twisting (Urban and Fairbank, 2020), and trigger
points (Chiarotto et al., 2016). Interactions between factors are
likely, and many may have a common nociceptive mechanism,
namely inflammation (Khan et al., 2017). Centrally, signals from
nociceptors are processed by neurons in the dorsal horn of the
spinal cord and brainstem before activating cortical neurons,
which results in pain perception. Modulation of nociceptive
signals in the CNS can include facilitation and/or inhibition.
Chronic pain is often accompanied by central sensitization,
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characterized by persistent facilitation of nociceptive signals
(Williams, 2018). While Waddell’s original module included
neuromodulation, more recently, another CNS abnormality
associated with cLBP has been described, namely anatomical and
functional reorganization of the neocortex (i.e., limbic system)
(Apkarian, 2019). This reorganization may be an indication that
pain has been decoupled from nociception and has become a
primarily cortical phenomenon (Apkarian, 2019). Associations
between psychological and social factors and cLBP (Maher
et al., 2017; Hartvigsen et al., 2018) are well established. There
are a number of other variables associated with pain which
may interact with the principal elements of the biopsychosocial
model, including age (Wong et al., 2017), gender (Fehrmann
et al., 2018), race (Meints et al., 2018), culture (Henschke et al.,
2016), and co-morbidities (Rundell et al., 2017).

In 2018 the NIH established the Helping to End Addiction
Long-term (HEAL). Initiative, a trans-agency effort to speed
scientific solutions to stem the national opioid public health
crisis. Recognizing the role of inadequately treated cLBP in the
opioid crisis HEAL funded the Back Pain Consortium Research
Program (BACPAC), which subsequently awarded 13 grants,
totaling $130.8 million, to BACPAC research centers. The goal
of BACPAC is to develop effective, individualized treatments for
cLBP patients, based on the biopsychosocial model. Individual
BACPAC centers are using a variety of methods to contribute
to this goal, including technology development (seven studies),
longitudinal cohort studies focused on deep phenotyping
(three studies, two being conducted at UCSF), single endpoint
randomized clinical trials (RCT’s, two studies) and RCT’s
with multiple endpoints and sequential treatment assignments
(SMART trials, two studies). Common data elements have been
established that include measurements from several domains
associated with cLBP: biological, psychological, and social
factors; pain experience; demographics; and co-morbidities
(Table 1). Tools used to collect these measurements include
surveys, traditional and novel imaging techniques, quantitative
sensory testing (QST), physical examination, sophisticated
biomechanical testing devices, wearable sensors, biospecimen
analysis, and extraction of electronic health record (EHR) data.

The types of data include structured data from surveys,
examinations, electronic health records, and interpretation of
diagnostic tests. Additionally, there is unstructured data from
biomedical images, electronic health records, biomechanical
assessments and wearable sensors.

The BACPAC single end-point RCT’s will define the ATE
for the treatments being studied, while the two SMART studies
will determine optimal sequencing of treatments (Kidwell et al.,
2018) based on individual patient characteristics. Those results
can only be generalized to the specific treatments studied,
under the trial conditions. However, combining data from the
BACPAC research centers, facilitated by common data elements,
would create a comprehensive multi-modal dataset that could
be used to generate additional knowledge about cLBP. Given

TABLE 1 Domains and common elements associated with chronic low

back pain.

Domain Data elements

Peripheral biological Spine anatomy, muscle quality, endplate damage, tissue

inflammation, disc biochemistry, serum/blood/tissue

biomarkers, posture, kinematics, tissue loads, movement

biomechanics, physical capacity and performance.

Central biological Pain thresholds, pain modulation, aberrant pain

processing, brain structure, brain function, interoceptive

awareness

Psychological Anxiety, depression, fear avoidance, catastrophizing,

coping, acceptance, self-efficacy, stress, expectancy, beliefs

in pain control

Social Adverse life events, income, education, employment,

financial strain, perceived discrimination, neighborhood,

social isolation,

Demographics Age, race, gender, ethnicity

Co-morbidities Medical illnesses, chronic overlapping pain conditions,

substance use

Pain experience Intensity, duration, location, quality, interference (physical

and social), sleep, fatigue, cognition

both the variety and volume of data, advanced analytic methods
using AI tools, would be needed to do so. Among the tools
that could be deployed are unsupervised learning methods,
to identify clusters, and classification algorithms, to build
predictive models. These methods define associations between
features in the dataset, but do not reveal causal relationships.
However, by applying recent innovations in data analysis this
dataset could also be used to answer causal questions, such
as how do cLBP treatments work, and who do they work

for?. These innovative methods, collectively referred to as
causal discovery methods, would couple data-driven approaches
with principles of causal inference to unravel the complex
relationships underlying cLBP.

