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EPIGRAPH

For in much wisdom is much vexation,

and he who increases knowledge increases sorrow.

—Ecclesiastes 1:18 (ESV)

Therefore I tell you, do not be anxious about your life, what you will eat or what you

will drink, nor about your body, what you will put on. . . . Look at the birds of the air: they neither

sow nor reap nor gather into barns, and yet your heavenly Father feeds them. Are you not of

more value than they? . . . Consider the lilies of the field, how they grow: they neither toil nor

spin, yet I tell you, even Solomon in all his glory was not arrayed like one of these. But if God

so clothes the grass of the field, which today is alive and tomorrow is thrown into the oven, will

he not much more clothe you, O you of little faith?

—Matthew 6:25–29 (ESV)
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Although it may seem cliché to say it, my heartfelt thanks go to my wife, Alyson.

Despite all the difficulties I’ve encountered, and all the help I’ve needed or demanded, and all of

her own problems pursuing her own Ph. D., she has remained by my side, always willing to help

and support. She is a gift beyond words.

Finally, thank God. To him be all glory, for ever and ever.

viii



VITA

2012 B. A. in Mathematics with highest honors, University of Cali-
fornia, Berkeley

2012-2017 Graduate Teaching Assistant, University of California, San Diego

2017 Ph. D. in Mathematics, University of California, San Diego

ix



ABSTRACT OF THE DISSERTATION

A Kodaira Vanishing Theorem for Formal Schemes

by

Daniel Smith

Doctor of Philosophy in Mathematics

University of California San Diego, 2017

Professor James McKernan, Chair

Formal schemes are (topologically) ringed spaces that Grothendieck introduced in EGA.

They are simultaneously analogues for admissible rings of schemes for general commutative rings

and a “bridge” between analytic and algebraic geometry. More recently, formal schemes have

been a subject of interest in studies of rigid analytic geometry, where, due to work by Raynaud,

Bosch, and Lütkebohmert, they act as models for rigid analytic varieties. The recent interest in

these objects has led to study of them in their own right. In this thesis, we investigate whether

a minimal model program could exist for formal schemes.
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Introduction

Let us begin with a heuristic definition and a little bit of history.

Formal schemes are, in a very rough sense, the analogs for topological rings of schemes

for rings. Thus, if one of the great achievements of scheme theory is to provide a geometric setting

for the study of rings, one might hope that formal schemes accomplish the same for topological

rings.

Of course, the immediate question is why topological rings should deserve such attention.

There are two quick answers:

• many rings of number-theoretic interest actually are topological rings. For example, the

p-adic integers Zp, beyond being a ring, are endowed with a topology (in fact, most con-

structions of Zp proceed via completion of Z with respect to a certain topology). More

generally, any nonarchimedean field is a topological ring, as is any (complete) subring

thereof (such as its ring of integers).

• completions of rings with respect to powers of an ideal are, in a natural sense, topological

rings, and naturally arise in algebraic geometry. For example, given a scheme X and a

point x ∈ X, the local ring OX,x in some sense gives a “zoomed in” perspective of how x

sits in X. The completion of this local ring along its maximal ideal, morally, “zooms in”

even more, to a finer degree than the Zariski topology “should be able to see”.

Grothendieck actually defined formal schemes alongside ordinary schemes in [Gro60].

(We’ll use the term ordinary scheme to indicate the usual notion of scheme, i.e., a locally ringed

space which admits, for each point, a neighborhood isomorphic to SpecR for some ring R. When

Grothendieck needs to distinguish the two notions, he refers to ordinary schemes as preschemás

usuels.) Despite the fact that their definition would have allowed them to arise in number

theoretic contexts to which the first bullet above alludes, their use was mostly in the context

of the second point. For example, Grothendieck used formal schemes to prove that the étale

fundamental groups of a scheme and a subscheme that is a locally complete intersection of

dimension at least 2 are isomorphic. Hartshorne [Har68] used them to study the cohomology of

varieties over a field.
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One of the first big applications of formal schemes along the lines of the first point above

was Raynaud’s theory of formal models. This theory was an attempt to provide an algebro-

geometric framework for rigid analytic varieties, i.e., analytic varieties over a nonarchimedean

field. Together with Bosch and Lütkebohmert, Raynaud systematically worked out this theory

in the ’90s. Heuristically, the way the theory works is that, given a rigid analytic variety X over

a nonarchimedean field k, one constructs a formal scheme X over the ring of integers R of k, such

that the “generic fiber”, in the category of locally ringed spaces, is isomorphic to X.

Formal schemes also started to see use in foliation theory. Roughly speaking, a foliation

(on an algebraic variety, say,) is a collection of local differential equations. A solution to these

local equations is called a leaf. Depending on the source, the exact definition of a foliation might

differ slightly, but for purposes of exposition let’s content ourselves with the following: a foliation

is a subbundle of the tangent bundle that is closed under Lie bracket. Under these conditions,

such a system of equations admits a C∞ solution, which may not be analytic. However, it does

still have a formal power series expansion, which formal schemes can represent. Thus, given a

formal scheme representing the leaf of a foliation, one might ask if the formal scheme represents

an analytic object (which is essentially a question whose answer relies on analytic techniques),

or if in fact it represents an algebraic object, that is, whether the leaf was (morally) a subvariety.

The answer to this question usually boils down to whether the formal scheme in question is

algebraizable, which is a question one can ask (and answer) independent of this context.

In light of these more recent developments, there has been a certain desire to acquire

a better understanding of the fundamentals of formal schemes. It has also become natural to

ask whether theorems known to hold for ordinary schemes hold for (suitable classes of) formal

schemes. For example, Kollár writes in [Kol08] that “it is high time to work out the whole MMP

over an arbitrary base scheme, especially over complete local rings”. One of the immediate

things to recognize about complete local rings, however, is that they are points in the category of

formal schemes. Thus, it seems reasonable to hope that an MMP might hold in the category of

formal schemes, at least over complete local rings, and that such a program would have desirable

consequences.

To that end, this project attempts to make some headway into whether such a program

could exist for (a suitable class of) formal schemes. In brief, we find that many of the ingredients

required for an MMP are in place, but there are still some that need addressing.



Chapter 1

Algebraic Preliminaries

The purpose of this chapter is to record a large number of results and conventions that

we’ll use in our later discussions. What we record here holds very little intrinsic interest, apart

from various foundations of the material.

When we construct the category of formal schemes, we will do so by creating a subcat-

egory of the category of topologically ringed spaces. We are not interested in general topological

rings, however; the (much smaller) class of our interest is the subject of this section.

Recall that a topological ring is a ring R equipped with a topology so that the oper-

ations of addition and multiplication are continuous. Consequently, R under addition with its

topology forms a topological (abelian) group. Since (left) translation is a homeomorphism for

any topological group, to specify the topology, it suffices to specify a neighborhood basis of any

single element. In particular, specifying a neighborhood basis for 0 suffices.

Without further remark, we will insist that all rings we mention are commutative with

unity, and that a morphism of rings R→ S satisfies 1R 7→ 1S .

1.1 Topological abelian groups

Although our aim is to discuss rings, some of the statements we make will only make

use of the underlying topological abelian group structure. The results we state and prove here

are all straightforward, and surely they have record in plenty of other places; we include them

here only for completeness.

Definition 1.1.1. A topological group is a group G with operation • equipped with a topology

on the underlying set of G such that • : G×G→ G is continuous.

A few quick observations regarding this definition:

• Let `a denote the map G → G given by x 7→ ax, where a ∈ G. By definition, if U ⊆ G

3



4

is open, and y = ax ∈ U , there exist Ua, Ux ⊆ G such that the image of Ux × Ua under

multiplication is contained in U . In particular, az ∈ U for z ∈ Ux. Thus `a is in fact

continuous. The same analysis applies to `a−1 , which, by elementary group theory, we

know to be (`a)−1. So in fact `a is a homeomorphism of G with itself.

• As a consequence of the last point, if {Uλ}λ∈Λ is a neighborhood basis for x ∈ G, a

neighborhood basis for a ∈ G is given by {`ax−1(Uλ)}λ∈Λ. In particular, we may specify a

topology on G by specifying a neighborhood basis for a single point.

Topological groups are frequent, but not exactly of particular interest to us. The objects

of our interest are abelian groups, and, in light of the last observation above, we will make the

following definition:

Definition 1.1.2. An abelian topological group is a topological group that is abelian such that

there exists a neighborhood basis of 0 consisting of subgroups.

Given an abelian topological group G, there are two natural questions we might ask:

• Is G separated (i.e., Hausdorff)? (We might ask this of any topological space.)

• Is G complete (i.e., does every “Cauchy sequence” converge)? (The Cauchy condition

is particularly easy to state in this setting, though it has formulations in more general

contexts.)

As a tool to answer the first question, we note the following:

Proposition 1.1.3 ([AM69, Proposition 10.2]). Let G be an abelian topological group and

{Gλ}λ∈Λ a neighborhood basis of 0 consisting of subgroups.

1. H =
⋂
λ∈ΛGλ is the closure of {0}.

2. G is separated (i.e., Hausdorff) if and only if H = {0}.

Proof. It is easy to establish claim 2 given claim 1: a topological space is separated if and only

if every singleton set is closed. Thus, if G is separated, we must have H = {0}; if H = {0}, then

because `a is a homeomorphism, {a} is closed for each a ∈ G, hence G is separated.

To establish 1, let us first observe that, if H ≤ G is an open subgroup, then H is also

closed: fix a fundamental set F for G/H, which uses 0 for the coset 0+H. Then the complement

of H is ⋃
06=x∈F

x+H =
⋃

06=x∈F

`x(H),

which is open.

Therefore, the closure of {0} is certainly contained in H; we will be done once we show

that, if V is a closed subset of G containing {0}, then V ⊇ H. Suppose x is not in V . Then,
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since V is closed, there is some neighborhood of x not meeting V . In particular, for some λ,

(x+Gλ)∩V = ∅. Since 0 ∈ V , we know 0 /∈ x+Gλ, so x /∈ Gλ. In particular, x /∈ H. So indeed

H ⊆ V , and our desired conclusion follows.

Regarding completeness, first let us make a definition.

Definition 1.1.4. A net in an abelian topological group G is a function Λ → G, where Λ is a

directed set. We represent a net f : Λ→ G by {xλ}λ∈Λ, where xλ = f(λ).

A net (xλ) is Cauchy if, for any neighborhood U of 0, there exists some λU ∈ Λ such

that, for λ, λ′ ≥ λU , xλ − xλ′ ∈ U .

An abelian topological group G is complete if every Cauchy net in G converges.

Given a topological abelian group, we can form a separated and complete topological

group:

Proposition 1.1.5. Let G be an abelian topological group, and let {Gλ}λ∈Λ be a neighborhood

basis of 0 consisting of subgroups. Consider

Ĝ = lim←−
λ∈Λ

G/Gλ,

that is, the usual subset of (xλ) ∈
∏
G/Gλ, with πλ

′

λ (πλ′(x)) = πλ(x), where πλ :
∏
G/Gλ →

G/Gλ is the projection map, and πλ
′

λ : G/Gλ′ → G/Gλ is the canonical map. Equip Ĝ with the

topology induced by a fundamental system of neighborhoods of 0 consisting of kerπλ. Then Ĝ is

separated and complete.

Proof. The claim that Ĝ is separated is easy to justify: if (xλ) ∈ kerπλ, then xλ = 0. Conse-

quently, if xλ ∈
⋂

kerπλ, xλ = 0 for all λ, hence (xλ) = 0. The claim follows by proposition

1.1.3.

Because the notation gets unreadable really quickly, for this proof, we will use functional

notation for nets.

Let f : M → Ĝ be a Cauchy net. Define y ∈ Ĝ by πλ(y) = πλ(f(µ)) for some

µ ≥ µker(πλ). Note that y is well-defined, since if µ′ ≥ µker(πλ), then f(µ) − f(µ′) ∈ ker(πλ),

hence πλ(f(µ)− f(µ′)) = 0. Note also that indeed y ∈ Ĝ: if λ ≥ λ′,

πλ
′

λ (πλ′(y)) = πλ
′

λ (πλ′(f(µ)) for some µ ≥ µker(πλ′ )

= πλ(f(µ))

= πλ(y),

where the last equality follows since ker(πλ′) ⊆ ker(πλ), so µker(πλ′ )
≥ µker(πλ), hence µ ≥ µker(πλ).

Now, f converges to y in G: given λ ∈ Λ, if µ ≥ µker(πλ), we have πλ(y) = πλ(f(µ)),

thus f(µ)− y ∈ ker(πλ). So in fact Ĝ is complete.
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In fact, Ĝ, as defined in the previous proposition, satisfies a universal property:

Proposition 1.1.6. With notation as in the previous proposition, if ϕ : G→ H is a continuous

homomorphism of topological abelian groups, where H is complete, then there exists a unique

continuous homomorphism Ĝ→ H such that the following diagram commutes:

G H

Ĝ

ϕ

Proof. The proof boils down to the following:

1. any element x of Ĝ gives rise to a Cauchy net {xλ} in G;

2. since H is complete, we can define a map φ : Ĝ → H by declaring φ(x) = limφ(xλ), and

this gives us a continuous homomorphism;

3. any two such maps φ, φ′ : Ĝ → H must be equal because elements of Ĝ give rise to the

Cauchy nets above.

Regarding the first claim: let x ∈ Ĝ. Define a net {xλ} inG by choosing elements xλ ∈ G
so that xλ + Gλ = πλ(x). This net is Cauchy: if λ1, λ2 ≥ λ, then xλ1

+ Gλ = πλλ1
(πλ1

(x)) =

πλ(x) = πλλ2
(πλ2(x)) = xλ2 + Gλ. That is, given a neighborhood Gλ of 0, λ is the element of Λ

such that, if λ1, λ2 ≥ λ, then xλ1
− xλ2

∈ Gλ.

Now, if {xλ} is a Cauchy net obtained from x, {ϕ(xλ)} is a Cauchy net in H, hence

converges. The proof is a simple matter of chasing definitions: if U is a neighbhorhood of 0

in H, ϕ−1(U) is open in G, so there exists some λ such that λ1, λ2 ≥ λ implies xλ1
− xλ2

∈
ϕ−1(U), hence ϕ(xλ1

− xλ2
) = ϕ(xλ1

) − ϕ(xλ2
) ∈ U . So define φ(x) = limϕ(xλ). In fact φ

is well-defined: if {xλ} and {x′λ} are two such nets described above, as above, if λ1 ≥ λ, then

xλ1 + Gλ = πλλ1
(πλ1(x)) = πλλ1

(πλ1(x)) = x′λ1
+ Gλ, so {xλ − x′λ} converges to 0 in G. Thus

limϕ(xλ−x′λ) = 0. This observation also leads us to conclude φ is a homomorphism: if x, y ∈ G,

φ(x+y) = limϕ((x+y)λ) = limϕ((xλ)+(yλ)) = limϕ(xλ)+ϕ(yλ) = φ(x)+φ(y). The continuity

of φ is also straightforward: we need only check that φ−1(U) is open for some open subgroup

U ⊆ H. Since ϕ was continuous, we know ϕ−1(U) ⊇ Gλ for some λ, hence φ(kerπλ) ⊆ U , so

that φ is continuous.

Suppose we had two maps φ, φ′ : Ĝ→ H completing the diagram above. Let (xλ) ∈ Ĝ.

Choose a Cauchy net {x̃λ} ⊆ G so that (xλ) is the limit in Ĝ of the net {x̃λ} under the natual

map to Ĝ. By continuity of the compositions, we must have φ(xλ) = limϕ(xλ) = φ′(xλ), so the

maps are equal as claimed.

An immediate corollary is that we can use the above description for explicit calculations

within complete topological abelian groups, and that such groups are in fact separated:
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Corollary 1.1.7. If G is complete, then Ĝ is topologically isomorphic to G. In particular, G is

separated.

Proof. The identity is a continuous morphism G→ G, so there is a unique map, say φ, so that,

if i : G→ Ĝ denotes the natural map, φ ◦ i = idG.

