
UCLA
UCLA Electronic Theses and Dissertations

Title
Spatially-Coupled Codes for Modern Data Storage Systems

Permalink
https://escholarship.org/uc/item/3wp2m4bq

Author
Esfahanizadeh, Homa

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wp2m4bq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Spatially-Coupled Codes for Modern Data Storage Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Homa Esfahanizadeh

2019

c© Copyright by

Homa Esfahanizadeh

2019

ABSTRACT OF THE DISSERTATION

Spatially-Coupled Codes for Modern Data Storage Systems

by

Homa Esfahanizadeh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Lara Dolecek, Chair

The volume of data continues to rapidly grow as information pours from various platforms.

The huge amount of data needs to be transferred and stored with extremely high reliability.

The error correcting codes (ECCs) are an integral part of modern-day communication,

computation, and data storage systems in order to safeguard data against the adverse effects

of noise and interference. The spatially-coupled (SC) codes are a class of graph-based ECCs

that have recently emerged as an excellent choice for error correction in modern data storage

and communication due to their outstanding performance, low decoding latency, and simple

implementation.

An SC code is constructed by coupling several instances of a block code into a single

coupled chain. In the asymptotic limit of large code lengths, SC codes enjoy capacity

achieving performance. Due to simplifying assumptions and averaging effects, results from

the asymptotic domain are not readily translatable to the practical, finite-length setting.

Despite this chasm, finite-length analysis of SC codes is still largely unexplored. We tackle

the problem of finite-length optimized design of SC codes in the context of various channel

models.

First, we present a systematic framework with low computational complexity for designing

finite-length SC codes with superior error floor performance. Next, we tailor our design

method for various channel models by targeting the combinatorial objects in the graph of

SC codes that are detrimental over these settings. Then, we generalize our framework for

ii

the finite-length analysis and design of irregular SC codes. Finally, we increase the coupling

dimensionality, and we present a novel systematic framework to efficiently connect several

SC codes and construct multi-dimensional spatially-coupled (MD-SC) codes.

In this research, we use advanced mathematical techniques from algebra, combinatorics,

graph theory, probability theory, and optimization theory to develop algorithms and design

frameworks with affordable complexity. Our frameworks are especially beneficial for modern

storage applications, e.g. magnetic-recording and Flash memories.

iii

The dissertation of Homa Esfahanizadeh is approved.

Dariush Divsalar

Jonathan Kao

Ali Mosleh

Guy Van den Broeck

Lara Dolecek, Committee Chair

University of California, Los Angeles

2019

iv

To my parents . . .

—Fatemeh Alvandi and Yadollah Esfahanizadeh—

for their endless love, support, and encouragement

v

TABLE OF CONTENTS

1 Introduction and Preliminaries . 1

1.1 Structure of SC Codes . 3

1.1.1 Circulant-Based SC Codes . 4

1.2 Combinatorial Objects of Interest . 6

1.3 Previous Works on Finite-Length SC Codes 9

1.4 Outline of Contributions . 10

1.4.1 Chapter 2 Contributions . 10

1.4.2 Chapter 3 Contributions . 10

1.4.3 Chapter 4 Contributions . 11

1.4.4 Chapter 5 Contributions . 11

2 Finite-Length Construction of High Performance SC Codes 13

2.1 Introduction . 13

2.2 Enumeration of Combinatorial Objects . 14

2.3 Two-Stage Framework for Constructing SC Codes for AWGN Channels . . . 17

2.3.1 Stage 1: Optimal Overlap Partitioning 19

2.3.2 Stage 2: Circulant Power Optimization 33

2.4 Simulation Results . 36

2.5 Conclusion . 41

3 Tailoring the SC Design Framework for Storage Applications 43

3.1 Introduction . 43

3.2 SC Code Design for MR Systems . 44

3.2.1 Overview of the MR System . 45

vi

3.2.2 Problematic Objects of SC Codes for MR Applications 46

3.2.3 Tailoring SC Code Design for MR Applications 49

3.2.4 Simulation Results . 54

3.3 SC Code Design for Flash Memories . 56

3.3.1 Problematic Objects of SC Codes for Flash Memories 57

3.3.2 Tailoring SC Code Design for Flash Channels 58

3.3.3 Simulation Results . 58

3.4 SC Code Design for Channels with SNR Variations 60

3.4.1 Minimum Overlap Partitioning for Constructing SC Codes 62

3.4.2 Channels with SNR Variation . 70

3.4.3 Interleaving to Mitigate Non-Uniformity 70

3.4.4 SC Code Design to Alleviate SNR Variation 71

3.4.5 Simulation Results . 75

3.5 Conclusion . 78

4 Extending the Construction Framework for Irregular SC Codes 80

4.1 Introduction . 80

4.2 Irregular SC Code Construction . 82

4.3 Optimal Partitioning for Irregular SC Codes 84

4.4 Simulation Results . 89

4.5 Conclusion . 91

5 Multi-Dimensional Spatially-Coupled Code Construction 92

5.1 Introduction . 92

5.2 Multi-dimensional Spatially-Coupled Code Structure 94

5.3 Framework for MD-SC Code Design . 99

vii

5.3.1 The Effects of Relocation of Circulants on Cycles 99

5.3.2 Score Voting Algorithm for MD-SC Code Design 104

5.4 Simulation Results . 109

5.4.1 Analysis for MD-SC Codes with Girth 6 110

5.4.2 Analysis for MD-SC Codes with Girth 8 113

5.4.3 Comparison with Random Constructions 116

5.5 Conclusion . 118

6 Conclusion . 120

6.1 Summary of Our Results . 120

6.2 Future Directions . 122

References . 123

viii

LIST OF FIGURES

1.1 The parity-check matrix of an SC code with parameters m and L. 4

1.2 (a) The (3, 3) AS. (b) The (4, 8) TS. (c) The two non-isomorphic configurations

for (6, 0) BAS. 7

1.3 (a) The (6, 2, 0, 9, 0) GAST. (b) The (6, 2, 2, 5, 2) GAST. Appropriate NB edge

weights are assumed. 9

2.1 (a) The (3, 3) AS. (b) The (4, 2) AS. (c) Two non-isomorphic configurations

for the (5, 3) AS. 17

2.2 (a) The (4, 4) AS. (b) One configuration for the (6, 4) AS. (c) The (3, 6) TS as

the common denominator. 18

2.3 (a) The (4, 8) AS. (b) One configuration for the (8, 6) AS. (c) The (3, 9) TS as

the common denominator. 18

2.4 Examples of cycles-6 on Hp
SC with parameters κ = 5, γ = 3, m = 2, and L = 3.

The cycles with solid lines, dashed lines, and dashed-dotted lines are spanning

one, two, and three replicas, respectively. Component matrices are illustrated

in gray. 25

2.5 BER curves over AWGN channel for SC codes with length 8,670 bits, memory

m = 1, and constructed with different methods: (a) γ = 3, (b) γ = 4. 39

2.6 BER curves over AWGN channel: (a) SC codes with length 8,670 bits, γ = 3,

and different memories, (b) SC codes with length 2,940 bits, rate 0.564, and

constructed with different methods. 40

3.1 System model for one-dimensional MR channels utilizing an NB-LDPC code. 45

ix

3.2 (a) The two non-isomorphic (unlabeled) configurations for (6, 0) BAS. In each

configuration, one (4, 4) substructure is shown in green dashed lines as an

example, and unsatisfied CNs are marked with red dashed lines. (b) The

configuration of (4, 4) AS. 48

3.3 Unlabeled configurations for (a) (8, 2) BAS. (b) (8, 2) BAS. (c) (10, 0) BAS.

(d) (4, 8) TS. Examples of (4, 8) TS as substructures are shown in green dashed

lines in (a)-(c), and unsatisfied CNs are marked with red dashed lines. 49

3.4 Distinct patterns in the protograph of an LDPC code that can result in cycles-8

in the lifted graph. One way of traversing each pattern to obtain a cycle-8 is

shown with red lines. 51

3.5 FER curves over MR channel for codes with similar length and rate constructed

with different methods. 56

3.6 Configurations for (a) (4, 2, 2, 5, 0) GAST. (b) (6, 0, 0, 9, 0) GAST. (c) The

(3, 3) AS, i.e., cycle-6, as the common denominator. Appropriate edge weights

are assumed for NB configurations. 57

3.7 Simulation results over the NLM Flash channel for codes with similar length

and rate constructed with different methods. 60

3.8 (a) A non-uniform channel with N sections. (b) Original and interleaved

sequence of encoded data; each color corresponds to one codeword. 70

3.9 An SC code with memory m constructed for a non-uniform channel. CNi

spans (m+ 1) consecutive sections. 72

3.10 The original sequence of data (top panel) represents the worst case scenario

where multiple consecutive sections are affected by a low SNR. Interleaved

sequence of data (middle panel) for an SC code with m = 2 and L = 12: a

darker gray represents a lower SNR. These chunks are interleaved such that

each check equation receives messages with all L different reliabilities. 73

x

3.11 (a) BER curves for Uncoupled Block Codes 3.4 over uniform and non-uniform

channels with/without interleaving. (b) BER curves over non-uniform channel

for Uncoupled Block Codes 3.4 with/without interleaving versus SC code 3.10

and SC code 3.11. 77

3.12 BER curves over uniform and non-uniform channels for: (a) SC Code 3.10

with/without interleaving. (b) SC Code 3.12 with/without interleaving. . . . 78

4.1 Examples of ASs in graph of irregular LDPC codes along with their common

denominator structure shown with dashed blue lines; (a) The (4, 4) AS. (b)

The (5, 4) AS. 81

4.2 FER curves over AWGN channel for irregular SC codes of the same length,

rate, and degree distribution. 91

5.1 (a) Four 1D-SC codes. Each line represents a group of connections (defined

by a circulant) from z VNs to z CNs. Problematic connections are shown in

dashed red lines. (b) MD-SC code with T = 1, d = 2, and L2 = 4. Rewired

connections are shown in dashed blue lines. 97

5.2 Cycles-8 with CO8 = {Ci1,j1 , . . . , Ci8,j8}. Each line represents a connection

between two circulants. (a) All circulants are unique. (b) Ci6,j6 = Ci2,j2 and

Ci7,j7 = Ci3,j3 . 98

5.3 (a) Cia,ja→A1. The white circles show original locations of the relocated

circulant. (b) A cycle-3k is formed. (c) {Cia,ja , Cib,jb}→A1. (d) Three cycles-k

are formed. (e) {Cia,ja , Cib,jb , Cic,jc}→A2. (f) Two cycles-2k are formed. . . . 102

5.4 An illustration for a tree of solutions. The information associated with each

node are the relocation option and the number of cycles-6 for the solution

described by the path from the root up to this node. The nodes with dashed

borders show the trimmed solutions. The nodes with hatch background show

the winning solutions. 108

xi

5.5 MD-SC codes with SC Code 5.1 as the constituent SC code and L2 = 5: (a)

The number of active cycles-6 for various densities and depths. (b) The BER

curves over AWGN channel at density 26.47% and for various depths. 111

5.6 The BER curves over AWGN channel for MD-SC codes compared to their 1D

counterparts: (a) L2 = 3, (b) L2 = 5. 113

5.7 MD-SC codes with SC Code 5.4 as the constituent SC code and L2 = 4: (a)

The number of active cycles-8 for various densities and depths. (b) The BER

curves over AWGN channel at density 25% and for various depths along with

the BER performance for the 1D-SC counterpart (SC Code 5.5). 115

5.8 The BER curves over AWGN channel for MD-SC codes with SC Code 5.6 as

the constituent SC code, L2 = 3, density 18%, and constructed based on a

random policy and our new score-voting policy. 118

xii

LIST OF TABLES

2.1 Population of cycles-6 for SC codes with z = κ = 17, L = 30, and different

construction methods. 39

3.1 Error profile (number of specific errors out of 100 errors) for SC Code 3.1 at

SNR = 17.25 dB and FER = 2.33× 10−6. 47

3.2 Error profile (number of specific errors out of 100 errors) for SC Code 3.2 at

SNR = 16.25 dB and FER = 9.41× 10−9. 48

3.3 Population of cycles-8 with no interconnections for SC codes with γ = 3,

κ = 19, z = 46, m = 1, L = 5, and different construction methods. 55

3.4 Population of cycles-6 for SC codes with γ = 3, κ = z = 19, m = 1, L = 20,

and different construction methods. 59

5.1 Population of cycles-6 for MD-SC codes with SC Code 5.1 as the constituent

SC code, L2 = 5, and density 26.47%. 111

5.2 Population of cycles-6 for MD-SC codes and their 1D counterparts. 112

5.3 Population of cycles-8 for MD-SC codes and their 1D counterparts. 116

5.4 Population of short cycles for MD-SC codes constructed by various policies. . 118

xiii

ACKNOWLEDGMENTS

The last couple of years was not only a part of my graduate education, but more

importantly, it was an era where I became stronger as I moved to the US from my homeland

country. I feel extremely happy for everything that I learnt in this journey. Reaching this

point was not possible without the priceless help and support of my family, my advisor, my

collaborators, and my friends. I would like to express my sincere gratitude at the beginning

of my dissertation which includes the results of my academic efforts during these years.

First, I wish to thank my advisor, Professor Lara Dolecek, for giving me the opportunity

to come to UCLA and the honor to be her Ph.D. student. She has a massive technical

knowledge and insightful information about the cutting edge research problems in the field.

Her remarkable success as a female scientist has always been inspiring for me. She generously

shared her wisdom with me, encouraged me to be creative, and guided me to develop my

professional network and gain experience. I improved my research skills and extended my

technical knowledge under her supervision which will impact my future career forever.

I am grateful for the support and thoughtful feedback from my other dissertation committee

members: Professor Dariush Divsalar, Professor Guy Van den Broeck, Professor Ali Mosleh,

and Professor Jonathan Kao. I would like to say special thanks to Dr. Divsalar for the

interesting technical discussions that we had during my Ph.D. education. I would also like

to thank the ECE Graduate Office, particularly Deeona Columbia and Ryo Arreola, who

have been doing a great job helping graduate students in the department. I also respectfully

acknowledge the help and support of colleagues and friends at Samsung where I did an

internship.

I would like to thank Professor Yuval Cassuto from Technion - Israel Institute of Technology,

Professor Joerg Kliewer from New Jersey Institute of Technology, Dr. Rick Galbraith from

Western Digital Company, and Dr. Idan Goldenberg from SanDisk whom I have been

fortunate to work with and learn from. It has been a great pleasure to collaborate with

Dr. Ahmed Hareedy, Eshed Ram, Ruiyi Wu, Lev Tauz, Amirhossein Reisizadeh, Dr. Yuta

xiv

Toriyama, Siyi Yang, Andrew Tan, and Jose Carmona. I had the most collaborations with

Dr. Ahmed Hareedy. He was like a mentor for me when I started my Ph.D, we published

several papers in prestigious venues, and we won Memorable Paper Award together.

I would also like to thank my former and current lab-mates whom I have not had the

chance to do research with but have shared tons of good memories and interesting discussions.

They are Dr. Clayton Schoeny, Dr. Frederic Sala, Zehui Chen, Shahroze Kabir, in addition

to our lab visitor Professor Laura Conde. Although I did not directly collaborate with Dr.

Schoeny, Dr. Sala, and Professor Conde, they have always supported me and generously

provided invaluable advice whenever I reached out to them. The time I spent with my

collaborators and my lab-mates will always remain in my memory.

Moreover, I would like to wholeheartedly express my gratitude to my friends at UCLA,

outside UCLA, and in my home country. First, I am grateful to Shaghayegh Mardani and

Nazanin Farahpour. They are the very first people that I met when I came to UCLA, and

we have been close friends ever since. We shared a million happy and sad moments. Besides,

I cannot be thankful enough to my friends Hanieh Hashemi, Ehsan Abbasi, Ghazaal Ershadi,

Aysan Rangchian, Farhad Shahmohammadi, and Saliha Yaylaci for a million invaluable

memories that we made together and for always being there for me. Among my friends that

I have known before coming to UCLA, I want to especially thank Parvin Taheri, Zeinab

Kashani, Parivash Taremi, and Fahimeh Arab, whom I always feel connected to regardless of

our physical distance.

Above all, I would like to sincerely thank my precious family. I am eternally grateful for

my mother, Fatemeh Alvandi, and my father, Yadollah Esfahanizadeh, who have always been

there for me and supported me to overcome the challenges and obstacles. I am very thankful

to my kind and smart sister, Leila, who has always been a role model for me in my life and

my education. I am grateful to my older brother, Mojtaba, and my younger brother, Amir

Mohammad, for their limitless love and unconditional friendship. I am thankful to my uncle,

Professor Mostafa Esfahanizadeh, who have always encouraged me through my academic

journey and supported me in my life. I had to live far away from my family during my Ph.D.,

and it was very difficult for me not to be able to visit them. However, there was not a single

xv

moment that I did not feel their love. I strongly believe I could not reach this point without

their support and backing.

My research was sponsored in part by grants from the Advanced Storage Technology

Consortium - the International Disk Drive Equipment and Material Association (ASTC-

IDEMA). It was supported in part by the National Science Foundation (NSF) grants CCF

1718369, BSF 1718389, CCF-CAREER 1150212, BSF 1718389, CCF 1150212, along with

grants from Western Digital Corporation (WDC). My research was also supported by the

UCLA Dissertation Year Fellowship in my last year.

xvi

VITA

2012 Bachelor of Science, Electrical Engineering, Telecommunications,

University of Tehran, Iran.

2012-2014 Teaching Assistant,

University of Tehran, Iran.

2015 Master of Science, Electrical Engineering, Communication Systems,

University of Tehran, Iran.

2018 Internship, Error Control Coding,

Samsung Semiconductor Inc., San Diego, USA.

2018 Memorable Paper Award,

Non-Volatile Memories Workshop, University of California, San Diego,

USA.

2018—2019 Dissertation Year Fellow,

University of California, Los Angeles, USA.

2017, 2019 Teaching Assistant,

University of California, Los Angeles, USA.

2017 Ph.D. Candidate, Electrical and Computer Engineering, Signals and Sys-

tems,

University of California, Los Angeles, USA.

xvii

SELECTED PUBLICATIONS

H. Esfahanizadeh, L. Tauz, and L. Dolecek, “Multi-dimensional spatially-coupled code

design: Enhancing the cycle properties,” IEEE Transactions on Communications (under

review), 2019.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek,“Finite-length construction of high per-

formance spatially-coupled codes via optimized partitioning and lifting,” IEEE Transactions

on Communications, vol. 67, no. 1, pp. 3-16, Jan. 2019.

H. Esfahanizadeh, A. Hareedy, R. Wu, R. Galbraith, and L. Dolecek, “Spatially-coupled

codes for channels with SNR variation,” IEEE Transactions on Magnetics, vol. 54, no. 11,

pp. 1-5, Nov. 2018.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek,“Spatially coupled codes optimized for

magnetic recording applications,” IEEE Transactions on Magnetics, vol. 53, no. 2, pp. 1-11,

Feb. 2017.

B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and L. Dolecek,

“Optimized design of finite-length separable circulant-based spatially-coupled codes: An

absorbing set-based analysis,” IEEE Transactions on Communications, vol. 64, no. 10, pp.

4029-4043, Oct. 2016.

xviii

CHAPTER 1

Introduction and Preliminaries

All modern dense storage systems and communication applications require increasingly high

levels of reliability which highlights the necessity of advanced error correcting codes (ECCs)

for protecting data against noise and interference. The low-density parity-check (LDPC)

codes, also known as graph-based codes, are first introduced by Gallager in his doctoral

dissertation [1]. However, due to the complexity of their encoding/decoding, these codes were

forgotten until their rediscovery in [2]. The LDPC codes can be fully characterized by either

their sparse bipartite graphs, known as Tanner graphs, or by their sparse parity-check matrices.

Nowadays, graph-based ECCs are extremely popular due to their excellent performance in a

variety of applications and for their simple implementations.

Spatially-coupled (SC) are a class of graph-based codes that have recently emerged as

an excellent choice for error correction due to their capacity approaching performance and

low-latency decoding [3,4]. An SC code is constructed by coupling several instances of an

LDPC code into a single coupled chain. In the asymptotic limit of large code lengths, SC

codes enjoy capacity achieving performance, and many elegant results have been derived

in this setting, including threshold saturation, e.g., [5–7]. While the asymptotic analysis

is important, due to simplifying assumptions, e.g., being cycle-free, and averaging effects,

results from the asymptotic domain are not readily translatable to the practical, finite-length

setting.

Despite this chasm, finite-length analysis of SC codes is still largely unexplored. There

are several works that have studied the finite-length analysis and design of SC codes with

emphasis on the error floor region, e.g., [8–11]. These works, while promising, have some

limitations which will be discussed in more details in Section 1.3. We tackle the problem

1

of finite-length design of regular and irregular SC codes in the context of various channel

models, including additive white Gaussian noise (AWGN), Flash, magnetic recording (MR),

etc.

We focus on circulant-based (CB) SC codes because they offer simpler hardware imple-

mentation. For the rest of this dissertation, CB SC codes are recalled as SC codes for brevity.

From an algebraic viewpoint, an SC code is constructed by partitioning the circulants in

the parity-check matrix of a block code into several component matrices and piecing copies

of the component matrices in a diagonal structure to construct the final SC code. For SC

codes, “how to partition the underlying block code” and “how to adjust the circulant powers”

highly influence the finite-length performance. By a judicious choice of these parameters,

we develop a systematic framework with a reasonable computational complexity to design

SC codes that show orders of magnitudes performance improvement in the error floor area

compared to un-optimized constructions [12].

Moreover, we extensively investigate combinatorial structures in the graphical represen-

tation of the graph-based codes that are detrimental in the error floor area. We show that

the type and configuration of problematic objects depend on the channel model, and thus, a

channel-aware code design is required to achieve a good error-correction performance. We

then adjust our framework to optimize SC code parameters to reduce the population of these

problematic objects [13,14].

We also investigate the channel non-uniformity and the solutions to alleviate it. The

signal to noise ratio (SNR) is not constant over different parts of a storage device. We present

an SC code construction scheme that provides a well-defined cooperation among different

parts of the channel such that reliable data can help unreliable ones to be recovered, and

consequently, to improve the overall error-correction performance. To this end, we present an

SC code design along with a specific interleaving scheme that improve the robustness against

the channel non-uniformity [15].

Next, we present a new methodology for analysis and design of finite-length irregular

SC codes. While SC codes intrinsically possess a small amount of node degree irregularity

2

due to the termination effects, which aides in performance improvement, it is nonetheless

customary to use regular underlying block to construct finite-length SC codes. We present

a new scheme for constructing irregular SC codes with a superior performance in the error

floor area. We show that this scheme has significantly better performance than random SC

code constructions with the same node degree distribution [16].

Finally, we increase the coupling dimensionality, and we present a novel systematic

framework to efficiently connect several SC codes and construct multi-dimensional spatially-

coupled (MD-SC) codes. An efficient multi-dimensional coupling is very helpful to attain

a better error-correction capability, especially for modern storage applications such as two-

dimensional magnetic-recording (TDMR) and multi-layer Flash memories. Our well-designed

MD-SC codes have a very low population of short cycles in their graphs. According to the

simulation results, our MD-SC codes demonstrate dramatically lower error rates than their

one-dimensional counterparts [17].

1.1 Structure of SC Codes

The SC codes are graph-based codes constructed by coupling together a series of disjoint block

LDPC codes into a single coupled chain [3, 4]. This operation can be viewed as partitioning

(also known as edge-spreading) the parity-check matrix H of a block code into component

matrices Hy, where y ∈ {0, 1, . . . ,m}, and piecing L copies of the component matrices

together to obtain the parity-check matrix HSC of an SC code, as shown in Figure 1.1. The

parameters m and L are called the memory and coupling length, respectively. Here, as the

underlying block codes, we consider CB codes, where all circulants are non-zero [18].

A non-binary (NB) block/SC LDPC code defined over GF(q), q > 2, has its parity-check

matrix entries drawn from GF(q). In the associated Tanner graph, edges exist between a

variable node (VN) and a check node (CN) iff the corresponding entry in the parity-check

matrix is non-zero. This non-zero value is called the weight of that edge. The unlabeled graph

(unlabeled parity-check matrix) is generated by replacing all edge weights in the Tanner graph

(all non-zero entries in the parity-check matrix) by 1s.

3

Figure 1.1: The parity-check matrix of an SC code with parameters m and L.

1.1.1 Circulant-Based SC Codes

Throughout this dissertation, each column (resp., row) in a parity-check matrix corresponds

to a VN (resp., CN) in the equivalent graph of the matrix. CB codes are a class of structured

regular (γ, κ) LDPC codes, where γ is the column weight of the parity-check matrix, i.e., VN

degree in the graph, and κ is the row weight i.e., CN degree. CB codes offer simple hardware

implementation thanks to their structure [18]. Suppose z is the size of the constituent

circulants, called circulant size. The parity-check matrix H of a CB code is constructed as

follows:

H =


σf0,0 σf0,1 . . . σf0,κ−1

σf1,0 σf1,1 . . . σf1,κ−1

...
... . . .

...

σfγ−1,0 σfγ−1,1 . . . σfγ−1,κ−1

 . (1.1)

Each circulant has the form σfi,j where i, 0 ≤ i ≤ γ−1, is the row group index, j,

0 ≤ j ≤ κ−1, is the column group index, and σ is the z × z identity matrix cyclically shifted

one unit to the left. The term fi,j specifies the power of the circulant at row group index i and

column group index j. A circulant power fi,j has non-negative integer value, and σ0 is the

identity matrix of size z × z. For example, the choice of fi,j = ij, κ = z, and z prime results

in the class of array-based (AB) codes [19]. We use CB codes as the underlying block codes

4

of SC codes. We highlight that, in this dissertation, each circulant in (1.1) is a permutation

of a single identity matrix, i.e., each circulant has weight 1. Circulants with larger weights

have a negative impact on the girth [20], and we do not use them in our code construction.

SC codes have parity-check matrices with a band-diagonal structure. A CB SC code is

constructed by partitioning the κγ circulants in the parity-check matrix H of a block code

into component matrices Hy, 0 ≤ y ≤ m, where m is referred to as the memory. Each

component matrix Hy has the same size as H. A component matrix contains a subset of

circulants in H, and the rest of its elements are zero. Every circulant in H is assigned to

exactly one of the component matrices, and
∑m

y=0 Hy = H. Given the component matrices

and the coupling length L, one can construct HSC as shown in Figure 1.1.

The design rate for a CB code with parameters γ and κ is,

rd = 1− γ

κ
, (1.2)

and the design rate for the corresponding SC code with parameters m and L is equal to,

rSC
d = 1− (L+m)γ

Lκ
.

The rate loss due to spatial coupling is inversely proportional to the coupling length L. In

the asymptotic regime, as L→∞, the design rate for an SC code and its underlying block

code are equal.

Even for the case of regular underlying block code H, SC codes have a right amount of CN

degree irregularity that gives them performance advantage: At the point where two adjacent

parity-check matrices are stitched together to form the parity-check matrix of the overall SC

code, the CNs have connectivity that span VNs of both subgraphs. However, the CNs at the

beginning and at the end of this multi block concatenation have lower degrees than the rest

of the CNs to allow for termination. This setup allows for information propagation where

one block, after it has been successfully decoded, aids its neighbor in decoding. Additionally,

this block-convolutional structure is amenable for low-complexity windowed decoding [4].

5

Definition 1. Consider an SC code with parameters z, κ, γ, m, and L. The replica Rr,

r ∈ {1, . . . , L}, is a collection of columns in the matrix HSC and is defined as:

Rr = HSC[0 : (L+m)γz − 1][(r − 1)κz : rκz − 1]. (1.3)

The L replicas, from left to right, are denoted by R1, . . . ,RL. Figure 1.1 illustrates the

replicas on the parity-check matrix HSC of an SC code. The notation HSC[ρ1 : ρ2][ν1 : ν2]

refers to a submatrix of HSC with rows {ρ1, ρ1 + 1, . . . , ρ2} and columns {ν1, ν1 + 1, . . . , ν2}.

In this dissertation, we are interested in the time-invariant SC codes, where the non-zero part

of Rr is the same for any r ∈ {1, . . . , L}:

Rr[(r − 1)γz : (r +m)γz − 1][0 : κz − 1] = [HT
0 HT

1 . . .H
T
m]T. (1.4)

1.2 Combinatorial Objects of Interest

Under iterative decoding algorithms, certain structures in the graph of LDPC codes cause

the error floor phenomenon. These structures are error-prone, and the errors resulting from

them are not necessarily codeword errors. Let q be the size of the finite field that the LDPC

code is defined over. We review the key definitions here:

Definition 2. Consider a subgraph induced by a subset V of VNs in the Tanner graph of an

LDPC code. Set all the VNs in V to values in GF(q)\{0} and set all other VNs to 0. The set

V is said to be an (a, b) trapping set (TS) if the size of V is a and the number of neighboring

unsatisfied CNs is b (for the given assignment of VN values) [21, 22].

We note that in the binary case (q = 2), unsatisfied CNs are odd degree CNs connected

to V in the induced subgraph, and satisfied CNs are even degree CNs connected to V in the

induced subgraph.

Definition 3. Consider a subgraph induced by a subset V of VNs in the Tanner graph of an

LDPC code. Set all the VNs in V to values in GF(q)\{0} and set all other VNs to 0. The set

6

(a) (b) (c)

Figure 1.2: (a) The (3, 3) AS. (b) The (4, 8) TS. (c) The two non-isomorphic configurations
for (6, 0) BAS.

V is said to be an (a, b) absorbing set (AS) if the size of V is a, the number of neighboring

unsatisfied CNs is b, and each VN in V is connected to strictly more satisfied than unsatisfied

neighboring CNs (for the given assignment of VN values) [23].

The class of TSs subsumes the class of ASs. While TSs that are not ASs are usually

harmless (these configurations are typically unstable under iterative decoding), we purposely

recall the definition here. The reason is, as we see later, a systematic elimination of multiple

problematic ASs can be achieved by focusing on the elimination of the common subgraph

that these ASs share. In some cases, these common structures are certain TSs that on their

own do not appear as decoding errors.