Causal inference

While there are a number of causal inference methods
(Hernán et al., 2019) they share a common property- they
answer “what if ”, also known as counterfactual, questions
(Bours, 2020). Counterfactual reasoning is a hallmark of human
thought that engages a number of different brain regions to
envision how an event might have unfolded differently under
a different set of circumstances (i.e., circumstances that are
counter-to-the-fact of what actually existed) (Hoeck et al.,
2015; Bours, 2021; Raita et al., 2021). For example, faced with
a bad result on an exam, one might reason that studying
harder would have given a better result. Since going back
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FIGURE 2

Outcomes following back surgery. Yt=1
= outcome with, Yt=0

=

outcome without.

in time is not possible there is no way to prove this, but
causal reasoning leads to adaptive behavior (Hoeck et al.,
2015); i.e., studying harder next time. Causal inference methods
answer counterfactual questions, by formalizing counterfactual
reasoning with mathematical notation (Hernán et al., 2019),
allowing causal effects to be quantified using statistical methods
(Bours, 2020).

A key goal in assessing treatments for cLBP is to compare
what outcome a patient would have if an intervention was
delivered to what it would be if it was withheld. For example,
cLBP is often treated with surgery (Figure 2). If the outcomes
differ between surgery and no surgery than surgery has a causal
effect on the outcome. This can be expressed as E (causal effect),
of a given intervention T for a given outcome Y (E = Yt=1 –
Yt=0). The fundamental problem of causal inference is that the
individual causal effect can rarely be defined, as each individual
only experiences one outcome (the exceptions are crossover
experiments, such as n-of-1 trials) (Robins and Hernan, 2020).
All of the counterfactual outcomes (i.e., the outcomes that would
have occurred under the opposite treatment assignment, also
known as potential outcomes) are missing. Therefore, causal
effect is estimated at a population level.

To define the average causal effect in a population three
pieces of information are needed for each individual—whether
an intervention took place, what the outcome was if it did, and
what the outcome would be if didn’t (i.e., the counterfactual
or potential outcome). Hypothetical data from ten individuals
in a sample population is in Table 2. For each subject only

TABLE 2 Hypothetical outcome data from a random sample.

ID A Ya = 1 Ya = 0

1 0 ? Known

2 0 ? Known

3 0 ? Known

4 0 ? Known

5 1 Known ?

6 1 Known ?

7 1 Known ?

8 0 ? Known

9 0 ? Known

10 1 Known ?

?, Unknown.

FIGURE 3

Example of Exchangeability. y1 = outcome, y0 = potential

outcome.

one outcome can be observed (Ya = 1 is the outcome if the
intervention took place, and Ya = 0 is the outcome if it didn’t).
However, the missing values in the sample population can be
inferred from the known values, allowing an average causal effect
to be estimated. In general terms there are three methods for
filling in these missing values-randomization, an instrumental
variable design, and a confounder control design (Matthay and
Glymour, 2020).

Mendelian randomization (MR) uses genetic variants as
instrumental variables for estimating the causal effects of a risk
factor on an outcome (Elgaeva et al., 2020). Using this method
body mass index (BMI), fewer years of schooling, smoking,
greater alcohol consumption, and depression have all been
shown to be causes of low back pain (Elgaeva et al., 2020;
Williams et al., 2022).

In a randomized experiment missing values—i.e., the
potential or counterfactual outcomes- occur by chance,
assuming a properly executed study (Robins and Hernan,
2020). This is because in a randomized trial the treatment
assignment occurs by chance, and the outcome only varies
because of the assigned treatment. Since the only difference
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FIGURE 4

Example of Confounding Variable. C is a common cause of T

and Y.

FIGURE 5

Paths in a Causal Directed Acyclic Graph (DAG). Circles are

variable types, arrows indicate direction of e�ect.

between the two groups is the treatment assignment, which
occurs by chance, the groups are exchangeable (Figure 3). The
average causal effect can then be determined by using the mean
values for the outcome with and without treatment: the average
causal effect = (mean Yt=1) – (mean Yt=0). Exchangeability in
randomized trials is assured because confounding bias has been
eliminated due to random treatment assignment. Confounding
bias occurs when a third factor is a common cause of both
the treatment assignment and the outcome. For example, in
the absence of randomization severe pain at baseline may be
a common cause of both an assignment to an intervention as
well as the outcome. Since one group now has more severe
pain exchanging the treatment group with the control group
will give different results. Randomization prevents confounding
bias by blocking the effect of confounders on the treatment
assignment (Figure 4), ensuring exchangability (Matthay and
Glymour, 2020).