On the other hand, i : G → Ĝ is a continuous map from G to a complete topological

abelain group, so there is some map Ĝ → Ĝ filling in the diagram above, and idĜ works, so we

conclude that i ◦ φ = idĜ.

1.2 Pre-admissible, pre-adic, admissible, and adic

Definition 1.2.1. A topological ring R is linearly topologized if there exists a neighborhood

basis of 0 consisting of ideals.

Linearly topologized rings abound. Some elementary examples include:

• Any commutative ring under the discrete topology. A neighborhood basis for 0 is the

collection {(0)}. Though trivial, this example will actually carry some weight later.

• The ring of formal power series R[[x]] in a single variable over a ring R, where a system of

neighborhoods of 0 is given by powers of the ideal (x). More generally, R[[x1, . . . , xn]] is

also an example, with the topology given by powers of (x1, . . . , xn).

• The ring of integers of a non-archimedean field.

Given the list above, it might seem hard to think of a topological ring that is not linearly

topologized. However, there is also an easy-to-find class of such examples:

Non-example 1.2.2. Any topological field whose topology is not discrete is not linearly topol-

ogized. The simple observation to make is that the only ideal of a field is {0}; if this is a

neighborhood basis of 0, then {0} is open, so every singleton set is open, so the topology is

discrete.

In particular, local fields such as Qp and Fq((t)) are not linearly topologized rings.

Neither are the fields R and C with their usual topologies.

These linearly topologized rings are special cases of non-archimedean rings, which are

rings with a topology given by additive subgroups. While non-archimedean fields are not lin-

early topologized rings, they are non-archimedean; very roughly speaking, the fact that linearly

topologized rings are non-archimedean rings is what makes the category of adic spaces include

the category of formal schemes.

Linearly topologized rings by themselves, however, are difficult to work with; formal

schemes actually make use of rings with a bit more structure, as given in the following definition.
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Definition 1.2.3. A linearly topologized ring is pre-admissible if there exists an open ideal I

such that, for any neighborhood U of 0, there exists a positive integer n so that In ⊆ U . Such

an ideal is called an ideal of definition. If a pre-admissible ring is separated and complete (in

the sense of a topological abelian group, i.e., every Cauchy sequence converges), we say it is

admissible.

Ideals of definition provide useful tools. Consider, for example, the following (which

will arise in our formulation of the formal spectrum of an admissible ring):

Proposition 1.2.4. Let p be a prime ideal of a pre-admissible ring R. The following are equiv-

alent:

1. p is open;

2. p contains every ideal of definition.

3. p contains an ideal of definition;

Proof. 1 =⇒ 2: given any ideal of definition I, by definition there exists some n (depending on

I) so that In ⊆ p. Since p is prime, I ⊆ p.

2 =⇒ 3: trivial.

3 =⇒ 1: let I be an ideal of definition, I ⊆ p. Recall that I is open; given any x ∈ p,

x+ I ⊆ p is a neighborhood of x contained in p. So p is open.

Before we go on, another term we will frequently use is:

Definition 1.2.5. Let R be a (pre)-admissible ring. An element x ∈ R is topologically nilpotent

if limxn = 0.

Note that a nilpotent element is necessarily topologically nilpotent. Also, essentially by

definition, every element of an ideal of definition is topologically nilpotent.

We make the following defintion, although we will not really need it beyond the present

discussion (also, as far as I’m aware, this definition is nowhere else recorded).

Definition 1.2.6. The topological nilradical of a (pre-)admissible ring is the intersection of all

open prime ideals.

Proposition 1.2.7. The topological nilradical of a (pre-)admissible ring contains all topologically

nilpotent elements.

Proof. The proof is essentially the same as the one that the nilradical of a ring contains all

nilpotent elements, but even easier: if x is topologically nilpotent, then, since every open prime

ideal is a neighborhood of 0, xn ∈ p for some n for every such p. Hence x ∈ p for every open

p. If x /∈ p for some open prime p, then xn /∈ p for all n ≥ 0, hence limxn 6= 0, as there is a

neighborhood of 0 in which no power of x lies.
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A natural question to ask is whether a given ring has a largest ideal of definition. First

let us observe the following:

Proposition 1.2.8 (Cf. [Gro60, O.7.1.6]). Let R be a (pre)-admissible ring. The following are

equivalent, for an ideal of definition I:

1. R/I is reduced;

2. I is the largest ideal of definition;

3. I is a maximal ideal of definition.

Proof. 1 =⇒ 2: suppose I ′ * I is another ideal of definition. Then there exists some n so that

(I ′)n ⊆ I. Given x ∈ I ′ \ I, we have (x+ I) 6= 0, (x+ I)n = 0 in R/I, so that R/I is not reduced.

2 =⇒ 3: trivial.

3 =⇒ 1: suppose 0 6= x ∈ R/I is nilpotent, and let x̃ ∈ R be some lift. Then I + (x̃) is

another ideal of definition: given an ideal of definition I ′, take n = nx + n′, where In
′ ⊆ I ′ and

xnx ∈ I. Then (I + (x̃))n ⊆ I ′.

In light of the above, we immediately have:

Corollary 1.2.9. If R is Noetherian, R has a largest ideal of definition.

Remark 1.2.10. We will largely assume that the rings we deal with are Noetherian. However, this

is yet one more place where formal schemes prove somewhat inadequate: many of the arguments

for formal schemes (that we present) rely on the existence of such a largest ideal of definition,

but, short of making Noetherian hypotheses, the assumption of such an ideal’s existence seems ad

hoc. For this reason adic spaces can be more appealing in the study of rings such as Zp{tp
−∞}∧,

where one has adjoined all p-th power roots of an indeterminate t and then taken the completion.

(This operation may be desirable, for example, to ensure that the Frobenius morphism remains

surjective after modding out by (p).) Note that this ring miserably fails to be Noetherian, since

(t) ⊆ (tp
−1

) ⊆ (tp
−2

) ⊆ · · · is an infinitely strictly increasing sequence of ideals.

Remark 1.2.11. As we mentioned, the above treatment of (pre-)admissible rings follows the one

in [Gro60]. The treatment in [McQ02] instead defines an ideal of definition as one in which

all elements are topologically nilpotent. This definition automatically yields that there exists

a largest ideal of definition, in light of proposition 1.2.7. Sometimes McQuillan’s definition of

admissible is called weakly admissible.

When we construct formal schemes, we will do so by defining the formal spectrum of an

admissible ring. In practice, however, the formal schemes that arise are those whose open affines

are adic:
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Definition 1.2.12. A pre-admissible ring R is pre-adic if there exists an ideal of definition I such

that the collection {In}n>0 is a neighborhood basis for 0. A separated and complete pre-adic

ring is adic.

Let us immediately make the following observation, commenting on it later:

Lemma 1.2.13. Suppose R is pre-adic for the ideal of definition I (i.e., {In} is a neighborhood

basis for 0). Then, for k > 0, Ik is also an ideal of definition, and R is pre-adic for Ik as well.

Proof. By definition, since {In} forms a neighborhood basis for 0, In is open for n > 0. In

particular, Ik is open. Given any neighborhood U of 0, there is some ` such that I` ⊆ U ; then

(Ik)` ⊆ I` ⊆ U , so that Ik is an ideal of definition.

To check that {(Ik)n}n>0 is a neighborhood basis of 0, we need only check that Ikn is

open. That it is open is an immediate consequence of the definition that R is pre-adic for I.

As we mentioned earlier, most (pre-)admissible rings that arise in practice are (pre-)adic.

Example 1.2.14. The following rings are pre-adic:

• The ring R[x], where a basis of neighborhoods of 0 is given by powers of the ideal (x). As

before, more generally, R[x1, . . . , xm] with a neighborhood basis of 0 given by powers of

the ideal (x1, . . . , xm). Remark that:

– these rings are pre-adic essentially by our choice of the topology on them; and

– by lemma 1.2.13, these rings are pre-adic for the ideal (x)2, or (x)k (respectively,

(x1, . . . , xn)2 or (x1, . . . , xm)k).

• Z equipped with the m-adic topology, for any m ∈ Z. (Of course, the cases of primary

interest are when m is in fact a prime p.)

The following rings are adic:

• Any commutative ring under the discrete topology. As mentioned earlier, a neighborhood

basis is {(0)}, which is also {(0)n}.

• R[[x]] (resp. R[[x1, . . . , xm]]), with a neighborhood basis {(x)n} (resp. {(x1, . . . , xm)n}).
This is just the completion of the first ring mentioned above.

• The ring of integers of a non-archimedean field.

In all of the examples 1.2.14 above, the ideal witnessing the adic nature of the ring in

question was fairly easy to guess. However, there are cases in which there is some ambiguity.

Example 1.2.15. Consider the ring R = Zp[x]. R is pre-adic for the following two topologies:

• the topology where a neighborhood basis for 0 is given by {(x)n}; and
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• the topology where a neighborhood basis for 0 is given by {(p)n}.

These two topologies are not the same! Perhaps the easiest way to see this is to observe that

the sequence xn tends toward 0 in the former topology, but not in the latter (the ideal (p) is

a neighborhood of 0 which contains no terms of the form xn). A more sophisticated way to

distinguish them would be to take their respective completions: the completion of the former

is the ring Zp[[x]], whereas the completion of the latter is Zp{x} (the ring of restricted formal

power series).

While it would appear that classifying a ring as adic depends on a choice of ideal, it

turns out that any ideal of definition will do:

Proposition 1.2.16. Suppose R is a pre-adic ring for the ideal of definition I. If J is another

ideal of definition of R, then the collection {Jn}n>0 is also a neighborhood basis for 0.

Proof. Since J is an ideal of definition, we already know that, for any neighborhood U of 0, there

exists an n such that Jn ⊂ U . The only thing to check is that Jn is open. It will suffice to show

that there is some m so that Im ⊆ Jn, since Im is open. Since I is an ideal of definition and J

is open, there exists an m′ such that Im
′ ⊆ J , so (Im

′
)n ⊆ Jn; so, if we take m = m′n, we reach

our desired conclusion.

All of our discussion so far has been about rings. Many of the terms (and conclusions)

above can be applied to modules.

Definition 1.2.17. Let R be a linearly topologized ring. A topological R-module M is linearly

topologized if there exists a neighborhood basis of 0 of the form {IλM}λ∈Λ, where Iλ is an open

ideal of R.

If R is pre-admissible, M is pre-admissible if there exists an ideal of definition I of R

such that, for any neighborhood U of 0 in M , there exists a positive integer n such that InM ⊆ U .

If R is pre-adic, M is pre-adic if there exists an ideal of definition I such that {InM}n>0

is a neighborhood basis for 0 in M .

If R is admissible (resp. adic), then M is admissible (resp. adic) if M is pre-admissible

(resp. pre-adic), separated, and complete.

Of course, the terms above could be made more general: we could, for example, define

M to be pre-admissible if there exists an ideal I of R (not necessarily an ideal of definition) so

that, for any neighborhood of 0 in M , there exists an n > 0 with InM ⊆ U . However, we will

not require this generality, and it seems not to yield any greater results to do so.

As we’ve been hinting, objects of interest for formal schemes will always be admissible.

Similar to how we can always take the completion of a topological abelian group, we can take

the completion of a pre-admissible ring to obtain an admissible ring:
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Proposition 1.2.18. Let R be a pre-admissible ring with collection of ideals of definition {Iλ}.
Define

R̂ = lim←−
λ

R/Iλ

to be the usual subset of
∏
R/Iλ consisting of those (xλ) such that πλ

′

λ (πλ′(x)) = πλ(x). Equip

R̂ with the topology induced by a fundamental system of neighborhoods of 0 consisting of kerπλ.

Then R̂ is admissible, with ideals of definition kerπλ.

If M is a pre-admissible R module, then

M̂ = lim←−
λ

M/IλM

is an admissible R̂-module.

Proof. Corollary 1.1.5 already informs us that R̂ is separated and complete, and the inverse limit

topology naturally makes R̂ a topological ring. The only claim we need to justify is the one

concerning the pre-admissibility of R̂.

For convenience, let Îλ = kerπλ. We need to show that, for any λ′, there exists some

positive integer n so that Înλ ⊆ Îλ′ . Take n so that Inλ ⊆ Iλ′ as ideals of R (possible since R is

pre-admissible). Suppose x ∈ Înλ ; then write

x =

m∑
i=1

n∏
j=1

xi,j ,

where xi,j ∈ Îλ. As in the proof of proposition 1.1.6, for each xi,j , we may form a Cauchy net

{(xi,j)µ} ⊆ R satisfying, for all µ, (xi,j)µ + Iµ = πµ(xi,j). Then

πλ′(x) =

m∑
i=1

n∏
j=1

xi,j + Iλ′ = 0 + Iλ′ ,

since Inλ ⊆ Iλ′ . So in fact x ∈ Îλ′ , as required.

The proof that M̂ is admissible is the same as the above, modulo minor changes in

notation.

As in the case of groups, R̂ satisfies a universal property:

Corollary 1.2.19. If ϕ : R→ S is a continuous homomorphism where S is an admissible ring,

then there exists a unique continuous ψ : R̂→ S such that the following diagram commutes:

R S

R̂

ϕ

ψ

Proof. We already know from the proof of proposition 1.1.6 that there exists a unique ψ : R̂→ S

that is a continuous morphism of abelian groups. It suffices to show that this ψ is a bona-fide

ring homomorphism.
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Recalling the aforementioned proof, ψ is defined by ψ(xλ) = limϕ(x̃λ), where x̃λ is a

Cauchy net in R whose image in R̂ is xλ. We need only show that ψ(xλyλ) = ψ(xλ)ψ(yλ), i.e.,

limϕ(x̃λỹλ) = lim(ϕ(x̃λ)) lim(ϕ(ỹλ)).

Since ϕ(xλyλ) = ϕ(xλ)ϕ(yλ), the usual trick of writing

lim(ϕ(xλ)) lim(ϕ(yλ))− ϕ(xλ)ϕ(yλ) = (lim(ϕ(xλ))− ϕ(xλ))(lim(ϕ(yλ))− ϕ(yλ))

− lim(ϕ(xλ))(lim(ϕ(yλ))− ϕ(yλ))

− lim(ϕ(yλ))(lim(ϕ(xλ))− ϕ(xλ))

yields the equality we desire. (Note that the above makes use of the fact that the topologies in

question are, in fact, linear; one can remove this assumption while still working with topologies

of additive subgroups of rings, but then greater care is needed in this proof.)

Corollary 1.2.20. If S is a pre-admissible R-algebra, then Ŝ is an admissible R̂-algebra.

Proof. Ŝ is an admissible R-algebra, so there is a unique morphism R̂→ Ŝ.

Even better, however, is that, under some hypotheses, the pre-adicity of a module (in

particular, of the ring itself) is preserved by completion. That is,

Proposition 1.2.21. If M is a pre-adic R-module for a finitely-generated ideal of definition I,

then M̂ is Î-adic.

Proof. (Cf. [Sta17, Tag 05GG], [Mat89, Theorem 8.11]). We need to show that

• ÎnM̂ ⊆M is open, for any n > 0; and

• for any m > 0 there exists an n > 0 such that ÎnM̂ ⊆ ÎnM (since the latter generate the

topology on M̂).

What we will show, however, is that ÎnM̂ = ÎnM , which simultaneously yields both the above.

First observe that ÎnM̂ ⊆ ÎnM . Hence it suffices to show that ÎnM̂ ⊇ ÎnM . In fact

we will show that InM̂ ⊇ ÎnM . To do so, first consider the map

θ : M⊕r →M, (mi) 7→
r∑
i=1

fimi,

where f1, . . . , fr generate In. Since these elements generate In, θ surjects onto InM . So we have

an exact sequence, for any `,

0→ ker θ` →Mr/I`Mr θ`−→ InM/I`(InM) = InM/I`+nM → 0.

For the moment, let us admit that we can take inverse limits over ` in the above exact

sequence to produce an exact sequence

0→ lim←− ker θ` → lim←−M
r/I`Mr → lim←− I

nM/I`+nM → 0. (1.2.1)
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The middle term we may actually identify as M̂r, and the cokernel is just ÎnM . In particular,

we have a surjection M̂r → ÎnM given by (mi) 7→
∑
fimi, i.e., InM̂ ⊇ ÎnM . Our desired

conclusion follows.