It is recently observed that in the context of LDPC codes for the MR applications, only

certain subclasses of ASs matter [24]. The reason is that in the MR setting, the global

iterations between the detector and the decoder can often (with a sufficient number of outer

iterations) overcome the errors due to ASs that are on the verge of instability, and what

remains then are the errors due to a certain subclass of ASs, which are called balanced

absorbing sets (BASs). The ASs are thus classified as either balanced absorbing sets (BASs)

or unbalanced absorbing sets (UBASs). Both are defined as follows:

Definition 4. Let g =
⌊
γ−1

2

⌋
for a given column weight γ. An (a, b) AS with 0 ≤ b ≤

⌊
ag
2

⌋
is

defined as a balanced absorbing set (BAS), while an (a, b) AS with
⌊
ag
2

⌋
< b ≤ ag is defined

as an unbalanced absorbing set (UBAS) [24].

For instance, for the binary case (q = 2), Figure 1.2 (a) depicts a (3, 3) AS, Figure 1.2 (b)

depicts a (4, 8) TS which cannot be categorized as an AS, and Fig. 1.2 (c) shows two non-

7

isomorphic configurations for (6, 0) BAS. In the graphical representation of problematic

objects, VNs, satisfied CNs, and unsatisfied CNs are represented by white circles, white

squares, and grey squares, respectively.

The NB LDPC codes offer superior performance over the binary LDPC codes, and are

thus are more suitable for modern Flash memories. It was recently revealed that general

absorbing sets of type two (GASTs) are the most dominant problematic object in the error

floor of NB LDPC codes over practical, inherently asymmetric, Flash channels [25,26], which

is not similar to the case of canonical channels. The definitions of GASTs and unlabeled

GASTs (UGASTs) are:

Definition 5. Consider a subgraph induced by a subset V of VNs in the Tanner graph of an

LDPC code. Set all the VNs in V to values in GF(q)\{0} and set all other VNs to 0. The

set V is said to be an (a, b, d1, d2, d3) GAST over GF(q) if the size of V is a, the number of

unsatisfied CNs connected to V is b, the number of degree-1 (resp., 2 and > 2) CNs connected

to V is d1 (resp., d2 and d3), d2 > d3, all the unsatisfied CNs connected to V (if any) have

either degree 1 or degree 2, and each VN in V is connected to strictly more satisfied than

unsatisfied neighboring CNs (for the given assignment of VN values) [26].

Definition 6. Consider a subgraph induced by a subset V of VNs in the unlabeled Tanner

graph of an LDPC code. Let O (resp., T and H) be the set of degree-1 (resp., 2 and > 2) CNs

connected to V. This graphical configuration is an (a, d1, d2, d3) unlabeled GAST (UGAST) if

it satisfies the following two conditions [26]:

1. |V| = a, |O| = d1, |T | = d2, |H| = d3, and d2 > d3.

2. Each VN in V is connected to strictly more neighbors in {T ∪ H} than in O.

For instance, Figure 1.3 (a) depicts a (6, 2, 0, 9, 0) GAST and Figure 1.3 (b) depicts a

(6, 2, 2, 5, 2) GAST [26]. Their unlabeled configurations are (6, 0, 9, 0) UGAST and (6, 2, 5, 2)

UGAST, respectively. For the NB setup, the GASTs, BASs, ASs, and TSs of interest are

described in terms of both the underlying topology (which is the unlabeled configuration)

8

(a) (b)

Figure 1.3: (a) The (6, 2, 0, 9, 0) GAST. (b) The (6, 2, 2, 5, 2) GAST. Appropriate NB edge
weights are assumed.

and the edge weights. Eliminating structures with a given topology thus eliminates all NB

configurations that have that topology.

1.3 Previous Works on Finite-Length SC Codes

There are several works that have studied the finite-length analysis and design of SC codes

with emphasis on the error floor region. In [8] and [9], authors consider SC codes with

memory m = 1 and focus on the restricted scheme of partitioning by cutting vectors. In [10],

a construction method is presented for the class of AB SC codes with column weight γ = 3

and for different memories. In [11], a systematic partitioning scheme is introduced to reduce

the population of cycles with length 4, i.e., cycles-4. Minimizing the number of cycles-4 is

very costly to be addressed in the partitioning step. In [11], a heuristic algorithm for lifting

is also presented to improve the girth properties in the final code. However, the algorithm

does not incorporate the repetitive structure of SC codes, and it requires a large circulant

size to ensure a good performance.

The cutting vector (CV) scheme for constructing CB SC codes was previously proposed

in [8] and [9]. In this scheme, the underlying block code is partitioned via a so-called cutting

vector ζ = [ζ0 ζ1 . . . ζγ−1] into component matrices H0 and H1. The cutting vector ζ is a

vector of ascending natural numbers. Matrix H0 is constructed by copying all circulants of

H with row and column group indices in {(i, j) | j < ζi} to the same coordinates in H0, and

setting all remaining elements of H0 to 0. Matrix H1 is then simply H1=H−H0. The CV

9

partitioning scheme can be generalized to construct SC codes with higher memories by using

several cutting vectors.

Among the previous works in the literature, the CV partitioning is one of the most general

scheme for constructing SC codes with various underlying block codes and column weights,

and it has been widely used for constructing finite-length SC codes. Thus, in the rest of this

dissertation, we compare the performance of our well-designed SC codes with SC codes that

have similar parameters and are constructed by the CV scheme.

1.4 Outline of Contributions

1.4.1 Chapter 2 Contributions

In this chapter, we first introduce a general approach for the enumeration of combinatorial

objects in the graph of finite-length SC codes. Our approach is general in the sense that

it effectively works for SC codes with various partitioning schemes, column weights, and

memories. Next, we present a two-stage framework for the construction of high performance

SC codes optimized for AWGN channels. In the presented framework, we aim at minimizing

the number of combinatorial objects that are detrimental in the error floor region.

In the first stage, we deploy a novel partitioning scheme, called the optimal overlap (OO)

partitioning, to produce the optimal partitioning that corresponds to the smallest number of

detrimental objects in the protograph. In the second stage, we apply a new circulant power

optimizer (CPO) to further reduce the number of detrimental objects in the lifted graph.

1.4.2 Chapter 3 Contributions

In this chapter, we customize the stages of our SC design framework for constructing finite-

length SC codes suitable for non-AWGN channels. We consider three different channel models,

i.e., MR channels, Flash channels, and AWGN channels with SNR variation. We tackle the

problem of optimized design of (NB) SC codes in the context of these channel models. For

this purpose, we identify combinatorial structures in the graphical representation of the SC

10

codes that are detrimental in each channel setting.

An intriguing observation is that for the same SC code, the problematic objects for the

MR channels and Flash channels are combinatorially different from AWGN setting, thus

necessitating a careful code design approach for these applications. We then carefully identify

the partitioning, circulant powers, and edge weights (for NB codes) in order to construct

SC codes with a low population of problematic objects in their graphs in a systematic,

low-complexity, and channel-aware fashion.

In MR systems, consecutive sections may experience different SNRs. To perform error

correction over MR systems or similar non-uniform applications, one approach is to use an

individual block code for each section. However, the performance over a section affected

by a lower SNR is weaker compared to the performance over a section affected by a higher

SNR. We present an SC code construction for channels with SNR variation. We then

introduce a low-complexity interleaving scheme specific to SC codes that further improves

their performance over channels with SNR variation.

1.4.3 Chapter 4 Contributions

It has long been known that irregular graph-based codes offer performance advantage over

their regular counterparts. In this chapter, we present a novel combinatorial framework

for designing finite-length irregular SC codes. Our irregular SC codes have the desirable

properties of regular SC codes thanks to their structure while offering significant performance

benefits that come with the node degree irregularity. Coding constructions proposed in this

work contribute to the existing portfolio of finite-length graph-based LDPC code designs.

1.4.4 Chapter 5 Contributions

In this chapter, we present a systematic framework for constructing multi-dimensional SC

(MD-SC) codes with notably better cycle properties than their one-dimensional counterparts.

In our framework, the multi-dimensional coupling is performed via an informed relocation of

problematic circulants. This work is general in the terms of the number of constituent SC

11

codes that are connected together, the number of neighboring SC codes that each constituent

SC code is connected to, and the length of the cycles whose populations we aim to reduce.

The results of this work can be particularly beneficial in data storage systems, e.g., two-

dimensional magnetic-recording and multi-layer Flash memories, as high performance MD-SC

codes are robust against various channel impairments and non-uniformity.

12

CHAPTER 2

Finite-Length Construction of High Performance SC

Codes

2.1 Introduction

In this chapter, we propose a new combinatorial framework for the finite-length analysis and

design of CB SC codes. We aim at constructing SC codes with the minimum number of

problematic objects in their graphs. These problematic objects are certain configurations

that depend on both the code specifications as well as the channel model [21, 23,24,26]. We

first introduce a new enumeration approach that exploits the structure of SC codes in order

to efficiently enumerate the combinatorial objects of interest. Our new approach can be

applied to SC codes constructed by arbitrary partitioning and memory size.

Next, we present a systematic scheme for partitioning the underlying block code and

constructing SC codes with a superior performance for AWGN channels. We operate on

the protograph of the SC codes, and express the number of problematic objects we want to

minimize in terms of the overlap parameters, which characterize the partitioning. Then, we

solve a discrete optimization problem to determine the optimal overlap parameters. We call

this new partitioning scheme the optimal overlap (OO) partitioning.

The OO partitioning scheme is, in particular, suitable for the code optimization in the

regime outside the reach of brute force methods, since it finds the optimal partitioning in

a systematic way and does not need a search among a possibly very large set of choices.

We demonstrate that the new scheme achieves much better performance compared to the

existing scheme of partitioning by cutting vectors (CV) [8,9]. More importantly, our parti-

13

tioning scheme is presented for general memory m and column weight γ. Given the optimal

partitioning, we then apply a new heuristic program to adjust the circulant powers to further

reduce the number of problematic objects in the final graphs. We call this heuristic program

the circulant power optimizer (CPO).

The rest of the chapter is organized as follows. In Section 2.2, we present our general

enumeration approach. In Section 2.3, we propose our two-stage framework for constructing

finite-length time-invariant SC codes. More Specifically, Section 2.3.1 and Section 2.3.2 are

devoted to the OO partitioning and the CPO algorithm, respectively, as two stages of our

proposed framework. Our simulation results are given in Section 2.4. Finally, the conclusion

appears in Section 2.5.

2.2 Enumeration of Combinatorial Objects

In this section, we introduce our new approach to enumerate combinatorial objects in the

Tanner graph of SC codes. This approach can be applied to SC codes with any underlying

block code, partitioning choice, memory, and column weight. Our main result is stated in

Theorem 1. We first state the necessary auxiliary results.

Remark 1. Each VN corresponds to one unique column and each CN corresponds to one

unique row in the parity-check matrix. We thus say that an object “exists in the matrix” and

“exists in the graph” of the code interchangeably. Besides, Theorem 1 and the preceding results

are presented for (a, b) ASs/TSs as the objects of interest. However, they can be fairly utilized

when cycles, BASs, and UGASTs are targeted as these objects are subclasses of ASs/TSs.

Let the shortest path that connects any two VNs of an (a, b) AS/TS include at most λ

VNs (including the two VNs themselves). Given the configuration of an AS/TS, one can find

the parameter λ by known methods, e.g., Dijkstra’s algorithm [27]. In the case that there

exists at least one cycle that spans all VNs, λ is upper-bounded by
⌊
a
2

⌋
+ 1. We say two VNs

are adjacent if they are connected via a CN. For example, a (3, 3(γ − 2)) AS/TS has λ = 2,

because any two VNs are adjacent, see Figure 1.2 (a). The (4, 8) TS shown in Figure 1.2 (b)

14

has λ = 3.

Lemma 1. For an SC code with memory m, all VNs of an (a, b) AS/TS belong to at most χ

consecutive replicas, where

χ = (λ− 1)m+ 1. (2.1)

Proof. As shown in Figure 1.1, the maximum number of consecutive replicas with the property

that their non-zero parts have some rows (CNs) in common is (m+ 1). As a result, any two

adjacent VNs must be within at most (m + 1) consecutive replicas, or equivalently, there

are at most (m− 1) different replicas between the replicas in which two adjacent VNs exist.

Consider an (a, b) AS/TS, and let v1 be the VN with the lowest index (the index of the

corresponding column in HSC), and vf be the VN with the highest index. These two VNs

are connected on a path that includes at most λ VNs. There are at most (m− 1) different

replicas between the replicas of any two adjacent VNs on this path, and the λ VNs belong to

at most λ different replicas. Consequently, v1 and vf must belong to at most χ consecutive

replicas, where χ is given by: χ = (λ− 1)(m− 1) + λ = (λ− 1)m+ 1. The rest of VNs of

the AS/TS must also belong to these χ consecutive replicas since they have indices between

v1 and vf .

Definition 7. The matrix Πk
r , where r ∈ {1, . . . , L} and k ∈ {1, . . . , L−r+1}, is a submatrix

of HSC, and is defined as:

Πk
r = HSC[ukr,1 : ukr,2][vkr,1 : vkr,2],

ukr,1 = (r − 1)γz, ukr,2 = (r +m+ k − 1)γz − 1,

vkr,1 = (r − 1)κz, vkr,2 = (r + k − 1)κz − 1.

(2.2)

We say an (a, b) AS/TS starts in Rr if among all its VNs, the one with the lowest

associated column index belongs to Rr

Lemma 2. For an (a, b) AS/TS that starts in replica Rr and spans k replicas, all VNs and

all their neighboring CNs have corresponding row and column indices in Πk
r .

15

Proof. An AS/TS that starts in replica Rr and spans k replicas must have its VNs in the

replicas {Rr, . . . ,Rr+k−1}. Based on (1.3) and (1.4), the smallest submatrix of HSC that

spans all non-zero parts of these k replicas is Πk
r .

Theorem 1. Consider an SC code with parameters m and L. Let F be the total number

of (a, b) ASs/TSs, and F k
r be the number of (a, b) ASs/TSs that start in Rr and span k

consecutive replicas, k ∈ {1, 2, . . . , χ}. Then,

F =

χ∑
k=1

(L− k + 1)F k
1 . (2.3)

Proof. By summing up the number of (a, b) ASs/TSs over all possible starting replicas and

spanning sizes, the total number of (a, b) ASs/TSs can be written as:

F =

χ∑
k=1

L−k+1∑
r=1

F k
r . (2.4)

According to Lemma 2, F k
r is equivalent to the number of objects of interest that span k

replicas in Πk
r . Consider the matrix Πk

r+1, r ∈ {1, . . . , L− k}:

Πk
r+1 = HSC[ukr+1,1 : ukr+1,2][vkr+1,1 : vkr+1,2],

ukr+1,1 = ukr,1 + γz, ukr+1,2 = ukr,2 + γz,

vkr+1,1 = vkr,1 + κz, vkr+1,2 = vkr,2 + κz.

Because of the repetitive structure of SC codes (see also Figure 1.1), the following equality

holds for the parity-check matrix HSC:

HSC[i+ γz][j + κz] = HSC[i][j].

Then,

Πk
r+1 = HSC[ukr,1 + γz : ukr,2 + γz][vkr,1 + κz : vkr,2 + κz]

= HSC[ukr,1 : ukr,2][vkr,1 : vkr,2] = Πk
r .

16

(a) (b) (c)

Figure 2.1: (a) The (3, 3) AS. (b) The (4, 2) AS. (c) Two non-isomorphic configurations for
the (5, 3) AS.

Consequently,

Πk
r+1 = Πk

r =⇒ F k
r+1 = F k

r .

By means of induction, we infer that:

F k
r = F k

1 ∀r ∈ {1, 2, . . . , L− k + 1}. (2.5)

Combining (2.4) and (2.5), yields the final result in (2.3).

The utility of Theorem 1 is to significantly reduce the search size by searching over Πχ
1

rather than HSC. The number of problematic objects that span the first k replicas in Πχ
1 , i.e.,

F k
1 , can be computed via an exhaustive search. In Section 2.3.1, we present a new scheme to

efficiently find F k
1 for the protograph of SC codes (SC codes with z = 1).

2.3 Two-Stage Framework for Constructing SC Codes for AWGN

Channels

For CB codes with z ≥ κ, by a careful choice of the circulant powers, e.g., AB where fi,j = ij,

it is easy to achieve zero cycles-4. Therefore, we consider CB codes having girth 6 in our

analysis in this chapter. For CB codes with girth 6 simulated over AWGN channels, certain

types of ASs are dominant in the error floor region. For γ = 3 codes, the (3, 3), (4, 2), and

17

(a) (b) (c)

Figure 2.2: (a) The (4, 4) AS. (b) One configuration for the (6, 4) AS. (c) The (3, 6) TS as
the common denominator.

(a) (b) (c)

Figure 2.3: (a) The (4, 8) AS. (b) One configuration for the (8, 6) AS. (c) The (3, 9) TS as
the common denominator.

(5, 3) ASs are the dominant objects [9, 28], see Figure 2.1. For γ = 4 codes, the dominant

objects are the (4, 4) and (6, 4) ASs [9, 28]. There are several non-isomorphic configurations

for the (6, 4) AS. The configuration of the (4, 4) AS and one of the configurations of the (6, 4)

AS are illustrated in Figure 2.2. For γ = 5 codes, the dominant objects are the (4, 8) and

(8, 6) ASs [28]. The configuration of the (4, 8) AS and one of the configurations of the (8, 6)

AS are illustrated in Figure 2.3.

According to Figures 2.1-2.3, our extensive simulations, and the literature [9, 28], the

(3, 3(γ − 2)) ASs/TSs appear as subgraphs of dominant problematic configurations for CB

codes with column weight γ. We call the (3, 3(γ − 2)) AS/TS, i.e., cycle-6, the common

denominator. For γ = 3, 4, and 5, the common denominators are the (3, 3) AS, the (3, 6) TS,

and the (3, 9) TS, respectively. In order to design high performance SC codes, we seek to

18

reduce the number of dominant ASs. To efficiently perform this task, we aim at minimizing

the number of common denominator instances.

By minimizing the population of the common denominator instances as subgraphs, we

reduce the number of all supergraphs and improve the code performance. Moreover, the

common denominator has a simpler combinatorial characteristics, and thus it is easier to

locate and operate on. Removing all the (3, 3(γ − 2)) ASs/TSs as instances of the common

denominator is not feasible for many practical code parameters. Consequently, removing as

many as possible of the (3, 3(γ−2)) ASs/TSs is the ultimate goal in our SC code construction.

This optimization results in a dramatic performance improvement as also verified by our

simulation results.

In this section, we present a two-stage framework to design high performance SC codes

suitable for AWGN channels.

1. In the first stage, we operate on the protograph of the SC code, and express the number

of cycles-6 in terms of the overlap parameters, which characterize the partitioning of the

block code. Then, we solve a discrete optimization problem to determine the optimal

overlap parameters. We call this new partitioning scheme the OO partitioning.

2. In the second stage, given the optimal partitioning, we apply a new heuristic program

to optimize the circulant powers in order to further reduce the number of cycles-6 in

the graph of the SC code. This heuristic program is called CPO.

The next two subsections describe these stages in details.

2.3.1 Stage 1: Optimal Overlap Partitioning

Given a fixed set of code parameters, the partitioning provides an extra degree of freedom

to construct SC codes with a lower population of problematic objects, e.g., cycles, ASs, etc.

We note that for many practical settings, constructing an underlying block code with a

given girth (resp., zero population of certain problematic objects) is fairly difficult, if not

unfeasible. Via the proposed partitioning, we can reduce the number of smallest cycles (resp.,

19

problematic objects) as much as possible for an SC code.

The protograph matrix of a CB code is obtained by replacing each z×z non-zero circulant

with 1 and each z× z zero circulant with 0. The protograph matrices of H, H0, H1, . . . , Hm

are Hp, Hp
0, Hp

1, . . . , Hp
m, respectively (all of size γ × κ). The protograph matrix of HSC is

Hp
SC, and it is of size (L+m)γ ×Lκ. This Hp

SC also has L replicas, but with 1× 1 circulants.

The procedure of generating HSC from Hp
SC is called lifting.

In this subsection, we formulate the problem of identifying the optimal partitioning that

results in the minimum number of cycles-6 in Hp
SC as an optimization problem over a set

of integer-valued parameters, which we call independent non-zero overlap parameters. The

new optimization problem has a dramatically smaller size compared to the original one that

operates over all possible partitioning options. This novel combinatorial scheme is called the

OO partitioning. In the OO partitioning, the resulting component matrices do not necessarily

each comprise a contiguous set of circulants. This property is in contrast with the scheme

of partitioning with cutting vectors in which component matrices – by design – have large

overlaps [8, 9], which is an undesirable feature for the finite-length design, as we show later.

Although there are many instances of the cycle-4 in the protograph of an SC code, the

goal in the OO partitioning of Hp is minimizing the population of cycles-6 in Hp
SC. This

is because cycles-4 are typically easy to be all removed from the lifted graph of HSC by a

careful choice of the circulant size and the circulant power arrangement. A cycle-6 in Hp
SC,

which is defined by the non-zero entries {(h1, l1), (h1, l2), (h2, l2), (h2, l3), (h3, l3), (h3, l1)} in

Hp
SC, results in z cycles-6 in HSC if and only if [29, 30]:

fh1,l1 + fh2,l2 + fh3,l3 = fh1,l2 + fh2,l3 + fh3,l1 (mod z), (2.6)

where fh,l is the power of the circulant with row group index h and column group index l.

Otherwise, this cycle results in zero cycles-6 in HSC [29, 30]. Moreover, a cycle-6 in the final

(lifted) graph of an SC code can only be generated from a cycle-6 in the protograph.

Motivated by the above facts, the OO partitioning aims at deriving the overlap parameters

of Hp that result in the minimum number of cycles-6 in the graph of Hp
SC. Then, in the next

20

subsection, we introduce CPO to further reduce the number cycles-6 in the graph of HSC

by breaking the condition in (2.6) for as many cycles-6 in the optimized graph of Hp
SC as

possible. We establish a discrete optimization problem by expressing the number of cycles-6

in the graph of Hp
SC as a function of the overlap parameters and standard code parameters.

We first introduce the overlap parameters.

Definition 8. Let Π1,p
1 of size (m+1)γ×κ be the protograph matrix of Π1

1 = [HT
0 . . . HT

m]T.

A degree-d overlap among d rows of Π1,p
1 indexed by {i1, . . . , id} is defined as a position

(column) in which all these rows have 1s simultaneously. A degree-d overlap parameter

t{i1,...,id} is defined as the number of degree-d overlaps among the rows indexed by {i1, . . . , id}

in Π1,p
1 . A degree-1 overlap parameter ti1 is defined as the number of 1s in row i1 of Π1,p

1 .

Remarks 2 and 3 discuss the properties of the overlap parameters in Definition 8.

Remark 2. For an SC code with column weight γ, the maximum degree for an overlap

parameter with non-zero value is γ. There are exactly γ 1s in any column of Π1,p
1 , thus there

is no position in a set of d > γ rows such that all the rows have 1s simultaneously.

Remark 3. Consider a set of rows {i1, . . . , id} of Π1,p
1 and d > 1. If there is at least one

pair of distinct row indices (iu, iv) such that iu, iv ∈ {i1, . . . , id} and iu = iv (mod γ), then

t{i1,...,id} = 0. This property holds because the matrix Hp is partitioned into Hp
0, . . . ,H

p
m. Thus,

there is zero overlap between the rows with the same indices in the component (protograph)

matrices.

Based on Definition 8, Remark 2, and Remark 3, the set of all non-zero overlap parameters

is:

O = {t{i1,...,id} | 1 ≤ d ≤ γ, 0 ≤ i1, . . . , id < (m+ 1)γ,

∀{iu, iv} ⊂ {i1, . . . , id} iu 6= iv (mod γ)}.
(2.7)

Example 1. For an SC code with γ = 3 and m = 1, there are 26 non-zero overlap parameters,

21

and the set of non-zero overlap parameters is:

O = {t{i1,...,id} | 1 ≤ d ≤ 3, 0 ≤ i1, . . . , id < 6,

∀{iu, iv} ⊂ {i1, . . . , id} iu 6= iv (mod 3)}

= {t0, t1, t2, t3, t4, t5, t{0,1}, t{0,2}, t{0,4}, t{0,5}, t{1,2}, t{1,3}, t{1,5}, t{2,3}, t{2,4},

t{3,4}, t{3,5}, t{4,5}, t{0,1,2}, t{0,1,5}, t{0,2,4}, t{0,4,5}, t{1,2,3}, t{1,3,5}, t{2,3,4}, t{3,4,5}}.

The overlap parameters in (2.7) are not independent. In fact, some overlap parameters

are linear combinations of other overlap parameters. Lemma 3 introduces the independent

non-zero overlap parameters. As we see later in this subsection, the number of cycles-6 can

be expressed in terms of the overlap parameters. Thus, the significance of Lemma 3 is to

reduce the complexity of the discrete optimization problem that specifies the optimal values

for the overlap parameters, and consequently, the optimal partitioning.

Lemma 3. The set of all independent non-zero overlap parameters is:

Oind = {t{i1,...,id} | 1 ≤ d ≤ γ, 0 ≤ i1, . . . , id < mγ,

∀{iu, iv} ⊆ {i1, . . . , id} iu 6= iv (mod γ)}.
(2.8)

The overlap parameters that are not included in Oind are either zero or linear functions of

the overlap parameters in Oind. Let 0 ≤ i1, . . . , id1 < mγ, mγ ≤ j1, . . . , jd2 < (m+ 1)γ, and

1 ≤ (d1 + d2) ≤ γ. Then,

t{i1,...,id1 ,j1,...,jd2} = tI +

d2∑
α=1

(−1)α
∑

{j′1,...,j′α}⊂J
[x1 ... xα]∈{0,...,m−1}α

tI∪{x1γ+j′1,...,xαγ+j′α}
, (2.9)

where I = {i1, . . . , id1}, J = {j1, . . . , jd2}, j = (j mod γ), and in the case of I = ∅, tI = κ.

We note that row xγ + j, where x ∈ {0, . . . ,m− 1} and j ∈ J , belongs to the x’th component

matrix of Π1,p
1 , and corresponds to row j of Π1,p

1 .

Proof. From Definition 8, t{i1,...,id1 ,j1,...,jd2} is the number of overlaps (column indices in which

all the rows {i1, . . . , id1 , j1, . . . , jd2} in Π1,p
1 have 1s simultaneously).

22

• I 6= ∅: To have an overlap at position (column index) y ∈ {1, . . . κ} among the rows

I ∪J of Π1,p
1 : 1) the rows in I of Π1,p

1 must have 1s at position y, 2) all rows in the first

m component matrices of Π1,p
1 corresponding to the rows in J must have 0s at position

y. In other words, the rows {x1γ + j1, . . . , xd2γ + jd2} of Π1,p
1 must have 0s at position

y, where [x1 . . . xd2] ∈ {0, . . . ,m− 1}d2 . Aided by the principle of inclusion-exclusion:

tI∪J = tI +

d2∑
α=1

(−1)α
∑

{j′1,...,j′α}⊂J
[x1 ... xα]∈{0,...,m−1}α

tI∪{x1γ+j′1,...,xαγ+j′α}
.

• I = ∅: To have an overlap at position (column index) y ∈ {1, . . . κ} among the rows J

of Π1,p
1 , all rows in the first m component matrices of Π1,p

1 corresponding to the rows

in J must have 0s at position y. In other words, the rows {x1γ + j1, . . . , xd2γ + jd2} of

Π1,p
1 must have 0s at position y, where [x1 . . . xd2] ∈ {0, . . . ,m− 1}d2 . Aided by the

principle of inclusion-exclusion:

tJ = κ+

d2∑
α=1

(−1)α
∑

{j′1,...,j′α}⊂J
[x1 ... xα]∈{0,...,m−1}α

t{x1γ+j′1,...,xαγ+j′α}
.

Remark 4. The overlap parameters are defined over a subset of rows in the matrix Π1,p
1 =

[(Hp
0)T . . . (Hp

m)T]T. Lemma 3 states that an overlap parameter defined over a set of rows

which includes some of the rows of Hp
m can be written as a linear combination of the overlap

parameters that are defined over sets of rows that do not include the rows of Hp
m.

Example 2. For an SC code with m = 1 and γ = 3,

Oind = {t0, t1, t2, t{0,1}, t{0,2}, t{1,2}, t{0,1,2}}.

According to (2.9), the overlap parameters that are not in Oind are functions of the 7 overlap

parameters in Oind as follows:

23

t3 = κ− t0, t{3,4} = κ− t0 − t1 + t{0,1},

t4 = κ− t1, t{3,5} = κ− t0 − t2 + t{0,2},

t5 = κ− t2, t{4,5} = κ− t1 − t2 + t{1,2},

t{0,4} = t0 − t{0,1}, t{0,1,5} = t{0,1} − t{0,1,2},

t{0,5} = t0 − t{0,2}, t{0,2,4} = t{0,2} − t{0,1,2},

t{1,3} = t1 − t{0,1}, t{0,4,5} = t0 − t{0,1} − t{0,2} + t{0,1,2},

t{1,5} = t1 − t{1,2}, t{1,2,3} = t{1,2} − t{0,1,2},

t{2,3} = t2 − t{0,2}, t{1,3,5} = t1 − t{0,1} − t{1,2} + t{0,1,2},

t{2,4} = t2 − t{1,2}, t{2,3,4} = t2 − t{0,2} − t{1,2} + t{0,1,2},

t{3,4,5}=κ− t0 − t1 − t2 + t{0,1} + t{0,2} + t{1,2} − t{0,1,2}.

Lemma 4. The number of independent non-zero overlap parameters described in Lemma 3

is:

Nind = |Oind| = (m+ 1)γ − 1. (2.10)

Proof. According to (2.8), |Oind| is the number of non-empty subsets of the set S =

{0, 1, . . . ,mγ− 1} with maximum size γ such that no two elements in a subset have the same

value mod γ. We first partition the set S as follows:

S = {0, γ, . . . , (m− 1)γ} ∪ {1, γ + 1, . . . , (m− 1)γ + 1}∪

· · · ∪ {γ − 1, 2γ − 1, . . . ,mγ − 1}.
(2.11)

All elements of any partition in (2.11) have the same value mod γ. Consequently, we have to

pick at most one element from each partition to form a subset with the specified characteristics.