While randomization yields the most accurate estimations
of causal effects, RCT’s are frequently are not feasible for
answering causal questions. An instrumental variable is an
external factor that determines the chance of an exposure, but
has no mechanism to influence the outcome except via the
exposure. Instrumental variable study designs are conceptually
like randomization, as individuals who are otherwise very
similar receive different exposures (Matthay and Glymour,
2020).

As with randomization, a key assumption for instrumental
variable designs is exchangeability—the assumption that an
exposure is unrelated to the potential outcomes. If there
is no instrumental variable that satisfies this assumption a
confounder-control approach may be preferred (Matthay and
Glymour, 2020). Confounder-control studies estimate the causal
effect of interest by adjusting for a sufficient set of observed
variables to control for confounding. The key assumption
becomes conditional exchangeability; i.e., exchangeability is
fulfilled after controlling for a set of measured covariates.

Confounder-control approaches rely on identifying,
measuring, and correctly adjusting for a sufficient set of
confounders. Multiple factors- such as patient and provider
characteristics, socioeconomic parameters, environmental and
geographical constraints- are potential sources of confounding
in observational data (Velentgas et al., 2013). Identifying
confounders is particularly challenging for complex conditions
with many variables and uncertain (or unknown) causal
relationships, such as cLBP In complex conditions many of
the variables may be difficult to define, much less measure. A
good example is pain, which is a multi-faceted perception that
is unique to each individual. Whether the various instruments
used to assess pain accurately enough capture the underlying
construct is an open question. Furthermore, relationships
between variables can vary according to context, and over time.

The relationships between an exposure (such as a treatment),
an outcome, and co-variates can be demonstrated in a
directed acyclic graph (DAG) (Figure 5). Causal DAGs are
models that depict assumptions about the causal structures
linking variables. Differentiating confounders from other co-
variates- notably mediators and colliders- is critical, as
adjusting for other co-variates may increase bias, jeopardizing
conditional exchangeability (Velentgas et al., 2013). Mediating
variables explain the process that leads from an exposure
to an outcome- they are part of the causal pathway. In
Figure 4 the path from exposure to outcome is causal, via a
mediator (Åkerblom et al., 2015). Confounding can affect both
exposure-outcome relationships as well as mediator-outcome
relationships. Colliding occurs when two independent causes
have a common effect (Velentgas et al., 2013). For example,
cLBP-related disability may result from physical impairment
related to a peripheral biologic factor. However, it can also occur
due to an independent cause, such as adverse effects of cLBP on
affect and motivation.
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Confounder control approaches in cLBP research have
primarily been used to identify the mediators between exposures
and outcomes, using a method known as mediation analysis.
Most of this work has focused on the role of psychological factors
as mediators (Lee et al., 2016; Sisco-Taylor et al., 2021; Joyce
et al., 2022). The methodological quality of cLBP mediation
analysis research is generally poor (Lee et al., 2016). The
existing evidence indicates that psychological factors mediate
the effects of psychological treatments, but not exercise-based
treatments (Lee et al., 2016; Joyce et al., 2022). Mediation
analysis has also found that psychological factors mediate the
pain-disability relationship, but only explain 20–33% of the
total effect. Identifying causal relationships between between
exposures and cLBP outcomes, including the role of mediators,
using more rigorous confounder-control methods is critical for
optimizing diagnostic and therapeutic strategies.

In addition to conditional exchangeability two important
assumptions for confounder-control designs are positivity and
a stable unit treatment value (SUTV) (Matthay and Glymour,
2020). Positivity requires that for each subgroup of individuals
defined by a covariate stratum (e.g., every combination of
possible covariate values) exposure to the intervention is
possible. A SUTV assumption means that all versions of the
treatment have the same effect (i.e., any differences in the
versions of the treatment an individual may have received are
insufficient to alter the outcome), and that each individual’s
outcome is unaffected by the treatments that others may
have received.

Once a sufficient set of confounders is identified the
goal of the statistical analysis is to reduce confounding by
breaking the association of the confounders with the outcome
(e.g., regression adjustment); breaking the association of the
confounders with the exposure (e.g., matching, adjustment, or
weighting based on propensity scores); or breaking both the
association with the exposure and the outcome (e.g., doubly
robust methods) (Matthay and Glymour, 2020). These methods
all allow comparisons within subgroups that have balanced
covariates, such that the covariates cannot bias the treatment-
outcome association. The validity of the causal estimates based
on these methods relies on appropriate statistical inference,
which includes considering random error, power, correct
specification of the statistical model, accounting for multiple
testing, and adjusting for differential loss to followup (Matthay
and Glymour, 2020).