There are only a few things left to justify. The first is that we actually do get the exact

sequence (1.2.1). It is a standard result that taking limits produces an exact sequence if the

images of the maps ker θ`+m → ker θ` are stationary. (This is referred to as the Mittag-Leffler

condition; see, e.g., [Har77, II.9]). One way to ensure that the sequence is stationary is to show

that ker θ`+1 → ker θ` is surjective (cf. [AM69, Proposition 10.2]), which is true for our case of

interest. Suppose we have (mi) ∈Mr satisfying θ(mi) ∈ I`+nM . Then

θ(mi) =

s∑
j=1

gjm
′
j

where gj are generators for I` and m′j ∈ InM . Since θ is surjective, we may write

m′j = θ(m′j,i) =

r∑
i=1

fim
′
j,i.

Therefore

θ

(mi)−
s∑
j=1

gj(m
′
i,j)

 = θ

(mi)− (

s∑
j=1

gjm
′
i,j)


= θ

mi −
s∑
j=1

gjm
′
i,j


=

r∑
i=1

fimi − fi
s∑
j=1

gjm
′
i,j

=

(
r∑
i=1

fimi

)
−

 r∑
i=1

s∑
j=1

figjm
′
i,j


=

(
r∑
i=1

fimi

)
−

 s∑
j=1

gj

r∑
i=1

fim
′
i,j


=

(
r∑
i=1

fimi

)
−

 s∑
j=1

gjm
′
j


= θ(mi)− θ(mi) = 0.

In particular, ((mi) −
∑
gj(m

′
i,j) + I`+1Mr) ∈ ker θ`+1, and since gj ∈ I`, the image of this

element in ker θ` is ((mi) + I`Mr). Since any element of ker θ` can be written as ((mi) + I`Mr

where θ(mi) ∈ I`+nM , we have, indeed, that the map ker θ`+1 → ker θ` is surjective, as we

desired.

The other fact requiring justification is that M̂r ' lim←−M
r/I`Mr. This fact follows

from the observation that

Mr/I`Mr ∼−→
(
M/I`M

)r
,
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and that (
lim←−̀M/I`M

)r
∼−→ lim←−̀(M/I`M)r,

both of which are simple unravelings of the definitions of the natural maps in question.

Remark 1.2.22. Note that the above proof actually shows that M̂ is I-adic, not just Î-adic. We

will not make use of this observation in any way.

Remark 1.2.23. The hypothesis on the finitely-generated nature of I is crucial in the above

proposition. For the proof that we gave, this hypothesis came in, essentially, in verifying that

(1.2.1) was an exact sequence. However, in the absense of this hypothesis, the conclusion of the

proposition may be false. Consider, for example, R = k[x1, x2, . . . ] and I = (x1, x2, . . . ). Then

h = x2x3 + x4x5x6 + x8x9x10x11 + · · · =
∞∑
i=1

2i+i∏
j=2i

xj ∈ Î2,

but h /∈ Î2. If, on the contrary, h were an element of Î2, we would be able to write

h =

n∑
i=1

fi,1fi,2,

where fi,j ∈ Î. Necessarily, then, we must have some i such that the degree one part of fi,1

contains x2 and the degree one part of fi,2 contains x3. Then fi,1fi,2 = x2x3 +x2gi,1 +x3gi,2 for

some gi,1, gi,2 ∈ Î. Thus, after reindexing so that i = 1,

h− f1,1f1,2 = (h− x2x3)− (x2g1,1 + x3g1,2).

Repeating the above argument (with minor changes, since we don’t know exactly which degree

contains x2i , only that we can put a bound on this degree), we find that

0 = h−
n∑
i=1

fi,1fi,2 = h−

 n∑
i=1

2i+i∏
j=2i

xj

− n∑
i=1

x2igi,1 + x2i+1gi,2.

So
∞∑

i=n+1

2i+i∏
j=2i

xj =

n∑
i=1

x2igi,1 + x2i+igi,2

But this is absurd: the right hand side contains no monomials composed exclusively of xj for

j > 2n+1, whereas the left hand side clearly does.

For our purposes, the finitely-generated nature of I is almost never an issue, because

we’ll consider only Noetherian rings.
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1.3 Fractions, tensor products, and power series rings

The entire theme of this subsection is the following: suppose we are given an admissible

ring (or module). We’d like to carry out algebraic constructions, such as a ring (module) of

fractions, and make sure that the objects these constructions yield preserve the admissibility

property. As a general rule of thumb, we go about such constructions as follows:

1. Write our starting object (which may be a ring or module, but we’ll use a module for sake

of example) in the form lim←−M/IλM . Note that the objects of our interest will be complete

topological abelian groups, so that, by corollary 1.1.7, we may actually do so.

2. Perform the desired operation to M , yielding a module N , and endow N with the IλN

topology. This should make N a pre-admissible R-module.

3. Take the result to be lim←−
λ

N/IλN . By proposition 1.2.18, we should end up with an admis-

sible R̂-module.

Of course, the above procedure is somewhat vague. In particular, it’s not clear that, after

performing our desired opertion to M , we’ll end up with a (meaninful) pre-admissible module as

we had hoped. However, we will verify pre-admissiblity in every instance that we consider.

Lemma 1.3.1. Let M be a pre-admissible R-module, and let S be a multiplicatively closed subset

of R with 1 ∈ S. Then S−1M , endowed with the IλS
−1M topology, is pre-admissible.

Proof. It suffices to show that, for any λ, λ′ there exists some n so that Inλ (S−1M) ⊆ Iλ′(S−1M).

The same n witnessing Inλ ⊆ Iλ′ suffices here.

Remark 1.3.2. We will only consider sets S such that S ∩ Iλ = ∅ for every ideal of definition

Iλ. This restriction might seem rather limiting, but it causes no trouble in practice, because we

never want to invert topological nilpotents. More precisely, suppose we have f ∈ Iλ ∩S for some

λ. Then m ∈ InλS−1M for all m ∈M , and in particular, the only non-empty open set of S−1M

in this topology is S−1M itself. In particular, we would be considering S−1M with the trivial

topology, and completing with respect to this topology gives 0. In short, if we want to restrict

our attention to linearly topologized objects, we can’t invert topological nilpotents because it

destroys the linear topology in question.

Definition 1.3.3. Given an admissible R-module M with collection of ideals of definition {Iλ},
and S a multiplicatively closed subset of R containing 1, the completed module of fractions with

denominators in S is

M{S} = lim←−
λ

(S−1M)/(IλS
−1M).

If S = {1, fn : n > 0}, we will write M{f} for M{S}. If S = R \ p for some prime ideal p, we will

write M{p} for M{S}.
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Remark 1.3.4. In [Gro60], the definition of the completed module of fractions is not what we

give above. Rather, it is defined as

lim←−
λ

(πλ(S))−1(M/IλM).

The two definitions are equivalent, however. Observe that, in fact,

(πλ(S))−1(M/IλM) ' (S−1M)/(IλS
−1M).

The isomorphism is easy to establish: there’s a natural map

ϕλ : S−1M → (πλ(S))−1(M/IλM)

whose kernel is those m
s such that there exists an s′ ∈ S so that s′m ∈ IλM . But

s′m ∈ IλM ⇐⇒ s′m = αy in M, α ∈ Iλ, y ∈M

⇐⇒ m

1
= α

y

s′
in S−1M

⇐⇒ m

s
= α

y

s′s
in S−1M

⇐⇒ m

s
∈ IλS−1M.

So the two limits are isomorphic term-by-term, hence isomorphic.

The tensor product of two pre-admissible R modules is straightforward:

Lemma 1.3.5. Let M and N be two pre-admissible R-modules. Then M ⊗N , endowed with the

Iλ(M ⊗N) topology, is pre-admissible.

Proof. The same as in lemma 1.3.1: any element of Iλ(M ⊗N) can be written as

∑
i

ri

∑
j

mi,j ⊗ ni,j


where ri ∈ Iλ, mi,j ∈ M , and ni,j ∈ N . So if n witnesses that Inλ ⊆ Iλ′ , and ri ∈ Inλ , then

ri ∈ Iλ′ , hence Inλ (M ⊗N) ⊆ Iλ′(M ⊗N).

Definition 1.3.6. Suppose M and N are two pre-admissible R-modules, the completed tensor

product of M with N is

M ⊗̂N = lim←−
λ

(M ⊗N)/Iλ(M ⊗N).

The tensor product of two pre-admissible R-algebras, however, requires a little bit more

careful examination.

Lemma 1.3.7. Suppose A is an {Iλ}-pre-admissible R-algebra and B is a {Jµ}-pre-admissible

R algebra. Then A⊗R B is an {(Iλ ⊗B) + (A⊗ Jµ)}-pre-admissible R-algebra.
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Proof. Take n so that Inλ ⊆ Iλ′ and Jnµ ⊆ Jµ′ . Then observe that t∑
k=1

(
r∑
i=1

αk,i ⊗ bk,i

)
+

 s∑
j=1

ak,j ⊗ βk,j

2n

∈ (Iλ′ ⊗B) + (A⊗ Jµ′),

if αk,i ∈ Iλ, βk,j ∈ Jµ, ak,j ∈ A, and bk,i ∈ B. The reason for this is that the above is a sum of

tensors a` ⊗ b`, where either a` ∈ Inλ or b` ∈ Jnµ , hence a` ∈ Iλ′ or b` ∈ Jµ′ .

Definition 1.3.8. If A is an {Iλ}-pre-admissible R-algebra and B is a {Jµ}-pre-admissible R

algebra, the completed tensor product of A and B is

A ⊗̂B = lim←−
λ,µ

(A⊗B)/(Iλ ⊗B +A⊗ Jµ).

Proposition 1.3.9. Let A and B be admissible R-algebras, where R is an admissible ring. Then

A ⊗̂ B is the pushout in the category of admissible rings. That is, given an admissible ring S

and two continuous ring maps A→ S, B → S whose compositions with the morphisms R → A,

R → B are equal, there exists a unique continuous map ϕ : A ⊗̂ B → S making the following

diagram commute:

S

A ⊗̂B B

A R

ϕ

Proof. We already know that A ⊗ B is a pushout in the category of rings; so, given maps as

above, we know there exists a unique map ψ : A ⊗ B → S. This map is continuous because

ψ−1(U) = A⊗ϕ−1
B (U) +ϕ−1

A (U)⊗B, which is open if U is open. Hence by corollary 1.2.19 there

exists a unique map of rings A ⊗̂B → S.

The next lemmae and definitions we have actually already observed in examples above,

but we record them for posterity:

Lemma 1.3.10. Let R be an {Iλ}-pre-admissible ring. R[x1, . . . , xn] can be considered pre-adic

with respect to the (x1, . . . , xn)`-topology and pre-admissible with respect to {IλR[x1, . . . , xn]}.

Proof. The statement regarding the (x1, . . . , xn)-topology is clear. To demonstrate the pre-

admissibility of the {IλR[x1, . . . , xn]}-topology, note that(
m∑
i=1

rifi(x̄)

)N
=

m′∑
j=1

sjgj(x̄),

where ri ∈ Iλ, N is such that INλ ⊆ Iλ′ , hence sj ∈ Iλ′ . That is, (IλR[x1, . . . , xn])N ⊆
Iλ′R[x1, . . . , xn].
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Definition 1.3.11. The ring of formal power series over R in indeterminates x1, . . . , xn is

R[[x1, . . . , xn]] = lim←−̀R[x1, . . . , xn]/(x1, . . . , xn)`.

The ring of restricted power series over R in indeterminates x1, . . . , xn is

R{x1, . . . , xn} = lim←−
λ

R[x1, . . . , xn]/IλR[x1, . . . , xn].



Chapter 2

Formal schemes

We will present formal schemes using the formulation in [Gro60]. Before delving into

the material, though, let’s take this opportunity to point out that some alternative formulations

for formal schemes have been proposed, such as [McQ02] and [Yas09]. The purpose of these

reformulations is to assist in work on formal schemes which are, a priori, not adic. Since the focus

of our work is in the adic setting, we will mostly ignore the improvements this new perspective

offers, except to make some occasional remarks.

2.1 The category of formal schemes

Analogous to the case of ordinary schemes, formal schemes are ringed spaces that are

locally isomorphic to “affine” formal schemes. However, unlike the case of ordinary schemes, we

will say that a formal scheme is a topologically ringed space locally isomorphic to an affine formal

scheme. It turns out that formal schemes are, by means of this definition, in fact locally ringed

spaces, but we will not pursue this idea beyond its mention.

There are three major objectives of this section:

1. We want to establish what the formal spectrum of an admissible ring R is (hence what an

affine formal scheme is). While definition 2.1.1 and the preceding observations settle this

matter, they do so only in a minimal sense. Arguably, the rest of the subsection gives more

flavor to what affine formal schemes are beyond their definition.

2. We want to establish that affine formal schemes are locally ringed spaces

3. We want to establish that the category of affine formal schemes is the dual category to that

of admissible rings.

Throughout our discussion in this subsection, R will be an admissible ring, and {Iλ}
will denote the collection of ideals of definition of R.

20
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The definition of the formal spectrum of R is surprisingly simple; what is more difficult

is to show that it has all the properties we claim.

Before we make our definition of the formal spectrum, let us make a few observations:

1. SpecR/I = SpecR/I ′ as topological spaces for any two ideals of definition I and I ′.

Each is equipped with the subspace topology from the inclusions SpecR/I → SpecR

and SpecR/I ′ → SpecR, so it suffices to show the two sets are equal. Proposition 1.2.4

immediately yields equality of the two sets. In particular, the topological space SpecR/Iλ

does not depend on the choice of ideal of definition Iλ.

2. If Iλ denotes the sheaf on SpecR associated to the ideal of definition Iλ, then {OR/Iλ}
forms an inverse system of sheaves on the topological space SpecR/I (where I is some

ideal of definition). This follows from the previous point, that OR/Iλ is naturally a sheaf

on SpecR/Iλ, and that {R/Iλ} is an inverse system of rings. As in [Har77, Ex. II.1.12],

lim←−
λ

OR/Iλ is a sheaf on SpecR/I.

The above points make the following unambiguous:

Definition 2.1.1. Fix some ideal of definition Iλ0
. The formal spectrum of R is the topological

space SpecR/Iλ0
together with the sheaf of rings lim←−

λ

OR/Iλ, where Iλ is the sheaf of ideals on

SpecR given by Iλ. We denote by Spf R the pair (SpecR/Iλ0
, lim←−OR/Iλ).

Definition 2.1.2. An affine formal scheme is a topologically ringed space (X,OX) that is iso-

morphic to Spf R for some admissible ring R.

Remark 2.1.3. It is common practice to use non-Roman letters to denote formal schemes. Con-

ventions vary from author to author; the convention established in [Gro60] is to use fraktur to

refer to both formal schemes and sheaves (of modules) on them. (E.g., a formal scheme might

be X, and a line bundle on it might be L.) Other practices include using calligraphic letters for

both formal schemes and sheaves thereon (e.g., X , L) and using calligraphic letters for formal

schemes, but script lettering for sheaves (L ). In all cases that I’ve encountered, the structure

sheaf of a formal scheme is denoted by an ‘O’ in either a calligraphic or script glyph, subscripted

by the letter denoting the formal scheme in question in the lettering used for formal schemes

(e.g., OX).

I will adopt the convention of using fraktur to represent formal schemes (X) and script

lettering for sheaves on them L . This means that I will be using the same lettering for sheaves

on both ordinary schemes and formal schemes, but it should result in no confusion. Of course,

this convention adds nothing to the statements and arguments contained herein, but it can aid

their comprehensibility.

The above definition is somewhat opaque; a better way to think of Spf R is as a space

whose points correspond to the open prime ideals of R equipped with a sheaf of rings whose
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global sections is R itself. The latter requires proof, which we will give in a moment. Given

f ∈ R, define V(f) to be the set of open ideals which contain f , and say D(f) is its complement.

Naturally, V(f) = V (f) ∩ Spf R, and D(f) = D(f) ∩ Spf R, so that V(f) is closed and D(f) is

open in Spf R.