All the γ partitions are of size m; thus, the number of ways for choosing at most one element

from each partition is
((
m
1

)
+
(
m
0

))γ
= (m + 1)γ. The number of partitions in (2.11) is γ.

Consequently, all subsets of S that are constructed by choosing at most one element from each

partition have maximum size γ. We only need to exclude the empty subset (corresponding to

d = 0). As a result, Nind = (m+ 1)γ − 1.

Example 3. The number of independent non-zero overlap parameters for γ = 3 and m = 1

is |Oind| = 7, while the number of non-zero overlap parameters is |O| = 26 (see Examples 1

24

Figure 2.4: Examples of cycles-6 on Hp
SC with parameters κ = 5, γ = 3, m = 2, and L = 3.

The cycles with solid lines, dashed lines, and dashed-dotted lines are spanning one, two, and
three replicas, respectively. Component matrices are illustrated in gray.

and 2). This comparison shows the importance of Lemma 3 in reducing the number of overlap

parameters that need to be optimized. This number, as we show later, determines the size of

a discrete optimization problem that identifies the optimal partitioning.

Next, we show that the number of cycles-6 in the protograph of an SC code can be

expressed as a function of overlap parameters in Oind. As we noted, the cycle-6 is the common

denominator of the overwhelming majority of problematic objects for CB codes with different

column weights over AWGN channels. A cycle-6 is formed of three distinct degree-2 overlaps,

and each overlap corresponds to one VN in the graph of the code, see Figure 2.4.

Lemma 5. Consider the protograph of an SC code with parameters m, L, and O. Let

[x]+ = max{x, 0}. The three VNs of a cycle-6 belong to one, two, or three different replicas.

We partition cycles-6 with specific CNs into three categories, and enumerate them separately.

Let Rr be the reference replica and c1 = (r−1)γ+ i1, c2 = (r−1)γ+ i2, and c3 = (r−1)γ+ i3

be the CNs.

1. The number of cycles-6 with all VNs in one replica, say Rr, and CNs c1, c2, and c3 is:

25

A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3})

=
(
t{i1,i2,i3}[t{i1,i2,i3} − 1]+[t{i2,i3} − 2]+

)
+
(
t{i1,i2,i3}(t{i1,i3} − t{i1,i2,i3})[t{i2,i3} − 1]+

)
+
(
(t{i1,i2} − t{i1,i2,i3})t{i1,i2,i3}[t{i2,i3} − 1]+

)
+
(
(t{i1,i2} − t{i1,i2,i3})(t{i1,i3} − t{i1,i2,i3})t{i2,i3}

)
.

(2.12)

2. The number of cycles-6 with VNs in two replicas, say two VNs in Rr and one VN in

Rq, and CNs c1, c2, and c3 is:

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2+(r−q)γ,i3+(r−q)γ})

=
(
t{i1,i2,i3}[t{i1,i3} − 1]+t{i2+(r−q)γ,i3+(r−q)γ}

)
+
(
(t{i1,i2} − t{i1,i2,i3})t{i1,i3}t{i2+(r−q)γ,i3+(r−q)γ}

)
,

(2.13)

where c2 and c3 are the CNs connected via the VN that belongs to Rq.

3. The number of cycles-6 with VNs in three replicas, say Rr and Rq and Rs (r < q < s),

and CNs c1, c2, and c3 is:

C(t{i1,i2}, t{i1+(r−q)γ,i3+(r−q)γ}, t{i2+(r−s)γ,i3+(r−s)γ})

=t{i1,i2}t{i1+(r−q)γ,i3+(r−q)γ}t{i2+(r−s)γ,i3+(r−s)γ},
(2.14)

where c1 and c2 are connected via the VN that belongs Rr, c1 and c3 are connected via

the VN that belongs to Rq, and c2 and c3 are connected via the VN that belongs to Rs.

Proof. A cycle-6 is formed of three distinct degree-2 overlaps as illustrated in Figure 2.4.

To avoid over-counting, we must consider degree-3 overlaps in order to guarantee that the

overlaps of a cycle-6 that belong to one replica have distinct indices.

1. Because of the structure of SC codes, an overlap between rows ((r−1)γ+i1, (r−1)γ+i2)

in Rr corresponds to an overlap between rows (i1, i2) in Π1,p
1 . Similarly, an overlap

between rows ((r − 1)γ + i1, (r − 1)γ + i3) in Rr corresponds to an overlap between

rows (i1, i3) in Π1,p
1 , and an overlap between rows ((r − 1)γ + i2, (r − 1)γ + i3) in Rr

26

corresponds to an overlap between rows (i2, i3) in Π1,p
1 . If t{i1,i2,i3} = 0, the number of

ways we can pick the overlaps is t{i1,i2}t{i1,i3}t{i2,i3}. Since we must consider the degree-3

overlap among the rows i1, i2, and i3 of Π1,p
1 , we partition the enumeration into the

following four cases:

• The overlap between rows (i1, i2) is chosen from t{i1,i2,i3} overlaps among the three

rows, and the overlap between rows (i1, i3) is chosen from other (t{i1,i2,i3} − 1)

overlaps among the three rows (if possible; that is why we use [t{i1,i2,i3} − 1]+).

• The overlap between rows (i1, i2) is chosen from t{i1,i2,i3} overlaps among the

three rows, and the overlap between rows (i1, i3) is chosen from (t{i1,i3} − t{i1,i2,i3})

overlaps that are exclusively between these two rows.

• The overlap between rows (i1, i2) is chosen from (t{i1,i2} − t{i1,i2,i3}) overlaps that

are exclusively between these two rows, and the overlap between rows (i1, i3) is

chosen from t{i1,i2,i3} overlaps among the three rows.

• The overlap between rows (i1, i2) is chosen from (t{i1,i2} − t{i1,i2,i3}) overlaps that

are exclusively between these two rows, and the overlap between rows (i1, i3) is

chosen from (t{i1,i3} − t{i1,i2,i3}) overlaps that are exclusively between these two

rows.

These four cases correspond to the four terms in (2.12).

2. Because of the structure of SC codes, an overlap between rows ((r−1)γ+i1, (r−1)γ+i2)

in Rr, an overlap between rows ((r − 1)γ + i1, (r − 1)γ + i3) in Rr, and an overlap

between rows ((r− 1)γ+ i2, (r− 1)γ+ i3) in Rq correspond to overlaps between pairs of

rows (i1, i2), (i1, i3), and (i2 + (r− q)γ, i3 + (r− q)γ) in Π1,p
1 , respectively. The overlaps

between rows (i1, i2) and between rows (i1, i3) belong to the same replica and must

have distinct indices. The third overlap belongs to another replica and automatically

has a distinct index. The number of options for the third overlap is ti2+(r−q)γ,i3+(r−q)γ.

We partition the enumeration into the following two cases:

• The overlap between rows (i1, i2) is chosen from t{i1,i2,i3} overlaps among the

27

three rows, and the overlap between rows (i1, i3) is chosen from the [t{i1,i3} − 1]+

remaining options.

• The overlap between rows (i1, i2) is chosen from (t{i1,i2} − t{i1,i2,i3}) overlaps that

are exclusively between these two rows, and the overlap between rows (i1, i3) is

chosen from the t{i1,i3} options.

These two cases correspond to the two terms in (2.13).

3. Because of the structure of SC codes, an overlap between rows ((r−1)γ+i1, (r−1)γ+i2)

in Rr, ((r − 1)γ + i1, (r − 1)γ + i3) in Rq, and ((r − 1)γ + i2, (r − 1)γ + i3) in Rs

correspond to overlaps between pairs of rows (i1, i2), (i1 + (r − q)γ, i3 + (r − q)γ), and

(i2 + (r − s)γ, i3 + (r − s)γ) in Π1,p
1 , respectively. These overlaps belong to different

replicas and thus have distinct indices. Consequently, the number of cycles-6 in this

case is the number of ways that we can choose these three overlaps, which is given in

(2.14).

Remark 5. For the enumeration of cycles-6, we only need overlap parameters of at most

degree 3, regardless of the column weight γ.

Theorem 2 expresses the number of cycles-6 in the protograph of an SC code as a function

the overlap parameters. We recall that given the independent non-zero overlap parameters,

the rest of overlap parameters can be found using Lemma 3. Let i = (i mod γ).

Theorem 2. The number of cycles-6 in the protograph of an SC code with parameters κ, γ,

m, L, and Oind is:

F =
m+1∑
k=1

(L− k + 1)F k
1 , (2.15)

and F k
1 , 1 ≤ k ≤ (m+ 1), is formulated as follows:

F 1
1 =

∑
{i1,i2,i3}⊂{0,...,(m+1)γ−1}

i1 6=i2 ,i1 6=i3, i2 6=i3

A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3}),

28

F 2
1 =

∑
i1∈{0,...,(m+1)γ−1}

{i2,i3}⊂{γ,...,(m+1)γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2−γ,i3−γ})

+
∑

i1∈{0,...,(m+1)γ−1}
{i2,i3}⊂{0,...,mγ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2+γ,i3+γ}),

F k≥3
1 =

∑
i1∈{0,...,(m+1)γ−1}
{i2,i3}⊂{(k−1)γ,...,(m+1)γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2+(1−k)γ,i3+(1−k)γ})

+
∑

i1∈{0,...,(m+1)γ−1}
{i2,i3}⊂{0,...,(m−k+2)γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2+(k−1)γ,i3+(k−1)γ})

+
k−1∑
q=2

∑
i1∈{(q−1)γ,...,(m+1)γ−1}
i2∈{(k−1)γ,...,(m+1)γ−1}
i3∈{(k−1)γ,...,(m+q)γ−1}

i1 6=i2 ,i1 6=i3, i2 6=i3

C(t{i1,i2}, t{i1+(1−q)γ,i3+(1−q)γ}, t{i2+(1−k)γ,i3+(1−k)γ}). (2.16)

The functions A, B, and C are defined in Lemma 5.

Proof. For a cycle-6, all three VNs are adjacent (connected to each other via one distinct CN).

As a result, for an SC code with memory m, a cycle-6 spans at most χ = m+ 1 consecutive

replicas, and (2.15) directly follows from (2.3).

1. For k = 1, we look for the number of cycles-6 having all their three VNs in replica R1 of

Hp
SC. Based on Lemma 5, the number of cycles-6 with CNs i1, i2, and i3 and VNs in R1

is A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3}). Then, we just need to find possible choices for i1, i2,

and i3. First, all the CNs must belong to the non-zero part of R1, i.e., {0, . . . , (m+1)γ}.

Second, the rows correspond to these CNs must have non-zero overlap parameters, i.e.,

i1 6= i2, i1 6= i3, i2 6= i3 (see Remark 3). Putting this together results in F 1
1 in (2.16).

2. For k = 2, we look for the number of cycles-6 spanning two replicas R1 and R2 of

Hp
SC, such that either two VNs are in R1 and one VN is in R2, or vice versa. Based on

29

Lemma 5, the number of cycles-6 with two VNs in R1, one VN in R2, and CNs i1, i2,

and i3 is B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2−γ,i3−γ}). Then, we just need to find all possible

choices for i1, i2, and i3. Two CNs i2 and i3 are connected to VNs in replicas R1 and

R2, thus they must belong to {γ, . . . , (m + 1)γ}. CN i1 is connected to VNs in R1,

thus it must belong to {0, . . . , (m + 1)γ}. Putting this together results in the first

summation of F 2
1 in (2.16). The second summation, which is for the case when one VN

belongs to R1 and two VNs belong to R2, can be found similarly.

3. For 3 ≤ k ≤ (m + 1), we look for the number of cycles-6 spanning k replicas of Hp
SC

starting from R1. Then, the first VN belongs to R1, the last VN belongs to Rk, and

the middle VN belongs to Rq, (1 ≤ q ≤ k). The first two summations in the expression

of F k
1 in (2.16) correspond to the cases q = 1 and q = k (the proof is similar to the

previous case). For the case of 2 ≤ q ≤ (k − 1) and based on Lemma 5, the number

of cycles-6 with one VN in R1, one VN in Rq, one VN in Rk, and CNs i1, i2, and i3

is C(t{i1,i2}, t{i1+(1−q)γ,i3+(1−q)γ}, t{i2+(1−k)γ,i3+(1−k)γ}). The CN i1 is connected to VNs in

R1 and Rq, therefore it must belong to {(q−1)γ, . . . , (m+1)γ}. The CN i2 is connected

to VNs in R1 and Rk, therefore it must belong to {(k− 1)γ, . . . , (m+ 1)γ}. The CN i3

is connected to VNs in Rq and Rk, therefore it must belong to {(k− 1)γ, . . . , (m+ q)γ}.

Putting this together results in the third summation of F k
1 in (2.16).

Now, define F ∗ to be the minimum number of cycles-6 in Hp
SC. Thus, our discrete

optimization problem is formulated as follows:

F ∗ = min
Oind

F. (2.17)

The constraints of our optimization problem are the conditions under which the overlap

parameters and the subsequent partitioning are valid.

Example 4. For an SC code with parameters γ = 3 and m = 1, the constraints of the

30

optimization problem in (2.17) are:

0 ≤ t0 ≤ κ,

0 ≤ t{0,1} ≤ t0,

t{0,1} ≤ t1 ≤ κ− t0 + t{0,1},

0 ≤ t{0,1,2} ≤ t{0,1},

t{0,1,2} ≤ t{0,2} ≤ t0 − t{0,1} + t{0,1,2},

t{0,1,2} ≤ t{1,2} ≤ t1 − t{0,1} + t{0,1,2},

t{0,2} + t{1,2} − t{0,1,2} ≤ t2 ≤ κ− t0 − t1 + t{0,1} + t{0,2} + t{1,2} − t{0,1,2},⌊
3κ
2

⌋
≤ t0 + t1 + t2 ≤

⌈
3κ
2

⌉
.

(2.18)

The last constraint in (2.18) guarantees a so-called balanced partitioning between Hp
0 and Hp

1.

A balanced partitioning is preferred to prevent the case where a group of non-zero elements

in either Hp
0 or Hp

1 are involved in significantly more cycles than the remaining non-zero

elements. This constraint, although it might result in a sub-optimal solution in the protograph

(in a few cases), is observed to be beneficial when we apply the CPO algorithm to construct

the final code.

Consider an underlying block code with parameters κ and γ. In the partitioning, each

circulant of the parity-check matrix of the underlying block code, i.e., H, can be assigned to

any of the (m+ 1) component matrices, resulting in (m+ 1)κγ possible options. The goal is

to choose a partitioning that results in the lowest number of cycles-6 in the protograph of an

SC code. Considering all possible partitioning options in a brute force fashion to find the

optimal one is not practical. We reduced the problem of finding the optimal partitioning for

the protograph of an SC code into an optimization problem over Nind = (m+ 1)γ − 1 overlap

parameters described in (2.8).

For example, when γ = 3, the number of optimization variables are 7 and 26 for memories

1 and 2, respectively. When γ = 4, the number of optimization variables are 15 and 80 for

memories 1 and 2, respectively. Any partitioning choice that corresponds to the optimal

overlap parameters results in the minimum number of cycles-6 in Hp
SC. We note that this

31

is the first work that presents the optimal partitioning for code parameters γ ∈ {3, 4},

m ∈ {1, 2}, and practical row weights, thanks to the reduction in the complexity of the

optimization problem. For a large number of optimization variables, one can manually force

all degree-1 overlap parameters to be fixed (' κ/(m+ 1)) and/or force all overlap parameters

with degrees greater than an integer threshold to be 0.

Example 5 summarizes all the necessary steps for finding the optimal partitioning of an

SC code with parameters κ, γ = 3, m = 1, and L.

Example 5. Using Theorem 2, the number of cycles-6 in the protograph of an SC code with

parameters κ, γ = 3, m = 1, and L is described in terms of the 7 overlap parameters in

Oind = {t0, t1, t2, t{0,1}, t{0,2}, t{1,2}, t{0,1,2}} as follows:

F = LF 1
1 + (L− 1)F 2

1 ,

where F 1
1 and F 2

1 are:

F 1
1 = A(t{0,1,2}, t{0,1}, t{0,2}, t{1,2}) +A(t{0,1,5}, t{0,1}, t{0,5}, t{1,5})

+A(t{0,2,4}, t{0,2}, t{0,4}, t{2,4}) +A(t{0,4,5}, t{0,4}, t{0,5}, t{4,5})

+A(t{1,2,3}, t{1,2}, t{1,3}, t{2,3}) +A(t{1,3,5}, t{1,3}, t{1,5}, t{3,5})

+A(t{2,3,4}, t{2,3}, t{2,4}, t{3,4}) +A(t{3,4,5}, t{3,4}, t{3,5}, t{4,5}), (2.19)

F 2
1 = B(t{0,4,5}, t{0,4}, t{0,5}, t{1,2}) + B(t{3,4,5}, t{3,4}, t{3,5}, t{1,2})

+ B(t{1,3,5}, t{1,3}, t{1,5}, t{0,2}) + B(t{3,4,5}, t{3,4}, t{4,5}, t{0,2})

+ B(t{2,3,4}, t{2,3}, t{2,4}, t{0,1}) + B(t{3,4,5}, t{3,5}, t{4,5}, t{0,1})

+ B(t{0,1,2}, t{0,1}, t{0,2}, t{4,5}) + B(t{1,2,3}, t{1,3}, t{2,3}, t{4,5})

+ B(t{0,1,2}, t{0,1}, t{1,2}, t{3,5}) + B(t{0,2,4}, t{0,4}, t{2,4}, t{3,5})

+ B(t{0,1,2}, t{0,2}, t{1,2}, t{3,4}) + B(t{0,1,5}, t{0,5}, t{1,5}, t{3,4}). (2.20)

We note that all the overlap parameters in (2.19) and (2.20) are linear combinations of the 7

32

independent non-zero overlap parameters in Oind, see Example 2. The functions A and B are

defined in Lemma 5. Our discrete optimization problem is formulated as follows:

F ∗ = min
t0,t1,t2,t{0,1},t{0,2},t{1,2},t{0,1,2}

F. (2.21)

The constraints of the optimization problem are found in Example 4. The solution of our opti-

mization problem is not unique. However, since all the solutions result in the same F ∗, we work

with one of these solutions, and call it an optimal vector, t∗ =
[
t∗0 t

∗
1 t
∗
2 t
∗
{0,1} t

∗
{0,2} t

∗
{1,2} t

∗
{0,1,2}

]
.

2.3.2 Stage 2: Circulant Power Optimization

Each cycle-6 in Hp
SC results in either 0 or z cycles-6, which are instances of the common

denominator, in HSC depending on the circulant power arrangement. In this subsection, we

introduce an algorithm to further reduce the number of cycles-6 in the lifted matrix HSC

by manipulating the circulant powers. After picking an optimal vector t∗ to partition Hp

and construct Hp
SC, we run our heuristic CPO to further reduce the number of (3, 3(γ − 2))

ASs/TSs (the common denominator instances) in the graph of HSC with column weight

γ. We start with a set of circulant powers that results in zero cycles-4 in the lifted graph

(the graph of HSC). Then, we iteratively change a subset of circulant powers such that the

number of (3, 3(γ − 2)) ASs/TSs is reduced while no cycles-4 are introduced. In our heuristic

algorithm, we exploit the structure of SC codes to reduce the computational complexity.

Recall that in codes that have no cycles-4, a cycle-6 is a (3, 3(γ − 2)) AS/TS. The steps of

the CPO are:

1. Initially, assign circulant powers fi,j = ij, 0 ≤ i ≤ γ − 1 and 0 ≤ j ≤ κ− 1, (as in AB

codes) to all the γκ 1s in Hp (results in zero cycles-4 in H and HSC).

2. Construct Πχ,p
1 , which contains χ = m + 1 replicas and has the size (χ + m)γ × χκ

(see Definition 7), using Hp and t∗. (Recall that the VNs of a cycle-6 span at most

χ = m + 1 consecutive replicas.) Circulant powers of the 1s in Πχ,p
1 are copied from

the 1s in Hp.

33

3. Define a counting variable θi,j, 0 ≤ i < γ and 0 ≤ j < κ, for each of the 1s in Hp.

Define another counting variable θ′i′,j′ , 0 ≤ i′ < (χ+m)γ and 0 ≤ j′ < χκ, for each of

the elements in Πχ,p
1 . Initialize all the variables in this step with zeros. Notice that only

χγκ counting variables of the form θ′i′,j′ are associated with 1s in Πχ,p
1 . The remaining

counting variables will remain zeros.

4. Locate all the cycles-4 and cycles-6 in Πχ,p
1 .

5. Specify the cycles-6 in Πχ,p
1 that have (2.6) satisfied, and call them active cycles.

Let F k,a
1 , k ∈ {1, . . . , χ}, be the number of active cycles starting at the first replica

and having their VNs spanning k consecutive replicas in Πχ,p
1 . Thus, from (2.3), the

number of active cycles having their VNs spanning k consecutive replicas in Πχ,p
1 is

(χ− k + 1)F k,a
1 . (For example, for k = 1, χF 1,a

1 is the number of active cycles having

their VNs spanning one replica.)

6. Compute the number of (3, 3(γ − 2)) ASs/TSs in HSC using the following formula (see

(2.3) and (2.6)):

FSC =

χ∑
k=1

(
(L− k + 1)F k,a

1

)
z. (2.22)

7. Count the number of active cycles each 1 in Πχ,p
1 is involved in. Assign weight

wk = (L− k+ 1)/(χ− k+ 1) to the number of active cycles having their VNs spanning

k consecutive replicas in Πχ,p
1 (see Remark 6 for more clarification). Store the weighted

count associated with each 1 in Πχ,p
1 , which is indexed by (i′, j′), in θ′i′,j′ .

8. Calculate the counting variables θi,j, ∀i, j, associated with the 1s in Hp from the

counting variables θ′i′,j′ associated with the 1s in Πχ,p
1 (computed in step 7) using the

following formula:

θi,j =
∑
i′:i′γ=i

∑
j′:j′κ=j

θ′i′,j′ , (2.23)

where i′γ = (i′ mod γ) and j′κ = (j′ mod κ). Sort the γκ 1s of Hp in a descending list

according to the counts in θi,j, ∀i, j.

34

9. Pick a subset of 1s from the top of this list, and change the circulant powers associated

with them.

10. Using these interim new powers, do steps 5 and 6.

11. If FSC is reduced while maintaining no cycles-4 in HSC, update FSC and the circulant

powers, then go to step 7. Otherwise, return to step 9 to pick a different set of circulant

powers or/and a different subset of 1s.

12. Iterate until the target FSC (set by the designer) is achieved, or the reduction in FSC

approaches zero.

Note that step 9 is performed heuristically. The number of 1s to work with and how to

choose them depends on the circulant size, the values of the counts, and how these values

are distributed. Moreover, tracking the counts of active cycles and the distribution of their

values over different 1s in Hp is the deciding principle in choosing which 1s to select in each

iteration.

Remark 6. A cycle-6 starting at the first replica and spanning k consecutive replicas,

∀k ∈ {1, . . . , χ}, is repeated (χ − k + 1) times in Πχ,p
1 and (L − k + 1) times in Hp

SC. An

active cycle spanning k consecutive replicas, which involves a 1 in Πχ,p
1 indexed by (i′, j′), is

counted wk times in θ′i′,j′, and thus exactly (χ− k + 1)wk = (L− k + 1) times in θi,j for the 1

in Hp indexed by (i, j). This justifies the weighting factors used in steps 7 and 8.

Remark 7. A (3, b′) configuration, where b′ ≤ 3(γ − 2), in the protograph of the SC code can

result in (3, 3(γ − 2)) ASs/TSs in the final (lifted) graph depending on the circulant power

arrangement. That is the reason why we consider all cycles-6 in Hp
SC, even those that are

(3, b′) configurations and b′ < 3(γ − 2). Note that typically the protograph of an SC codes

has cycles-4. By the circulant power arrangement, we guarantee that the lifted graph (the SC

code) does not have any cycle-4.

Definition 9. The partitioning of the underlying block code can be described by matrix

PM = [gi,j] of size κ× γ, called partitioning matrix. Each element gi,j ∈ {0, · · · ,m} implies

35

that the corresponding element in Hp (resp., the corresponding circulant in H) is assigned to

Hp
gi,j

(resp., Hgi,j). Besides, the circulant power matrix CM = [fi,j], with dimension γ × κ,

stores the powers of non-zero circulants. Our OO-CPO approach for designing SC codes

outputs these two matrices.

Example 6. Suppose we want to design an SC code with parameters κ = z = 7, γ = 4,

m = 1, and L = 30 using the OO-CPO (OO partitioning and CPO algorithm). Solving the

optimization problem in (2.17) yields the following optimal vector:

t∗ = [t∗0 t
∗
1 t
∗
2 t
∗
3 t
∗
{0,1} t

∗
{0,2} t

∗
{0,3} t

∗
{1,2} t

∗
{1,3} t

∗
{2,3} t

∗
{0,1,2} t

∗
{0,1,3} t

∗
{0,2,3} t

∗
{1,2,3}]

= [3 4 3 4 0 1 2 2 2 0 0 0 0 0],

which results in F ∗ = 4,680 cycles-6 in the graph of Hp
SC. Next, we apply the CPO algorithm.

The partitioning and circulant power matrices attained by the OO-CPO framework are given

below:

PM =


0 1 0 1 0 1 1

1 0 1 0 1 0 0

0 0 1 0 1 1 1

1 1 0 1 0 0 0

 , CM =


0 4 5 2 5 0 0

0 1 2 3 4 6 5

0 2 4 6 1 3 5

0 3 6 2 0 0 3

 .

We note that the uncoupled case with AB circulant power arrangement (m = 0, H0 = H,

and fi,j = ij) results in HSC with 35,280 cycles-6, the OO partitioning with AB circulant

power arrangement (only stage 1) results in HSC with 5,747 cycles-6, and the OO-CPO

framework (both stages) results in HSC with 2, 870 cycles-6.

2.4 Simulation Results

In this section, we compare the performance of SC codes constructed by the OO-CPO

framework with uncoupled block codes and SC codes constructed by the CV method [8,9].

We demonstrate both the reduction in the number of detrimental objects and the bit error rate

(BER) performance improvement over AWGN channels, achieved by the OO-CPO framework.

36

All the codes in this section are binary. The terms CV-AB, OO-AB, and OO-CPO represent

three different methods of constructing SC codes: CV partitioning and AB circulant powers

(fi,j = ij), OO partitioning and AB circulant powers, and OO partitioning and circulant

powers attained by the CPO program.

Block Code 2.1 and Block Code 2.2 are AB block codes with κ = z = 17. Block Code 2.1

has γ = 3 and rate 0.824, and Block Code 2.2 has γ = 4 and rate 0.765. Uncou-

pled Block Codes 2.1 (resp., Uncoupled Block Codes 2.2) represents 30 uncoupled Block Codes 2.1

(resp., Block Codes 2.2), and it can be considered as an SC code with m = 0, H0 = H,

and L = 30. SC Code 2.1, SC Code 2.2, . . . , SC Code 2.7 are SC codes with parameters

κ = z = 17, L = 30, length 8,670 bits, and constructed by different methods.

SC Code 2.1, SC Code 2.2, and SC Code 2.3 have m = 1, γ = 3, and rate 0.818, and they

are constructed by the CV-AB (ζ = [4 9 13]), OO-AB, and OO-CPO methods, respectively.

SC Code 2.2 and SC Code 2.3 have the partitioning matrix:


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0

 ,

and SC Code 2.3 has the following circulant power matrix:


0 0 2 9 0 7 4 16 2 4 2 9 0 4 13 1 1

13 1 2 6 4 5 6 7 8 9 10 13 12 0 14 8 16

0 2 0 0 8 10 8 14 16 1 3 5 7 15 5 5 2

 .

SC Code 2.4, SC Code 2.5, and SC Code 2.6 have m = 1, γ = 4, and rate 0.757, and they are

constructed by the CV-AB (ζ = [3 7 11 15]), OO-AB, and OO-CPO methods, respectively.

37

SC Code 2.5 and SC Code 2.6 have the partitioning matrix:


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

 ,

and SC Code 2.6 has the following circulant power matrix:


0 10 2 8 2 0 5 7 15 0 0 0 0 10 0 0 0

11 15 2 14 10 3 6 7 8 9 4 11 12 8 14 10 16

11 2 4 12 8 11 12 9 15 4 13 5 6 1 11 13 15

11 3 6 9 2 16 8 4 7 10 13 16 2 5 8 6 14

 .

SC Code 2.7 has m = 2, γ = 3, and rate 0.812, and it is constructed by the OO-CPO method.

SC Code 2.7 has the following partitioning matrix:


0 1 1 0 1 2 0 2 2 0 1 1 0 1 2 2 2

1 0 0 1 0 0 2 0 0 2 2 2 2 2 1 1 1

2 2 2 2 2 1 1 1 1 1 0 0 1 0 0 0 0

 ,

and the following circulant power matrix:


9 5 4 1 2 15 10 14 0 3 0 0 0 0 7 4 0

0 13 6 3 6 5 6 7 8 9 10 11 12 13 14 15 16

0 2 3 6 8 1 12 14 16 1 12 5 7 9 11 13 15

 .

Table 2.1 shows the number of cycles-6 for Uncoupled Block Codes 2.1 and 2.2 and

SC Codes 2.1, . . . , 2.7. According to our results, an SC code constructed by the CV-AB

method achieves about 57% reduction in the number of cycles-6 compared to the uncoupled

case for m = 1 and γ ∈ {3, 4}. When we apply our OO-CPO framework for m = 1 and

γ ∈ {3, 4}, the reduction in the population of cycles-6 compared to the uncoupled case reaches

38

(a) (b)

Figure 2.5: BER curves over AWGN channel for SC codes with length 8,670 bits, memory
m = 1, and constructed with different methods: (a) γ = 3, (b) γ = 4.

up to 89%. For the OO-CPO framework with m = 2 and γ = 3, the number of cycles-6 is 0

which means the girth of the code becomes 8.