Causal discovery

Assumptions about causal relationships, as depicted in a
causal DAG, are generally based on domain knowledge about the
data generating process, which can incorporate prior research
and/or or expert judgement. However, domain knowledge is
rarely sufficient to completely characterize causal relationships
(Velentgas et al., 2013). Given the large number of risk

factors- from biological, psychological, and social domains-
associated with cLBP, and the limited knowledge about causal
relationships, a causal DAG representing potential relationships
between risk factors and outcomesmust necessarily be extremely
complicated, and therefore of little practical value (Figure 6)
(Elgaeva et al., 2020; Williams et al., 2022).

An alternative to using domain knowledge to identify
causal relationships is causal discovery, a purely data-driven
approach that uses artificial intelligence and high dimensional
datasets to empirically select variables based on statistical
associations (Velentgas et al., 2013). Confounders identified
using causal discovery can then be used in statistical models
that employ confounder-control approaches for identifying
causal relationships.

Different causal machine learning algorithms approach the
data with different initial assumptions, and some are better
suited to different types of data (e.g., categorical, ordinal, vs.
numeric; static vs. timeseries) than others. Causal machine
learning algorithms fall broadly in to two categories: constraint-
based, and score-based.

Constraint-based causal discovery methods test the
conditional independence of links between data elements
represented in a causal directed acyclic graph (DAG). Two
common constraint-based methods are PC and Fast Causal
Inference (FCI) (Glymour et al., 2019). PC assumes that there
is no confounder, and its discovered causal information is
asymptotically correct. FCI gives asymptotically correct results
even in the presence of confounders (Glymour et al., 2019).
FCI is initially defined by a causal graph in which all variables
are connected, but with no directionality. The algorithm
then systematically removes connections (or edges) that exist
between variables that are conditionally independent. Using the
remaining edges, FCI is designed to then identify two types of
structures: colliders (or “V” structures) and “Y” structures. In
“V” structures, two variables are unconditionally independent,
but can become dependent conditional on a third variable
(Shen et al., 2020). The “Y” structure is defined by 2 variables
independent of a third, but conditional on a fourth variable
(Figure 7). For instance, let’s assume a and b cause x, and x in
turn causes y. In a “Y” structure, a and b are independent of y,
conditional on x. This identification of structures is a unique
aspect of FCI, in that the conditional independence defined by
this structure helps to rule out variables that induce dependence
between otherwise independent pairs of variables (Shen et al.,
2020).

There are three main assumptions underlying the
constraint-based PC method (a) causal sufficiency assumption
(b) causal Markov assumption and (c) faithful assumption.
The causal sufficiency assumes the absence of a common
un-observed cause of two or more nodes in a causal DAG.
The Markov and faithful assumption relies on the notion
that each variable in the causal DAG is independent with an
independent probability distribution (Spirtes and Glymour,
1991; Zhang, 2008; Colombo et al., 2012). When taken together,
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FIGURE 6

cLBP potential causal DAG. (A) Constraint-based causal algorithms begin with undirected graph, with all variables connected. (B) A potential

causal DAG in which edges are pruned and a more parsimonious causal graph is created, that can then be furthered tested and refined.

these assumptions imply that the models induced by the
data generating probability distribution and the causal DAG
represent the same conditional independence statements.

The constraint-based algorithms such as basic PC
algorithms for the observation data relies on the causal
sufficiency, Markov, and faithful independent distributions
to learn a causal DAG with conditionally independent nodes
(Margaritis and Thrun, 1999). The FCI algorithms additionally
can model the latent confounders, and finds the ancestral
relationships between the measured variables (up to Markov
equivalence). While informative, this approach is not able to
infer the underlying causal DAG from the observational data
(Spirtes et al., 2001). Despite recent successes in scaling to large
numbers of variables, oth the PC and FCI algorithms, have
historically been limited in their use on a large-scale observation
data due to the requirement of search exponential space for
all possible causal structures include those with the latent
information by accounting for interactions and checking for
conditional independence between the data elements (Silander
andMyllymaki, 2012). Many improvements have been proposed
to overcome the limitations of PC and FCI algorithms to enable
causal discovery from the observational data. To this end,
algorithms such as greedy fast causal inference methods have
been proposed that combine the search criteria from greedy
equivalence search with FCI algorithms (Spirtes et al., 2001).