Proposition 2.1.4. Suppose R is an admissible ring, f ∈ R, and let (X,OX) be its formal

spectrum. Then Γ(D(f),OX) ' R{f} as topological rings. In particular, Γ(X,OX) = R.

Proof. This proof is essentially just chasing definitions. Since the presheaf lim←−OR/Iλ is in fact

a sheaf, we know that

OX(D(f)) =

(
lim←−
λ

OR/Iλ

)
(D(f)) = lim←−

λ

(OR/Iλ)(D(f)).

D(f) is, as we observed above, the intersection of D(f) with Spf R, i.e., D(f) ∩ SpecR/Iλ, for

any λ. The latter set is the set of primes of R which contain Iλ but do not contain f ; p contains

f if and only if πλ(f) ∈ πλ(p), since p contains Iλ. So D(f) = D(πλ(f)) in SpecR/Iλ, hence

(OR/Iλ)(D(f)) = (OR/Iλ)(D(πλ(f))) = (R/Iλ)πλ(f).

Substituting this last equality into the first equation gives the result, taking note of 1.3.4. The

last statement of the proposition is just combining the formula given in the preposition with

corollary 1.1.7.

A word of caution: the above perspective might make tempting the thought that,

analogous to the case of ordinary schemes, OX,p ' Rp. Unfortunately, that is not quite the case.

By definition,

OX,p = lim−→
U3p

OX(U)

= lim−→
f /∈p

OX(D(f))

= lim−→
f /∈p

R{f} (Proposition 2.1.4),

where the second equality holds because the sets D(f) form a base of Spf R (because it is equipped

with the subspace topology from SpecR, where the sets D(f) form a base). However, it is true

that there is a map between OX,p and R{p}.

Proposition 2.1.5 (Cf. [Gro60, O.7.6.17]). Let R be an admissible ring and X is formal spec-

trum. There is a natural map

OX,p → R{p}

which is a local map of local rings (in particular, OX,p is local).
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Proof. First, let us establish the map in question. As the rings R{f} are initial among admissible

rings S to which there is a continuous map R → S in which the image of f is invertible, we

need only show that the image of f in R{p} is invertible. The latter fact, however, is almost true

by definition, since R{p} is initial among admissible rings to which there is a continuous map in

which elements in the complement of p (such as f) are invertible.

Let us call the map we obtain ϕ. To prove the remaining claims of the theorem, set

m = lim←−
λ

(
(R \ p)−1p

)
/
(
Iλ(R \ p)−1p

)
, n = lim−→

f /∈p
p{f}.

Note that m is the unique maximal ideal in R{p}: if f = (fλ) /∈ m, then fλ is invertible in each

term of the limit. Let gλ be an element of Rp such that fλgλ − 1 ∈ Iλ. Observe that, if λ′ ≥ λ,

then

(fλ + Iλ)(gλ′ − gλ + Iλ) = ((fλ′ + I ′λ)(gλ′ + Iλ′) + Iλ)− (fλgλ + Iλ)

= ((1 + Iλ′) + Iλ)− (1 + Iλ)

= 1− 1 + Iλ = 0 + Iλ.

Since fλ + Iλ is a unit, we conclude that gλ′ − gλ ∈ Iλ. In particular, (gλ) is an element of R{p}

satisfying (fλ)(gλ) = 1.

Now we need only show that n is the unique maximal idea in OX,p. Elements of this

ring may be represented as (f,D(g)), where f ∈ R{g}. Suppose f /∈ n, i.e., ϕ(f) /∈ m. Write

f =

(
aλ
gnλ

)
,

where aλ ∈ R. The definition of ϕ makes it so that ϕ(f) can be written in the same way, although

we should think of g as an element of R \ p. If ϕ(f) /∈ m, then we can conclude that aλ /∈ p for

all λ. Fix some λ0 and note that, in R{aλ0g}/ kerπλ0
, we have (denoting by x̄ the image of an

element x of R in R{aλ0g}) (
ḡnλ0

āλ0

)
f̄ = 1.

So we have some h ∈ R such that hf = 1 + x in R{aλ0g}, where x ∈ kerπλ0
. But kerπλ0

is an

ideal of definition, so x is topologically nilpotent. In particular, taking limits of each side of

(1 + x)

n∑
k=0

(−1)kxk = (−1)nxn+1 + 1,

we find that hf is a unit in R{aλ0g}, so that f is a unit in this ring, hence in the limit OX,p.

Thus n is maximal and the natural map OX,p → R{p} is a local map of local rings.

Proposition 2.1.6. A continuous ring homomorphism A → B of admissible rings induces a

map on formal spectra Spf B → Spf A.
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Proof. Let f : A→ B be a continuous morphism of admissible rings. Since it is a ring morphism,

f−1(p) is a prime ideal of A for any prime ideal p of B. Since f is continuous, if p is open, so is

f−1(p). Define ϕ : Spf B → Spf A by ϕ(p) = f−1(p).

First, let us observe that ϕ is continuous: let a ∈ A, and consider ϕ−1(D(a)). By

definition, this is the set of all open ideals p in B such that a /∈ f−1(p), which is true if and only

if f(a) /∈ p. That is, ϕ−1(D(a)) = D(f(a)). So ϕ is continuous.

This observation also gives us a map on sheaves: for any a ∈ A, there is a natu-

ral map A{a} → B{f(a)}, i.e., a natural map OA(D(a)) → OB(D(f(a))) = OB(ϕ−1(D(a))) =

ϕ∗OB(D(a)). Since the map in question is natural, we get a unique map of sheaves OA →
ϕ∗OB .

Proposition 2.1.7. Let R be an admissible ring, and f ∈ R. Set (X,OX) = Spf R. We have

Spf
(
R{f}

)
' (D(f),OX|D(f)).

Proof. This proof basically boils down to the following: we have a natural (continuous) map (of

admissible rings)

i : R→ R{f}

which induces a map on formal spectra

j : Spf R{f} → Spf R.

Then we go through the following motions:

1. Observe that j takes image in D(f), hence can actually be taken to be

j : Spf R{f} → (D(f),OR|D(f)).

2. Note that j is open and bijective onto D(f) as maps of topological spaces, which gives rise

to an inverse (topological) map h : D(f)→ Spf R{f}.

3. Record that, in fact, j# : OR|D(f) → j∗OR{f} is an isomorphism on sets of the form D(g),

which yields a map of sheaves

h# : OR{f} → h∗OR|D(f).

4. Note that j and h are mutual inverses.

The first point is straightforward: by definition, j(p) = i−1(p) for p ∈ Spf R{f}. Since

p is a prime of R{f}, 1 /∈ p, so the image of f must not be in p. That is, i(f) /∈ p, so f /∈ i−1(p).

Since i−1(p) is an open prime of R, we have indeed that j takes image in D(f).
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Now, let us show that j is injective. Suppose i−1(p1) = i−1(p2), and let g ∈ p1. We

may write

g =

(
aλ
fnλ

)
.

Fix some λ0 and write n0 = nλ0 , so that g =
aλ0
fn0

+ x, where x ∈ kerπλ0 . Since p1 is open,

kerπλ0
⊆ p1, hence x ∈ p1, so

aλ0
fn0
∈ p1. So

aλ0
1 ∈ p1, which means aλ0

∈ i−1(p1). By hypothesis

we then have
aλ0
1 ∈ p2, so that

aλ0
fn0
∈ p2, and p2 is open, so that x ∈ p2. We conclude that

g ∈ p2. The opposite inclusion follows by symmetry.

Surjectivity follows from the following fact: if p ⊆ R is an open prime, then pR{f} is

an open prime of R{f}, and i−1(pR{f}) = p. The ideal pR{f} clearly contains IλR{f} = kerπλ,

hence is open; we need only verify that it is prime. Suppose g = (gλ) and h = (hλ) satisfy

gh ∈ pR{f}. Again, fix some λ0, and write gh = gλ0
hλ0

+ x, where x ∈ kerπλ0
. Then we find

that gλ0
hλ0
∈ pR{f}. Writing gλ0

= g′/fn, and similarly for hλ0
, we have that g′h′

1 ∈ pRf (note

that we no longer are working in the completion!). From here it is the usual proof that g′

1 ∈ pRf

or h′

1 ∈ pRf : we know fm(g′h′fn − r) = 0 ∈ p ⊆ R, where r ∈ p, so, since f /∈ p, we have

g′h′fn ∈ p, hence g′ ∈ p or h′ ∈ p. Chasing back through our computations, we have g ∈ pR{f}

or h ∈ pR{f}.

That j is open follows from the fact that j(D(g)) = D(fg′), where g′ ∈ R is some

element such that g′

1 − g ∈ IλRf . We already know that in the case of ordinary schemes

D(fg′) = D(f)∩D(g′), hence D(fg′) = D(f)∩D(g′), and we’ve already seen that j takes image

in D(f), so we need only show that if p ∈ D(g), then j(p) ∈ D(g′) and if q ∈ D(g′), then there

exists some q′ with j(q′) = q. The former implication is straightforward: if g′ ∈ i−1(p), then
g′

1 ∈ p, and by assumption, p is open, so g′

1 − g ∈ p, so g ∈ p, but this is absurd. The latter is

also straightforward: take q′ = qR{f}. As in the above paragraph, we find that this is an open

prime of R{f}, and its image under j is q.

Now we should settle the claim regarding j#. Let g ∈ R. We know that j#(D(g)) :

OR|D(f)(D(g)) → OR{f}(i
−1(D(g))) is the natural map between these two rings. We just need

to unravel what they are. From our previous work, we identify the domain with R{fg} and the

codomain with
(
R{f}

)
{g/1}. But the natural map in question is an isomorphism, as the following

diagram shows (dashed arrows indicate unique maps):

R

R{f}

(
R{f}

)
{g/1} R{fg}

So we can assemble a morphism (h, h#) : (D(f),OR|D(f))→ Spf R{f}, as h−1(D(g)) =
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j(D(g)) = D(fg′), as described above. Checking that this is a mutual inverse with (j, j#) is

routine.

Proposition 2.1.8. Let X = Spf R and Y = Spf S be two affine formal schemes. A morphism

(ϕ,ϕ#) : X → Y is of the form of one given by proposition 2.1.6 if and only if, for any x ∈ X,

the induced map ϕ#
x : OY,ϕ(x) → OX,x is local.

Proof. First suppose that (ϕ,ϕ#) is the map on formal spectra induced by some continuous

f : S → R. For convenience, let q = f−1(p), i.e., q = ϕ(p). Then we have a commutative

diagram

OY,q OX,p

S{q} R{p}
fq

where the vertical arrows are local maps by proposition 2.1.5. Thus we need only show that the

bottom map is local. If x ∈ lim←−λ q/Iλ, where {Iλ} is a collection of ideals of definition for S, then

we may write x = limxλ, where {xλ} is a Cauchy net in Sq converging to x with fq(xλ) ∈ pRp.

So the image of x is lim fq(xλ), hence fq(x) ∈ lim←− p/Jµ, i.e., fq is local.

Now suppose conversely that ϕ#
x is local. Even without this assumption, we have a

commutative diagram

S = Γ(Y,OY) Γ(X,OX) = R

OY,f(x) OX,x.

ϕ#(Y)

ϕ#
x

The commutative diagram informs us, by taking the inverse image of the maximal ideal of OX,x,

that if p is the open prime of R corresponding to x, then ϕ(x) = (ϕ#(Y))−1(p). That is, as a

map on topological spaces, ϕ is the map induced by the map of rings ϕ#(Y).

Call the above map f . Then, for any a ∈ S, we have the following commutative diagram:

S = Γ(Y,OY) Γ(X,OX) = R

S{a} = Γ(D(a),OY) Γ(D(f(a)),OX) = R{f(a)}.
ϕ#(D(a))

The universal property of the ring S{a}, however, tells us that ϕ#(D(a)) must be the map induced

by f = ϕ#(Y). So in fact ϕ# is the map on sheaves given by a map of rings, as we indicated.

Keeping the above in mind, we define:

Definition 2.1.9. A morphism of formal schemes is a morphism (ϕ,ϕ#) of topologically ringed

spaces that induces local morphisms on local rings.

As a consequence of proposition 2.1.8, we have:

Proposition 2.1.10. The category of affine formal schemes is the dual category of admissible

rings.
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2.2 First properties of formal schemes

Here we would like to record the analogues, for formal schemes, of several elementary

properties of ordinary schemes (or morphisms thereof), such as proper and Noetherian.

It is not obvious from our exposition thus far, but, for reasons which will become clear in

section 2.3, it is useful to define a large number of properties for formal schemes that actually refer

to certain “subschemes of definition”. For now, let us say that, not only do the first non-trivial

examples of formal schemes arise in a way that makes these properties apply, but also that if we

have “nice enough” formal schemes, we can use these properties to apply results from ordinary

scheme theory and learn about the objects of our study. In order to make these definitions, we

first need to discuss ideals of definition for formal schemes.

Ideals of definition and subschemes of definition

The first thing we wish to discuss is an ideal of definition of a formal scheme. However,

its construction follows that of a sheaf of modules on a formal scheme, so we will briefly detail

that first.

Suppose we are given an admissible ring R and an admissible module M . Then we may

write M = lim←−M/IλM for ideals of definition Iλ of R. As in the definition of Spf, we note that

SpecR/Iλ = SpecR/Iλ′ as topological spaces. Thus the sheaves of modules (M/IλM)∼, which

are each defined on SpecR/Iλ, are all defined on the same topological space. We then say:

Definition 2.2.1. Given R and M as above, the sheaf of modules associated to M is the

projective limit

M4 = lim←−
λ

(M/IλM)∼

of sheaves on the topological space Spf R. The natural action of R = lim←−R/Iλ on M makes M4

a sheaf of OR-modules on Spf R.

A sheaf of ideals is defined as for ordinary schemes. The following particular class of

sheaves of ideals we will frequently use:

Definition 2.2.2. An ideal of definition for a formal scheme X is a sheaf of ideals I such that

there exists a covering of X by open affine formal schemes Ui = Spf Ri where I |Ui = J4i for

some ideal of definition Ji of Ri.

These are particularly handy because they allow us to work with ordinary schemes

closely related to our formal schemes:

Lemma 2.2.3. If X is a formal scheme and Iλ is an ideal of definition of X, the ringed space

(X,OX/Iλ) is an ordinary scheme.
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Proof. Let U = Spf R be an open formal affine of X. Then OX|U ' OR, and Iλ|U ' I4λ . By

definition (OX/Iλ)|U is the sheafification of the presheaf that assigns, to any open V ⊆ U,

OX(V)/Iλ(V). This is also the sheafification of the presheaf assigning V to OX|U(V)/Iλ|U(V).

Let f ∈ R, and observe that on D(f), we have OX|U(D(f))/Iλ|U(D(f)) ' R{f}/(Iλ){f} '
(R/Iλ)f . So this presheaf agrees, on a basis of Spf R = SpecR/Iλ, with the sheaf OR/Iλ . That

is, (U,OX|U/Iλ|U) ' SpecR/Iλ.

Definition 2.2.4. The subscheme of definition Xλ associated to the ideal of definition Iλ of a

formal scheme X is the ringed space consisting of the topological space underlying X equipped

with the sheaf of rings OX/Iλ.

Remark 2.2.5. We’ll define a closed immersion for formal schemes as the exact analogue of a

closed immersion for ordinary schemes. Under this definition, it is obvious that we have a closed

immersion of formal schemes Xλ → X. The point of the above lemma and definition is that we

do get a bona fide ordinary scheme structure on this closed sub-formal scheme.

However, there’s no guarantee that an ideal of definition exists for a formal scheme.

For this reason, we’ll restrict ourselves to locally noetherian formal schemes. The definition is

parallel to the case of ordinary schemes:

Definition 2.2.6. A formal scheme X is adic if there exists a cover of X by open affine formal

schemes Ui = Spf Ri where Ri is adic.

A formal scheme X is locally Noetherian if the Ri are Noetherian and adic. X is Noethe-

rian if it is locally Noetherian and quasi-compact.