Next, we compare the performance of the SC codes over AWGN channels. We include

the performance curves for the uncoupled codes as references since a chain of L uncoupled

block codes can be viewed as an SC code with m = 0 and coupling length L. Figure 2.5 (a)

shows the BER curves in the error floor region for Uncoupled Block Codes 1 (m = 0) and

SC Codes 2.1, 2.2, and 2.3 (m = 1). All these codes have γ = 3. The figure demonstrates

that our OO-CPO method outperforms the CV method by nearly 2 orders of magnitude,

and that each stage of the framework is necessary to achieve this improvement.

Figure 2.5 (b) shows similar findings for SC codes with γ = 4. Based on our results, the

performance improvement of our two-stage framework relative to the CV method is preserved

Table 2.1: Population of cycles-6 for SC codes with z = κ = 17, L = 30, and different
construction methods.

Construction method Code name m γ No. cycles-6

Uncoupled-AB
Uncoupled Block Codes 2.1 0 3 138,720
Uncoupled Block Codes 2.2 0 4 554,880

CV-AB
SC Code 2.1 1 3 59,024
SC Code 2.4 1 4 238,697

OO-CPO
SC Code 2.3 1 3 14,960
SC Code 2.6 1 4 91,494
SC Code 2.7 2 3 0

39

(a) (b)

Figure 2.6: BER curves over AWGN channel: (a) SC codes with length 8,670 bits, γ = 3,
and different memories, (b) SC codes with length 2,940 bits, rate 0.564, and constructed with
different methods.

when we increase the column weight. SC Code 2.6 constructed by the OO-CPO framework

achieves nearly 5 orders of magnitude performance improvement in the early error floor region

and more than 1.3 dB SNR gain compared to the uncoupled setting (m = 0).

In Figure 2.6 (a), we show the effect of increasing the memory on the performance of

SC codes, where we used a windowed min-sum decoding [4]. This comparison is fair in the

sense of having comparable decoding latency and complexity (of the same order) as suggested

in [31–33]. If the windowed decoding is used, the decoding latency depends on the constraint

length not the codeword length. When we increase the memory, we need to use a bigger

window size for decoding, and consequently we increase the decoding latency and complexity.

However, the performance improves dramatically.

Figure 2.6 (a) shows the BER performance in the error floor region for SC codes with

different memories. As we see, increasing the memory notably improves the error floor

performance of SC codes. For Uncoupled Block Codes 2.1, SC Code 2.3, and SC Code 2.7,

we use a block decoder, a windowed decoder with window size W = 3, and a windowed

decoder with W = 5, respectively. Figures 2.5 and 2.6 also demonstrate a good performance

improvement in the waterfall region achieved via our OO-CPO framework. One important

reason is that the multiplicity of the low-weight codewords that include (3, 3(γ− 2)) ASs/TSs

as subgraphs in their configurations strongly affects the waterfall performance.

40

Finally, we compare the performance of low-rate SC codes constructed by different

methods. SC Codes 2.8 and SC Codes 2.9 have parameters κ = z = 7, γ = 3, m = 1, and

L = 60. They have code length 2,940 bits and rate 0.564. SC Code 2.8 is constructed by the

CV-AB (ζ = [2 4 6]) method, and SC Code 2.9 is constructed by the OO-CPO method. The

partitioning and circulant power matrices for SC Code 2.9 are given below:

PM =


1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 0 1 0 1 1

 , CM =


0 1 3 5 2 4 1

0 1 2 3 4 5 6

0 5 0 2 4 6 2

 .

The number of cycles-6 for SC Code 2.8 and SC Code 2.9 are 6,650 and 413, respectively,

which shows 94% reduction attained by our framework compared to the CV method. As

Figure 2.6 (b) shows, our framework achieves nearly 1.4 orders of magnitude performance

improvement at SNR = 7.0 dB and nearly 0.6 dB SNR gain at BER = 10−6 (using min-sum

decoding).

Remark 8. We note that the comparison between SC codes and their uncoupled counterparts

is fair in terms of the number of problematic objects due to their similar number of VNs,

CNs, and edges. In terms of the constraint length, and consequently, the decoding latency, an

SC code with memory m has a constraint length that equals (m+ 1) times the length of its

underlying block code.

2.5 Conclusion

In this chapter, we presented a new combinatorial approach for the finite-length analysis

and design of CB SC codes. We exploited the structure of SC codes to present a new

methodology for the enumeration of combinatorial objects, which can be applied to SC codes

constructed by a wide variety of partitioning schemes and memories. Next, we introduced

a novel partitioning scheme that operates on the protograph of an SC code to minimize

the number of detrimental objects. Then, we proposed a heuristic algorithm for circulant

power optimization that further reduces the population of these problematic objects in the

41

final graph. The proposed OO-CPO framework is an effective tool to construct SC codes

that have a notably better performance than other existing construction techniques. In next

chapter, we investigate the SC codes constructed by our new framework in modern dense

storage applications.

Acknowledgment

The majority of the material in this chapter is published in [12]. The author would like to

thank the collaborators in this publication.

42

CHAPTER 3

Tailoring the SC Design Framework for Storage

Applications

3.1 Introduction

In today’s technological world, a huge amount of data is generated every day that need to be

stored with a high reliability. Modern storage systems, e.g., Flash memories and magnetic

recording (MR) systems, operate at very low error rates which require ECCs with outstanding

performance. Certain combinatorial objects in the graph of LDPC codes are responsible for

most errors that occur in the error floor region. These objects are not necessarily codework

errors, and the errors resulting from them cannot be easily resolved in the belief propagation

decoding.

In this chapter, we tackle the problem of optimized design of SC codes in the context

of various storage applications. In particular, we identify combinatorial structures in the

graphical representation of the LDPC, and more specifically SC codes, that are detrimental

over different channel models corresponding to different storage devices. We show that the

type and configuration of problematic objects depend on the channel model, and thus, a

channel-aware code design is required to achieve a good performance in modern storage

applications. We optimize SC codes to reduce the population of these problematic objects in

their graphs.

Last but not the list, we investigate the channel non-uniformity and the ECC solutions to

alleviate it. The SNR is not constant over different parts of a storage device. We present an

ECC scheme that provides a well-defined cooperation among different parts of the channel

43

such that reliable data can help unreliable ones to be recovered, and consequently, to improve

the overall error-correction performance. To this end, we present an SC code design along

with a specific interleaving scheme that has robustness against the channel non-uniformity.

The rest of this chapter is organized as follows: In Section 3.2, we present an SC code design

for MR storage devices. In Section 3.3, we present an SC code design for Flash memories. In

Section 3.4, we present an SC code design along with a novel interleaving scheme for AWGN

Channels with SNR variations. Finally, the conclusion appears in Section 3.5.

3.2 SC Code Design for MR Systems

MR applications require channel codes with outstanding error-correction capabilities. Cur-

rently, LDPC codes are a preferred choice in MR technologies [34–36] due to their great

performance and low-complexity decoding. In this section, we investigate the practical utility

of SC codes over MR channels. We demonstrate that, with appropriate code optimization

techniques developed here for MR applications, SC codes can offer substantial performance

advantage over popular LDPC codes. We present an explicit SC code design methodology

specifically tailored for MR applications.

An intriguing observation made in [24] is that for the same LDPC code, the problematic

objects for MR channels are combinatorially different from those encountered in the AWGN

setting, thus necessitating a careful code design methodology for the MR applications. Here,

we show that the same property holds for SC codes. Then, We demonstrate that the

partitioning choice directly affects the cardinality of these problematic objects, which are

shown to be certain ASs, see Definitions 3 and 4. In particular, we show that the count

of detrimental ASs is the highest – and consequently that the performance is the worst –

in the degenerate case which precisely corresponds to uncoupled block LDPC codes. We

therefore demonstrate that coupling always improves the performance, and that the degree

of improvement is dependent on the SC code design.

By a careful analysis of the error profile of SC codes in the error floor region, we

demonstrate that several problematic combinatorial objects in the MR setting share a

44

NB-LDPC
encoder

Binary
converter/
interleaver

MR
channel

CTF/down
-sampler

DFIR
filter

Bit-based
BCJR

detector

Deinterleaver
/non-binary
converter

QSPA-FFT
LDPC

decoder

Binary
converter/
interleaver

PR channel model

Figure 3.1: System model for one-dimensional MR channels utilizing an NB-LDPC code.

common denominator structure. We analytically find the partitioning choice that corresponds

to the minimal number of these structures in the protograph, which in turn yields our first

step in the code optimization. As the next step, we apply a heuristic CPO program to further

reduce the population of the common denominator instances in the final (lifted) graph. For

non-binary (NB) SC codes, we then perform existing edge weight optimization techniques,

known as WCM method in [24] and [26], to reduce the number of remaining detrimental

objects.

3.2.1 Overview of the MR System

Here, we briefly overview the key components of our one-dimensional MR system. We use

the same MR setup as in [24]. We describe the system model for the one-dimensional MR

system which will be used in this dissertation. Consider an NB LDPC code over GF(q) with

message length n1 and codeword length n2. As shown in Figure 3.1, the system model has

the following components:

• Encoding: The message sequence u ∈ GF(q)n1 is encoded into a codeword c ∈ GF(q)n2 .

We focus on SC codes for which n2 = Lκz.

• Transmission: Binary conversion, modulation, and interleaving are applied sequen-

tially to the codeword c in order to generate the sequence of data d, which is then

written onto the MR channel.

• Channel: The MR channel incorporates inter-symbol interference (ISI) in addition

to jitter and electronic noise. The channel oversampled output sequence is xov. As

reported in [24], the channel density is set to 1.4.

45

• Filtering: To generate the sequence y, xov is passed through a continuous-time filter

(CTF), a down-sampler, and a digital finite impulse response (DFIR) filter. The partial

response (PR) channel consists of the MR channel, CTF, and DFIR units. As reported

in [24], we use the equalization target [8 14 2].

• Detection/Decoding: The message sequence u is iteratively recovered via a finite-

precision fast Fourier transform based q-ary sum-product algorithm (FFT-QSPA) LDPC

decoder [37] in addition to a BCJR detector [38] based on pattern-dependent noise

prediction (PDNP) [39]. For detection simplicity, we use a bit-based detector [24].

We refer to the internal iterations inside the LDPC decoder as local iterations, while a

global iteration refers to one looping between the detector and the decoder. The decoder

performs a specified number of local iterations (fewer if a codeword is reached) between any

two successive global iterations. We use 10 global iterations and 20 local iterations for the

simulation results reported later in this section.

3.2.2 Problematic Objects of SC Codes for MR Applications

We first briefly review the combinatorial objects of interest in the graph of LDPC codes

that are known to be more problematic over MR channels. These objects were defined and

studied in Section 1.2, and we revisit them here. In the context of the MR applications, only

certain subclasses of ASs matter [24]. Thus, the ASs are classified as either balanced (BASs)

or unbalanced (UBASs); both are defined in Definition 4. The BASs are the problematic

objects over MR channels that need to be avoided in the code design.

We consider the class of AB SC codes as an exemplar, and determine the dominant BASs

for column weights γ = 3 and γ = 4. In each case, we establish a common denominator

structure that the unlabeled configurations of dominant BASs share. Here and elsewhere,

dominant BASs refer to BASs that cause most of the decoding errors in the error floor region.

46

Table 3.1: Error profile (number of specific errors out of 100 errors) for SC Code 3.1 at
SNR = 17.25 dB and FER = 2.33× 10−6.

Error Type (6, 0) (8, 0) (10, 0) (6, 1) (8, 2) Other
Count 76 8 6 3 2 5

3.2.2.1 AB SC Codes with Column Weight 3

For SC codes with γ = 3, we recognized that the dominant BASs are (6, 0), (8, 0), and

(10, 0) in the MR setting. For example, consider SC Code 3.1 defined over GF(4) with

parameters κ = z = 23, γ = 3, and L = 5. SC Code 3.1 has random CV partitioning, AB

circulant powers, and random edge weights, and the length and rate are 5,290 bits and 0.843,

respectively. The error profile for SC Code 3.1 over the MR channel is shown in Table 3.1.

The errors are collected at SNR = 17.25 dB.

As we see, the dominant BASs are (6, 0), (8, 0), and (10, 0). We note that this is in

contrast to the AWGN setting, where (3, 3) and (4, 2) ASs are deemed most problematic [8].

On the other hand, unlabeled configurations of (6, 1) and (8, 2) BASs that appear in Table 3.1

are in fact the same as the unlabeled configurations of (6, 0) and (8, 0) BASs, respectively.

Thus, these configurations still share the same common denominator as (6, 0) and (8, 0) BASs.

An interesting property is that there are exactly two (6, 0) BASs that are topologically

non-isomorphic, as shown in Figure 3.2 (a). As it is apparent from the figure, both of these

configurations have (4, 4) ASs as substructures, while for example (3, 3) AS is just found in

one of the configurations. Additionally, (4, 4) AS also exists as a substructure in other relevant

BASs such as (8, 0) and (10, 0). As a result, we identify (4, 4) AS, shown in Figure 3.2 (b), as

the common denominator structure that we seek to minimize.

We thus focus our attention on the (4, 4) substructure as the new object of interest in the

partitioning and circulant power assignment, and argue that minimizing the population of

the (4, 4) AS, as the parent configuration (substructure), reduces the number of all children

configurations (superstructures), and improves the code performance. We also remark that

for this column weight, (4, 4) AS is not an object of interest in canonical AWGN channels.

As a result, using AWGN-optimized codes is an inferior strategy for MR channels.

47

(a) (b)

Figure 3.2: (a) The two non-isomorphic (unlabeled) configurations for (6, 0) BAS. In each
configuration, one (4, 4) substructure is shown in green dashed lines as an example, and
unsatisfied CNs are marked with red dashed lines. (b) The configuration of (4, 4) AS.

Table 3.2: Error profile (number of specific errors out of 100 errors) for SC Code 3.2 at
SNR = 16.25 dB and FER = 9.41× 10−9.

Error Type (8, 2) (12, 0) (10, 0) (8, 4) (10, 2) Other
Count 51 17 16 4 3 9

3.2.2.2 AB SC Codes with Column Weight 4

For SC codes with γ = 4 in the MR setting, the dominant BASs are (8, 2), (8, 4), (10, 0), and

(12, 0) which is in contrast to the AWGN setting where (6, 4) ASs are the most problematic [23].

This observation again demonstrates that using AWGN-optimized codes is not the best

strategy for MR channels. For example, consider SC Code 3.2 defined over GF(4) with

parameters κ = z = 29, γ = 4, and L = 5. SC Code 3.2 has random CV partitioning, AB

circulant powers, and random edge weights, and the length and rate are 8,410 bits and 0.834,

respectively. The error profile for SC Code 3.2 over the MR channel is shown in Table 3.2.

The errors are collected at SNR = 16.25 dB.

As an example, Figure 3.3 depicts two non-isomorphic configurations for (8, 2) BAS and

one configuration for (10, 0) BAS. Both depicted configurations for the (8, 2) BAS share (4, 8)

and (3, 6) TSs as common substructures (as do other (8, 2) BAS configurations not pictured

here), but the (10, 0) BAS configuration, shown in Figure 3.3 (c), does not include any (3, 6)

TS (neither do some other (10, 0) BAS configurations not pictured here). As a result, we

are interested in minimizing the number of instances of (4, 8) TS shown in Figure 3.3 (d)

as the common denominator structure. The (4, 8) TS does not appear as a decoding error

by itself. Here, reducing the population of the common denominator structure that most

48

(a) (b) (c) (d)

Figure 3.3: Unlabeled configurations for (a) (8, 2) BAS. (b) (8, 2) BAS. (c) (10, 0) BAS.
(d) (4, 8) TS. Examples of (4, 8) TS as substructures are shown in green dashed lines in
(a)-(c), and unsatisfied CNs are marked with red dashed lines.

dominants BASs share in their Tanner graphs leads us to the (4, 8) TS that does not appear

as a decoding error by itself.

3.2.3 Tailoring SC Code Design for MR Applications

In this subsection, we adjust the stages of our methodology for designing SC codes for

MR applications. Spatial coupling effectively rewires the connections in the Tanner graph

of several block LDPC codes. As a result, some of the necessary existence conditions for

BASs are violated, so that the number of detrimental objects is always fewer for SC codes

compared to the uncoupled block codes. The amount of reduction of the number of these

detrimental objects is dictated by the choice of the partitioning and the circulant power

assignment. Similar to our SC design framework for AWGN channels introduced in Section 2,

our procedure for the optimization of SC codes for MR channels includes two main steps:

optimal partitioning and optimized lifting. For the NB designs, one has an additional choice

of selecting edge weights.

First, given an underlying block code and desired memory and coupling length, we

carefully build and solve the optimization problem of the OO partitioning, focusing on the

objects of interest in the case of MR channels. Next, we customize the CPO program for

reducing the population of problematic objects in the (unlabeled) lifted graph. For the NB

codes, we then apply the WCM technique from [24,26] for the edge weight optimization to

eliminate as many as possible of the remaining dominant detrimental objects. According to

49

Section 3.2.2, the common denominator structures for SC codes with γ = 3 and γ = 4 are

(4, 4) AS and (4, 8) TS, respectively. Both of these objects can be categorized as a cycle-8

with no interconnections.

The main difference between optimizing SC codes for MR channels and AWGN channels

is in the protograph design. The common denominator of problematic objects for AWGN

channels and MR channels are cycle-6 and cycle-8 with no interconnections, respectively. A

cycle-6 in the graph of LDPC codes can only be generated from a cycle-6 in the protograph;

however, a cycle-8 in the graph of LDPC codes can be generated from 9 different patterns

in the protograph. This difference makes the optimization problem for finding the optimal

partitioning considerably more challenging for MR channels.

It is known that each cycle in the (unlabeled) lifted graph is derived from a configuration

in the protograph under specific conditions on the powers of the circulants involved in that

configuration, [29, 30]. In the OO stage, we minimize the population of the configurations in

the protograph that can possibly result in cycles-8 with no interconnections after lifting, and

in the CPO stage, we operate on the circulant powers.

3.2.3.1 Patterns of Interest in the Protograph Design

There are several configurations in the protograph of an LDPC code that can result in cycles-8

in the lifted graph. These configurations are called patterns. All distinct patterns, denoted

by P1, . . . , P9, are illustrated in Figure 3.4.

Lemma 6. Each way of traversing a pattern for generating a cycle-8 is called a cycle-8

candidate. Let ξPl be the number of distinct cycle-8 candidates for pattern Pl. Then,

l 1 2 3 4 5 6 7 8 9
ξPl 1 3 3 6 6 1 2 2 1

The proof is given in [40]. One cycle-8 candidate for each pattern Pl, l ∈ {1, . . . , 9}, is

shown with red lines in Figure 3.4.

Remark 9. Since (protograph) parity-check matrix of an LDPC code with γ = 3 cannot

50

1 1

1 1

1 1

1 1

1

1

1

1

1

1

11

1 1

1 1

1

1

1

1

P1 P2 P3 P4

1

1

1

1

1 1

1 1

1 1

1 1

1

X

1 X 1

1 1

X 1

1

1

1 X X

1

X

1

1

1

1

1

X1

X

X

1

X1 1

1

1

1

X

XX

X

1

1

X1 X

X

X

1

1

P5 P6 P7 P8 P9

Figure 3.4: Distinct patterns in the protograph of an LDPC code that can result in cycles-8
in the lifted graph. One way of traversing each pattern to obtain a cycle-8 is shown with red
lines.

have four 1s in a column, P5 and P8 cannot exist in protograph of LDPC codes with γ = 3,

reducing the number of distinct patterns from nine to seven.

All the patterns except for P1 result in either 0 or z cycles-8 after lifting based on the

powers of the circulants involved in the pattern [29,30]. However, an instance of P1 results in

either 0 or z/2 cycles-8 after lifting based on the powers of its engaged circulants. Thus, we

define pattern weight ΞPl as follows:

ΞPl =


0.5 ξPl , if l = 1,

ξPl , if l ∈ {2, . . . , 9}.
(3.1)

3.2.3.2 Optimal Overlap Partitioning for Pattern Optimization

Here, we extend the OO partitioning scheme introduced in Section 2.3.1 in order to minimize

the weighted summation of the number of pattern instances in the protograph of an SC

code rather than minimizing the number of cycles-6. The overlap parameters, introduced

in Definition 8, are extremely helpful to quantify the number of combinatorial objects, e.g.,

51

cycles, patterns, . . . , in protograph of SC codes in terms of a set of integer-valued parameters.

As stated in Lemma 3, the set of all independent non-zero overlap parameters is:

Oind = {t{i1,...,id} | 1 ≤ d ≤ γ, 0 ≤ i1, . . . , id < mγ,

∀{iu, iv} ⊆ {i1, . . . , id} iu 6= iv (mod γ)}.

The overlap parameters that are not included in Oind are either zero or functions of the

overlap parameters in Oind.

Now, we define the optimization problem for identifying the optimal partitioning for MR

channels. The weighted summation of the number of instances of all patterns is:

Ftot =
9∑
l=1

ΞPlFPl , (3.2)

where FPl is the number of instances of Pl and can be expressed in terms of the overlap

parameters. Then, any set of independent non-zero overlap parameters that minimizes Ftot is

preferable, and any partitioning choice that corresponds to this set of overlap parameters is

optimal. Thus, we call this approach OO partitioning.

In [40], the number of instances of each pattern, i.e., FPl and l ∈ {1, . . . , 9}, in the

protograph of an SC code with parameters κ, γ ≥ 3, m = 1, and L are precisely derived in

terms of the overlap parameters in Oind. Our discrete optimization problem is:

F ∗tot = min
Oind

Ftot. (3.3)

The constraints of our optimization problem are the conditions under which the overlap

parameters and the subsequent partitioning are valid.

3.2.3.3 Circulant Power Optimization for MR Systems

Using the optimal partitioning obtained by the OO scheme, we construct the protograph of

the SC code, i.e., Hp
SC. The next step is using a customized version of the CPO program to

52

prevent as many remaining patterns as possible from being reflected in the lifted graph as

cycles-8 with no interconnections. We remind that cycle-8 with no interconnections is the

common denominator of problematic BASs for γ = 3 and γ = 4, see Figure 3.2 and Figure 3.3.

In this part, we study the changes that need to be applied to the CPO program introduced

in Section 2.3.2 to make it suitable for MR channels. More details can be found in [40].

Each pattern Pl spans at most either χ = m+ 1 or χ = 2m+ 1 replicas, depending on the

value of l. Thus, it suffices for the CPO program to operate on Πχ=2m+1,p
1 , see Definition 7.

We describe a cycle-8 candidate in Πχ=2m+1,p
1 in terms of the row group and column group

indices of the involved circulants as h1–l1–h2–l2–h3–l3–h4–l4, which is a particular way of

traversing a pattern. We note that the row group and column group indices do not need to

be necessarily distinct. For example for P1 there are two distinct row group indices and two

distinct column group indices. A cycle-8 candidate results in z (or z/2 in the case of P1 only)

cycles-8 after lifting if and only if [29]:

fh1,l1 + fh2,l2 + fh3,l3 + fh4,l4 = fh1,l2 + fh2,l3 + fh3,l4 + fh4,l1 (mod z) (3.4)

There are two conditions that are equivalent to having interconnections in the configuration

of a cycle-8. In order to have an interconnection between VNs with column group indices l1

and l3 using CN with row group index h5 in the lifted graph, the following condition must

hold:

fh1,l1 + fh2,l2 + fh5,l3 = fh1,l2 + fh2,l3 + fh5,l1 (mod z) (3.5)

Similarly, in order to have an interconnection between VNs with column group indices l2

and l4 using CN with row group index h6 in the lifted graph, the following condition must

hold:

fh1,l1 + fh6,l2 + fh4,l4 = fh1,l2 + fh6,l4 + fh4,l1 (mod z) (3.6)

By applying the necessary modifications to the CPO program due to the facts discussed

in this part, we can heuristically adjust the circulant powers to eliminate as many as possible

of the remaining cycles-8 with no interconnections in the (unlabeled) lifted graph.

53

3.2.3.4 Edge Weight Optimization for MR Systems

As the final step of our design procedure, we replace all 1s of HSC, that is constructed by the

OO-CPO approach, with non-zero elements in GF(q) and apply the edge weight optimization

to remove as many as possible of remaining dominant BASs. For the NB setting, both the

topology and edge weights can be manipulated to eliminate a problematic AS. Using edge

weight optimization proposed in [26] and [24], we attempt to eliminate as many as possible

of remaining problematic BASs.

3.2.4 Simulation Results

In this subsection, we compare the number of common denominator instances along with the

frame error rate (FER) performances over MR channels for several codes that are constructed

using different methods. We first describe our code parameters. SC Code 3.3, SC Code 3.4,

SC Code 3.5, and SC Code 3.6 are NB SC codes with parameters γ = 3, κ = 19, z = 46,

m = 1, and L = 5, and they are defined over GF(4). Thus, these codes have length 8,740

bits and rate 0.811. Moreover,

• SC Code 3.3 has CV partitioning [8], fi,j = 2i2j, and random edge weights.

• SC Code 3.4 has OO partitioning, fi,j = 2i2j, and random edge weights.

• SC Code 3.5 has OO partitioning, CPO applied, and random edge weights.

• SC Code 3.6 has OO partitioning, CPO applied, and optimized edge weights.

The cutting vector used for constructing SC Code 3.3 is ζ = [4 9 15]. The partitioning matrix

for SC Codes 3.4, 3.5, and 3.6 is given below:


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1

1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0

 ,

54

and the circulant power matrix for SC Codes 3.5 and 3.6 is given below:


11 1 43 23 16 29 6 40 22 29 6 22 20 35 40 0 8 0 0

23 15 3 26 33 44 36 17 35 34 33 11 10 26 28 39 31 34 36

0 8 12 24 32 32 39 10 30 26 40 42 20 12 20 28 36 44 20

 .

Besides, Block Code 3.1 is a CB block code with κ = 19, z = 46, γ = 3, fi,j = 2i2j, and it

is defined over GF(4). Uncoupled Block Codes 3.1 represents 5 uncoupled Block Codes 3.1,

and it can be considered as an SC code with m = 0, H0 = H, L = 5, length 8,740 bits, and

rate 0.842. Block Code 3.2 is a block code defined over GF(4), which is also protograph-based,

designed as in [26]. It has γ = 3, z = 46, length 8,832 bits, rate 0.81 (similar to SC Codes 3.3,

. . . , 3.6), and it has un-optimized edge weights.

First, the number of cycles-8 with no interconnections in the unlabeled graphs are shown

in Table 3.3, which demonstrates the significant gains achieved by the OO-CPO approach

compared to other techniques. In particular, the proposed OO-CPO approach achieves 92%

reduction in the number of the common denominator instances compared to the uncoupled

setting, and 78% reduction compared to the CV technique. Moreover, all stages of the code

design framework are necessary and helpful in order to construct high performance SC codes

suitable for MR channels.

Second, we compare the error floor performance of Uncoupled Block Codes 3.1, SC Codes 3.3,

. . . , 3.6, and Block Code 3.2 over MR channels. The MR channel model we use is given in

Figure 3.1. Figure 3.5 demonstrates the effectiveness of our SC code design for MR channels.

In particular, SC Code 3.5 (designed using the OO-CPO approach) outperforms SC Code 3.3

(designed using the CV approach) by about 3 orders of magnitude at SNR = 15 dB, and by

about 1.1 dB at FER = 10−5. More intriguingly, SC Code 3.5 outperforms Block Code 3.2 by

Table 3.3: Population of cycles-8 with no interconnections for SC codes with γ = 3, κ = 19,
z = 46, m = 1, L = 5, and different construction methods.

Uncoupled Block Codes 3.1 SC Code 3.3 SC Code 3.4 SC Code 3.5
2,425,120 845,434 579,968 184,667

55

Figure 3.5: FER curves over MR channel for codes with similar length and rate constructed
with different methods.

about 1.6 orders of magnitude at SNR = 15 dB, and by almost 0.4 dB at FER = 10−6. From

Figure 3.5, the WCM (edge weight optimization) framework provides 1 order of magnitude

additional gain.

3.3 SC Code Design for Flash Memories

Modern dense Flash memories operate at a very low error rate which require powerful ECCs

with outstanding error-correction capabilities. The SC codes are a suitable choice to be used

for Flash memories due to their capacity approaching performance, low-latency decoding,

and high error-correction capability. In this section, we tailor our multi-stage framework,

introduced in Chapter 2, for designing NB SC codes suitable for Flash memories.

For this purpose, we revisit the general absorbing sets of type two (GASTs), which are

originally introduced in [26] and defined in this dissertation as Definition 5. The GASTs

are the combinatorial objects in graph of NB LDPC codes that are problematic over Flash

channels. We then customize our SC design framework for avoiding as many as dominant

GASTs in the graph of SC codes as possible via targeting their common denominator in

the partitioning and lifting stages, and then targeting the GAST configurations in the edge

weight optimization stage.

We first identify the dominant GASTs in the error profile of SC codes and extract their

common denominator substructure. In the first stage of the customized framework, we

56

(a) (b) (c)

Figure 3.6: Configurations for (a) (4, 2, 2, 5, 0) GAST. (b) (6, 0, 0, 9, 0) GAST. (c) The (3, 3)
AS, i.e., cycle-6, as the common denominator. Appropriate edge weights are assumed for NB
configurations.

use OO partitioning to minimize the population of the common denominator instances in

the protograph of SC codes. As the second stage, we apply the CPO program to further

reduce the number of the common denominator instances in the (unlabeled) lifted graphs by

heuristically adjusting the circulant powers. As the final stage, we optimize the edge weights

to eliminate as many as remaining instances of the targeted GASTs in the labeled graphs as

possible using the WCM method in [26].

3.3.1 Problematic Objects of SC Codes for Flash Memories

The LDPC codes are among the most attractive ECC solutions to be deployed over Flash

memories [41]. The NB LDPC codes offer superior performance over their binary counterparts,

and thus they are more preferred for modern Flash memories. The GASTs are the objects

that dominate the error floor of NB LDPC codes over practical Flash channels due to the

channel asymmetry. The GASTs and their unlabeled versions (UGASTs) are defined in

Definitions 5 and 6.