In contrast with FCI, Fast Greedy Equivalence Search
(FGES) is an optimized version of Greedy Equivalence Search

that starts with a graph with no edges at all (Chickering, 2003).
The algorithm then works iteratively to introduce dependencies
in a way that is designed to optimize the model fit (without
overfitting). This goodness-of-fit can be measured by a number
of information criteria [e.g., Bayes Information Criteria (BIC),
where a lower value indicates a better fit]. Given that the
FGES model is specified using information criteria scores, this
approach is referred to as a “score-based” algorithm.

Causal discovery methods are powerful tools, that overcome
the limitations of empirically-driven methods (such random
forest or LASSO) that are generally unable to distinguish
between genuine confounders and other variable types, which
may introduce bias (Velentgas et al., 2013). While causal
discovery methods require making several assumptions about
the structure of the data (which may affect the validity of
the results), they can be applied to complex datasets to aid
knowledge discovery (Spirtes et al., 2001; Glymour et al., 2019).
In the next section we will explore how these methods may be
applied to the complex problem of cLBP.

Applying causal discovery models to
cLBP research

Application of causal modeling to cLBP is in its infancy, with
most prior work focusing on RCTs and traditional statistical
inference. However, the complexity and multifaceted nature of
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FIGURE 7

Fast Causal Inference Algorithm. (A) FCI begins with undirected

graph. (B) FCI then removes edges and identifies possible “V”

structures, where two variables are condtionally dependent on a

third (colliders). (C) FCI also mitigates confounder bias by

identifying “Y” structures, where two variables (a and b) are

found to be independent of a third (y), conditional on a fourth

variable x.

cLBP makes it a strong candidate for the application of more
advanced causal models. Identification of causal relationships
between variables in the BACPAC multi-modal dataset using
causal discovery algorithms can help to solve important applied
clinical problems.

Applied problem #1:What mediates the effects of treatments
for cLBP?

Mediation analysis decomposes the total exposure-outcome
effect into a direct effect and an indirect effect through a
mediator variable (Rijnhart et al., 2021). Traditional approaches
to meditation analysis, such as the familiar Barron and Kenney
method (Baron and Kenny, 1986), have significant limitations,
as they are prone to biased estimates if there is mediator-
outcome confounding, exposure-mediator interactions, non-
continuous mediator and outcome variables, or multiple
mediators (Rijnhart et al., 2021). Causal mediation analysis,
which is based on a counterfactual framework that requires
understanding causal relationships, overcomes these limitations.
Applying causal mediation analysis to the BAPCPAC dataset
would improve understanding of how cLBP treatments work
and why they fail, leading to improved treatment strategies.

Applied problem #2: Can subgroups of cLBP patients with
improved treatment effects be identified?

Identifying subgroups of patients with enhanced effects to
treatments from observational data is challenging (Kent et al.,
2019). One method for doing so is to define a conditional
average treatment effect (CATE), using a potential outcomes
framework that contrasts outcomes conditioned on covariates
(Yadlowsky et al., 2020). As with other causal inference methods
an important assumption in defining CATE is conditional
exchangeability (Robertson et al., 2020). While unmeasured
confounding is always a threat to exchangeability, the more
complete the knowledge about the causal structure of dataset,
the less this threat will be.

Discussion

Limited understanding of the causal relationships
underlying the associations between risk factors and cLBP
is a major reason for failed treatments. Failed treatments
for cLBP are associated with a variety of neuropsychiatric
co-morbidities including anxiety, depression, substance abuse,
and opiod addiction. Applying causal discovery methods to the
rich, multidimensional BACPAC dataset, harmonized across
multiple centers employing a variety of study designs, will
clarify causal relationships, enabling innovative approaches
to improving therapeutic strategies. Future work to apply the
advanced causal models discussed above to this dataset will be
important to drive knowledge discovery. Upon successful causal
model development, a number of challenges will still need to be
met. Validation of the clinical utility of the model will be key,
wherein clinical trials will be designed to test hypotheses arising
from causal mediation analyses, and to further test clinical
utility hypotheses that are generated by causal machine learning
results. Similarly, a model that fits your own data may be useful,
but transportability of the model to other datasets is necessary
for a truly useful model. This can be a difficult prospect if
there are relatively few external sources of data with a similar
breadth and/or depth as the one from which the model was
built. In the case of BACPAC and similar multisite endeavors,
one may consider keeping one site as a holdout on which to
validate the model. Despite these challenges, there remains
an opportunity to develop a model that can help researchers
better understanding causal factors for cLBP, and guide clinical
practice in the future.
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