Warning 2.2.7. It’s easy to fall into the mindset that a locally Noetherian formal scheme

is merely a formal scheme admitting a covering by open affines Ui = Spf Ri where Ri is just

Noetherian. While this seems a sensible definition, we prefer the one above because most formal

schemes that arise in practice are adic and conclusions are rather difficult to draw without the

adic hypothesis.

Yasuda’s paper [Yas09] is an attempt to construct formal schemes in a way that allows

one to forego the adic hypotheses. In summary, Yasuda constructs formal schemes as proringed

spaces, i.e., topological spaces equipped with sheaves taking values in the category of pro-rings.

In order to avoid conflict with the terminology in the literature, Yasuda keeps the term locally

Noetherian for describing formal schemes which are (in his paradigm) locally Noetherian and

adic, and then introduces the term locally pre-Noetherian to describe the situation that retains

Noetherian hypotheses, but drops adic ones.

Note that the definition of adic does not imply that there exists an ideal of definition.

We’ll shortly prove that locally Noetherian schemes have ideals of definitions, and note in remark

2.2.9 what issue could prevent the existence of an ideal of definition; the same issue stands for
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general adic formal schemes. However, it is easy to see that, if I is an ideal of definition for an

adic formal scheme X, then so is I n for any n > 0.

Proposition 2.2.8 (Cf. [Gro60, I.10.5.4]). A locally Noetherian formal scheme admits a largest

ideal of definition I0. In particular, ideals of definition exist for locally Noetherian formal

schemes.

Proof. If X = Spf R is affine, where R is Noetherian, take I0 = (I0)4, where I0 is the largest

ideal of definition of R.

To deal with the general case, we need only deal with the situation where U = Spf S ⊆
V = Spf T are noetherian open affines of X and IV is the largest ideal of definition of V. The

question is whether IV|U is the largest (indeed, whether it is any) ideal of definition. The key

observation is that (U,OX|U/IV|U) is a reduced ordinary scheme since (V,OX|V/IV) is. There

is a question of whether we can cover U by open affines Ui = Spf Si where IV|U = J4i for an

ideal of definition Ji, but this is true because IV|D(f) = (IT )4{f} for any f ∈ T (by the same

analysis that we applied to the structure sheaf in the previous section), so we can cover U by sets

D(f) to establish the result.

Remark 2.2.9. The grease that makes the wheels turn in this proof is that, when we restrict

an ideal of definition, we know which ideal of definition we get. That is, the brief argument at

the end indicating that we end up with an ideal of definition on U shows that, if we restrict an

ideal of definition to an affine open subset, we will get another ideal of definition. The problem,

however, is that if we have ideals of definition I1 on V1 and I2 on V2, we don’t know that we

can glue them, because we have no guarantee that I1|V1∩V2 ' I2|V1∩V2 . But the fact that we

end up with the largest ideal of definition in the locally Noetherian case saves the day.

Remark 2.2.10. Because ideals of definition may not exist for a general formal scheme, sometimes

the term admissible appears in the literature to refer to formal schemes for which an ideal of

definition exists. We will shortly assume that every formal scheme of our interest is locally

Noetherian, however, so we will not need this term.

We’ll frequently make use of the following:

Definition 2.2.11. If X is a locally Noetherian formal scheme, the reduced subscheme of defini-

tion X0 is the ordinary scheme (X,OX/I0).

Formal schemes as limits and adic formal schemes

Now that we’ve defined subschemes of definition, there arises a natural question. We

already know that, if R is an admissible ring, Spf R is (essentially by definition) the limit (in the

category of formal schemes) lim−→λ
SpecR/Iλ. So, suppose we have a fundamental system of ideals

of definition for a formal scheme X. That is, beyond assuming that we have an ideal of definition
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I for X, suppose we have a system {Iλ} such that, for any open affine U = Spf S ⊆ X, we have

Iλ = I4λ , where {Iλ} form a fundamental system of ideals of definition of R. Can we say that

X = lim−→Xλ?

In short, the answer is yes. The proof essentially boils down to checking definitions. In

light of this answer, one might ask, more generally, whether arbitrary limits of ordinary schemes

exist in the category of formal schemes. Asking for that might be too much, but there is a nice

sufficient condition:

Proposition 2.2.12 (Cf. [Gro60, Proposition I.10.6.3]). Let X be a topological space and

(Oi, fj,i) a projective system of sheaves of rings on X indexed by N. Denote by Ii the (sheaf)

kernel of the morphism f0,i : Oi → O0. Suppose further that:

1. (X,Oi) is an ordinary scheme; call it Xi;

2. for any x ∈ X and any i, there exists an open neighborhood Ui of x in X such that Ii|Ui
is nilpotent; and

3. the morphisms fj,i are surjective.

Then, taking OX = lim←−` O` to be the sheaf of topological rings on X, (X,OX) is a formal scheme.

Moreover:

• the natural morphisms OX → O` are surjective;

• the kernels I (`) of the natural maps above form a fundamental system of ideals of definition

of X; and

• I (0) ' lim←−` I`.

Proof. We must show that any x ∈ X has a neighborhood which is isomorphic to Spf R for some

admissible ring R. Given x, choose some open U ⊆ X such that (U,O0|U) is affine (possible by

hypothesis 1). Note, then, that (U,O`) is affine for any ` > 0 since, by hypothesis 3, O0 ' O`/I`.

(This fact is not obvious, but admit it for the moment.) So we only need show that the conclusion

holds in the case when Xi is affine and quasi-compact.

To that end, assumeXi = SpecAi. Then fj,i is actually the map of affine schemes arising

from a map ϕj,i : Aj → Ai. This claim is not immediately obvious, but neither is it very difficult:

all we know is that fj,i is a map of sheaves Oj → Oi. So we have a map ϕj,i : Aj = Γ(X,Oj)→
Γ(X,Ii) = Ai. This leads to a map on spectra ϕ̃j,i : SpecAi = Xi → SpecAj = Xj . We should

check that this map agrees with fj,i. It suffices to check that these agree on some confinal family

of open subsets of X. Take a ∈ Ai, and let a′ = ϕj,i(a) = fj,i(X)(a). Then D(a) = D(a′), and

we also have that fj,i(D(a)) = (ϕj,i)a, so that fj,i = ϕ̃j,i, as claimed. Then we also have that

I` = ker ϕ̃0,` = (kerϕ0,`)
∼ as O`-modules. Moreover, since X` is quasi-compact, we know there

exists some n such that I n
` = 0, so that kerϕ0,` is nilpotent.
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So let A = lim←−`A`. Immediately, we know that A is admissible and that a fundamental

system of ideals of definition for A is given by kerπi, where πi : A→ Ai is the natural projection.

(This result is essentially 1.2.18, though we do need to make use of the fact that the kernels

are nilpotent in order to ensure that kerπ0 is a bona fide ideal of definition.) In particular,

A/ kerπi ' Ai, so Spf A consists of the topological space SpecAi = X with the sheaf of rings

lim←−` OAi = lim←−` Oi, and, essentially by construction, I (0) = lim←−` I`.

The last proposition insisted that the sheaves in question be indexed by N, which seems

rather inconsistent with our practice so far. Momentarily, however, we will see that it causes no

issues for the applications we have in mind.

Corollary 2.2.13 (Cf. [Gro60, Corollary I.10.6.4]). Keeping the same hypotheses as in propo-

sition 2.2.12, suppose further that, for i ≥ j, ker fj,i = I j+1
i and that I1/I 2

1 is of finite type

over O0 = O1/I1. Then (X,OX) is adic. Moreover, I (n) = I n+1 and I /I 2 ' I1. If X0 is

(locally) Noetherian, then so is X.

Proof. We may assume that Xi is affine, in which case, as in the previous proposition, we have

X = Spf lim←−A`. The result, then is simply one of algebra; again, it is essentially proposition

1.2.18, with a bit of added attention.

Let A = lim←−`A` and I = kerπ0. It suffices to show that In+1 = kerπn.

One containment is straightfoward: if (x`) ∈ In+1, we may write

(x`) =
∑
i

n+1∏
j=1

((xi,j)`)

where ((xi,j)`) ∈ I. Then we need only show that
∏n+1
j=1 πn((xi,j)`) = 0. But πn((xi,j)`) = (xi,j)n,

and since ((xi,j)`) ∈ I, we must have f0,n((xi,j)n) = π0((xi,j)`) = 0, i.e., (xi,j)n ∈ In. By

hypothesis, In+1
n = ker fn,n, and fn,n = idAn , so we must have that

∏n+1
j=1 πn((xi,j)`) = 0, as

desired.

For the other, let (a`)j be r elements of I such that (a1)1, . . . , (a1)r generate I1/I
2
1 = I1

as an A0-module. It will suffice to show that Sn+1((a`)j) generates kerπn, where Sn((a`)j) is

the set of monomials of degree n in the (a`)j . In turn, it will suffice to show for every n that the

residue classes of Sn+1((a`)j) generate kerπn/ kerπn+1: given x ∈ kerπn, we may then write

x =

 ∑
s∈Sn+1

ass

+ y,

where y ∈ kerπn+1. Thus, for any m ≥ n, we have

πm(x) =

m∑
k=n+1

(∑
s∈Sk

πm(as,ks)

)
=

∑
s∈Sn+1

πm(a′s,ms).

So
∑
a′s,ms is a sequence of elements in A that converge to x, so it does suffice to show that the

residues of Sn+1((a`)j) generate kerπn/ kerπn+1. Note that the above reasoning also shows that
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we need only show that the residues generate kerπn/ kerπn+1 as an An+1-module. Moreover,

kerπn/ kerπn+1 ' In+1
n+1 as an An+1-module, and the residues of {(a`)j} are precisely {(an)j}. In

turn, it suffices to show for any m that Im is generated by monomials of degree at most m in the

(am)j . By our choice of the (a`)j , this holds for m = 1. Inductively, let I ′n be the An-submodule

of In generated by monomials of degree at most n in the (an)j , so that we have In−1 = I ′n−1.

Note that In−1 ' In/Inn , which allows us to write I ′n+Inn = In. Taking n-th powers of both sides

of this last relation, we find I ′nn = Inn (note that I ′n ⊆ In, and In+1
n = 0). So In = I ′n + I ′nn ⊆ I ′n,

and our desired conclusion follows.

Finally we arrive at one of the most important characterizations of locally Noetherian

formal schemes:

Corollary 2.2.14. Any locally Noetherian formal scheme is the limit of ordinary (locally Noethe-

rian) schemes. Namely, if X is a locally Noetherian formal scheme and I0 denotes its largest

ideal of definition, write X` = (X,OX/I `+1); then

X ' lim−→̀X`.

Proof. Since X is locally Noetherian, we know that, for any open affine U, OX/I 2
0 (U) is Noethe-

rian, hence the kernel is finitely generated, so that the hypotheses of corollary 2.2.13 are satisfied.

The only thing left to show is that OX ' lim←−` OX/I
`+1
0 . However, since X is locally Noetherian,

and in particular adic, this follows.

Proposition 2.2.15 (Cf. [Gro60, Corollary 10.6.5]). Let R be an admissible ring. Spf R is

Noetherian if and only if R is Noetherian and adic.

Proof. One direction is trivial: if R is Noetherian (and adic), then Spf R is Noetherian.

Convsersely, let X = Spf R, where R is admissible, and suppose X is Noetherian. Let

I be an ideal of definition of R (note that we cannot, at this point, take the largest ideal of

definition of R, because we do not know R is Noetherian; we only know that open ideals satisfy

the ACC), and let I be the corresponding ideal of definition of X. Then Xn = (X,OX/I n+1)

are affine Noetherian schemes. We are now in a position to apply proposition 2.2.12 and, in light

of Noetherianness, corollary 2.2.13 to conclude that (X, lim←−OX/I n+1) is an adic formal scheme.

So we are reduced to showing that OX ' lim←−OX/I n+1.

Since X is Noetherian, it is in particular locally Noetherian, hence adic. So on some

cover Ui we have OX|Ui ' lim←−`OX/I `+1|Ui , but these isomorphisms glue to give us, indeed,

OX = lim←−` OX/I `+1. Taking global sections of the sheaf, we find R ' lim←−`R/I
`+1 (and this is a

topological isomorphism), i.e., R is adic.

Remark 2.2.16. The interesting takeaway from this proof is not that an admissible Noetherian

ring is adic. Rather, the interesting takeaway is that, if we’re given an adic ring, we can check

if it is Noetherian by checking if it satisfies the ACC on open ideals.
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In light of the above proposition, most treatments of formal schemes actually only

treat the adic case. The reason for this is that, frequently, it is useful to have a largest ideal

of definition, because then some statements (e.g., those concerning the topology of X) can be

studied by looking at the reduced subscheme of definition of X. But since the only real (not ad-

hoc) way of ensuring that X has an ideal of definition is to assume that X is locally Noetherian,

and in that case, we have that X is adic, it greatly simplifies exposition to consider only adic

formal schemes.

We will also assume, from here on, that our formal schemes are locally Noetherian

(hence adic), unless otherwise stated. However, for convenience, we will continue to make note

of the locally Noetherian hypotheses in proposition and theorem statements.

When working with ordinary schemes, we frequently consider the construction of affine

and projective space over some scheme. The latter bears special importance because it is part

of the definition of a projective morphism. One can carry out the same constructions for formal

schemes, which we will do here. One of the interesting new aspects of formal schemes, however,

is that we can construct “formal disc space” over a base formal scheme. We will remark on this

more when we arrive at its definition.

First, we remark the following:

Proposition 2.2.17. Fiber products exist in the category of formal schemes (not just locally

Noetherian formal schemes).

Proof sketch. The essential observation to make is that fiber products exist for affine formal

schemes. In light of proposition 2.1.10, we need only observe that the category of admissible

rings admits pushouts. This is exactly proposition 1.3.9.

Once we know that fiber products exist for affine formal schemes, the proof that fiber

products exist in general follows the same route as that for ordinary schemes.

Now we dispense with the definitions of formal affine, projective, and disk space; the

first two are exact analogs of their definitions for ordinary schemes.

Definition 2.2.18. Let X be a formal scheme, and consider Z[x1, . . . , xn] with the discrete

topology. Formal affine n-space over X is

AnX = X× Spf Z[x1, . . . , xn] (= X× AnZ).

Definition 2.2.19. Let X be a formal scheme and consider PnZ as a formal scheme. Formal

projective n-space over X is

PnX = X× PnZ

Definition 2.2.20. Let X be a formal scheme. Formal n-disc space over X is

DnX = X× Spf Z[[x1, . . . , xn]].



34

Formal disc space earns its name because, in Raynaud’s theory of formal models, DnSpf R

is a model for the open unit n-disc over K = Frac(R). By contrast, AnSpf R is a model for the

closed unit disc. It is not hard to see how these claims might be reasonable: the global sections

of DnSpf R should be R[[x1, . . . , xn]], while the global sections of AnSpf R should be R{x1, . . . , xn}.
Elements of the former “should” converge on the open unit disc because, in a nonarchimedean

setting, a power series converges if and only if the limit of its terms is 0, which is true if |xi| < 1

(recall that, in a nonarchimedean field, the ring of integers consists of those elements r such that

|r| ≤ 1). Elements of the latter, likewise, “should” converge on the closed unit disc because

coefficients of such power series tend to zero, hence terms of the series converge to zero even

when |xi| = 1.

Note that, if R is a ring with the discrete topology, AnSpf(R) = AnR, and the same goes

for PnSpf R. In particular, if R = k a field, formal affine and projective space are the usual affine

and projective space.

We might hope to define properties of morphisms such as separated, finite type, pro-

jective, etc. in the category of formal schemes. We can do so, but essentially because we are

dealing with ring maps that are not guaranteed to be finite, we have to modify our definitions a

little bit. First, let us say that

Definition 2.2.21. A morphism f : X → Y of adic formal schemes is adic if there exists an

ideal of definition J of Y such that f∗(IY)OX is an ideal of definition of X.

(Note that, since the induced map of sheaves f# : f∗OY → OX is a map of sheaves

of topological rings, we must have that f#(U) is continuous for every open U . In particular,

(f#(U))−1(I) ⊇ J , where I is any ideal of definition of OX(U) and J is some ideal of definition of

OY(U). So f(J) ⊆ I, i.e., we always have f∗(IY)OX ⊆ IX for some ideal of definition IX. Note

also that, under the convention of regarding ordinary schemes as formal schemes with sheaves of

rings with 0-adic topologies, every morphism of ordinary schemes is adic.)