In order to simultaneously target multiple objects in the unlabeled graph of SC codes,

we first derive the dominant common denominator of multiple detrimental UGASTs. For

the dominant UGASTs encountered in NB LDPC codes with γ = 3 simulated over Flash

channels, the (3, 3) AS, i.e., cycle-6, occurs as the dominant common substructure [26]. Two

dominant GASTs for NB LDPC codes with γ = 3 over Flash channel along with their

57

common denominator are illustrated in Figure 3.6.

3.3.2 Tailoring SC Code Design for Flash Channels

The goal is to design NB SC codes with a small multiplicity of detrimental GASTs in

their graphs. We first reduce the population of cycles-6, as the instances of the common

denominator of problematic UGASTs, in the unlabeled graph of SC codes via OO partitioning

and CPO program. We note that the common denominator is the same for Flash memories

and AWGN channels. Thus, one can use the method described in Chapter 2, i.e., OO-CPO,

to design the unlabeled graph of SC codes for Flash memories. After applying the OO-CPO

technique to optimize the unlabeled graph of the SC codes, we then optimize the edge weights.

In particular, we use the WCM framework in [24, 26] to remove GASTs from the labeled

graph of SC codes through edge weight processing.

3.3.3 Simulation Results

In this subsection, we evaluate the performance of our designed SC codes over practical

Flash channel models. We first compare the number of cycles-6, as instances of the common

denominator of interest, in graph of SC codes constructed using various methods. Then, we

compare the performance of these SC codes over Flash channels. We first describe our code

parameters.

SC Code 3.7, SC Code 3.8, and SC Code 3.9 are NB SC codes with parameters κ = z = 19,

γ = 3, m = 1, L = 20, and defined over GF(4). Thus, these codes have length 14,440 bits

and rate 0.834. SC Code 3.7 is constructed using the CV partitioning and AB circulant

powers (CV-AB), SC Code 3.8 is constructed using OO partitioning and AB circulant powers

(OO-AB), and SC code 3.9 is constructed using OO partitioning and circulant powers attained

by the CPO program (OO-CPO). The cutting vector used for constructing SC Code 3.7 is

58

Table 3.4: Population of cycles-6 for SC codes with γ = 3, κ = z = 19, m = 1, L = 20, and
different construction methods.

Uncoupled Block Codes 3.3 SC Code 3.7 SC Code 3.8 SC Code 3.9
129,960 55,366 30,571 16,340

ζ = [5 9 15]. The partitioning matrix for SC Code 3.8 and SC Code 3.9 is given below:


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0

 ,

and the circulant power matrix for SC Code 3.9 is given below:


0 6 17 18 8 8 8 16 6 10 0 9 6 0 2 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 1 14 15 16 5 13

9 2 4 6 5 10 12 14 16 18 1 3 5 7 16 14 4 1 8

 .

Moreover, Block Code 3.3 is an AB block code with κ = z = 19 and γ = 3, and it is

defined over GF(4). Uncoupled Block Codes 3.3 represents 20 uncoupled Block Codes 3.3,

and it can be viewed as an SC code with m = 0, H0 = H, L = 20, length 14,440 bits and rate

0.842. The number of cycles-6 in the unlabeled graph of these codes are shown in Table 3.4.

Next, we study the performance gains achieved by our NB SC design over Flash memories.

For this purpose, we consider the labeled graph of Uncoupled Block Codes 3.3, SC Code 3.7,

SC Code 3.8, and SC Code 3.9. We consider both the random edge weight assignment and

the optimized edge weight assignment using WCM method in [26]. The Flash channel model

we use is the normal-Laplace mixture (NLM) Flash channel [25]. We use 3 reads, and the

sector size is 512 bytes.

Let RBER be the raw bit error rate, and UBER be the uncorrectable bit error rate. One

formulation of UBER, which is recommended by industry, is FER divided by the sector size in

bits. The performance gain achieved using three stages of our framework, i.e., OO-CPO-WCM,

is highlighted in Figure 3.7. Our best NB SC code, i.e., SC Code 3.9 with optimized edge

59

Figure 3.7: Simulation results over the NLM Flash channel for codes with similar length and
rate constructed with different methods.

weights, achieves more than 500% RBER gain compared to Uncoupled Block Codes 3.3 with

random edge weights over a practical Flash channel.

3.4 SC Code Design for Channels with SNR Variations

In a magnetic recording (MR) device, some sections can be more error prone than other

sections because of the read/write mechanism and physical properties of the device [42]. A

realistic channel model for MR systems must consider the variation of SNR among consecutive

sections of a hard disk drive. We develop ECCs that address the SNR variation for data

storage systems. For channels with uniform SNR, i.e., channels with a single SNR value, the

goal is to find a code that achieves a certain level of BER for that SNR. For channels with

SNR variation, conventional ECCs are designed to achieve the target BER for the section

with the lowest SNR. For the sections with higher SNR, this approach results in an additional

redundancy which is not required to achieve the target BER.

One solution for handling the non-uniformity of SNR is using interleaving. Suppose the

channel consists of N sections of equal sizes, and the length of each codeword is also equal to

60

the length of a section. Each codeword is divided into N chunks. Then, different chunks from

all codewords are interleaved such that one chunk from each codeword is passed through one

section of the channel. As a result, the average SNR that all codewords are affected by is

the same and equal to the average SNR of the channel, and one just needs to consider the

average SNR rather than the worst SNR in the code design process [42]. One disadvantage

of this approach is that the length of each codeword is equal to the length of one section of

the channel which might be relatively short.

In this section, we first present a sub-optimal partitioning, called minimum overlap (MO)

scheme. The MO scheme is a low-complexity technique for partitioning CB codes and

constructing SC codes. The MO partitioning scheme is more preferred for the cases where

finding the OO partitioning is not computationally affordable due to the size of its discrete

optimization problem, or for the cases where we want to identify an appropriate partitioning

for a fixed set of circulant powers. The reason why we introduce the MO scheme in this

section is that all SC codes that will be evaluated over channels with SNR variation in this

section are constructed using MO partitioning.

It may be worthwhile to note that the content of this dissertation does not obey the

chronological order of the contributions. In fact, the MO partitioning was introduced prior

to the OO partitioning. However, due to the benefits that MO partitioning still offers, and

because all the SC codes that we evaluated over non-uniform AWGN channels are constructed

by the MO partitioning, we present and study the MO partitioning in this section.

Next, we present a finite-length analysis and construction of SC codes for channels with

SNR variation. Our SC code construction provides local error correction for each section by

means of the underlying codes that cover one section each, and simultaneously, an added

level of error correction by means of coupling among the underlying codes. Consequently,

and because of the structure of SC codes, more reliable sections can help unreliable ones

to achieve an improved performance. Finally, we introduce a low-complexity interleaving

scheme specific to SC codes that further improves their performance over channels with SNR

variation.

61

Our simulation results show that our SC codes outperform individual block codes by more

than 1 and 2 orders of magnitudes in the error floor region compared to the block codes with

and without regular interleaving, respectively. This improvement is more pronounced for

larger values of memory and column weight.

3.4.1 Minimum Overlap Partitioning for Constructing SC Codes

We present a systematic partitioning scheme, with a relatively low computational complexity,

to construct high performance SC codes. We remind that the overlap between two rows of

a matrix is defined as the number of columns in which the two rows simultaneously have

non-zero values, see Definition 8. Let ty be the maximum overlap between rows (in pairs) of

the y’th component matrix of Hp, i.e., Hp
y .

The technique aims to minimize the overall overlap t = miny∈{0,··· ,m} ty in a balanced

partitioning in order to structurally prevent certain detrimental structures in the graph

representation of the code that are intrinsically formed by the overlaps, e.g., cycles and ASs.

We first present the MO partitioning for partitioning CB codes with column weight γ = 3.

We then extend the MO scheme for partitioning CB codes with column weight γ = 2(m+ 1)

into component matrices with minimum overlap, such that there are two elements (resp.,

circulants) in each column of Hp (resp., H) that are assigned to the same component matrix

(balanced partitioning). This extension is helpful to systematically construct SC codes with

(γ = 4,m = 1) and (γ = 6,m = 2).

3.4.1.1 MO Partitioning for SC Codes with Column Weight 3

We focus on CB codes with γ = 3 as underlying block codes, and we consider AWGN channels.

As a result, the problematic objects are (3, 3), (4, 2), and (5, 3) ASs, shown in Figure 2.1, as

verified by comprehensive Monte Carlo simulations. For SC codes with γ = 3 over AWGN

channels, cycle-6 is the common denominator of interest as discussed in detail in Section 2.3.

We first consider the case where m = 1. Each circulant of H can belong to either of

the two component matrices, leading to 2κγ possible partitioning choices. Considering all

62

possible ways of partitioning in a brute force way to find the optimal one is not practical. We

narrow down the search to a subset of partitioning options that contains at least near-optimal

solutions. We specify the circulants that belong to H0. Then, the remaining circulants belong

to H1. Our MO partitioning scheme is described below:

1. Each row group of H has κ circulants. We define the set S = {1, · · · , κ} which contains

one element for each circulant.

2. For any row group of H, we assign half of circulants to H0 and the remaining to

H1
1. We choose the half-half split to balance the distribution of circulants among the

component matrices. The set Bi ⊂ S contains the indices of circulants in the i’th row

group that belong to H0.

3. Let t be the maximum number of elements that any pair of sets (Bi, Bj), i, j ∈ {0, 1, 2}

and i 6= j, have in common, i.e.,

t = max{|Bi ∩Bj| {i, j} ⊂ {0, 1, 2}}.

We consider an initial value t = 0.

4. The sets B0, B1, and B2 are chosen such that any two sets have at most t elements in

common, and there is no element that appears in all of them. If there is no solution,

we increment t and repeat step 4. Otherwise, we record all solutions as valid MO

partitioning candidates.

5. Since we find the lowest possible t such that step 4 produces at least one solution, we

call this approach minimum overlap (MO) partitioning.

Lemma 7 states the number of possible MO partitioning options for γ = 3 and m = 1.

Lemma 7. Let N be the number of possible MO partitioning choices for an SC code with

parameters κ, γ = 3, m = 1, and t:

1If κ is not even, we assign bκ/2c out of κ circulants, in each row group of H, to H0 and the remaining
ones to H1.

63

N ≈
au∑
a=0

bu∑
b=0

cu∑
c=cl

(
κ

bκ/2c

)(
bκ/2c
a

)2(bκ/2c − a
b

)(
bκ/2c − a

c

)(
a

bκ/2c − b− c

)
, (3.7)

where

au = min{bκ/2c, t}, cl = max{bκ/2c − a− b, 0},

bu = min{bκ/2c − a, t}, cu = min{bκ/2c −max{a, b}, t}.

Proof. The number of possible ways to assign half of the elements in S to B0 is approximately

equal to N0:

N0 =

(
κ

bκ/2c

)
.

Consider one of the choices for assigning the elements in B0. Next, we choose the

elements of B1. The number of ways to assign half of elements of S to the set B1, such that

|B0 ∩B1| = a, is approximately equal to N a
1 (|.| shows the number of elements in a set):

N a
1 =

(
bκ/2c
a

)(
κ− bκ/2c
bκ/2c − a

)
≈
(
bκ/2c
a

)2

.

The parameter au indicates the maximum number of elements that two sets B0 and B1 can

have in common, and it is equal to:

au = min{|B0|, |B1|, t} ≈ min{bκ/2c, t}.

Next, consider one of the possible choices for assigning the elements of B0 and B1, such

that |B0 ∩ B1| = a. The number of ways to assign half of elements of S to B2, such that

|B0 ∩B2| = b and |B1 ∩B2| = c is approximately equal to N b,c|a
2 :

N b,c|a
2 =

(
bκ/2c − a

b

)(
bκ/2c − a

c

)(
κ− bκ/2c − bκ/2c+ a

bκ/2c − b− c

)
64

≈
(
bκ/2c − a

b

)(
bκ/2c − a

c

)(
a

bκ/2c − b− c

)
.

Given the parameter a, the maximum number of elements that B0 and B2 can have in

common is:

bu = min{|B0 \B1|, t} ≈ min{bκ/2c − a, t}.

Besides, the maximum number of elements that B1 and B2 can have in common is:

cu = min{|B1 \B0|, |B2 \B0|, t} ≈ min{bκ/2c −max{a, b}, t}.

Moreover, the minimum number of elements that B1 and B2 must have in common to have

|B2| = bκ/2c is cl:

cl = max{|B2 \B0| − |S \B0 \B1|, 0} ≈ max{bκ/2c − a− b, 0}.

Finally, the total number of possible MO partitioning choices for a CB SC code is equal to N :

N ≈
au∑
a=0

bu∑
b=0

cu∑
c=cl

N0N a
1N

b,c|a
2 ,

which results in (3.7).

Among these N candidates for MO partitioning, we find the one that results in the

minimum number of problematic objects in the lifted graph. For example, consider an AB

code with κ = z = 7 and γ = 3 as the underlying block code. The number of partitioning

choices that achieve the minimum possible overlap, i.e., tmin = 1, is equal to N = 15,330

which is dramatically less than the number of all possible partitioning choices, i.e., 221.

A partitioning matrix with t = 1 that results in the minimum number of cycles-6 in the

65

corresponding SC code with coupling length L = 30 is given below:

PM =


1 1 1 0 1 0 0

1 0 1 1 0 1 0

0 1 0 0 0 1 1

 .

It is interesting to note that for this set of code parameters, the optimal MO partitioning

coincides with the optimal partitioning that we found thorough an exhaustive search.

Now, we develop MO partitioning approach for designing SC codes with higher memories.

Increasing the memory provides more degrees of freedom. However, there is a trade-off

between the memory and latency, and by increasing the memory, we also increase the latency

in the windowed decoding [4]. Consider an SC code with γ = 3 and m = 2. We intend to

partition H into three component matrices, i.e. Hy, y ∈ {0, 1, 2}, such that H = H0+H1+H2.

For any row group of H, we assign one third of circulants to each of H0, H1, and H2
2.

The set Bi ∈ S contains the indices of circulants in the row group i that belong to H0, the set

B′i ∈ S contains the indices of circulants in the row group i that belong to H1 (Bi ∩B′i = ∅),

and the set B′′i = S \Bi \B′i likewise contains the indices of circulants in the row group i that

belong to H2. We impose the zero-overlap condition on these index sets, as follows: for any

pair (i, j) such that i, j ∈ {0, 1, 2} and i 6= j, Bi ∩Bj = ∅, B′i ∩B′j = ∅, and B′′i ∩B′′j = ∅.

Since the zero-overlap solution always exists for m = 2, further increasing m does not decrease

the minimum overlap value for case γ = 3.

For example, consider again an AB code with κ = z = 7 and γ = 3 as the underlying

block code. A partitioning matrix that satisfies the zero-overlap condition and results in

the minimum number of cycles-6 in the corresponding SC code with parameters m = 2 and

L = 30 is given below:

PM =


2 2 2 1 1 0 0

1 1 0 2 0 2 1

0 0 1 0 2 1 2

 .
2If κ is not divisible by 3, we choose the nearest balanced partitioning, such as {bκ/3c, bκ/3c, κ− 2bκ/3c}.

66

3.4.1.2 MO Partitioning for SC Codes with Higher Column Weights

Here, we extend the MO technique in order to partition CB codes with column weight

γ = 2(m + 1) into component matrices with minimum overlap, such that there are two

elements (resp., circulants) in each column of Hp (resp., H) that are assigned to the same

component matrix (balanced partitioning). This extension is helpful to systematically

construct SC codes with (γ = 4,m = 1) and (γ = 6,m = 2). Theorem 3 states the minimum

overlap value, and it also suggests a partitioning construction that achieves the minimum

overlap value.

Theorem 3. Consider an SC code with parameters m, κ, and γ = 2(m+ 1). For a balanced

partitioning where there are exactly two elements in any column of Hp that are assigned to

each component matrix Hp
y, y ∈ {0, · · · ,m}, the minimum overlap value is:

tmin =

⌈
κ(
γ
2

)⌉ . (3.8)

Proof. Assume that the κ columns in matrix Hp are divided into stripes of size ω columns.

Then, the number of stripes is
⌈
κ
ω

⌉
, and if ω does not divide κ, the last stripe has a lower

size than ω. Since a stripe is a submatrix of Hp, the overlap parameter is defined for a stripe

as well. We denote the overlap parameter for a stripe as tω. The goal is to make each stripe

have the minimum overlap parameter value. Each column of Hp has γ = 2(m+ 1) elements,

and there are two elements in each column that are assigned to the same component matrix.

This implies that the minimum possible value for the overlap parameter in each stripe is

tω = 1, even if the length of the stripe is 1 column. Then, we choose the maximum stripe

length such that tω = 1 still holds. The maximum ω such that tω = 1 holds is:

ωmax =

(
γ

2

)
, (3.9)

which is achieved by choosing a different pair of elements in each column in the stripe to

be assigned to the same component matrix. Each stripe adds one unit to the final overlap

67

parameter value. Thus,

tmin =

⌈
κ

ωmax

⌉
=

⌈
κ(
γ
2

)⌉ .

Next, we explain a systematic approach to find a partitioning that achieves the minimum

overlap parameter. Given one stripe of matrix Hp, the corresponding stripes can be identified

for Hp
y , 0 ≤ y ≤ m, and for any linear combinations of them. In the construction procedure,

we focus on properly constructing the first stripe with the overlap parameter tω = 1 in the

component matrix Hp. The other stripes, except for the last stripe, are constructed by

arbitrary permutations of the columns of the first stripe, and the last strip is constructed

from an arbitrary subset of columns of the first stripe. Consider the first stripe, and let O`y,

0 ≤ y ≤ m, 0 ≤ ` ≤
(
γ
2

)
− 1, be the set of indices of the rows with non-zero values in column `

of that stripe in Hp
y . An element of O`y takes a value in {0, 1, . . . , γ − 1}. Note that |O`y| = 2,

∀` and ∀y, because our partitioning is balanced.

For the case of γ = 4, the size of each stripe, except for the last stripe, is
(

4
2

)
= 6 columns.

The construction that achieves tω = 1 is simply to select distinct sets O`0, ∀`, because this

implies that the sets O`1 = {0, · · · , γ − 1} \ O`0, for that stripe in Hp
1 are also distinct.

For the case of γ = 6, the size of each stripe, except for the last stripe, is
(

6
2

)
= 15. Here,

we develop an algorithm to perform the construction. Let O`0+1, 0 ≤ ` ≤ 14, be the set of

indices of the rows with non-zero values in column ` of our stripe in the matrix Hp
0 + Hp

1.

Note that |O`0+1| = 4, ∀`. The algorithm determines each set O`0+1 in the stripe sequentially

starting from ` = 0. Once the set O`0+1 is determined, the algorithm determines the set O`0,

and consequently the set O`1, such that:

O`0+1 6= Or0+1, O`0 6= Or0, and O`1 6= Or1, ∀r < `. (3.10)

There are
(

4
2

)
= 6 options to choose the set O`0 out of the elements in the set O`0+1.

However, not all of these options are valid options because of the constraint in (3.10). For

each `, the algorithm chooses the set O`0+1 out of
(

6
4

)
− ` = 15 − ` options such that the

68

number of valid options for the set O`0 is maximized. This algorithm always starts with 6

options to choose the set O0
0 from the elements in O0

0+1, and ends with 1 option to choose the

set O14
0 from the elements in O14

0+1. Note that once the sets O`0+1, ∀`, are properly selected,

the sets O`2, ∀`, are properly selected. Consequently, tmin is achieved.

Example 7. Let γ = 4, κ = 12, and m = 1. The length of each stripe is ωmax =
(

4
2

)
= 6,

and the number of stripes is κ/ωmax = 2. As a result, tmin = 2, and a partitioning matrix that

achieves the minimum overlap is illustrated below:

PM =


0 0 1 0 1 1 0 0 1 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 1 0 0 1 1 0

1 1 1 0 0 0 1 1 1 0 0 0

 .

For the first stripe (the first six columns in Hp), the parameters O`y, 0 ≤ y ≤ 1 and 0 ≤ ` ≤ 5,

are listed below. The second stripe can be any permutation of the columns of the first stripe.

In this example, we chose exactly the same order of columns for the second stripe as the first

stripe.

O0
0 = {0, 1} O1

0 = {0, 2} O2
0 = {1, 2} O3

0 = {0, 3} O4
0 = {1, 3} O5

0 = {2, 3}
O0

1 = {2, 3} O1
1 = {1, 3} O2

1 = {0, 3} O3
1 = {1, 2} O4

1 = {0, 2} O5
1 = {0, 1}

The partitioning that achieves the minimum overlap value is not unique. We suggest two

methods for choosing the MO partitioning and constructing the final SC code. The first

method is searching over all MO partitioning choices and finding the one that results in the

minimum number of problematic objects in the lifted graph for a fixed arrangement of the

circulant powers. The second method is choosing one MO partitioning and an initial set of

circulant powers. Then, we apply the CPO algorithm to reduce the population of problematic

objects by heuristically adjusting the circulant powers.

69

(a)

(b)

Figure 3.8: (a) A non-uniform channel with N sections. (b) Original and interleaved sequence
of encoded data; each color corresponds to one codeword.

3.4.2 Channels with SNR Variation

Our model for a channel with SNR variation is depicted in Figure 3.8 (a). It shows a channel

with N sections, and each section is considered as an AWGN channel with SNRs (s is the

section index). For the s’th section, we state the SNR as (SNRs)dB = (SNRabs)dB+(∆SNRs)dB,

where SNRabs is the absolute SNR, ∆SNRs is the variation from the absolute SNR for the s’th

section, and XdB = 10 log10 X. We assume all sections have the same length. In a practical

channel model, the value of ∆SNRi for different sections are dependent.

3.4.3 Interleaving to Mitigate Non-Uniformity

Based on the described model for the SNR variation, some sections of the channel have higher

SNR than SNRabs while others do not. The interleaving technique is used to minimize the

negative impact of SNR variation by introducing diversity [42]. The idea of interleaving is

illustrated in Figure 3.8 (b). Interleaving is performed on the sequence of codewords before

they pass through the channel, and de-interleaving is performed on the received sequence of

data and before decoding.

First, a sequence of data is split into N parts. Each part is coded individually by the

same block code to generate N codewords. Next, each codeword is partitioned into N chunks,

70

and different chunks from all codewords are interleaved such that each N consecutive chunks

belong to N different codewords. Finally, each N consecutive chunks pass through a separate

section of the channel. The interleaving helps to achieve a better error-correction capability

since the average SNR that a codeword is affected by is the same for all codewords and it is

equal to the average SNR of the channel, so each codeword has some reliable bits that can

help recovering the less reliable bits.

3.4.4 SC Code Design to Alleviate SNR Variation

In this subsection, we first describe our framework to construct SC codes over channels

with SNR variation, and explain why well-designed SC codes show a superior performance

compared to block codes with interleaving. Then, we study the effect of parameter memory

on the performance of SC codes over channels with SNR variation. Finally, we introduce an

interleaving scheme for SC codes that further improves their performance for channels with

non-uniform SNR.

3.4.4.1 Code Design Machinery

Instead of using an individual block code for each section of the channel in Figure 3.8 (a), we

use an SC code that spans several consecutive sections. By using SC codes, we can make

more reliable sections help unreliable ones while keeping the decoding latency low. The

decoding latency of an SC code is a function of the underlying code length and the window

size of the decoder [4].

Parameters of our code design are illustrated in Figure 3.9. The length of the underlying

block code is equal to the length of one section of the channel, thus each replica of an SC

code spans one section of the channel. The coupling length L determines how many sections

are spanned by one SC codeword, i.e., N = L. The parameter L must be chosen such that a

variety of sections with different reliabilities are included. We use CB codes as underlying

block codes. For partitioning the underlying block code, we use the MO partitioning scheme.

The memory m of an SC code plays a critical role on its performance over channels with

71

Figure 3.9: An SC code with memory m constructed for a non-uniform channel. CNi spans
(m+ 1) consecutive sections.

SNR variation. The parameter m determines how many different sections the VNs of a check

equation span. All CNs of an SC code receive messages from VNs within (m+ 1) consecutive

sections (see CNi in Figure 3.9), except for the first and last group of (mγz) CNs which

receive messages from a fewer number of sections. If a CN is connected to an unreliable VN,

the other more reliable neighboring VNs of that CN can help correcting the VN error. If m is

chosen appropriately, each CN receives enough reliable messages to send improved messages

to its neighboring VNs in an iterative decoding. However, there is a trade-off, and as we

increase the memory, the decoding window size and consequently, the decoding latency also

increase.

According to the simulation results, our SC codes outperform block codes (with inter-

leaving) for channels with SNR variation. We also demonstrate that the performance gap

over channels with SNR variation and corresponding uniform channels is lower for SC codes

compared to block codes. This result verifies that the correlation that exists between different

sections due to the structure of SC codes causes enough diversity to alleviate the negative

72

Figure 3.10: The original sequence of data (top panel) represents the worst case scenario
where multiple consecutive sections are affected by a low SNR. Interleaved sequence of data
(middle panel) for an SC code with m = 2 and L = 12: a darker gray represents a lower
SNR. These chunks are interleaved such that each check equation receives messages with all
L different reliabilities.

impact of channel non-uniformity.

3.4.4.2 Interleaving for SC Codes

In this part, we introduce a low-cost interleaving scheme specialized for SC codes in order

to further improve the performance. In the presented code design machinery, CNs receive

messages from (m+ 1) different sections. If most of these (m+ 1) sections have a low SNR,

the decoder may fail to recover the message correctly. We use interleaving to avoid letting

multiple unreliable VNs from consecutive sections participate in one check equation and

degrade the performance.

Consider an SC code with the coupling length L (L is also equal to the number of

sections covered by one SC codeword) and memory m. We assume that (m+ 1) divides L.

We divide the SC codeword into L groups, and we further divide each group of data into

L/(m+ 1) chunks. Then, we rearrange them by taking one chunk from each group in order

and placing them next to each other, see Figure 3.10. This interleaved data is passed through

the channel, and the de-interleaving is performed on the received data from the channel and

73

before decoding. Due to interleaving, each CN receives equal number of messages from all L

different levels of reliabilities (except for the first and last groups of CNs).

Claim 1. Consider an SC code with parameters m and L. Let µ be the number of chunks

that an SC codeword from this code is partitioned into for the interleaving step. Then, the

smallest value of µ that provides the same average reliability for all CNs, except for the first

and last few CNs that have smaller degrees, is µopt = L2/(m+ 1).

Proof. We prove Claim 1 by the contradiction. Suppose an SC codeword from this code is

partitioned into µ < L2/(m+ 1) chunks. In an iterative decoding of an SC codeword, except

for the first and last few CNs, all CNs receive messages from a contiguous (m+ 1)/L fraction

of all VNs. In other words, they receive messages from ν = µ(m + 1)/L < L consecutive

chunks. Suppose that the interleaving is perfect in the sense that all these ν chunks have

different SNR values. Then, the number of different SNR values that a CN is affected by, i.e.,

ν, is less than the total number of different SNR values, i.e., L. Consequently, some CNs

may receive messages from more reliable VNs while others do not, and the average SNR need

not be the same for check equations.

Our presented interleaving scheme partitions an SC codeword into µopt = L2/(m + 1)

chunks, and ensures that all check equations, except for the first and last few ones, experience

the same average SNR. For example, an SC codeword with m = 2 and L = 12, shown in

Figure 3.10, is partitioned into µopt = 48 chunks. By using interleaving, we avoid letting

multiple unreliable sections dominate the messages received by one CN. Our simulation

results show that interleaving notably reduces the performance gap that exists between the

error rates of SC codes over non-uniform and uniform channels. We note that using block

codes and traditional interleaving requires dividing the data with the same length into L2

chunks.

The performance of the SC code constructed using our technique is not sensitive to the

perfect alignment of underlying codes and sections of the channel. In fact, a substantial

mis-alignment resembles an uninformed interleaving that neither helps nor degrades the

performance.

74

3.4.5 Simulation Results

First, we show the performance gap that exists over channels with uniform and non-uniform

SNR for uncoupled block codes. Next, we compare the performance of SC codes possessing the

introduced structure with block codes, and illustrate the effect of interleaving and increasing

the memory. For simulations, we use a min-sum algorithm with a maximum of 50 iterations

for decoding.

Our code parameters are as follows. Block Code 3.4 is a binary AB block code with

κ = z = 17 and γ = 3. Uncoupled Block Codes 3.4 represents 30 uncoupled Block Codes 3.4,

and it can be viewed as an SC code with m = 0, H0 = H, L = 30, length 8,670 bits, and

rate 0.824. SC Code 3.10 and SC Code 3.11 are binary SC codes with γ = 3, κ = z = 17,

L = 30, MO partitioning, and AB circulant powers. Thus, these two codes have length 8,670

bits. The memory and rate for SC Code 3.10 are m = 1 and 0.818, and for SC Code 3.11 are

m = 2 and 0.812, respectively. The partitioning matrix for SC Codes 3.10 is:


0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1

1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0

1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1

 ,

and the partitioning matrix for SC Codes 3.11 is:


0 1 0 2 2 1 2 0 0 1 0 1 1 2 1 2 2

1 0 2 1 0 2 1 1 1 2 2 0 2 0 0 0 1

2 2 1 0 1 0 0 2 2 0 1 2 0 1 2 1 0

 .

SC Codes 3.12 is a binary SC code with γ = 6, κ = 29, z = 61, m = 2, L = 6, MO

partitioning, and circulant powers attained by the CPO program. Thus, it has length 10,614

bits and rate 0.724. According to Theorem 3, the length of each stripe (except for the last

stripe) is ωmax =
(

6
2

)
= 15, and the number of stripes is

⌈
κ

ωmax

⌉
= 2. As a result, tmin = 2.