With the above in mind, let’s return to the locally Noetherian setting and make the

following definition:

Definition 2.2.22. A morphism f : X → Y of locally Noetherian formal schemes is of pseudo-

finite type if the induced map on reduced subschemes of definiton f0 : X0 → Y0 is of finite type.

We say f is of finite type if f is pseudo-finite type and adic.

(Note that every morphism of ordinary schemes of finite type is of finite type according

to this definition.)

Analogously, many properties of morphisms of locally Noetherian formal schemes are

termed pseudo- if the property is satisfied on the reduced subschemes of definition. (For example,

a morphism is pseudo-proper if f0 : X0 → Y0 is proper.)

One interesting exception is that a pseudo-separated morphism is in fact separated:
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(0)

(y − x)

(x, y)

Spec k[[x, y]]

(x, y)

Spf k[[x, y]]

Figure 2.1: Spec k[[x, y]] vs. Spf k[[x, y]].

Proposition 2.2.23. Let f : X→ Y be a morphism of locally Noetherian formal schemes such

that f0 : X0 → Y0 is separated. Then f is separated.

Proof. This result follows because separatedness is a purely topological condition. That is, we

first note that the underlying topological space of X ×Y X is the underlying topological space

of X0 ×Y0 X0. Since f0 is separated, we know that the (topological) image of ∆0 is closed in

X0 ×Y0
X0 is closed. So the image of ∆ is closed in X×Y X, i.e., ∆ is a closed immersion.

2.3 First examples: completions

Now that we’ve introduced formal schemes, we should spend some time looking for

actual examples thereof. As noted earlier, since any ring can be considered admissible (in fact,

adic) with respect to the {0}-adic topology, we can realize any ordinary scheme as a formal

scheme. And, of course, if R is an admissible ring with respect to a topology that is not the

{0}-adic one, Spf R and SpecR are two different spaces.

Example 2.3.1. Let R = k[[x, y]] = lim←−` k[x, y]/(x, y)`. R is manifestly adic with respect to a

topology that is not the 0-adic topology. R has only one open prime ideal, namely, (x, y), so Spf R

is a one-point space. However, SpecR has many points: it is a two-dimensional topological space,

and contains, for example, points corresponding to ideals (y − ax) for a ∈ k. (More generally, it

contains points corresponding to ideals (y − g(x)) where g(x) ∈ k[[x]].) See figure 2.1.

The most elementary “exotic” example of a formal scheme is the completion of a (formal)

scheme along a closed (formal) subscheme:

Definition 2.3.2. Let X be a locally Noetherian scheme, and let Y be a closed subscheme given

by a sheaf of ideals IY . The completion of X along Y is the ringed space consisting of the
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underlying topological space Y with the sheaf of rings given by lim←−` OX/I `
Y . We denote the

completion by X/Y .

Proposition 2.3.3. X/Y is a formal scheme.

Proof. We need to show that every point admits an open neighborhood isomorphic to Spf R for

some admissible ring R. Let SpecS = U ⊆ X be an open affine; it will suffice to show that

U/Y ∩U is a formal affine. Let I = Γ(U,IY ). Since U is affine, we have(
lim←−̀OX/I

`
Y

)
|U ' lim←−̀OX |U/I `

Y |U

' lim←−̀OR/Ĩ
`

Then we just observe that U ∩Y is the underlying topological space of SpecR/I, so that U/Y ∩U

has the same definition as Spf lim←−R/I
`. (Note that this does make use of the Noetherian hypoth-

esis, as otherwise funny things may happen when considering the I-adic completion of R.)

Remark 2.3.4. One could, more generally, discuss the completion of a (locally Noetherian) formal

scheme along a closed formal subscheme. That is, given a closed immersion of formal schemes

Y → X with sheaf of ideals IY, we might consider the space Y equipped with the sheaf of

rings lim←−` OX/I
`+1
Y . The only issue here is whether the resulting (topologically) ringed space

is a genuine formal scheme: what we’d like to do is, as above, start with an formal affine open

U = Spf R ⊆ X and conclude that (U, lim←−OX|U/I `+1
Y |U) ' Spf S where S = lim←−OX(U)/I `+1

Y (U).

As usual, the limit presents no problem: the real question is whether(
OX/I

`+1
Y

)
(U) ' OX(U)/I `+1

Y (U).

The functor M  M4 is an equivalence of categories between coherent OX-modules and OX(U)

modules of finite type. Thus, if IY is known to be coherent, there are no troubles. (One might

worry about taking the completion above, but this completion is well behaved, at least in the

locally Noetherian case.)

Example 2.3.5. In fact, example 2.3.1 is the completion of A2
k along the origin with embedding

given by ideal (x, y) (or, in fact, (x, y)n for any n > 0).

But for a non-affine example, consider the completion of P2
k along a line given by, say,

IL ' O(−1). By definition, the completion is the topological space L equipped with the sheaf of

rings lim←−` OP2/I `
L. The topological space L is isomorphic to P1; choose some point P ∈ L, and

let L′ be a line in P2 meeting L at P . If U = P2 \L′, then (U,OP2 |U ) ' A2
k. Since IL ' O(−1),
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and U is affine, we have

(OP2 |U/IL|nU ) (U) ' OP2 |U (U)/IL|U (U)n

' k[x, y]/(f)n, for some f = αx+ βy + γ

' k[x, y]/(x)n, after a change of coordinates.

So if V = L− P ,
(

lim←−` OP2/I `
L

)
(V ) ' (k[y])[[x]].

A fairly natural question is whether every (say locally Noetherian) formal scheme arises

as a completion of some (locally Noetherian) scheme along a closed subscheme. The answer is

a decisive no. In fact, criteria for determining when a formal scheme is a completion are known

as algebraicity criteria, and arise in a few different contexts. (See, for example, [Băd04, Chapter

10], or [Bos01] for an example with formal schemes over number fields.)

2.4 Differentials on formal schemes

Recall that, for a morphism of ordinary schemes f : X → Y , we can consider the sheaf

of 1-forms Ω1
f , which frequently receives the notation Ω1

X/Y . This sheaf can either be constructed

locally on affines (where it is just the sheafification of the module ΩA/B), or as the pullback of

I /I 2, where I is the sheaf of ideals of ∆(X) in some open subset of X ×Y X.

Commutative algebra informs us that, if f : X → Y is a morphism of finite type

between Noetherian schemes, ΩX/Y should be coherent. Unfortunately, the analogous statement

fails spectacularly for pseudo-finite type morphisms:

Example 2.4.1. Let X = Spf k[[x]]. Then Ω1
X/k is not coherent.

Intuitively, the reason for this is that, for a general power series

g =

∞∑
m=0

bmx
m

we “should have”

dg = lim
`→∞

(∑̀
m=0

(m+ 1)bm+1x
mdx

)
.

However, the module Ω1
k[[x]]/k is not complete, so we cannot pass the limit inside the parentheses.

Consequently, we should have distinct elements dg for some (necessarily infinite) class of power

series that span k[[x]] as a k[x]-module.

In more detail: suppose, to the contrary, that it were, say, by df1, . . . , dfn. Then, for

a general f ∈ k[[x]], we should be able to write df =
∑n
i=1 gidfi. We know, however, that if we

endow Ωk[[x]]/k with the x-adic topology, then

df = lim
`→∞

(∑̀
m=0

(m+ 1)am+1x
mdx

)
,
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where

f =

∞∑
m=0

amx
m.

In particular, we should have that(∑̀
m=0

(m+ 1)am+1x
m

)
dx =

∑̀
i=1

 n∑
j=1

bi,jfi

xi,

where bi,j ∈ k, for arbitrarily large `. But this is possible only if bi,j = 0 for arbitrarily large i,

which is true if and only if f was a k[x]-linear combination of the fi. In particular, we may find

an f not in the k[[x]]-span of the dfi.

However, all is not lost. In fact, the studies [TL07] and [TLR09] show that the sheaf

Ω̂1
X/Y (which is locally of the form Ω̂14

A/B) retains many of the good properties, for locally Noethe-

rian schemes, that Ω1
X/Y holds for ordinary schemes. For example:

Proposition 2.4.2 (Cf. [TL07, Proposition 4.6]). A morphism f : X→ Y of pseudo-finite type

between two locally Noetherian formal schemes is unramified if and only if Ω̂1
X/Y = 0.

Proposition 2.4.3 (Cf. [TL07, Proposition 4.8]). Let f : X → Y be a smooth morphism of

locally Noetherian formal schemes. Then f is flat and Ω̂1
X/Y is a locally free OX-module of finite

rank.

Proposition 2.4.4 (Cf. [TL07, Corollary 4.10]). Let f : X→ Y be an étale morphism of locally

Noetherian formal schemes. Given a pseudo-finite type morphism Y → S of locally Noetherian

formal schemes, we have

f∗Ω̂1
Y/S ' Ω̂1

X/S.

This last proposition is especially interesting in light of the fact that, if X = X/Y is the

completion of a variety over k along a closed subscheme, then the natural map κ : X→ X is etale.

In particular, we have f∗Ω1
X/k ' Ω̂1

X/k. We’ll later find the desire to have a suitable analogue, for

formal schemes, of a “canonical divisor” (though we’ll always be working with Cartier divisors,

hence line bundles). With this last fact in mind, a potential analogue (which actually works well)

might be det Ω̂1
X/k.



Chapter 3

Cohomology and duality

As with ordinary schemes, cohomology is an indispensible tool for formal schemes. To

that end, this chapter is dedicated to collecting results that we will need for our later proofs, and

has little motivation other than their assembly.

Unlike the previous chapter, whose purpose was to introduce our setting and a flavor

of elementary proofs, some of the results in this chapter are far beyond the scope of our writing.

Where appropriate, we’ll offer some proofs, or sketches, but, especially with the results on duality,

we’ll prefer to take the results as given and point to their sources.

3.1 Sheaf cohomology for formal schemes

Here we would like to accomplish the following:

• record the definition of sheaf cohomology for formal schemes (which is the same as sheaf

cohomology for ordinary schemes, but there are a couple different behaviors);

• establish definitions of and notations for the derived (and bounded variants thereof) cate-

gory of sheaves of (quasi-coherent and/or quasi-coherent torsion) OX-modules for a formal

scheme X, and interpret the definition of cohomology in this framework;

• establish a result for computing sheaf cohomology for a particular class of formal schemes

(which includes completions of smooth varieties along closed subvarieties).

The definition of sheaf cohomology we will use is the derived functor one. This definition

is due to Grothendieck,though it has seen treatment in several other places, such as [Har77].

In brief: given any ringed space (X,OX), the category of sheaves of OX-modules has

enough injectives, which implies that every sheaf of OX-modules admits an injective resolution.

That is, given an OX-module F , we may find sheaves I n for n ≥ 0 such that there exists an

39
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exact sequence

0→ F → I 0 → I 1 → I 2 → · · · ,

where I n is injective, i.e., HomOX
(·,I n) is an exact functor. We define Hi(X,F ) to be the

i-th right derived functor of the global sections functor: the functor Γ(X, ·) applied to the exact

sequence above produces a (not necessarily exact) sequence

Γ(X,I 0)
δ0−→ Γ(X,I 1)

δ1−→ Γ(X,I 2)→ · · · ,

and we say Hi(X,F ) = ker δi/ im δi−1. We should that the above definition is independent of the

choice of injective resolution {I n}. This is essentially a fact from homological algebra; for our

discussion, we’ll note that, in fact, any two injective resolutions are homotopy equivalent, and

(though this does not follow from that observation, per se) that we get isomorphic cohomology

groups regardless of the resolution chosen.

Note that we did not stipulate anything about the structure sheaf OX. In particular, we

could take OX to be the constant sheaf Z, which means that the above cohomology groups are

well-defined for sheaves of abelian groups. We could also, in the case of formal schemes, take OX

to be the structure sheaf, and we arrive at cohomology for OX-modules. Whether we choose an

injective resolution of OX-modules or sheaves of abelian groups for a sheaf of OX-modules does

not impact the cohomology groups Hi(X,F ): injective OX-modules are flasque, hence Γ(X, ·)-
acyclic, hence can be used for the computations of cohomology (of OX-modules as sheaves of

abelian groups).

The above definition is already abstract, but concrete in the sense that there is a “proce-

dure” for computing cohomology: given a sheaf F , take an injective resolution, apply the global

sections functor, and then compute kernel mod image. The principal difficulty is, of course, find-

ing an injective resolution. A nice way to “streamline” the definition is to do the following: the

category of OX-modules is an abelian category, so we can construct its derived category D(X) as

follows. First we consider the chain category consisting of chains · · · → F i → F i+1 → · · · with

morphisms F • → G • that are maps ϕi : F i → G i compatible with the morphisms F i → F i+1.

We then form the homotopy category by identifing morphisms that are chain homotopic. Finally,

we form the derived category by localizing at quasi-isomorphisms, i.e., those maps of complexes

that induce isomorphisms on cohomology. That is, a morphism X → Y in the derived category

is a “roof”
X ′

X Y

p

where p is a quasi-isomorphism.

There is a natural map from the category of OX-modules to D(X) that places F in

degree 0. In this parlance, the cohomology groups of F are just the cohomology groups of the

complex obtained by applying Γ(X, ·) to the injective resolution of F in D(X) (note that the



41

terminology is well-founded, as any two injective resolutions are homotopy equivalent, hence

isomorphic in the homotopy category and derived category).

With the general cohomology definitions out of the way, we’d like to know if there are

tools for computing cohomology for formal schemes in general. The most basic is the following:

Proposition 3.1.1 (Cf. [Har68, Proposition 4.1]). Let X be a locally Noetherian formal scheme

pseudo-proper over a field k of characteristic 0, and let F be a quasi-coherent sheaf on X. Then,

for each i ≥ 0,

Hi(X,F ) = lim←−̀H
i(X`,F`),

where X` and F` denote the `-th infinitesimal neighborhood of X0 in X and the restriction of F

to that subscheme, respectively.

3.2 From Grothendieck duality to Serre duality for ordi-

nary schemes

We’ll see in the next chapter that one of the obstacles we face in establishing vanishing

theorems is a lack of an exact analogue for the following theorem:

Theorem 3.2.1 (Serre Duality). Let X be a nonsingular projective variety of dimension n over

an algebraically closed field k, and let F be a locally free sheaf on X. Then

Hi(X,F ) ' Hn−i(X,F∨ ⊗ ωX)∨. (3.2.1)

The form above, however, can be frustrating even in the study of ordinary schemes. In

particular:

• one might hope to apply the above theorem in a situation where X is not nonsingular (but

not too singular);

• one might want to work over a more general ring than an algebraically closed field.

Addressing the first point leads to the notions of Gorenstein and Cohen-Macaulay

schemes: nonsingular schemes are those whose local rings are all regular local rings, while Goren-

stein (resp. Cohen-Macaulay) schemes are those whose local rings are all Gorenstein (resp.

Cohen-Macaulay). We will not recall the definitions of Gorenstein or Cohen-Macaulay here,

and instead content ourselves with the knowledge that one can recover, more or less, the above

formula. In brief, the adjustments that need to be made are: X must be assumed to be equidi-

mensional (if we remove the nonsingular hypothesis, we might have multiple components), and

det Ω1
X must be replaced by some other sheaf, called the dualizing sheaf, of X (in the Gorenstein

case, the two coincide).
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Addressing the second point, roughly speaking, requires study of the injective hulls of

rings. In part this is what leads to the definition of Gorenstein and Cohen-Macaulay rings.

In any case, one reason for introducing the classes of Gorenstein and Cohen-Macaulay

rings is that, in these cases, the more general Grothendieck duality reduces to a statement like

equation (3.2.1). As we remarked previously, if a formal scheme X is projective over a field, it is

in fact an ordinary projective scheme over a field. In particular, Serre duality holds for formal

schemes over fields with hypotheses as stated. The situation of our interest, however, is not that

of projective formal schemes over a field, but that of pseudo-projective formal schemes over a

field. We might hope to recover something like equation (3.2.1) by working backward from a

more general Grothendieck duality, if such a theory exists for formal schemes.

For reasons that we discuss in the next section, there is motivation beyond ours to

establish such a theory of Grothendieck duality for formal schemes, and some progress has been

made toward this goal. The purpose of this section is to show how one can move from a statement

of Grothendieck duality to one of Serre duality under appropriate hypotheses.

Without further ado, we state Grothendieck duality.

Theorem 3.2.2 (Grothendieck Duality). Let f : X → Y be a proper morphism of (ordinary)

Noetherian schemes. If F ∈ D
−
c (X), there is a natural isomorphism, for G ∈ D

+

qc(Y ),

Rf∗RH om•X(F , f !G )
∼−→ RH om•Y (Rf∗F ,G ). (3.2.2)

To work from this statement to Serre duality, first let’s take f : X → Spec k to be the

structure morphism, and take G to be the structure sheaf Ok in degree 0. Let’s also take F to

be a line bundle on X in degree 0. Then the right hand side of (3.2.2) becomes

RH om•k(R•f∗F ,G ) ' RH om•k(H•(X,F ),G ).

Moreover, since G = k has an injective resolution given by k itself (i.e., the sequence 0 → k →
k → 0 is exact, and k is injective) in degree 0, we can explicitly compute

RH om•k(H•(X,F ), k) 'Hom•k(H•(X,F ), k) ' Hom•k(H•(X,F ), k).

By definition,

Homm
k (H•(X,F ), k) =

∏
i∈Z

Homk(Hi(X,F ), ki+m)

' Homk(H−m(X,F ), k)

' H−m(X,F )∨.

Now, to compute the left hand side of (3.2.2), we first need the highly nontrivial result

that f !(Ok) ' ωX [n], i.e., the sheaf ωX shifted left by n. If X is merely Cohen-Macaulay, we

know that f !(Ok) is supported in a single degree, and we might call this sheaf ω◦X . If, moreover,
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X is Gorenstein, then we know that ω◦X is locally free of rank 1. When X is smooth projective

over k, we actually do obtain ω◦X ' det Ω1
X . Supposing J • is an injective resolution for ωX ,

shifting this resolution left by n (so that, for example, the term in degree 0 is actually J n), we

compute

Homm
X(F , ωX [n]) =

∏
i∈Z

HomX(F ,J i+m+n)

'HomX(F ,Jm+n)

' Extm+n
X (F , ωX).

Naturally, applying Rf∗ gives global sections, i.e., Extm+n(F , ωX).

Thus, comparing left and right hand sides, we have

Extm(F , ωX) ' Hn−m(X,F )∨.

Now, if F is locally free of finite rank, take E = HomX(F , ωX) = F−1 ⊗ ωX , and

apply the above formula for E . The right-hand side is simply Hn−m(X,F−1 ⊗ ωX)∨. The

left-hand side, using the formulas we know for HomX , becomes (since ωX is locally free)

ExtmX(F−1 ⊗ ωX , ωX) ' Extm(ωX ,HomX(F−1, ωX))

' Extm(ωX ,F ⊗ ωX)

' Extm(ωX ,HomX(ω−1
X ,F ))

' Extm(ω−1
X ⊗ ωX ,F )

' Extm(OX ,F ) ' Hm(X,F ).

That is, we have

Hm(X,F ) ' Hn−m(X,F−1 ⊗ ωX),

which is equation (3.2.1).

3.3 Grothendieck duality for formal schemes

As we mentioned in the previous section, Serre duality fails for formal schemes in gen-

eral. Of course, it fails for ordinary schemes in general, as well, but we mean to indicate that

nonsingular pseudo-projective formal schemes over an algebraically closed field k do not obviously

satisfy the conclusion. First, the techniques used to prove Serre duality “more directly”, as in,

e.g., [Har77, III.7] do not apply, essentially because they rely on properties of Pnk and embedding

a scheme into Pnk (recall that a pseudo-projective formal scheme X over a field k embeds into

projective space if and only if X is in fact an ordinary scheme). Second, the formulae of the first

section give us no aid, essentially because we would require

ωX ⊗ OX ' ωX ,
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whereas what actually holds is adjunction (this requires X0 to be smooth over k):

ωX ⊗ det NX/X ' ωX .

Since we cannot hope to acquire a Serre duality in the ordinary way, we might instead

hope to find a Grothendieck duality statement, then deduce a statement resembling Serre duality,

as we did in the previous section. In this section, we will give a brief overview of what is known

regarding Grothendieck duality for formal schemes, then explain what statements akin to Serre

duality we can produce.

The major strides toward establishing a Grothendieck duality theory for formal schemes

are due to Alonso Tarŕıo, Jeremı́as Lopez, Lipman, Nayak, and Sastry in the two volumes

[TLL99b] and [LNS05]. Aside from merely trying to generalize Grothendieck duality to a larger

class of objects, one of the main motivations for undergoing these studies is the following (cf.

[LNS05, Preface]): among other things, one of the main results of Grothendieck duality is the

existence of a functor f ! : D+
qc(Y ) → D+

qc(X) for a given finite-type map of separated schemes

f : X → Y . This functor behaves nicely with other already-known functors: for an étale mor-

phism f : X → Y , f ! should be (naturally isomorphic to) f∗, and if f : X → Y is proper, f !

should be a right-adjoint for Rf∗. (Note that this latter statement is, in some sense, the content

of theorem 3.2.2. There are other compatibilities that we do not mention, which collectively

bear the name “the six functors”.) One “trouble” that one encounters is that, if f : X → Y is

proper, we know that f induces a map on stalks OY,f(x) → OX,x, hence a map of affine schemes

fx : Spec OX,x → OY,f(y). The map fx, however, may not be proper, so we can’t hope to treat

f !
x as we do f !. An interesting observation, however, is that, we get a map of formal schemes

f̂ : X → Y, where both X and Y are completions of X and Y along compatible closed sub-

schemes, and similarly an induced map of formal spectra f̂x : Spf ÔX,x → Spf ÔY,f(x). Both f̂

and f̂x are pseudo-proper ; so establishing analogous results for Grothendieck duality for pseudo-

proper maps might allow one to think of global and local duality as different realizations of a

larger theory.

One of the first questions in attempting to generalize Grothendieck duality to formal

schemes is what categories to consider. In essence, the derived category of quasi-coherent sheaves

on a formal scheme (even a Noetherian one) doesn’t behave well enough to work out such state-

ments. [TLL99a] establishes two “Grothendieck duality statements”; one of them considers a

functor D(Y) → D(X), but objects of the essential image are all (equivalence classes of chains

of) direct limits of coherent OX-modules. The other is “Grothendieck duality for quasi-coherent

torsion sheaves”, i.e., sheaves F satisfying F ' lim−→n
HomOX

(OX/I n
X ,F ), where IX is an

ideal of definition for X. (All statements are made in the case where X is assumed to be at least

locally Noetherian, if not Noetherian.) In some sense, this is the more “correct” generalization

of Grothendieck duality for ordinary schemes, since for an ordinary scheme X, IX = 0, so all

sheaves of OX -modules are torsion by this definition.
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The main result of interest to us from [TLL99a] is the following:

Theorem 3.3.1 (Cf. [TLL99a, Theorem 5]). Let X and Y be Noetherian formal schemes and

let f : X→ Y be a pseudo-proper map. Then there is a natural isomorphism

Rf∗RH om•X(G , f !F )
∼−→ RH om•Y(Rf∗G ,F )

for G ∈ Dqct(X), F ∈ D̃
+

qc(Y).

In order to work back to a Serre duality-like statment, since the functor f ! in the above

theorem must inherently account for torsion, the authors introduce cohomology groups H ′iX(E ),

for any E ∈ D(X). In the case of our interest, these turn out to be akin to cohomology with

supports:

Proposition 3.3.2 (Cf. [TLL99a, 2.3.4]). If X is the completion of a Noetherian scheme X

along a closed subscheme Z, then for F ∈ D(X),

H ′iX(κ∗F ) ' Hi
Z(X,F ).

Finally, essentially by the same analysis that we carried out in the previous section,

although with more care to detail about torsion properties, the authors arrive at:

Theorem 3.3.3 (Cf. [TLL99a, Remark 2.3.8]). If κ : X→ X is the completion of a Gorenstein

of pure dimension s separated scheme X → Y along a closed subset Z, proper over Y , then there

is an isomorphism

Hs−i(X,F )
∼−→ (H ′iX(F−1 ⊗ ωX))∨.

A few final remarks: in this case, ωX = κ∗ωX , as we generally expect from the previous

chapter.



Chapter 4

Vanishing theorems

Let’s start the discussion of this chapter with the following “definition”: a vanishing

theorem for sheaf cohomology is a set of conditions on a topological space X, a sheaf F (of

abelian groups) on X, and i (an integer) such that Hi(X,F ) = 0. (Note the abuse of notation:

strictly speaking, Hi(X,F ) should be the group with a single element.) We could more generally

speak of vanishing theorems for other cohomology theories, but we will focus our attention on

the aforementioned case, so we’ll content ourselves with the given definition.

Vanishing theorems typically hold little intrinsic interest:

Why should one care about this problem? Actually one doesn’t, but in various situ-
ations these cohomology groups come up as intermediate objects, and understanding
them helps to solve the original problem. [Kol87]

As already mentioned in the introduction, our interest in such theorems stems from the desire

to establish a minimal model program for (some subcollection of) formal schemes, where such

theorems permit for “lifting of sections” and inductive arguments. We will comment on this more

in the next chapter. However, deformation theory is another example where these cohomology

groups arise as intermediary objects:

Heuristically, in deformation theory, the question of focus is whether there are “contin-

uous” formations of a particular geometric object, i.e., whether one can find a “continuous path”

between a point representing the object in question and some other object within a “parameter

space”. For example, the “parameter space” might be the “space of subvarieties” of a particular

algebraic variety. This subject quickly becomes far more technical than our scope allows, so let it

suffice to say that tangent spaces to these parameter spaces frequently correspond to cohomology

groups H0 or H1 and local equations frequently correspond to H1 or H2.

The “classical” vanishing theorem is Kodaira vanishing:

Theorem 4.0.1 (Kodaira vanishing). Let X be a smooth projective variety of dimension n over

46
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a field k of characteristic 0, and let L be an ample line bundle on X. Then

Hi(X,L ⊗ ωX) = 0 for i > 0.

Equivalently, by Serre duality,

Hi(X,L −1) = 0 for i < n.

Several variants of this theorem have been established:

Kodaira–Akizuki–Nakano vanishing, which is sometimes called just Kodaira–Nakano van-

ishing, makes use of the same hypotheses, but instead makes conclusions on the groups

Hi(X,ΩjX ⊗L ) depending on the values i, j, and n. As with classical Kodaira, there is

also a form for L −1.

Kawamata–Viehweg vanishing instead focuses on divisors D which are big and nef, instead

of ample, and draws conclusions for Hi(X,OX(KX + D)). Kawamata-Viehweg vanishing

often refers to an analogous statment where D is a Q-divisor.

Kollár’s vanishing theorem considers a surjective morphism f : X → Y of projective varieties,

where X is smooth, and draws conclusions on Rif∗OX(KX) depending on i and dimX −
dimY .

Grauert–Riemenschneider vanishing is similar to Kollár’s vanishing theorem, except that f

is required to be finite and generically surjective, and the conclusion is for all i > 0.

An interesting thing to note is that most proofs of vanishing theorems are analytic

in nature. Deligne and Illusie manage to provide a proof [DI87] of Akizuki–Nakano–Kodaira

vanishing that used only algebraic methods, although this proof is not known to extend to any of

the others. See also [EV92]. This might seem to present a problem for formal schemes (because

a formal scheme need not have a realization as an analytic variety), but our proofs will actually

make use of the case of ordinary schemes, and we will sidestep the issue.

The general idea is that the basic hypothesis for a vanishing theorem is some sort of

positivity of the line bundle in question. As a general rule of thumb, this extends to vanishing

theorems for vector bundles. In our investigation of vanishing theorems for formal schemes, we

will make use of vanishing theorems for vector bundles; the first section of this chapter outlines

some of the results that we will use. The second section is where we establish our main result.

The third is a discussion of a rather general class of examples where undesirable behavior occurs.

4.1 Positivity

The basic notion of positivity for vector bundles is ampleness, which is defined as follows:
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Definition 4.1.1. Let E be a vector bundle on X, and let (as usual) π : P(E ) = Proj(S(E ))→
X be the projective bundle of E . E is ample if OP(E )(1) is ample.

As an easy consequence of this definition, we have that quotients of ample vector bundles

are ample: a surjection E → F induces an embedding P(F ) → P(E ), where OP(F)(1) =

OP(E )(1)|P(F). But restrictions of ample line bundles are ample, so we have our claim.

As consequences, we have the following facts:

Proposition 4.1.2 (Cf. [Har68, Lemma 5.6]). If Y is a non-singular subscheme of Pn, then its

normal bundle is ample.

Proposition 4.1.3. Suppose E is an ample vector bundle of rank r on a nonsingular scheme

X. Then so is Sr+`E ⊗ det E−1 for any ` ≥ 1.

This actually follows from the following statement of commutative algebra:

Lemma 4.1.4. Let M and N be R-modules with submodules M ′ and N ′, respectively. Then the

natural map

M ⊗N → (M/M ′)⊗ (N/N ′)

is surjective.

Proof. First tensor the exact sequence

0→M ′ →M →M/M ′ → 0

with N to conclude that the natural map M ⊗N → (M/M ′)⊗N is surjective (since tensoring

is right-exact). Then tensor the exact sequence

0→ N ′ → N → N/N ′ → 0

with (M/M ′) to conclude that (M/M ′) ⊗ N → (M/M ′) ⊗ (N/N ′) is surjective. Then the

composition M ⊗N → (M/M ′)⊗ (N/N ′) is surjective, as desired.

Corollary 4.1.5. Suppose M1, . . . ,Mn are free R-modules, and that N1, . . . , Nn are submodules

of M⊗r11 , . . . ,M⊗rnn , respectively. Then the natural map

M⊗r11 ⊗ · · · ⊗M⊗rnn →
(
M⊗r11 /N1

)
⊗ · · · ⊗

(
M⊗rnn /Nn

)
is surjective. In particular, the codomain is isomorphic to a quotient of the domain.

Proof. Immediate. However, here is an explicit computation: by induction on n. The case n = 1

is trivial.

Suppose the result holds for n = m. Let

M = M⊗r11 ⊗ · · · ⊗M⊗rmm

M =
(
M⊗r11 /N1

)
⊗ · · · ⊗

(
M⊗rmm /Nm

)
.
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We aim to show that the map

M ⊗M⊗rm+1

m+1 →M ⊗
(
M
⊗rm+1

m+1 /Nm+1

)
, m⊗ a 7→ m̄⊗ ā

is surjective. Say that Mm+1 has rank `, rm+1 = s, and choose a basis e1, . . . , e` for Mm+1.

Suppose we are given m̄⊗ ā ∈M⊗
(
M⊗sm+1/Nm+1

)
, where m ∈M and a = a1⊗· · ·⊗as ∈Ms

m+1.

Write

ai =
∑̀
j=1

ai,jej

and observe that

∑
j1,...,js

(
s∏
i=1

ai,ji

)
m⊗ ej1 ⊗ · · · ⊗ ejs

7→
∑

j1,...,js

(
s∏
i=1

ai,ji

)
m̄⊗ (ej1 ⊗ · · · ⊗ ejs)

=
∑

j1,...,js

m̄⊗ (a1,j1ej1 ⊗ · · · ⊗ as,jsejs)

=
∑

j1,...,js−1

m̄⊗

a1,j1ej1 ⊗ · · · ⊗ as−1,js−1
ejs−1

⊗

∑̀
j=1

as,jej


=

∑
j1,...,js−1

m̄⊗
(
a1,j1ej1 ⊗ · · · ⊗ as−1,js−1

ejs−1
⊗ as

)
= m̄⊗ a1 ⊗ · · · ⊗ as = m̄⊗ ā.