75

The partitioning matrix that achieves the minimum overlap value is:



1 1 2 1 0 1 2 2 0 2 1 0 2 0 0 1 1 2 1 0 1 2 2 0 2 1 0 2 0

1 2 1 0 1 2 1 0 2 2 0 2 0 1 0 1 2 1 0 1 2 1 0 2 2 0 2 0 1

2 1 0 2 1 2 0 2 1 0 2 1 0 0 1 2 1 0 2 1 2 0 2 1 0 2 1 0 0

2 0 1 1 2 0 2 1 2 0 0 0 1 2 1 2 0 1 1 2 0 2 1 2 0 0 0 1 2

0 2 2 2 2 0 0 0 0 1 1 1 1 1 2 0 2 2 2 2 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 2 2 2 2


,

and the circulant power matrix obtained by the CPO program is given below:



4 55 59 49 10 4 59 14 17 44 12 58 55 27 11 15 16 15 7 0 36 0 0 22 41 0 0 0 24

20 28 28 3 15 5 54 7 8 9 49 11 12 13 14 15 16 59 18 52 30 21 22 23 24 25 26 50 34

0 14 4 6 8 10 11 14 16 18 20 22 12 19 32 30 1 34 36 38 40 42 44 46 48 42 26 54 56

8 3 6 9 12 15 57 32 24 27 24 55 57 39 42 45 48 51 17 57 60 2 5 8 11 14 17 20 23

0 4 8 8 16 20 24 28 32 4 40 44 18 52 56 60 27 7 11 15 19 23 27 31 17 39 5 47 51

0 5 10 17 20 25 30 37 40 13 50 55 57 4 3 14 19 36 49 28 20 47 49 31 59 3 8 13 18


.

For Uncoupled Block Codes 3.4, SC Code 3.10, and SC Code 3.11, we use a non-uniform

channel with N = 30 sections. For SC Code 3.12, we use a non-uniform channel with N = 6

sections. For uncoupled block codes, we use the interleaving technique that is studied in

Section 3.4.3, and for SC codes, we use the interleaving scheme introduced in Section 3.4.4.

In a practical channel model, the values of ∆SNRs for different sections are dependent. We

describe the correlation model among SNR values of different sections as follows. Let a be an

α× 1 vector that describes the correlation coefficients among α consecutive sections:

(∆SNRs)dB = aTu, u = [us us−1 · · · us−α+1]T, ui ∼ N (0, σ2).

N (0, σ2) defines a Gaussian distribution with mean 0 and variance σ2. In our simulations,

76

(a) (b)

Figure 3.11: (a) BER curves for Uncoupled Block Codes 3.4 over uniform and non-uni-
form channels with/without interleaving. (b) BER curves over non-uniform channel for
Uncoupled Block Codes 3.4 with/without interleaving versus SC code 3.10 and SC code 3.11.

we consider the following parameters for the channel:3

a =[0.78 0.44 0.31 0.23 0.15 0.08 0.09 0.03 0.04 0.02−0.04]T, α = 11, σ= 0.15.

Figure 3.11 (a) shows the BER curves for Uncoupled Block Codes 3.4 over non-uniform and

uniform channels with the same average SNR. Because of the SNR variation, the performance

over non-uniform channel is around 1 order of magnitude worse in the error floor region.

Then, we apply the traditional interleaving for the non-uniform channel. It can be seen, as

expected, that interleaving compensates for the performance loss due to the SNR variation.

(For the non-uniform channel, the horizontal axis represents SNRabs.)

Next, we compare the error floor performance of Uncoupled Block Codes 3.4 with SC codes

over channels with SNR variation. According to Figure 3.11 (b), SC Code 3.10 shows 1 and 2

orders of magnitude performance improvement compared to the Uncoupled Block Codes 3.4

with and without interleaving, respectively, while it has a comparable decoding latency.

Moreover, SC Code 3.11 secures even further improvement by providing more diversity.

Figure 3.12 (a) demonstrates the performance loss due to SNR variation for SC Code 3.10.

3On a hard disk drive, under certain environmental and vibration conditions, BER for each of many
consecutive sectors around a circular track can be measured. The autocorrelation terms gauge the coupling of
SNR between sectors of various spacing. The autocorrelation model used in this paper come from experimental
data provided by a Western Digital Company (WDC).

77

(a) (b)

Figure 3.12: BER curves over uniform and non-uniform channels for: (a) SC Code 3.10
with/without interleaving. (b) SC Code 3.12 with/without interleaving.

The performance loss at SNR = 6.5 dB is around 0.5 of an order of magnitude. Compared to

the performance loss for Uncoupled Block Codes 3.4, we immediately see that well-designed

SC codes are more robust against SNR variation. Furthermore, this loss can be compensated

by the introduced interleaving, as Figure 3.12 (a) shows.

Figure 3.12 (b) demonstrates the similar analysis for SC Code 3.12. Since well-designed

SC codes with γ = 6 have a very low error floor, we could not collect enough errors in the

error floor region. As we see in this figure, our well-designed SC code with column weight

γ = 6 constructed by the MO partitioning has a sharp waterfall region, and it achieves

BER = 10−10 at SNR = 4.1 dB. We also note that there is a notable performance gap between

uniform and non-uniform channels for this code which is because of the high SNR variation

of the channel with N = 6 sections and the relatively low coupling length of the SC code

(L = 6). However, our efficient interleaving scheme remarkably reduces this gap.

3.5 Conclusion

In this chapter, we investigated non-AWGN channels and presented channel-aware SC

constructions. In Section 3.2, we considered one-dimensional MR channels and presented

a systematic design methodology for NB SC codes that exploits the structure of dominant

errors for setting the partitioning, circulant powers, and edge weights. We demonstrated

78

significant performance advantage of our proposed optimized SC codes relative to their block

counterparts as well as relative to other SC constructions.

In Section 3.3, we considered Flash memories and proposed a systematic approach for the

design of NB SC codes optimized for practical Flash channels. The SC codes designed using

our approach have reduced number of dominant GASTs as the detrimental objects for Flash

channels, thus outperforming existing NB SC codes.

In Section 3.4, we presented an SC code design for channels with SNR variation. First,

we introduced a new construction method for SC codes with a low computational complexity.

Second, we demonstrated that our well-designed SC codes outperform block codes thanks to

the diversity that is provided by the coupling, while they have comparable decoding latency

as their underlying block codes. Finally, we demonstrated that the performance of SC codes

can be further improved by increasing the memory and performing the introduced interleaving

scheme that is specific to SC codes.

Acknowledgment

The material of this chapter have been published in several papers [13–15,40,43]. The author

would like to thank all the collaborators in these publications. The author would like to

especially thank Dr. Ahmed Hareedy, who is also the first author in [14, 40], for the great

collaboration on the materials that appeared in this chapter.

79

CHAPTER 4

Extending the Construction Framework for Irregular

SC Codes

4.1 Introduction

It has long been known that graph-based LDPC codes with irregular node degree distribution

offer performance advantage over their regular-degree counterparts [44]. This observation has

led to the construction of many irregular block LDPC codes with excellent properties, e.g., [45],

and design of capacity approaching performance of highly irregular LDPC codes using density

evolution techniques [46]. While SC codes intrinsically possess a small amount of node degree

irregularity due to the termination effects, which aides in performance improvement [6], it is

nonetheless customary to use regular underlying block to construct finite-length SC codes.

In this chapter, we present a novel combinatorial framework for the finite-length analysis

and design of irregular SC codes. Our irregular SC codes have the desirable properties of

regular SC codes thanks to their structure while offering significant performance benefits

that come with the degree irregularity. We still use CB codes as the underlying block codes.

We present a systematic scheme for optimal partitioning of the underlying block codes and

constructing irregular SC codes with a superior performance in the error floor area. We show

that this scheme has significantly better performance than random code constructions with

the same node degree distribution. The performance advantage is achieved by explicitly

organizing and combining circulants such that the population of graphical objects that are

problematic for decoding is minimized.

Certain structures in the graph of LDPC codes are responsible for most errors that occur

80

(a) (b)

Figure 4.1: Examples of ASs in graph of irregular LDPC codes along with their common
denominator structure shown with dashed blue lines; (a) The (4, 4) AS. (b) The (5, 4) AS.

under the iterative decoding in the error floor region. Among the problematic graphical

structures, the most harmful ones are ASs [23], see Definition 3. ASs are problematic objects

in graph of irregular LDPC codes as well. Figure 4.1 shows two examples of ASs in the graph

of an irregular LDPC code. Based on our empirical results, we have identified that cycles-6

are the common denominator instances of most problematic ASs over AWGN channels for

irregular SC codes with girth 6.

We remind that focusing on minimizing the population of instances of a small common

substructure, such as cycle-6, in the code design notably reduces the computational complexity

and improves the performance as discussed in the previous chapters. This observation follows

from noting that the common denominator has a simpler graphical structure, and it exists in

the graph of several detrimental ASs.

The rest of this chapter is organized as follows. In Section 4.2, we show how irregular SC

codes can be constructed by a new partitioning scheme that takes the irregularity into account.

In Section 4.3, we present our new scheme for constructing irregular SC codes through optimal

partitioning, which builds in part on the OO partitioning that was introduced in Chapter 2

for regular SC codes. Simulation results are presented in Section 4.4. Section 4.5 delivers

conclusions.

81

4.2 Irregular SC Code Construction

As stated, regular SC codes are constructed by partitioning the circulants of a CB block code

with non-zero circulants into (m + 1) component matrices. For constructing irregular SC

codes, one can choose an irregular underlying block code, i.e., a CB code with zero/non-zero

circulants, for the partitioning. The resulting SC code has the same VN and CN degree

distribution as the underlying block code, except for the first and last few CNs that have

lower degrees.

In this section, we present a new procedure for constructing irregular SC codes that

creates degree irregularity in the partitioning stage. For this purpose, we introduce a new

component matrix, which is called the dummy component matrix and is denoted by Hd.

While Hd is treated in the partitioning like the other component matrices,

H = Hd +
m∑
y=0

Hy, (4.1)

the elements assigned to Hd are discarded, and Hd does not appear in the parity-check matrix

HSC of the irregular SC code, see Figure 1.1.

We remind that the protograph of a CB matrix is denoted by the super-script p, i.e., (.)p.

The degree distribution which indicates the ratio of VNs (resp., CNs) with a specific degree

value, is the same for a CB block/SC code and its protograph. Therefore, we define and

evaluate the degree distribution for the protograph. The VN (resp., CN) degree vector for the

protograph of an irregular SC code is denoted by Λ = [λ0 . . . λγ−1] (resp., Φ = [ρ0 . . . ρκ−1]).

Here, λi (resp., ρj) is the portion of VNs (resp., CNs) with degree i + 1 (resp., j + 1).

Parameter γ (resp., κ) is the maximum VN (resp., CN) degree. The protograph of the dummy

component matrix, i.e., Hp
d, determines the degree distribution of the final SC code, as shown

by Lemma 8.

Lemma 8. Let αu, i.e., 0 ≤ u ≤ γ − 1, be the number of 1s in row u of Hp
d. Similarly, let

βv, i.e., 0 ≤ v ≤ κ− 1, be the number of 1s in column v of Hp
d. Then, ∀i ∈ {0, . . . , γ − 1}

82

and ∀j ∈ {0, . . . , κ− 1},

λi =
|{βv|0 ≤ v ≤ κ− 1, βv = γ − i− 1}|

κ
, (4.2)

ρj ≈
|{αu|0 ≤ u ≤ γ − 1, αu = κ− j − 1}|

γ
. (4.3)

Proof. First, we derive the elements of the vector Λ. All replicas of Hp
SC have the same

non-zero parts. Thus, we only need to consider one replica, say Rp
1, to derive the VN

degree distribution. The v’th column in Rp
1, where 0 ≤ v ≤ κ − 1, has degree γ − βv,

see Figure 1.1 and (4.1). Therefore, the number of columns in Rp
1 with degree i + 1 is

|{βv|0 ≤ v ≤ κ− 1, βv = γ − i− 1}|. There are κ columns in Rp
1 , and the expression in (4.2)

follows. The elements of the vector Φ, i.e., (4.3), can be derived similarly. The approximation

sign in (4.3) is due to the fact that the first and the last group of CNs have lower degree due

to the SC structure.

Example 8. Assume the code parameters κ = 7 and γ = 3. We seek to construct Hp
d to

achieve Λ = [0 3/7 4/7] and Φ ≈ [0 0 0 0 0 1 0]. Using (4.2) and (4.3), Hp
d has 3 columns

with degree 1, 4 columns with degree 0, and 3 rows with degree 1. With these properties, one

realization for Hp
d is:

Hp
d =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 .
The node degree distributions, and consequently the matrix Hp

d, can be derived using

the density evolution techniques to attain better threshold performance. In the next section,

we present a new scheme for optimal partitioning of the circulant of H into the (m + 1)

component matrices, considering the circulants that are already assigned to Hd, in order to

minimize the number of cycles-6 in the protograph of an irregular SC code.

83

4.3 Optimal Partitioning for Irregular SC Codes

In this section, we extend the OO partitioning scheme, introduced in Chapter 2, for con-

structing irregular SC codes. For simplicity, we consider m = 1 throughout this section.

Thus, we intend to partition κγ circulants in matrix H of an underlying block code into

three component matrices H0, H1, and Hd, and piece L copies of H0 and H1 in a diagonal

structure to construct the parity-check matrix HSC of an irregular SC code. We note that

the circulants that are assigned to Hd are fixed given the degree distribution, and we aim

to find the best partitioning of the remaining circulants between H0 and H1 such that the

number of cycles-6 in the protograph of the SC code is minimized.

The overlap parameters are a set of integer-valued parameters that include all necessary

information needed to find the population of combinatorial objects, e.g., cycles-6, in the

protograph of a regular SC code, see Definition 8. Here, we extend the definition of the

overlap parameters for irregular SC codes. A careful selection of the overlap parameters

corresponds to constructing high performance irregular SC codes.

A cycle-6 in the graph of Hp
SC results in either z or 0 cycles-6 in the graph of HSC

depending on the powers of the circulants associated with that cycle [29, 30]. Moreover, a

cycle-6 in the final (lifted) graph of an SC code can only be generated from a cycle-6 in

the protograph. Motivated by the above fact, our optimal partitioning aims at deriving the

overlap parameters that result in the minimum number of cycles-6 in the graph of Hp
SC with

girth 6.

We establish a discrete optimization problem by expressing the number of cycles-6 in the

graph of Hp
SC as a function of the overlap parameters and standard code parameters. We

first review and extend the definition of overlap parameters for an irregular SC code.

Definition 10. Define matrix Πp of size 3γ × κ as follows:

Πp =


Hp

0

Hp
1

Hp
d

 . (4.4)

84

A degree-d overlap parameter t{i1,··· ,id}, 0 ≤ i1, · · · , id ≤ 3γ − 1, is defined as the overlaps

among d distinct rows of Πp specified by the set {i1, · · · , id}, i.e., the number of positions in

which all the d rows simultaneously have 1s.

Similar to the case of regular SC codes, for an irregular SC code with maximum VN degree

γ, the maximum degree for an overlap parameter with non-zero value is γ. Additionally, if

there is at least one pair of distinct row indices (iu, iv) such that iu, iv ∈ {i1, · · · , id} and

iu = iv (mod γ), then t{i1,··· ,id} = 0.

Lemma 9. The set of independent non-deterministic overlap parameters Oind is defined as

follows:

Oind ={t{i1,··· ,id}|1 ≤ d ≤ γ, γ ≤ i1, · · · , id ≤ 3γ − 1,

∀{iu, iv} ⊂ {i1, · · · , id} iu 6= iv (mod γ)}\

{t{i1,··· ,id}|1 ≤ d ≤ γ, 2γ ≤ i1, · · · , id ≤ 3γ − 1}.

(4.5)

The other overlap parameters that are not in Oind are either deterministic (zero or determined

by the desired node degree distribution) or functions of the overlap parameters in Oind, as

follows:

1. Let 2γ ≤ i1, · · · , id ≤ 3γ − 1. Then, t{i1,··· ,id} is determined based on the desired degree

distribution.

2. Let 0 ≤ i1, · · · , id1 ≤ γ − 1, γ ≤ j1, · · · , jd2 ≤ 3γ − 1, and 1 ≤ (d1 + d2) ≤ γ. Then,

t{i1,··· ,id1 ,j1,··· ,jd2} is a linear function of the overlap parameters in Oind:

t{i1,...,id1 ,j1,...,jd2} = tJ +

d1∑
α=1

(−1)α
∑

{i′1,...,i′α}⊂I
[x1 ... xα]∈{1,2}α

tJ∪{x1γ+i′1,...,xαγ+i′α}, (4.6)

where I = {i1, . . . , id1}, J = {j1, . . . , jd2}, and in the case of J = ∅, tJ = κ.

Proof.

85

1. Given the degree distribution, the dummy component matrix Hd, its protograph, and

its overlap parameters are determined.

2. To have an overlap at position (column index) y ∈ {1, . . . κ} among the rows I ∪ J

of Πp: a) the rows in J of Πp must have 1s at position y, b) the rows in the second

and third component matrices of Πp, i.e., Hp
1 and Hp

d, that correspond to the rows in

I must have 0s at position y. In other words, the rows in {x1γ + i1, . . . , xd1γ + id1} of

Πp must have 0s at position y, where [x1 . . . xd1] ∈ {1, 2}d1 . Aided by the principle of

inclusion and exclusion, (4.6) follows.

Example 9. For an irregular SC code with m = 1, γ = 3, and κ = 7,

Oind = {t3, t4, t5, t{3,4}, t{3,5}, t{4,5}, t{3,7}, t{3,8}, t{4,6},

t{4,8}, t{5,6}, t{5,7}, t{3,4,5}, t{3,4,8}, t{3,5,7}, t{3,7,8}, t{4,5,6}, t{4,6,8}, t{5,6,7}}.

Let Λ = [0 3/7 4/7] and Φ ≈ [0 0 0 0 0 1 0] as in Example 8. According to Lemma 9,

the overlap parameters that are not in Oind are deterministic or functions of the overlap

parameters in Oind. For example,

t{6} = 1, t{1} = 6− t4,

t{7,8} = 0, t{0,2} = 5− t{3} − t{5} + t{3,5} + t{3,8} + t{5,6},

t{6,7,8} = 0, t{1,3} = t{3} − t{3,4} − t{3,7}.

Lemma 10. The number of independent non-deterministic overlap parameters is Nind =

|Oind| = 3γ − 2γ

Proof. Let the sets T1 and T2 be defined as follows:

T1 ={t{i1,··· ,id}|1 ≤ d ≤ γ, γ ≤ i1, · · · , id ≤ 3γ − 1,

∀{iu, iv} ⊂ {i1, · · · , id} iu 6= iv (mod γ)},

T2 ={t{i1,··· ,id}|1 ≤ d ≤ γ, 2γ ≤ i1, · · · , id ≤ 3γ − 1}.

86

Since Oind = T1 \T2, see (4.5), and T2 ⊂ T1, Nind = |Oind| = |T1|− |T2|. |T1| is the number

of non-empty subsets of the set S = {γ, . . . , 3γ − 1} with maximum size γ such that no two

elements in a subset have the same value mod γ. We partition the set S into γ disjoint sets

{γ, 2γ}, {γ + 1, 2γ + 1}, . . . , {2γ − 1, 3γ − 1}. The two elements in each of these partitions

have the same value mod γ. Thus, we need to pick at most one element from each partition

to form the set T1, and there are 3γ − 1 choices for this (selection of the first element, second

element, or neither of elements for each partition; the case where none of the partitions

lends an element to the subset, i.e., empty subset, must be excluded). |T2| is the number of

non-empty subsets of the set {2γ, . . . , 3γ − 1}, i.e., 2γ − 1. As a result, Nind = 3γ − 2γ.

For example for γ = 3, Nind = 19. Next, we show that the number of cycles-6 in the

protograph of an irregular SC code can be expressed as a function of the parameters in Oind.

Theorem 4. The number of cycles-6 in the protograph of an irregular SC code with parameters

m = 1, L, κ, γ, and Oind is:

F = LF 1
1 + (L− 1)F 2

1 , (4.7)

and F 1
1 and F 2

1 are:

F 1
1 =

∑
{i1,i2,i3}⊂{0,...,2γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3}),

F 2
1 =

∑
i1∈{0,...,2γ−1}

{i2,i3}⊂{γ,...,2γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2−γ,i3−γ})

+
∑

i1∈{0,...,2γ−1}
{i2,i3}⊂{0,...,γ−1}
i1 6=i2 ,i1 6=i3, i2 6=i3

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2+γ,i3+γ}),

where i = (i mod γ). The functions A and B are are defined in (2.12) and (2.13), and are

87

reminded here:

A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3})

=
(
t{i1,i2,i3}[t{i1,i2,i3} − 1]+[t{i2,i3} − 2]+

)
+
(
t{i1,i2,i3}(t{i1,i3} − t{i1,i2,i3})[t{i2,i3} − 1]+

)
+
(
(t{i1,i2} − t{i1,i2,i3})t{i1,i2,i3}[t{i2,i3} − 1]+

)
+
(
(t{i1,i2} − t{i1,i2,i3})(t{i1,i3} − t{i1,i2,i3})t{i2,i3}

)
.

B(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2±γ,i3±γ})

=
(
t{i1,i2,i3}[t{i1,i3} − 1]+t{i2±γ,i3±γ}

)
+
(
(t{i1,i2} − t{i1,i2,i3})t{i1,i3}t{i2±γ,i3±γ}

)
.

Proof. The proof has the same flow as the proof of Theorem 2 for the case m = 1 because

the construction shown in Figure 1.1 is the same for both regular and irregular SC codes.

The set of overlap parameters needed to calculate F in (4.7) is a subset of Oind. The overlap

parameters that are related to the dummy component matrix Hp
d do not directly play a role

in finding F , and they only help to exploit the dependency between the overlap parameters

for the protograph of Π1
1 = [HT

0 HT
1]T . Once the overlap parameters for Π1,p

1 are determined,

F can be found using (4.7).

Let F ∗ be the minimum number of cycles-6 in Hp
SC. Thus, our discrete optimization

problem is:

F ∗ = min
Oind

F. (4.8)

Consider an underlying block code with parameters κ and γ. In the partitioning, each

circulant of the matrix of the underlying block code, i.e., H, that is not assigned to the

dummy component matrix Hd can be assigned to H0 or H1, resulting in roughly 2κγ possible

options. The goal is to choose a partitioning that results in the lowest number of cycles-6

in the protograph of an irregular SC code. We reduced the problem of finding the optimal

partitioning for irregular SC codes into an optimization problem over Nind = 3γ − 2γ integer-

88

valued overlap parameters.

As the second (optional) step of constructing irregular SC codes, we run the heuristic

CPO program, introduced in Section 2.3.2, for adjusting the powers of non-zero circulants in

one replica of HSC. We remind that each change that is made to one replica is also applied

to all other replicas to preserve the structure described in Figure 1.1. The CPO program

adjusts the powers of the problematic circulants, i.e., those that are involved in the most

cycles-6, to break the necessary condition for as many remaining cycles-6 as possible without

creating cycles-4.

4.4 Simulation Results

In this section, we compare the performance of our irregular SC codes with arbitrarily

constructed irregular SC codes. All codes have the same length, rate, and degree distribution.

First, we describe the code parameters. SC Code 4.1, SC Code 4.2, and SC Code 4.3

are binary SC codes with parameters γ = 4, κ = z = 13, m = 1, L = 10, length 1,690

bits, and design rate 0.662. All these SC codes are irregular with Λ = [0 0 8/13 5/13] and

Φ ≈ [0 . . . 0 1 0 0].

SC Code 4.1 is constructed by the previous method of partitioning by cutting vectors and

AB circulant powers (CV-AB). SC Code 4.2 is constructed by the OO partitioning and AB

circulant powers (OO-AB). SC Code 4.3 is constructed by the OO partitioning and circulant

powers obtained by the CPO program (OO-CPO). The optimal partitioning is obtained by

using the new systematic framework that we presented in this chapter. Moreover, in order to

reduce the computational complexity, the balanced partitioning choices of circulants of H,

between H0 and H1, are considered in (4.8), and the optimal ones are chosen to construct

SC Code 4.2 and SC Code 4.3. The balanced partitioning also gives more freedom to the

CPO program to adjust the circulant powers, and thus it results in a better performance.

We need to generalize the definition of the partitioning matrix, introduced in Definition 9,

to be able to use it for irregular SC codes as well. The partitioning matrix PM = [gi,j] of

size κ× γ is defined as follows: A circulant with row group index i and column group index

89

j in H is assigned to Hd, resp., H0, and H1, if gi,j is X, resp., 0, and 1. The circulant power

matrix CM = [fi,j], with dimension γ × κ, stores the powers of non-zero circulants as before.

The partitioning matrix for SC Code 4.1 is:


X 0 0 1 X 1 1 1 1 1 1 1 1

0 X 0 0 0 X 1 1 1 1 1 1 1

0 0 X 0 0 0 X 0 1 1 1 1 1

0 0 0 X 0 0 0 X 0 0 0 1 1

 ,

The partitioning matrix for SC Code 4.2 and SC Code 4.3 is:


X 1 1 1 X 1 1 0 0 0 0 0 0

1 X 1 0 1 X 0 1 1 1 0 0 0

0 0 X 1 0 1 X 0 0 0 1 1 1

0 0 0 X 0 0 0 X 1 1 1 1 1

 ,

and the circulant power matrix for SC Code 4.3 is given below:


X 0 0 0 X 0 0 0 0 5 12 0 0

0 X 1 4 4 X 6 7 8 3 3 8 12

0 4 X 6 8 4 X 1 3 5 7 9 10

7 0 4 X 12 10 5 X 3 1 4 11 8

 .

In our simulations, we consider AWGN channels, and we use block min-sum algorithm

with 15 iterations for the decoding. Figure 4.2 shows the FER performance for SC Codes 4.1,

4.2, and 4.3. As we see, SC Code 4.3 shows 1.3 and 0.7 orders of magnitude performance

improvement compared to SC Code 4.1 and SC Code 4.2 at SNR = 5.8 dB, respectively.

In terms of the number of cycles, SC Code 4.1, resp., SC Code 4.2, and SC Code 4.3, has

9,754, resp., 4,397, and 4,397, cycles-6 in its protograph, and 12,896, resp., 5,278, and 1,469,

cycles-6 in its final graph.

90

Figure 4.2: FER curves over AWGN channel for irregular SC codes of the same length, rate,
and degree distribution.

4.5 Conclusion

In this chapter, we presented a novel combinatorial construction of finite-length irregular SC

codes. Our code optimization is based on careful organization of circulants in the underlying

component matrices. We showed on a representative example that our proposed codes

offer performance improvement over comparable irregular SC codes. Results from this work

contribute to the growing portfolio of construction methods for finite-length SC codes.

Acknowledgment

The majority of the material in this chapter is published in [16]. The author would like to

thank the collaborators in this publication.

91

CHAPTER 5

Multi-Dimensional Spatially-Coupled Code

Construction

5.1 Introduction

One-dimensional SC (1D-SC) codes are constructed by coupling a series of disjoint block

LDPC codes into a single coupled chain [3]. The 1D-SC codes have been well studied from the

asymptotic perspective and the finite-length perspective. From the asymptotic perspective,

density evolution techniques have been used to study the decoding threshold, e.g., [5, 6].

From the finite-length perspective, via the evaluation and optimization of the number of

problematic combinatorial objects, it has been shown how an informed coupling strategy can

notably improve the performance, e.g., see Chapter 2 and [10,47].

Multi-dimensional SC (MD-SC) codes can be constructed by coupling several 1D-SC

codes together via rewiring their existing connections or by adding extra VNs or CNs [48,49].

MD-SC codes are more robust against burst erasures and channel non-uniformity, and they

have improved iterative decoding thresholds, compared to 1D-SC codes [48, 49]. MD-SC

codes were introduced in [48,49] and investigated more in [50–55].

In [48, 50, 51], construction methods are presented for MD-SC codes that have specific

structures, e.g., loops and triangles. The construction method for MD-SC codes presented

in [49] involves connecting edges uniformly at random such that some criteria on the number

of connections are satisfied. In [52], a framework is presented for constructing MD-SC codes

by randomly and sparsely introducing additional CNs to connect VNs at the same positions

of different chains. In [53], multiple SC codes are connected by random edge exchanges

92

between adjacent chains to improve the iterative decoding threshold. In [54, 55], MD-SC

codes are presented to improve the error-correction performance against the severe burst

errors in wireless channels.

Previous works on MD-SC codes, while promising, have some limitations. In particular,

they either consider random constructions or are limited to specific topologies. As a result,

they do not effectively use the added degree of freedom achieved by the multi-dimensional

(MD) coupling in order to improve particular properties of the code, e.g., girth and minimum

distance. They also use the density evolution technique for the performance analysis. This

technique is dedicated to the asymptotic regime and is based on some assumptions, e.g.,

being cycle-free, that cannot be readily translated to the practical finite-length case.

Short cycles have a negative impact on the error-correction performance of graph-based

codes under iterative decoding. They affect the independence of the extrinsic information

exchanged in the iterative decoder. Moreover, problematic combinatorial objects that cause

the error floor phenomenon, e.g., ASs, BASs, GASTs, are formed of cycles with relatively short

lengths as we discussed in Chapters 2 and 3. Finally, short cycles can have a negative impact

on the code minimum distance. In [56,57], some upper bounds on the minimum distance of

circulant-based block and SC codes are derived, and it is shown that the smaller the girth

of the graph, the smaller the minimum distance upper bound will be. Thus, improving the

girth can result in a larger minimum distance.

In this chapter, we present a comprehensive systematic framework for constructing MD-SC

codes by coupling individual SC codes together to attain fewer short cycles. For connecting

the constituent SC codes, we do not add extra VNs or CNs, and we only rewire some existing

connections. For exchanging the connections, we follow three rules:

1. The connections that are involved in the highest number of short cycles are targeted

for rewiring.

2. The neighboring constituent SC codes to which the targeted connections are rewired

are chosen such that the associated short cycles convert to cycles of the largest possible

length in the MD setting

93

3. The targeted connections are rewired to the same positions in the other constituent SC

codes in order to preserve the low-latency decoding property.

From an algebraic viewpoint, problematic circulants (which correspond to groups of

connections) that contribute to the highest number of short cycles in the constituent SC codes

are relocated to connect these codes together. Thus, We present a systematic framework

to construct MD-SC codes, which is based on an informed relocation of circulants. MD-SC

codes constructed using our proposed framework enjoy a notably lower population of short

cycles, and consequently better performance, compared to 1D-SC codes.

In this chapter, the operator
p
= (resp.,

p6=) defines the congruence (resp., incongruence)

modulo p, and the operator (.)p defines modulo p of an integer.

The rest of the chapter is organized as follows. In Section 5.2, the structure of our MD-SC

codes is presented. In Section 5.3, our novel framework for constructing MD-SC codes with

enhanced cycle properties is introduced. In Section 5.4, our simulation results are given.

Finally, the conclusion appears in Section 5.5.

5.2 Multi-dimensional Spatially-Coupled Code Structure

In this section, we demonstrate the structure of our MD-SC codes. Our MD-SC codes have

two main parameters: MD coupling depth d and MD coupling length L2. The parameter L2

of an MD-SC code shows the number of SC codes that are connected together to form the

MD-SC code. Each constituent SC code is connected to at most (d− 1) following SC codes,

sequenced in a cyclic order. Thus, 1 ≤ d ≤ L2, and d = 1 corresponds to L2 disjoint 1D-SC

codes.

In Chapter 2, a systematic framework for partitioning the underlying block code and

optimizing the circulant powers, known as the optimal overlap partitioning and circulant

power optimizer (OO-CPO) technique, was introduced for constructing high performance SC

codes. In this chapter, we use the OO-CPO technique for designing the constituent SC codes

that are then used to construct MD-SC codes. We note that choosing high performance

94

1D-SC codes as constituent SC codes is not necessary in our MD-SC construction, and it

only results in a better start point in a framework that further improves the performance via

MD coupling.

We intend to reduce the population of cycles with length k, i.e., cycles-k, in our MD-

SC code construction, and the parameter k is an input to our scheme. A wise choice

for k is the girth [58], or the length of the cycle that is the common denominator of

several problematic combinatorial objects for a specific channel, e.g., AWGN channels, MR

channels, or Flash channels, see Chapters 2 and 3. For instance, a cycle-6 is the common

denominator of problematic combinatorial objects for AWGN channels, and a cycle-8 (with

no interconnections) is the common denominator of problematic combinatorial objects for

MR channels even if the girth is 6.

An auxiliary matrix At, t ∈ {1, · · · , L2− 1}, has the same size as the parity-check matrix

of the constituent 1D-SC code , i.e., HSC, and appears in the parity-check matrix of the

final MD-SC code, see (5.2). The auxiliary matrices are all-zero matrices at the beginning

of the framework and are filled with non-zero circulants during the construction process. A

relocation is defined as moving a non-zero circulant of HSC to the same position in one of the

auxiliary matrices.

Consider an SC code with parity-check matrix HSC, memory m, and coupling length L as

the constituent 1D-SC code, and let Rν be the middle replica of HSC, i.e., ν = dL/2e. There

are κγ non-zero circulants in this replica. Out of these κγ circulants, we choose T circulants

that are the most problematic, i.e., that contribute to the highest number of cycles-k. The

parameter T is called the MD coupling density. We relocate the chosen circulants to auxiliary

matrices A1, A2, . . . , Ad−1 such that a relocated circulant from HSC is moved to the same

position in one of the auxiliary matrices. The same relocations are repeated for all the (L− 1)

remaining replicas. As a result,

HSC = H′SC +
d−1∑
t=1

At, (5.1)

where H′SC is derived from HSC by removing the T chosen circulants.

95

We note that the middle replica Rν is considered for ranking the circulants in order

to include all possible cycles-k that a non-zero circulant in HSC can contribute to. The

parity-check matrix HMD
SC of the MD-SC code is constructed as follows, where Ad = Ad+1 =

· · · = AL2−1 = 0: (The non-zero auxiliary matrices are A1, A2, . . . , Ad−1.)

HMD
SC =


H′SC AL2−1 · · · A1

A1 H′SC · · · A2

...
...

. . .
...

AL2−1 AL2−2 · · · H′SC

 . (5.2)

HMD
SC can be viewed as a collection of L2 rows and L2 columns of segments Sa,b, where

0 ≤ a ≤ L2 − 1 and 0 ≤ b ≤ L2 − 1. Each segment Sa,b is a matrix with the same

dimension as HSC, Sa,a = H′SC, S(a+t)L2
,a = At for t ∈ {1, · · · , d− 1}, and S(a+t)L2

,a = 0 for

t ∈ {d, · · · , L2 − 1}. In Example 10, we show the graphical illustration of an MD-SC code

having the presented structure.

Example 10. Consider an SC code with γ = 2, κ = 3, z = 3, m = 1, and L = 3. The

matrix H of the underlying block code and the component matrices are given below:

H=

 σf0,0 σf0,1 σf0,2

σf1,0 σf1,1 σf1,2

, H0 =

 σf0,0 0 σf0,2

0 σf1,1 0

, H1 =

 0 σf0,1 0

σf1,0 0 σf1,2

.
We intend to construct an MD-SC code with parameters T = 1, d = 2, and L2 = 4.

Assume σf1,0 is the most problematic circulant, and we relocate it to A1. This relocation is

applied to all L = 3 instances of the problematic circulant. We remind that each circulant

corresponds to a group of z connections in the graph of the SC code. The four constituent SC

codes along with their problematic connections are depicted in Figure 5.1 (a). The problematic

connections are rewired to the same positions in the next SC codes, in a cyclic order, to

construct the MD-SC code, Figure 5.1 (b).

Definition 11. We introduce some necessary definitions:

1. Let Ci,j, where 0 ≤ i ≤ (L + m)γ−1 and 0 ≤ j ≤ Lκ−1, be a non-zero circulant in

96

(a)

(b)

Figure 5.1: (a) Four 1D-SC codes. Each line represents a group of connections (defined by a
circulant) from z VNs to z CNs. Problematic connections are shown in dashed red lines. (b)
MD-SC code with T = 1, d = 2, and L2 = 4. Rewired connections are shown in dashed blue
lines.

97

(a) (b)

Figure 5.2: Cycles-8 with CO8 = {Ci1,j1 , . . . , Ci8,j8}. Each line represents a connection between
two circulants. (a) All circulants are unique. (b) Ci6,j6 = Ci2,j2 and Ci7,j7 = Ci3,j3 .

HSC. We say Ci,j is relocated to At, where t ∈ {1, · · · , d− 1}, if it is moved from HSC

to At. We denote this relocation as Ci,j→At.

2. Ci,j@Sa,b refers to the circulant Ci,j in segment Sa,b. When Ci,j→At, the value of

Ci,j@Sa,a is copied to Ci,j@S(a+t)L2
,a, and Ci,j@Sa,a becomes zero (a ∈ {0, · · · , L2 − 1}

and t ∈ {1, · · · , d− 1}).

3. The MD mapping M : {Ci,j}→{0, · · · , d− 1} is a mapping from a non-zero circulant

in HSC to an integer in {0, · · · , d− 1}, and it is defined as follows:

(a) If Ci,j→At, M(Ci,j) = t.

(b) If Ci,j is kept in H′SC (no relocation), M(Ci,j) = 0.

4. A cycle-k, or Ok, visits k circulants in the parity-check matrix of the code. We

list the k circulants of Ok, according to the order they are visited when the cycle is

traversed in a clockwise direction, in a sequence as COk = {Ci1,j1 , Ci2,j2 , . . . , Cik,jk}, where

i1 = i2, j2 = j3, . . . , ik−1 = ik, jk = j1. A circulant can be visited more than once, e.g.,

Figure 5.2.

5. We denote the distance between two circulants Ciu,ju and Civ ,jv on a cycle Ok, where u, v ∈

{1, . . . , k}, as DOk(Ciu,ju , Civ ,jv) ∈ {0, . . . , k − 1}. By definition, DOk(Ciu,ju , Civ ,jv) =

|v − u|. For example, DO8(Ci1,j1 , Ci4,j4) = 3 in Figure 5.2 (a).

Because of the structure of MD-SC codes, when a non-zero circulant in one replica of

98

HSC is relocated, the same relocation is applied to the (L− 1) other replicas as well.

M(Ci,j) = M(Ci−ργ,j−ρκ), where ρ = bj/κc. (5.3)

In the new MD-SC code design framework, we effectively answer two questions: which

circulants to relocate, and where to relocate them. We note that the relocations of circulants

to the same positions in the auxiliary matrices preserve the special structure of SC codes,

which makes them suitable for applications that require low decoding latency.

5.3 Framework for MD-SC Code Design

In this section, we present a new framework for constructing MD-SC codes. First, we

investigate the effects of relocating a subset of circulants on the population of cycles. Then,

we present our algorithm for constructing MD-SC codes which is based on a score voting

policy.

5.3.1 The Effects of Relocation of Circulants on Cycles

Consider a cycle Ok in HSC with sequence of circulants COk . Prior to any relocation, there

are L2 instances of this cycle in the MD-SC code with parameter L2, one per each constituent

SC code. We investigate the effect of relocating a subset of circulants of Ok, and we call this

subset targeted circulants. We show that, after relocations, L2 instances of circulants of COk

can form L2 cycles of length k, L2/2 cycles of length 2k, . . . , or one cycle of length L2k. The

first case is a result of bad choices for relocations, and the rest are more preferable. In fact,

we opt for the relocations that result in larger cycles (with smaller cardinality as a result).

Theorem 5. Let COk = {Ci1,j1 , Ci2,j2 , . . . , Cik,jk} be the sequence of circulants in HSC that

are visited in a clockwise order by Ok. If the following equation holds, the L2 instances of

circulants of COk form L2 cycles-k in HMD
SC ,

k∑
u=1

(−1)uM(Ciu,ju)
L2= 0. (5.4)

99

Otherwise, the instances of the targeted circulants do not result in cycles-k in HMD
SC

1. We

call (5.4) the Ineffective Relocation Condition, or IRC, in the rest of this chapter.

Proof. Let (Ciu,ju , Ciu+1,ju+1) be a pair of consecutive circulants in COk , where u ∈ {1, . . . , k}

and Cik+1,jk+1
= Ci1,j1 . By definition, two circulants have the same row (resp., column) group

index, i.e., iu = iu+1 (resp., ju = ju+1), when u
2
= 1 (resp., u

2
= 0). Before relocations,

Ciu,ju@Sa,a 6= 0 and Ciu,ju@Sa,b = 0, where Ciu,ju ∈ COk , a, b ∈ {0, · · · , L2 − 1}, and a 6= b.

This results in L2 instances of Ok, one per each segment Sa,a. After relocations, the circulants

in COk do not all belong to the same segment. We remind that the matrix HMD
SC is formed of

(L2)2 segments, see (5.2).

Here, a unit of a MD horizontal (resp., MD vertical) shift is defined as cyclically going

one segment right (resp., down) when we go from Ciu,ju to Ciu+1,ju+1 . The cycle Ok reflects in

the MD-SC code as cycles with the same length k if and only if when we start from Ci1,j1 6= 0

from one segment and traverse the circulants of the cycle in a clock wise order (with the

same order they appear in COk), we end up at the same segment that we started with.

The segments of HMD
SC appear in the cyclic order {H′SC,AL2−1, · · · ,A1}, with the MD

mapping {0, L2 − 1, · · · , 1}, from left to right. These segments appear in the cyclic order

{H′SC,A1, · · · ,AL2−1}, with the MD mapping {0, 1, · · · , L2 − 1}, from top to bottom, see

(5.2). Thus, the MD horizontal shift, when we go from Ciu,ju to Ciu+1,ju+1 , u ∈ {1, 3, . . . , k−1},

is (M(Ciu,ju) −M(Ciu+1,ju+1))L2
units. Similarly, the MD vertical shift, when we go from

Ciu,ju to Ciu+1,ju+1 , u ∈ {0, 2, . . . , k}, is (M(Ciu+1,ju+1) −M(Ciu,ju))L2
units. We remind that

the operator (.)p defines modulo p of an integer. The total MD horizontal and vertical shifts

when we traverse the circulants of Ok in HMD
SC are δH and δV , respectively:

δH = (
∑

u∈{1,3...,k−1}

[M(Ciu,ju)−M(Ciu+1,ju+1)])L2
=(−

k∑
u=1

[(−1)uM(Ciu,ju)])L2
,

δV = (
∑

u∈{2,4...,k}

[M(Ciu+1,ju+1)−M(Ciu,ju)])L2
=(−

k∑
u=1

[(−1)uM(Ciu,ju)])L2
.

(5.5)

1Equation (5.4) resembles Fossorier’s condition on circulant powers of a CB code that makes a cycle in
the protograph result in multiple cycles in the lifted graph of the code [29].

100

The relocations are ineffective if and only if the start and end segments are the same

when we traverse the k circulants of Ok. For this to happen, the total MD horizontal and

vertical shifts (δH and δV) need to be zero, which results in (5.4).

If equation (5.4), or IRC, holds for the circulants of Ok, L2 instances of circulants of COk

in HMD
SC form L2 cycles-k in the MD-SC code (unpreferable). Theorem 6 investigates the

situation when IRC does not necessarily hold.

Theorem 6. Each cycle Ok in HSC results in τ cycles with length L2k/τ in HMD
SC , where

τ = gcd(L2,∆Ok), and ∆Ok = (−
k∑

u=1

[(−1)uM(Ciu,ju)])L2
. (5.6)

The operator gcd outputs the greatest common divisor of its two operands.

Proof. Consider a cycle Ok with COk = {Ci1,j1 , . . . , Cik,jk} in HSC. There are (L2)2 instances

of Ciu,ju in HMD
SC , u ∈ {1, . . . , k}, one per each segment, and only L2 of them can be non-zero.

We traverse the circulants of Ok in HMD
SC according to the order they appear in COk starting

from a non-zero instance of Ci1,j1 . After traversing all k circulants, we reach circulant Ci1,j1
in a segment that is (cyclically) ∆Ok units right and ∆Ok units down from the segment we

started.

If ∆Ok = 0, the cycle is complete after traversing the k circulants. In this case, there are

L2 instances of COk , one per each non-zero instance of Ci1,j1 . If ∆Ok 6= 0, the cycle cannot be

complete after traversing k circulants. We proceed traversing the circulants until we reach

Ci1,j1 that is in the same segment that we started from.

We define the parameter λ as follows:

λ = min{g|g ∈ {1, 2, · · · }, g∆Ok
L2= 0}. (5.7)

Then, we complete the cycle after traversing λk circulants. The parameter λ is the minimum

integer value such that λ∆Ok
L2= 0, i.e., λ = L2/ gcd (L2,∆Ok). The L2 non-zero instances of

the k circulants in COk form τ = L2k/λk = gcd(L2,∆Ok) cycles of the length λk = L2k/τ .

101

(a) (c) (e)

(b) (d) (f)

Figure 5.3: (a) Cia,ja→A1. The white circles show original locations of the relocated circu-
lant. (b) A cycle-3k is formed. (c) {Cia,ja , Cib,jb}→A1. (d) Three cycles-k are formed. (e)
{Cia,ja , Cib,jb , Cic,jc}→A2. (f) Two cycles-2k are formed.

For example, when L2 and ∆Ok are relatively prime, there is a cycle with length L2k that

traverses all non-zero instances of the circulants of COk . When τ = gcd (L2,∆Ok) = L2, the

non-zero instances of the circulants of COk form L2 cycles with length k. In our algorithm

for the MD-SC code construction, the relocations that result in smaller τ are more preferred

as they result in larger cycles.

Remark 10. Review some properties of gcd that are used in the rest of this chapter:

• gcd(a, 0) = |a| for any non-zero a,

• gcd(a+ yb, b) = gcd(a, b) for any integer y,

• gcd(−a, b) = gcd(a, b).

Example 11. Let COk = {Ci1,j1 , . . . , Cik,jk} be the sequence of circulants of Ok, and n be the

number of its relocated circulants.

1. Let n = 1, Cia,ja → A1, and L2 = 3. Then, ∆Ok = ((−1)a)3 and τ = 1. Figure 5.3 (a)

102

shows Cia,ja→A1. Figure 5.3 (b) shows that a cycle-3k (shown in orange) is formed.

The green border represents that this relocation is preferable.

2. Let n = 2, Cia,ja , Cib,jb→A1, and L2 = 3. Suppose DOk(Cia,ja , Cib,jb) = 1. Then,

∆Ok = ((−1)a − (−1)a)3 = 0 and τ = L2 = 3. Figure 5.3 (c) shows Cia,ja , Cib,jb→A1.

Figure 5.3 (d) shows that three cycles-k are formed. The red border represents that

these relocations are not preferable.

3. Let n = 3, and Cia,ja, Cib,jb, Cic,jc→A2, and L2 = 4. Suppose these three circulants are

consecutive in COk . Then, ∆Ok = ((−1)a(2− 2 + 2))4 = 2 and τ = 2. Figure 5.3 (e)

shows Cia,ja , Cib,jb , Cic,jc→A2. Figure 5.3 (f) shows that two cycles-2k are formed. The

red border represents that these relocations are less preferred. We note that if we

relocated the targeted circulants to A1 instead, the result would be one cycle-4k which is

more preferred.

4. If all n targeted circulants are relocated to the same auxiliary matrix At, where t ∈

{1, · · · , d− 1}, and each pair of consecutive relocated circulants have even distance on

Ok, see Definition 11, the relocations are ineffective when nt
L2= 0. Let Civ ,jv be the first

relocated circulant in COk . Then,

k∑
u=1

(−1)uM(Ciu,ju) =
∑

M(Ciu,ju)>0

(−1)uM(Ciu,ju) = M(Civ ,jv)
∑

M(Ciu,ju)>0

(−1)u

= M(Civ ,jv)(−1)v(1 + · · ·+ 1) = nt(−1)v,

(5.8)

which
L2= 0 only if nt

L2= 0.

5. If all n targeted circulants are relocated to the same auxiliary matrix At, where t ∈

{1, · · · , d− 1}, and each pair of consecutive relocated circulants have odd distance on

Ok, see Definition 11, which can only happen if n
2
= 0 since k

2
= 0, the relocations are

always ineffective. Let Civ ,jv be the first relocated circulant in COk . Then,

k∑
u=1

(−1)uM(Ciu,ju) = M(Civ ,jv)
∑

M(Ciu,ju)>0

(−1)u = t(−1)v(1− 1 + · · · − 1), (5.9)

103

which
L2= 0 always since n

2
= 0.

Remark 11. A circulant can appear more than once in COk , e.g., see Figure 5.2 (b). A

circulant that is repeated r times in the sequence can be interpreted in our analysis as r

different circulants; every two circulants from this group have an even distance on Ok. The

relocation of a circulant that appears r times is equivalent to the relocation of r circulants

with the above property to the same auxiliary matrix.

5.3.2 Score Voting Algorithm for MD-SC Code Design

Our framework is based on a score voting policy and aims at minimizing the population

of short cycles. As stated in Section 5.2, the MD coupling with depth d is performed via

relocating problematic circulants to auxiliary matrices At, t ∈ {1, · · · , d−1}. After relocating

one circulant, the ranking of the problematic circulants (with respect to the number of cycles

each of them is visited by) changes. Thus, the relocations are performed sequentially.

In our framework, we use a tree-based strategy for constructing MD-SC codes, by

identifying a proper sequence of relocations such that as many as possible designated cycles

are removed in the constituent SC codes, while as few as possible short cycles are formed in

the multi-dimensional configuration. To assign scores to the branches of the tree, we use the

results of Section 5.3.1.

Consider a targeted circulant Civ ,jv . There are d possible relocation options for this

circulant: relocate to one of the (d− 1) auxiliary matrices or keep in H′SC, i.e., M(Civ ,jv) = t

and t ∈ {0, 1, · · · d− 1}. Each cycle Ok in HSC that has the targeted circulant in its sequence

gives a score for each of these options, and the collective scoring results are considered for

making a decision. The score R(Ok, t) is proportional to the length of the cycles that the

non-zero instances of the circulants of COk form after applying the corresponding option

(after performing a relocation or keeping the targeted circulant in H′SC):

R(Ok, t) =
L2

gcd(L2,∆Ok)
, ∆Ok = ((−1)v+1rt−

∑
Ciu,ju∈COk\Civ,jv

[(−1)uM(Ciu,ju)])L2
. (5.10)

104

Here, we assumed Civ ,jv is repeated r times in COk , and v is the index of one of the repetitions.

In fact, there might be several options for a targeted circulant such that IRC (i.e., (5.4))

does not hold. However, the options that result in larger cycles (with smaller cardinality as

a consequence) are preferable. We use a scoring system in our algorithm for constructing

MD-SC codes in order to convert short cycles in the constituent SC codes into cycles with

lengths as large as possible. Example 12 studies several scenarios, and in each one, Ok gives

different scores regarding a targeted circulant.

Example 12. Consider the cycle Ok and a targeted circulant Civ ,jv ∈ COk .

Scenario 1: No circulants of Ok are previously relocated, and Civ ,jv appears once in COk , i.e.,

r = 1. Thus, IRC does not hold after a relocation, regardless of the auxiliary matrix that

Civ ,jv is relocated to. For the option M(Civ ,jv) = t, R(Ok, t) = L2/ gcd(L2, t). For instance,

Ok gives score 1 to the option “keep in H′SC”, and gives score L2 to the option “relocate to

A1”.

Scenario 2: No circulants of Ok are relocated before, and Civ ,jv appears L2 times in COk , i.e.,

r = L2. Then, Ok cannot be removed via any relocation of Civ ,jv (Refer to the relocation of

L2 circulants with even mutual distances to the same auxiliary matrix in Example 11.), and

Ok gives the lowest score, i.e., 1, to all the d options:

R(Ok, t) =
L2

gcd(L2, 0)
= 1.

Scenario 3: Circulant Ciw,jw ∈ COk is already relocated to A1, DOk(Civ ,jv , Ciw,jw) = 2, and

both circulants appear once in COk , i.e., r = 1. Then, IRC does not hold for options “no

relocation” and “relocation to At”, when t 6= L2 − 1. In fact, for the option M(Ciu,ju) = t,

t ∈ {0, · · · , d− 1}, Ok gives score R(Ok, t) = L2/ gcd(L2, t+ 1). For instance, Ok gives score

1 to “relocate to AL2−1”, and gives score L2 to “keep in H′SC” and “relocate to At′” where

(t′ + 1) and L2 are relatively prime.

The relocation options are {relocate to A1,. . . , relocate to Ad−1, keep in H′SC}. We

identify the best options for a targeted circulant as follows: Each cycle-k in HSC that has the

targeted circulant in its sequence gives a score to each possible relocation option in {relocate

105

Algorithm 1 Score Voting Algorithm for Relocation

1: inputs: targeted circulant Civ ,jv , k, [M(Ci,j)], d, and L2.
2: Find Ψ, the set of all active/inactive cycles-k that have Civ ,jv in their sequences.
3: for each Ok ∈ Ψ do
4: for t← 0 to d− 1 do
5: M(Civ ,jv) = t.

6: ∆Ok = (−
∑k

u=1[(−1)uM(Ciu,ju)])L2
.

7: R(Ok, t) = L2/ gcd(L2,∆Ok).

8: Φ = {0, · · · , d− 1}.
9: for x← 1 to bL2/2c do
10: if L2

x
= 0 then

11: Φ← arg mint∈Φ |{Ok|Ok ∈ Ψ, R(Ok, t) = x}|.
12: output: relocation options Φ.

to A1,. . . , relocate to Ad−1, keep in H′SC}. The decision is made based on the collected scores.

We first identify and keep the options that receive the least number of scores with value

x = 1, as these options result in fewer cycle-k in the MD-SC code. Among these options, we

keep the ones that that receive the least number of scores with value x = 2, as these options

result in fewer cycle-2k in the MD-SC code. We continue until we reach x = bL2/2c or there

is only one option left for the targeted circulant. Then, all survived options are recorded as

branches of a tree, and the next targeted circulant is chosen and similarly evaluated for each

branch.

Remark 12. The score value is by definition a divisor of L2. Thus, x is only considered

for the above analysis if L2
x
= 0. Moreover, we do not continue the procedure until reaching

x = L2. This is because two options that receive the same number of scores with value x,

x ∈ {x|x ∈ {1, 2, . . . , L2/2}, L2
x
= 0}, receive the same number of scores with value x = L2.

Algorithm 1 shows the procedure to find the best relocation options. We consider all

cycles-k in HSC that visit circulants in the middle replica. We call the cycles for which IRC

holds the active cycles and the rest as the inactive cycles. We highlight three points here: (1)

The targeted circulant Civ ,jv is chosen from {Ci,j|Ci,j 6= 0 and M(Ci,j) = 0} to increase the

MD coupling. (2) The most problematic circulant is the one that is visited by the most active

cycles. (3) Each active/inactive cycle that visits Civ ,jv (has Civ ,jv in its sequence) gives a score

to each relocation option, since the status of cycles-k (being active or inactive) changes by

106

relocations.

Now, we are ready to describe our algorithm for constructing MD-SC codes. A solution

for constructing an MD-SC code is a sequence of up to T relocations. Our algorithm for

constructing MD-SC codes is greedy in the sense that, at each step, it chooses the relocation

options that result in the least number of short cycles. The solutions for constructing an

MD-SC code are recorded in a tree structure. The root of the tree corresponds to the initial

state, where H′SC = HSC and At = 0 for t ∈ {1, · · · , L2 − 1}. Other nodes correspond to

one relocation each, and the path from the root node to a node at level l, l ∈ {1, . . . , T },

describes a solution with l relocations for constructing the MD-SC code. At each iteration of

our algorithm, we expand the tree by one level and trim the solutions that do not result in

MD-SC codes with the best cycle properties amongst the solutions at that level.

Expanding: At iteration l, we consider all nodes at level l− 1, individually. For each node

at level l − 1, we perform the relocations described by the path from the root to the node,

and form matrix H′SC and the auxiliary matrices, accordingly. Next, all non-zero circulants

in the middle replica of H′SC are ranked, in a decreasing order, based on the number of active

cycles-k that they are visited by. Then, we target one circulant from the top of the list and

find its best relocation options, by Algorithm 1. If the option “keep in H′SC” is among the

best options, the next problematic circulant in the sorted list is targeted. We continue this

process until the most problematic circulant, such that its relocation reduces the population

of short cycles, is found. Then, its best relocation options are added as children of the current

node. If there is no circulant in the list such that its relocation reduces the population of

short cycles, the node is not expanded.

Trimming: At the end of each iteration, all solutions (there is one solution per leaf node)

that do not result in MD-SC codes with the least number of active cycles are trimmed. If all

children of a node are trimmed, that node is trimmed as well.

Termination: We proceed with expanding and trimming the tree of solutions, until no node

is expanded in an iteration (the relocation process does not help anymore) or the maximum

107

Figure 5.4: An illustration for a tree of solutions. The information associated with each node
are the relocation option and the number of cycles-6 for the solution described by the path
from the root up to this node. The nodes with dashed borders show the trimmed solutions.
The nodes with hatch background show the winning solutions.

density is achieved (it happens at the end of iteration T). Then, we construct the MD-SC

code according to the relocations suggested by the nodes on the path from the root to a

randomly chosen, non-trimmed, leaf.

Example 13. Figure 5.4 illustrates an example for the tree of solutions to construct an

MD-SC code with parameters L2 = 3, d = 3, and T = 5 2. At iteration 1, there are two

winning relocation options for the targeted circulant, and they both result in 161 cycles-6. At

iteration 2, each node at level 1 is expanded to two nodes. All 4 solutions result in 140 active

cycles-6. At iteration 3, each node at level 2 is expanded to one node. All 4 solutions result

in 123 active cycles-6. At iteration 4, the 1st and 4th nodes at level 3 are expanded to two

nodes each, and the 2nd and 3rd nodes at level 3 are expanded to one node each. Among the 6

solutions, two of them result in 107 active cycles-6, and the remaining result in 108 active

cycles-6 and are trimmed. At iteration 5 (the last iteration), each (non-trimmed) node at level

4 is expanded to one node. The two solutions (shown with leaves that have hatch backgrounds)

result in 92 active cycles-6, and one of them can be chosen randomly for constructing the

MD-SC code.

2The remaining code parameters that result in this realization are κ = z = 17, γ = 4, m = 1, L = 10,
girth 6, and OO-CPO technique for constructing the constituent SC codes.

108

Algorithm 2 shows the procedure for constructing MD-SC codes.

Algorithm 2 Algorithm for Constructing MD-SC Codes

1: inputs: HSC, k, L2, d, and T .
2: initialize: A tree with one node (root), l = 1.
3: Find Γ, i.e., the set of all cycles-k in HSC that visit the circulants in the middle replica

of HSC.
4: while l ≤ T and there are nodes at level l − 1 do
5: for each node at level l − 1 do
6: Set [M(Ci,j)] according to the relocations suggested by the path from root to node
7: Find status (active/inactive) of cycles-k in Γ using IRC (i.e., (5.4)).
8: S = {Ci,j|Ci,j ∈ RdL/2e and M(Ci,j) = 0}.
9: Sort S in a decreasing order according to the number of times they are visited by

active cycles in Γ.
10: Flag= 0.
11: while |S| > 0 and Flag= 0 do
12: Select the first circulant Civ ,jv in S for relocation.
13: Find best relocation options Φ for Civ ,jv by Algorithm 1.
14: if 0 ∈ Φ then S = S \ Civ ,jv
15: else
16: Flag= 1.
17: for ∀t ∈ Φ do
18: Add a child to node with content M(Civ ,jv) = t.

19: Count the number of active cycles for each solution suggested by the nodes at level l.
20: Trim all leaves (and their parents if needed) that do not result in minimum active

cycles-k.
21: l = l + 1.

22: Pick a random solution, set M(Ci,j) accordingly, and construct HMD
SC using (5.2).

23: output: HMD
SC .

5.4 Simulation Results

Our simulation results demonstrate the outstanding performance of our new framework for

constructing MD-SC codes. Sections 5.4.1 and 5.4.2 are dedicated to the analysis of MD-SC

codes with girths 6 and 8, respectively. In each subsection, we study the effect of parameters

T , d, and L2 on the performance of MD-SC codes. Additionally, we compare the MD-SC

codes constructed by our new framework with their 1D-SC counterparts (1D-SC codes having

the same length and nearly the same rate as the MD-SC codes). In Section 5.4.3, we compare

the performance of our well-designed MD-SC codes with random constructions. In our

109

simulations, we consider the AWGN channel, and we use quantized min-sum algorithm with

4 bits and 15 iterations for the decoding.

5.4.1 Analysis for MD-SC Codes with Girth 6

We first describe the code parameters of SC Code 5.1 with girth 6, which is used as the

constituent SC code in the rest of this subsection. SC Code 5.1 has parameters κ = z = 17,

γ = 4, m = 1, L = 10, length 2,890 bits, and rate 0.741, and it is constructed by the OO-CPO

technique. For SC Code 5.1, the partitioning matrix is:


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

 ,

and the circulant power matrix is:


0 10 2 8 2 0 5 7 15 0 0 0 0 10 0 0 0

11 15 2 14 10 3 6 7 8 9 4 11 12 8 14 10 16

11 2 4 12 8 11 12 9 15 4 13 5 6 1 11 13 15

11 3 6 9 2 16 8 4 7 10 13 16 2 5 8 6 14

 .

The cycles of interest here have length 6, i.e., k = 6.

First, we consider MD-SC codes with L2 = 5 constructed by Algorithm 2. Figure 5.5 (a)

shows the effect of increasing the MD coupling density T on the population of cycles-6 for

various MD coupling depths. The horizontal axis shows T , and the vertical axis shows the

number of active cycles-6. We remind that an active cycle-k is a cycle-k that visits circulants

of the middle replica of the constituent SC code and IRC (i.e., (5.4)) holds for it. As we see,

increasing T does not decrease the population of active cycles-6 after 18 (resp. 23) relocations

for depth 2 (resp., 5), resulting in an earlier termination for the smaller depth.

Table 5.1 shows the number of cycles-6 for MD-SC codes with L2 = 5, MD coupling

110

(a) (b)

Figure 5.5: MD-SC codes with SC Code 5.1 as the constituent SC code and L2 = 5: (a) The
number of active cycles-6 for various densities and depths. (b) The BER curves over AWGN
channel at density 26.47% and for various depths.

Table 5.1: Population of cycles-6 for MD-SC codes with SC Code 5.1 as the constituent SC
code, L2 = 5, and density 26.47%.

MD coupling depth d 2 3 4 5
Number of active cycles-6 26 12 7 7
Total number of cycles-6 20,825 9,775 5,695 5,610

density 18 (26.47% of circulants), and for various MD coupling depths. As we see, increasing

the depth improves the cycle properties of the MD-SC codes. According to Table 5.1, MD-SC

codes with depths 4 and 5 have similar number of active cycles-6, and the small difference

in the total number of cycles-6 is due to the different multiplicity of the active cycles-6 in

the final MD-SC codes. Figure 5.5 (b) shows a similar comparison in terms of the BER

performance. For example, at SNR = 3.94 dB, the MD-SC code with depth 5 shows more

than 1.5 orders of magnitude improvement in the BER performance compared to MD-SC

code with depth 2.

Next, we study the effect of increasing the MD coupling length L2 on the performance of

MD-SC codes. We first describe the MD-SC codes and their 1D counterparts. MD-SC Code 5.1

has L2 = 1, and it is in fact one instance of SC Code 5.1. MD-SC Code 5.2 has L2 = 3,

d = 3 (maximum depth), and T = 23 (maximum density). After reaching the maximum

density, relocation does not decrease the population of the cycles of interest. SC Code 5.2

is an SC code similar to SC Code 5.1 but with L = 30 (three times the coupling length of

111

Table 5.2: Population of cycles-6 for MD-SC codes and their 1D counterparts.

code name L2 length rate cycles-6
MD-SC Code 5.1 (SC Code 5.1) 1 2,890 0.741 29,274
SC Code 5.2 1 8,670 0.757 91,494
MD-SC Code 5.2 3 8,670 0.741 9,078
SC Code 5.3 1 14,450 0.760 153,714
MD-SC Code 5.3 5 14,450 0.741 1,700

SC Code 5.1), thus it has comparable length and rate to MD-SC Code 5.2. MD-SC Code 5.3

has L2 = 5, d = 5 (maximum depth), and T = 23 (maximum density). SC Code 5.3 is an

SC code similar to SC Code 5.1 but with L = 50; thus it has comparable length and rate to

MD-SC Code 5.3. The MD mapping matrix, i.e., M = [M(Ci,j)], for MD-SC Code 5.2 is:


0 1 2 0 2 2 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 1 1 1 0 2 0 0 0 0 0 2 2

2 0 0 0 0 0 0 1 2 0 0 0 1 1 0 0 2

0 0 0 0 0 0 2 0 1 1 2 0 0 0 0 1 0

 ,

and for MD-SC Code 5.3 is:
0 3 3 0 2 2 0 0 0 1 0 0 0 0 1 0 0

1 1 3 0 0 0 0 3 0 3 4 0 0 0 0 4 2

0 0 0 0 0 0 0 1 1 0 0 3 4 3 0 0 4

0 0 0 0 3 0 0 0 4 0 0 0 2 0 0 0 0

 .

Table 5.2 shows the number of cycles-6 for this set of MD-SC codes and their 1D

counterparts. MD-SC Code 5.2 has nearly 90% fewer cycles-6 compared to SC Code 5.2, and

MD-SC Code 5.3 has nearly 99% fewer cycles-6 compared to SC Code 5.3. Furthermore, by

increasing the number of constituent SC codes, although the overall code length increases,

the number of cycles-6 decreases thanks to the higher amount of the MD coupling.

Figure 5.6 compares the BER performance of our MD-SC codes and their 1D-SC coun-

terparts. MD-SC Code 5.2 shows about 4 orders of magnitude performance improvement

112

(a) (b)

Figure 5.6: The BER curves over AWGN channel for MD-SC codes compared to their 1D
counterparts: (a) L2 = 3, (b) L2 = 5.

compared to SC Code 5.2 at SNR = 4.10 dB. This improvement is very pronounced for MD-

SC Code 5.3 compared to SC Code 5.3 (about 6 orders of magnitude at SNR = 3.85 dB). These

results demonstrate that the freedom offered by MD-SC codes is thoroughly exploited by our

efficient construction framework, resulting in a large improvement in the BER performance.

One interesting observation here is that although increasing the coupling length improves the

BER performance for 1D-SC codes, the improvement becomes incremental for large values

of L. Therefore, adding the MD coupling to achieve an even better error-correction is a

promising choice.

5.4.2 Analysis for MD-SC Codes with Girth 8

We first describe the code parameters of SC Code 5.4 with girth 8, which is used as the

constituent SC code in the rest of this subsection. SC Code 5.4 has parameters κ = 19,

z = 23, γ = 3, m = 2, L = 10, length 4,370 bits, and rate 0.811, and it is constructed by the

OO-CPO technique. For SC Code 5.4, the partitioning matrix is:


0 1 1 0 1 2 0 2 2 0 1 1 0 1 2 0 2 2 2

1 0 0 1 0 0 1 0 0 2 2 2 2 2 1 2 1 1 1

2 2 2 2 2 1 2 1 1 1 0 0 1 0 0 1 0 0 0

 ,

113

and the circulant power matrix is:


21 0 16 3 19 1 0 0 21 5 0 0 1 0 9 0 16 1 0

0 11 7 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 17 0 6 8 10 12 14 16 18 20 22 1 3 5 19 9 11 13

 .

The cycles of interest here have length 8, i.e., k = 8.

First, we consider MD-SC codes with L2 = 4 constructed by Algorithm 2. Figure 5.7 (a)

shows the effect of increasing the MD coupling density T on the population of cycles-8 for

various MD coupling depths. We have two interesting observations here: First, increasing

T does not decrease the population of active cycles-8 after 24 (resp. 22 and 21) relocations

for depth 2 (resp., 3 and 4), implying that a larger depth does not necessarily result in an

earlier termination. Second, for some relocations, although the population of active cycles-8

does not decrease, Algorithm 2 proceeds with relocations (for example, see relocations 18’th

and 19’th in Figure 5.7 (a)). This is because although these relocations do not reduce the

population of the shortest cycles (cycles with length 8 here), they reduce the population of

cycles with length 2k (cycles with length 16 here).

Next, we study the BER performance of MD-SC codes with various depths and their 1D-SC

counterpart. We first describe the code parameters. MD-SC Code 5.4, MD-SC Code 5.5, and

MD-SC Code 5.6 have L2 = 4, T = 19, length 17,480 bits, and rate 0.811. MD-SC Code 5.4,

resp. MD-SC Code 5.5 and MD-SC Code 5.6, has depth 2, resp., 3 and 4. SC Code 5.5

is an SC code similar to SC Code 5.4 but with L = 40 (four times the coupling length of

SC Code 5.4); thus it has comparable length and rate to MD-SC Codes 5.4, 5.5, and 5.6

(length 17,480 and rate 0.834). The MD mapping matrix for MD-SC Code 5.4 is:


0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0

1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0

 ,

114

(a) (b)

Figure 5.7: MD-SC codes with SC Code 5.4 as the constituent SC code and L2 = 4: (a)
The number of active cycles-8 for various densities and depths. (b) The BER curves over
AWGN channel at density 25% and for various depths along with the BER performance for
the 1D-SC counterpart (SC Code 5.5).

the MD mapping matrix for MD-SC Code 5.5 is:


0 2 1 0 1 2 0 0 0 0 1 0 0 1 0 0 0 2 0

2 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2

0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 2 0 0

 ,

and the MD mapping matrix for MD-SC Code 5.6 is:


0 2 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 3 0

1 0 0 1 1 0 0 0 0 0 0 3 2 0 3 0 0 0 2

0 1 0 3 0 1 0 0 0 1 3 0 0 0 0 0 2 3 0

 .

According to Figure 5.7 (b), MD-SC Codes 5.4, 5.5, and 5.6 show about 2 orders of

magnitude performance improvement compared to SC Code 5.5 at SNR = 4.50 dB. Table 5.3

shows the number of cycles-8 for SC Code 5.5 and MD-SC Codes 5.4, 5.5, and 5.6. MD-

SC Code 5.6 has nearly 82% fewer cycles-8 compared to SC Code 5.5 and nearly 15% fewer

cycles-8 compared to MD-SC Code 5.4. As we see, the MD coupling considerably improves

the performance of the SC codes; however, the improvement by increasing the MD coupling

depth is small in this case, and thus, using a lower depth is sufficient to achieve a good

115

Table 5.3: Population of cycles-8 for MD-SC codes and their 1D counterparts.

code name number of active cycles-8 total number of cycles-8
SC Code 5.5 – 1,397,319

MD-SC Code 5.4 8,510 292,560
MD-SC Code 5.5 7,521 258,060
MD-SC Code 5.6 7,291 249,320

error-correction performance.

5.4.3 Comparison with Random Constructions

Previous works on MD-SC codes, while promising, either consider random constructions

or are limited to specific topologies. In this subsection, we compare our new MD-SC code

construction with random constructions for connecting several SC codes together. Random

constructions are inspired by [48,49,52,53], where the purpose of random constructions is

performing an ensemble asymptotic analysis over a family of the MD-SC codes. In order to

perform a fair comparison, all MD-SC codes in this subsection have the same constituent

SC code, i.e., SC Code 5.6. SC Code 5.6 has parameters κ = z = 17, γ = 3, m = 1, L = 15,

length 4,335 bits, and rate 0.812, and it is constructed by the OO-CPO technique. For

SC Code 5.6, the partitioning matrix is:


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0

 ,

and the circulant power matrix is:


0 0 2 9 0 7 4 16 2 4 2 9 0 4 13 1 1

13 1 2 6 4 5 6 7 8 9 10 13 12 0 14 8 16

0 2 0 0 8 10 8 14 16 1 3 5 7 15 5 5 2

 .

The cycles of interest here have length 6, i.e., k = 6.

116

MD-SC Codes 5.7, 5.8, 5.9, 5.10 have L2 = 3, T = 9, length 13,005 bits, and rate 0.812.

MD-SC Codes 5.7 and 5.8, have depths 2 and 3, respectively, and they are constructed by

Algorithm 2. The MD mapping matrix for MD-SC Codes 5.7 is:


1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

 ,

and the MD mapping matrix for MD-SC Codes 5.8 is:


2 0 1 1 0 1 0 0 0 0 2 2 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

 .

MD-SC Codes 5.9 and 5.10 are constructed by random relocations, and they both have

depth 2. For MD-SC Code 5.9, the relocated circulants are chosen uniformly at random, and

similar relocations are applied to all replicas of one constituent SC code. However, different

constituent SC codes can have different relocations. MD-SC Code 5.10 is constructed in a

similar way to MD-SC Code 5.9, but the same relocations are applied to all constituent SC

codes. The later random construction has the benefit of avoiding the creation of cycles-4 if

the constituent SC codes do not have cycles-4.

Table 5.4 shows the population of short cycles for MD-SC Codes 5.7, 5.8, 5.9, and 5.10.

As we see, MD-SC Code 5.7 has 65% fewer cycles-6 compared to MD-SC Code 5.10, and

they both have zero cycles-4. These two codes have they same structure, but the relocated

circulants are chosen randomly for MD-SC Code 5.7, while they are chosen to specifically

reduce the number of cycles-6 for MD-SC Code 5.10. MD-SC Code 5.8, which is similar

to MD-SC Code 5.7 but with depth 3, has zero cycles-6 and 6.1% fewer cycles-8 compared

to MD-SC Code 5.7. MD-SC Code 5.9 is similar to MD-SC Code 5.10, but without the

constraint of similar relocations for all constituent SC codes, thus it could not preserve the

girth of the constituent SC codes and has cycles-4. Figure 5.8 shows the BER performance

117

Table 5.4: Population of short cycles for MD-SC codes constructed by various policies.

code name cycles-4 cycles-6 cycles-8
MD-SC Code 5.7 0 2,856 685,032
MD-SC Code 5.8 0 0 643,110
MD-SC Code 5.9 255 9,010 585,820
MD-SC Code 5.10 0 8,211 606,543

Figure 5.8: The BER curves over AWGN channel for MD-SC codes with SC Code 5.6 as the
constituent SC code, L2 = 3, density 18%, and constructed based on a random policy and
our new score-voting policy.

for MD-SC Code 5.7 and MD-SC Code 5.10. These two codes both have depth 2 and have

the MD structure described in (5.2). At SNR = 6.0 dB, MD-SC Code 5.7 shows nearly 1.3

orders of magnitude BER improvement compared to MD-SC Code 5.10.

5.5 Conclusion

We expanded the repertoire of SC codes by establishing a framework for MD-SC code

construction with an arbitrary number of constituent SC codes and an arbitrary multi-

dimensional coupling depth. For MD coupling, we rewire connections (relocate circulants)

that are most problematic within each SC code. Our framework encompasses a systematic

way to sequentially identify and relocate problematic circulants, thus utilizing them to connect

the constituent SC codes. Our MD-SC codes show a notable reduction in the population of

the small cycles and a significant improvement in the BER performance compared to the 1D

setting.

118

Acknowledgment

Parts of the materials presented in this chapter is published in [59], and the majority of

the materials will appear in [17]. The author would like to thank the collaborators in these

manuscripts.

119

CHAPTER 6

Conclusion

6.1 Summary of Our Results

We are living in an era where a huge amount of data is generated everyday, with a rapidly

growing rate, that need to be stored and transmitted with extremely high reliability. This

necessitates the design of high performance ECCs that operate at very low error rate and

thus can compensate for the channel imperfections. The channel can be the medium that the

(encoded) date is passed through to be received at the destination, or it can be an storage

device. The focus of this dissertation is more on the latter case.

This dissertation dealt with the analysis and design of an attractive class of graph-based

ECCs, called spatially-coupled (SC) codes, which have recently received significant attention

due to their capacity approaching performance and low-latency decoding. We deftly analyzed

the structure of SC codes and presented low-complexity tools to evaluate the performance of

SC codes in terms of the number of problematic objects in their graphs. We first presented

a systematic approach to efficiently exploit the available degrees of freedom and design SC

codes that offer superior performance over a variety of channel setting. Next, we expanded our

presented SC code machinery by adding irregularity to the design. Last but not the least, we

increased the coupling dimensionality and presented the first comprehensive multi-dimensional

SC design framework with enhanced finite-length properties.

An unlabeled circulant-based SC code can be designed in two steps: partitioning and

adjusting circulant powers. In Chapter 2, we presented the first optimal partitioning scheme

that results in the minimum number of problematic objects in protographs of SC codes. We

also presented a low-complexity heuristic program to adjust circulant powers to further reduce

120

the population of problematic objects in the lifted graph. Our simulation results demonstrate

a dramatic performance gain attained using our two-stage program over AWGN channels.

In Chapter 3, we investigated the practical non-AWGN settings, and demonstrated how

our SC design can be tailored to incorporate the properties of the underlying channel model.

Especially, for magnetic recording channels and Flash channels, we identified the problematic

objects that are responsible for most errors in the error floor region. We then derived the

common denominator of these problematic objects and customized the stages of our SC design

framework to reduce the population of the common denominator instances in the graph of

SC codes. We also considered non-uniform channels with SNR variation and presented SC

construction along with a novel interleaving scheme that alleviate the negative impacts of

the channel non-uniformity.

In Chapter 4, we expanded our design framework into the realm of irregular SC codes.

We presented a novel scheme for optimal partitioning of irregular underlying block codes.

We introduced a dummy component matrix that can be representative for the irregularity of

the underlying block code, and incorporated the new component matrix into our optimal

partitioning scheme to design irregular SC protographs with minimum number of problematic

objects.

In Chapter 5, we presented the first finite-length systematic framework for constructing

multi-dimensional (MD)-SC codes with enhanced cycle properties. Short cycles are known

to negatively affect the performance of graph-based codes under iterative decoding. For

constructing MD-SC codes, we connect several constituent SC codes together by rewiring

their most problematic connections. We rewire connections such that the minimum number

of short cycles are formed in the MD design. Our MD-SC codes can still be decoded using a

(customized) low-latency windowed decoding thanks to the constraints that we considered in

our MD design.

Our simulation results demonstrate a dramatic performance gain attained using our SC

design framework over various channel models. The materials presented in this dissertation

can be considered as a comprehensive study of finite-length SC codes, and can be used for

121

a variety of settings: regular or irregular, one-dimensional or multi-dimensional, and over

different channel models.

6.2 Future Directions

In this dissertation, we presented a comprehensive study of finite-length SC codes. We

presented a code design methodology that in a channel-aware way exploits the structure

of dominant errors to systematically set the partitioning choice and circulant powers of an

SC code. We also expanded the repertoire of SC codes by establishing a framework for

MD-SC code construction. A fruitful future direction is to customize the proposed code

design methodology for 3D Flash memories and 2D magnetic recording applications. Another

promising research direction is to present an efficient low-latency decoding by incorporating

MD locality into the decoder implementation. Moreover, one can incorporate the decoder

setting, e.g., the window size, in the code design to present decoder-aware MD-SC codes that

are adjusted to perform well for specific decoding properties.

Moreover, all algorithms presented in this dissertation, either those that identify the

optimal solutions or those that are heuristic, can be improved by reducing their computational

complexity. The improvement can be realized by further incorporating the code structure

into the design, or by borrowing tools and techniques from the Combinatorics, Probability

theory, Graph theory, etc. Any progress in this direction is significantly valuable as it brings

the opportunity for designing SC codes with arbitrary memories, column weights, rates, etc;

thus, it provides further design freedom.

122

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density parity
check codes,” Electronics Letters, vol. 32, no. 18, p. 1645, Aug. 1996.

[3] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes with
low-density parity-check matrix,” IEEE Transactions on Information Theory, vol. 45,
no. 6, pp. 2181–2191, Sep. 1999.

[4] A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed decoding of
spatially coupled codes,” IEEE Transactions on Information Theory, vol. 59, no. 4, pp.
2277–2292, Apr. 2013.

[5] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding
threshold analysis for LDPC convolutional codes,” IEEE Transactions on Information
Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[6] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles universally
achieve capacity under belief propagation,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 7761–7813, Dec. 2013.

[7] I. Andriyanova and A. Graell i Amat, “Threshold saturation for nonbinary SC-LDPC
codes on the binary erasure channel,” IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2622–2638, May 2016.

[8] D. G. M. Mitchell, L. Dolecek, and D. J. Costello, “Absorbing set characterization of
array-based spatially coupled LDPC codes,” in Proc. IEEE International Symposium on
Information Theory (ISIT), Honolulu, HI, USA, Jun. 2014, pp. 886–890.

[9] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and L. Dolecek,
“Optimized design of finite-length separable circulant-based spatially-coupled codes: An
absorbing set-based analysis,” IEEE Transactions on Communications, vol. 64, no. 10,
pp. 4029–4043, Oct. 2016.

[10] D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high rate array-based SC-
LDPC codes,” in Proc. IEEE International Symposium on Information Theory (ISIT),
Aachen, Germany, Jun. 2017, pp. 2940–2944.

[11] L. Chen, S. Mo, D. J. Costello, D. G. M. Mitchell, and R. Smarandache, “A protograph-
based design of quasi-cyclic spatially coupled LDPC codes,” in Proc. IEEE International
Symposium on Information Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1683–1687.

[12] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length construction of high
performance spatially-coupled codes via optimized partitioning and lifting,” IEEE
Transactions on Communications, vol. 67, no. 1, pp. 3–16, Jan. 2019.

123

[13] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Spatially coupled codes optimized for
magnetic recording applications,” IEEE Transactions on Magnetics, vol. 53, no. 2, pp.
1–11, Feb. 2017.

[14] A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-binary spatially-
coupled codes for flash memories,” in Proc. IEEE Information Theory Workshop (ITW),
Kaohsiung, Taiwan, Nov. 2017, pp. 229–233.

[15] H. Esfahanizadeh, A. Hareedy, R. Wu, R. Galbraith, and L. Dolecek, “Spatially-coupled
codes for channels with SNR variation,” IEEE Transactions on Magnetics, vol. 54, no. 11,
pp. 1–5, Nov. 2018.

[16] H. Esfahanizadeh, R. Wu, and L. Dolecek, “A finite-length construction of irregular
spatially-coupled codes,” in Proc. IEEE Information Theory Workshop (ITW), Visby,
Gotland, Sweden, Aug. 2019.

[17] H. Esfahanizadeh, L. Tauz, and L. Dolecek, “Multi-dimensional spatially-coupled code
design: Enhancing the cycle properties,” IEEE Transactions on Communications, To be
published 2020.

[18] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC block
and convolutional codes based on circulant matrices,” IEEE Transactions on Information
Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[19] J. L. Fan, “Array codes as low-desity parity-check codes,” in Proc. International Sympo-
sium on Turbo Codes and Iterative Information Processing (ISTC), Brest, France, Sep.
2000, pp. 543–546.

[20] Y. Wang, S. C. Draper, and J. S. Yedidia, “Hierarchical and high-girth QC LDPC codes,”
IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 4553–4583, Jul. 2013.

[21] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual Allerton Conference
on Communication, Control, and Computing, Monticello, IL, USA, Oct. 2003, pp. 1426–
1435.

[22] M. Karimi and A. H. Banihashemi, “On characterization of elementary trapping sets
of variable-regular LDPC codes,” IEEE Transactions on Information Theory, vol. 60,
no. 9, pp. 5188–5203, Sep. 2014.

[23] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis of
absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE Transactions
on Information Theory, vol. 56, no. 1, pp. 181–201, Jan. 2010.

[24] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC codes for
magnetic recording channels: Error floor analysis and optimized code design,” IEEE
Transactions on Communications, vol. 64, no. 8, pp. 3194–3207, Aug. 2016.

[25] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the threshold
voltage distributions of sub-20nm NAND flash memory,” in Proc. IEEE Global Commu-
nications Conference (GLOBECOM), Austin, TX, USA, Dec. 2014, pp. 2351–2356.

124

[26] A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC code optimization
framework suitable for dense flash memory and magnetic storage,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 9, pp. 2402–2415, Sep. 2016.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[28] J. Wang, L. Dolecek, and R. D. Wesel, “The cycle consistency matrix approach to absorb-
ing sets in separable circulant-based LDPC codes,” IEEE Transactions on Information
Theory, vol. 59, no. 4, pp. 2293–2314, Apr. 2013.

[29] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permuta-
tion matrices,” IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 1788–1793,
Aug. 2004.

[30] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-cyclic LDPC codes
by ACE optimization,” in Proc. IEEE Information Theory Workshop (ITW), Seville,
Spain, Sep. 2013, pp. 1–5.

[31] K. Huang, D. G. M. Mitchell, L. Wei, X. Ma, and D. J. Costello, “Performance compar-
ison of LDPC block and spatially coupled codes over GF(q),” IEEE Transactions on
Information Theory, vol. 63, no. 3, pp. 592–604, Mar. 2015.

[32] N. ul Hassan, M. Lentmaier, and G. P. Fettweis, “Comparison of LDPC block and LDPC
convolutional codes based on their decoding latency,” in Proc. International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Gothenburg, Sweden, Aug.
2012, pp. 225–229.

[33] S. V. Maiya, D. J. Costello, T. E. Fuja, and W. Fong, “Coding with a latency con-
straint: The benefits of sequential decoding,” in Proc. Annual Allerton Conference on
Communication, Control, and Computing (Allerton), Allerton, IL, USA, Sep. 2010, pp.
201–207.

[34] Y. Fang, P. Chen, L. Wang, and F. C. M. Lau, “Design of protograph LDPC codes for
partial response channels,” IEEE Transactions on Communications, vol. 60, no. 10, pp.
2809–2819, Oct. 2012.

[35] Y. Han and W. E. Ryan, “Low-floor detection/decoding of LDPC-coded partial response
channels,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 2, pp.
252–260, Feb. 2010.

[36] H. Zhong, T. Zhong, and E. F. Haratsch, “Quasi-cyclic LDPC codes for the magnetic
recording channel: Code design and VLSI implementation,” IEEE Transactions on
Magnetics, vol. 43, no. 3, pp. 1118–1123, Mar. 2007.

[37] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over
GF(q),” IEEE Transactions on Communications, vol. 55, no. 4, pp. 633–643, Apr. 2007.

125

[38] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Transactions on Information Theory, vol. 20, no. 2,
pp. 284–287, Mar. 1974.

[39] J. Moon and J. Park, “Pattern-dependent noise prediction in signal-dependent noise,”
IEEE Journal on Selected Areas in Communications, vol. 19, no. 4, pp. 730–743, Apr.
2001.

[40] A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, “Spatially-coupled code design
for partial-response channels: Optimal object-minimization approach,” in Proc. IEEE
Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
Dec. 2018, pp. 1–7.

[41] Y. Maeda and H. Kaneko, “Error control coding for multilevel cell flash memories using
nonbinary low-density parity-check codes,” in proc. IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), Chicago, IL, USA, Oct. 2009, pp.
367–375.

[42] N. Varnica, G. Burd, and Z. Wu, “Interleaved error correction coding for channels
with non-uniform SNRs,” Nov. 2012, US Patent 8,312,341. [Online]. Available:
https://www.google.ch/patents/US8312341

[43] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinatorial framework
to construct spatially-coupled codes: Minimum overlap partitioning,” in proc. IEEE
International Symposium on Information Theory (ISIT), Aachen, Germany, Jun. 2017,
pp. 1693–1697.

[44] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-
density parity-check codes using irregular graphs,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[45] X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth
Tanner graphs,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 386–398,
Jan. 2005.

[46] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 619–637, Feb. 2001.

[47] A. Beemer and C. A. Kelley, “Avoiding trapping sets in SC-LDPC codes under windowed
decoding,” in Proc. International Symposium on Information Theory and Its Applications
(ISITA), Monterey, CA, USA, Oct. 2016, pp. 206–210.

[48] D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “New codes on
graphs constructed by connecting spatially coupled chains,” in Proc. Information Theory
and Applications Workshop (ITA), San Diego, CA, USA, Feb. 2012, pp. 392–397.

126

[49] R. Ohashi, K. Kasai, and K. Takeuchi, “Multi-dimensional spatially-coupled codes,” in
Proc. IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey,
Jul. 2013, pp. 2448–2452.

[50] D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Connecting spatially
coupled LDPC code chains,” in Proc. IEEE International Conference on Communications
(ICC), Ottawa, Canada, Jun. 2012, pp. 2176–2180.

[51] P. M. Olmos, D. G. M. Mitchell, D. Truhachev, and D. J. Costello, “A finite length
performance analysis of LDPC codes constructed by connecting spatially coupled chains,”
in Proc. IEEE Information Theory Workshop (ITW), Sevilla, Spain, Sep. 2013, pp. 1–5.

[52] L. Schmalen and K. Mahdaviani, “Laterally connected spatially coupled code chains
for transmission over unstable parallel channels,” in Proc. International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), Bremen, Germany, Aug. 2014,
pp. 77–81.

[53] Y. Liu, Y. Li, and Y. Chi, “Spatially coupled LDPC codes constructed by parallelly
connecting multiple chains,” IEEE Communications Letters, vol. 19, no. 9, pp. 1472–1475,
Sep. 2015.

[54] R. Tanaka and K. Ishibashi, “Robust coded cooperation based on multi-dimensional
spatially-coupled repeat-accumulate codes,” in Proc. IEEE Wireless Communications
and Networking Conference (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–6.

[55] I. Ali, H. Lee, A. Hussain, and S. Kim, “Protograph-based folded spatially coupled
LDPC codes for burst erasure channels,” IEEE Wireless Communications Letters, vol. 8,
no. 2, pp. 516–519, Apr. 2019.

[56] R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: Influence of proto-
and tanner-graph structure on minimum hamming distance upper bounds,” IEEE
Transactions on Information Theory, vol. 58, no. 2, pp. 585–607, Feb. 2012.

[57] M. Battaglioni, M. Baldi, and G. Cancellieri, “Connections between low-weight codewords
and cycles in spatially coupled LDPC convolutional codes,” IEEE Transactions on
Communications, vol. 66, no. 8, pp. 3268–3280, Aug. 2018.

[58] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[59] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Multi-dimensional spatially-coupled code
design through informed relocation of circulants,” in Proc. Annual Allerton Conference
on Communication, Control, and Computing (Allerton), Monticello, IL, USA, Oct. 2018,
pp. 695–701.

127