So indeed the map is surjective, as we desire.

Proof of proposition 4.1.3. Simply observe that:

• Sr+`E is a quotient of E⊗r+`; and

• det E−1 =
∧r E−1 is a quotient of (E−1)⊗r.

By the lemma, (E⊗r+`)⊗(E−1)⊗r → Sr+`E ⊗det E−1 is surjective on stalks, so Sr+`E ⊗det E−1

is isomorphic to a quotient of E⊗r+` ⊗ (E−1)⊗r ' E⊗`. Since E is ample, so is E `, and any

quotient thereof. So Sr+`E ⊗ det E−1 is ample.

Unfortunately, vanishing theorems for vector bundles are trickier than they are for line

bundles. Amplitude of a given vector bundle E is usually not enough to conclude vanishing of

cohomology groups of E itself. The Griffiths and Le Potier vanishing theorems operate under

the hypothesis that E is ample, but their conclusions concern cohomology groups of ωX ⊗
∧m E

and ωX ⊗ Sm(E ) ⊗ det E . There is a rather strong form of positivity, however, which produces

familiar-looking vanishing theorems:
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Theorem 4.1.6 (Cf. [Laz04, 7.3.18–7.3.19], [SS85, Chapter VI]). Let X be a compact Kähler

manifold of dimension n, and let E be a vector bundle equipped with a Hermitian metric that is

Nakano semipositive on X and which is Nakano positive in a neighborhood of a point x ∈ X.

Then

Hi(X,E ⊗ ωX) = 0 for i > 0.

Nakano positivity is the same as ampleness for line bundles, but for general vector

bundles, it is a much stronger notion of positivity than ampleness (see [Laz04, 6.1.D, Theo-

rem 6.1.25]). Interestingly, one can check for Nakano positivity by checking for ampleness of a

particular vector bundle:

Proposition 4.1.7 (Cf. [LSY13, Theorem 1.1], [Ber09]). Let X be a compact Kähler manifold,

E a holomorphic vector bundle on X, and F a line bundle on X. Let r be the rank of E and

` ≥ 0 an arbitrary nonnegative integer. If Sr+`(E ) ⊗ det E−1 ⊗F is ample over X, then there

exists a smooth Hermitian metric f on S`(E )⊗F such that (S`(E )⊗F , f) is Nakano positive.

4.2 A Kodaira vanishing theorem for formal schemes

Theorem 4.2.1 (Kodaira vanishing for pseudo-projective formal schemes). Let X be a locally

Noetherian formal scheme that is pseudo-projective over a field k of characteristic 0, and let L

be a pseudo-ample line bundle on X. Assume further that:

1. the reduced subscheme of definition X0 of X is a locally complete intersection in X;

2. the normal bundle NX0/X of X0 in X is ample; and

3. X0 is nonsingular.

Then

Hi(X,L −1) = 0 for i < d = dimtopX.

Proof. The pseudo-projectivity of X in particular makes X pseudo-proper, and L −1 is certainly

quasi-coherent, so proposition 3.1.1 allows us to write

Hi(X,L −1) ' lim←−̀H
i(X`,L`).

Thus we are reduced to showing that Hi(X`,L`) = 0 for each i < d. The basic idea is to use

classical Kodaira vanishing for Hi(X0,L0), and then use the ampleness of the normal bundle to

conclude inductively that Hi(X`,L`) = 0.

To that end, let ` ≥ 1, and consider the short exact sequence of sheaves

0→ I `
X/I

`+1
X → OX/I

`+1
X → OX/I

`
X → 0.
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L −1 is locally free of rank 1, so we may tensor by L −1 to produce another short exact sequence

0→ I `
X/I

`+1
X ⊗L −1 → L −1

` → L −1
`−1 → 0.

In turn, we get a long exact sequence on cohomology

· · · Hi(X0,I `
X/I

`+1
X ⊗L −1

0 ) Hi(X`,L
−1
` ) Hi(X`−1,L

−1
`−1)

Hi+1(X0,I `
X/I

`+1
X ⊗L −1

0 ) · · · .

We will show that the terms Hi(X0,I `
X/I

`+1
X ⊗L −1

0 ) are 0 for each i < d. This will inform us

that, for i < d− 1,

Hi(X`,L
−1
` ) ' Hi(X`−1,L

−1
`−1),

and, for i = d− 1, the sequence

0→ Hi(X`,L
−1
` )→ Hi(X`−1,L

−1
`−1)

is exact. By classical Kodaira vanishing, we know that Hi(X0,L
−1
0 ) = 0 for i < d, so induction

on ` gives us our desired result.

We need only show, then that, those terms are 0. Now, I `
X/I

`+1
X ' S`(IX/I 2

X). Also,

X0 is smooth projective of dimension d, so we may write

Hi(X0,I
`
X/I

`+1
X ⊗L −1

0 ) ' Hi(X0, S
`(IX/I

2
X)⊗L −1

0 )

' Hd−i(X0, (S
`(IX/I

2
X)⊗L −1

0 )−1 ⊗ ωX0
).

Since we are working in characteristic 0, taking symmetric powers of vector bundles

commutes with taking duals, and we may write S`(IX/I 2
X)−1 ' S`((IX/I 2

X)−1) ' S`(NX0/X).

Thus

Hd−i(X0, (S
`(IX/I

2
X)⊗L −1

0 )−1 ⊗ ωX0) ' Hd−i(X0, S
`((IX/I

2
X)−1)⊗L0 ⊗ ωX0)

' Hd−i(X0, S
`(NX0/X)⊗L0 ⊗ ωX0

).

So now we find ourselves wishing to show

Hd−i(X0, S
`(NX0/X)⊗L0 ⊗ ωX0

) = 0.

In consideration of theorem 4.1.6, it will suffice to show that S`(NX0/X)⊗L0 is Nakano positive.

In turn, proposition 4.1.7 informs us that we need only show Sr+`(N ) ⊗ det(IX/I 2
X) ⊗L0 is

ample. By hypothesis 2, NX0/X is ample, so by proposition 4.1.3, since ` ≥ 1, Sr+`(NX0/X) ⊗
det(IX/I 2

X) is as well. Since the tensor product of two ample vector bundles is again ample, we

have Sr+`(NX0/X)⊗ det(IX/I 2
X)⊗L0 is as ample, and our desired conclusion follows.
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4.3 Nonvanishing

As we remarked in the last section, some of the hypotheses in theorem 4.2.1 seem to

be necessary only for the method of proof, as opposed to the truth of the theorem. Recall also

that the Kodaira vanishing theorem for ’ordinary’ schemes has a form for the sheaf ωX ⊗L . If,

indeed, we wish to bootstrap some form of the minimal model program, we would like to have

a vanishing theorem of that form, since most statements of the minimal model program involve

understanding ωX as a divisor (class).

The purpose of this section is to introduce and prove the following result:

Proposition 4.3.1. Let X be the completion of a smooth projective d-dimensional variety X over

a field k of characteristic 0 along a hyperplane Y (we assume d > 0, and that Y is a hyperplane

that does not contain X, i.e., Y ∩X is a divisor on X), and let L = κ∗F , where κ : X→ X is

the completion morphism, and F is ample on X. Then

Hi(X, ωX ⊗L ) = 0 if i 6= 0, d− 1

and, perhaps more importantly,

Hd−1(X, ωX ⊗L ) 6= 0,

H0(X, ωX ⊗L ) ' Hd(X,F−1).

Before we go into the proof, let us discuss the relevance of this result. X, as described

in the theorem, can be taken to have nonsingular reduced subscheme of definition by Bertini’s

theorem (if we assume k is algebraically closed). Moreover, in this case, H ∩X will be a smooth

subvariety of X of codimension 1, hence will be a smooth prime divisor. In particular, the ideal

sheaf of Y in X is locally free, thus Y ⊆ X is a locally complete intersection. However, the

normal bundle of Y need not be ample in X. So this proposition forms a counterpoint of sorts

to theorem 4.2.1 and suggests that the ampleness of the normal bundle may be more than just

a technical assumption in vanishing theorems for formal schemes. That is, while theorem 4.2.1

seems a suitable analogue of one of the statements of Kodaira vanishing, what we would like to

be true is

Hi(X, ωX ⊗L ) = 0 for i > 0.

In particular, we really would like Hd−1(X, ωX⊗L ) to be 0. In going through the proof, however,

we will find that this cohomology group is actually isomorphic to the global sections of a (nonzero)

sheaf on an affine variety. Metaphorically, there’s “no hope” that we could end up with this group

being zero in general.

This result also has some rather negative implications for our hopes to apply it to lifting

sections. That is, in very rough terms, we’d like to consider the following situation: we have

a (say smooth) projective variety X and a smooth prime divisor S ⊂ X. We’d like to gain
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information about divisors on X from divisors on S. A starting point is that we already have

the relation of adjunction between their canonical divisors: ωS ' ωX ⊗ det NS/X . So we might

hope to compare divisors of the form KX + S + ∆. Again, very roughly speaking, we can do so,

but instead of arriving at an equality of divisors, we end up with an equality of linear systems

|m(KS + ∆′|S)| = |m(KX + ∆)|S .

The key point in proving this fact is that, for a divisor D, |D| = H0(X,OX(D)); so the technique

is to set up some short exact sequence of sheaves on X

0→ OX(KX + ∆− S)→ OX(KX + ∆)→ OS(KX + ∆)→ 0,

which leads to an induced long exact sequence in cohomology

· · · → H0(X,KX + ∆)→ H0(S, (KX + ∆)|S)→ H1(X,OX(KX + ∆− S))→ · · · .

What we’d really like to say is that the H1 term above is 0, and we can do so, in the

case of ordinary schemes with suitable hypotheses on ∆. However, with our theorem above, we

know there will be times when we cannot conclude H1 = 0, namely, in cases when d = 2. The

problem is that we use the situation above in inductive proofs, so, unless there is a way to deal

with the case d = 2 differently, we find ourselves “stuck”.

Proof of proposition 4.3.1. By theorem 3.3.3, we have

Hd−i(X, ωX ⊗L ) ' (H ′iX((ωX ⊗L )−1 ⊗ ωX))∨ ' (H ′iX(L −1))∨.

By proposition 3.3.2, since L = κ∗F ,

H ′iX(L −1) ' Hi
Y (X,F−1).

Ordinarily, cohomology with supports is difficult to compute, but we are in a fairly nice

situation. We know there is a long exact sequence

· · · → Hi−1(X − Y,F−1)→ Hi
Y (X,F−1)→ Hi(X,F−1)→ Hi(X − Y,F−1)→ · · · .

The key observation now is that X−Y is in fact affine, so we know that the terms Hi(X−Y,F−1)

are zero for i > 0. Thus, we have

Hi
Y (X,F−1) ' Hi(X,F−1) for i > 1

and a long exact sequence

0 H0
Y (X,F−1) H0(X,F−1) H0(X − Y,F−1)

H1
Y (X,F−1) H1(X,F−1) 0 · · · .
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By classical Kodaira vanishing, we know Hi(X,F−1) = 0 for i < d. So, for 1 < i < d, we

have Hi
Y (X,F−1) = 0, H0

Y (X,F−1) = 0, and H0(X − Y,F−1) injects into H1
Y (X,F−1). So

Hi(X, ωX ⊗L ) ' Hd−i
Y (X,F−1), and the latter is zero if d− i = 0, i.e., i = d, or 1 < d− i < d,

i.e., 0 < i < d − 1. In the case d − i = 1, i.e., i = d − 1, we know H0(X − Y,F−1) injects

into Hi(X, ωX ⊗ L ), and in the case d − i = d, i.e., i = 0, we know that H0(X, ωX ⊗ L ) '
Hd(X,F−1).



Chapter 5

Conclusions and further

directions

Let us return to the question we asked so long ago: could there exist a minimal model

program for some class of formal schemes?

It might seem premature to ask this question now, as we’ve only discussed vanishing

theorems. Certainly, such theorems are useful (even necessary) tools in birational geometry,

but they alone do not yield something as vast as a minimal model program. Recent work of

Cascini, Corti, and Lazić, however, suggets that a “good enough” vanishing theorem, along with

a sufficiently sophisticated theory of divisors, allows one to set up a minimal model program.

We’ll briefly summarize their work (and its contrast with the “conventional” way to establish a

minimal model program) here, but for more details, see [CL12] and [CL13].

5.1 The conventional MMP and a new outlook

History and traditions

We’ve talked an awful lot about the MMP without giving any notion of what it is. Here

we’ll give a rough sketch of the ideas behind it. We caution the reader that this is not a rigorous

treatment, and that several such have been written on the subject. See, for example, [KM98]

and [Deb01, Chapters 6–7]. Our sketch here will follow the latter.

The MMP, also known as Mori theory, grew out of a desire to generalize, for higher-

dimensional varieties, a collection of results known to be true for (smooth) algebraic surfaces. To

review these, let S be a smooth projective algebraic surface over C.

Denote by KS the canonical divisor of S. Thus far in our writing, we’ve largely avoided

the term divisor and instead preferred to consider line bundles; we will comment on this more
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in the next section. For now, since S is a smooth variety over a field, we have a correspondence

between Weil and Cartier divisors, and we can freely move back and forth between the two. The

motivating results behind Mori theory for surfaces come down to the following idea: understand-

ing the (birational) geometry of S is closely tied to understanding numerical properties of KS .

That is, the geometry of S can more or less be determined by understanding how KS intersects

divisors on S. The key result is the following:

Theorem 5.1.1 (Termination of MMP for surfaces). Given a smooth projective surface S as

above, there exists a smooth surface T , birational to S, such that either

1. KT is nef, i.e., KT · C ≥ 0 for any curve C ⊆ T ; or

2. T is birational to P2 or a P1-bundle over a curve.

Actually, the MMP itself is more than just the above statement: it is a procedure to

produce the birational morphism between S and T mentioned above. The procedure roughly

works as follows:

1. Start with S0 = S as above.

2. If KSi is nef, set T = Si, and the birational morphism of interest is the composition of

morphisms S0 → S1 → · · · → T .

3. If not, there exists a curve C ⊆ Si such that KSi ·C < 0. By the cone theorem (see theorem

5.1.2 below), there exists a birational morphism Si → Si+1 where either:

• dimSi+1 ≤ 1. In this case, set T = Si+1, and the birational morphism of interest is

the composition of morphisms S0 → S1 → · · · → T ; or

• dimSi+1 = 2; continue with step 2, replacing i = i+ 1

The result that pushes the above through is the following:

Theorem 5.1.2 (Cone theorem). If S is a smooth projective surface, there are countably many

extremal rays {Ri} of the closed cone of curves on S which KS intersects negatively. Moreover,

NE(S) = NE(S)KX≥0 +
∑

Ri.

Furthermore, for such an extremal ray, there is a birational morphism π : S → Z that contracts

a curve C if and only if C spans the ray. Either dimZ ≤ 1, which leads to the two cases above,

or Z is a smooth surface and π contracts a −1-curve.

There are quite a few terms in this theorem which we have not defined. Loosely speaking,

however, the cone of curves is an R-span of cohomology classes of curves in S. The theorem above

essentially says that this cone breaks into two pieces: one which consists of divisor classes that
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KX intersects nonnegatively, and one whose members KX intersects negatively. Moreover, the

latter class is “polyhedral”, with possible accumulation points at the KX = 0 locus. Finally, the

extreme rays of the polyhedral part of this cone may be contracted to produce a minimal model.

The MMP for higher-dimensional varieties hopes to follow the procedure above, but

there are quite a few changes that need to be made:

• Instead of working with smooth varieties, one has to allow some mild singularities. Es-

sentially this requirement comes from the fact that the contraction theorem for surfaces

actually produces a smooth surface, while in the higher-dimensional setting, the variety it

yields may have singularities itself.

• Rather than working with just KXi , one works with log pairs (Xi,∆i) where ∆i is a bound-

ary divisor, i.e., an effective (R- or) Q-divisor that has simple normal crossings after some

birational transformation Yi → Xi. Roughly speaking, one thinks of ∆i as a “boundary”

because the birational tranformations in question produce isomorphisms of the open set

Xi−∆i. Consequently, rather than considering numerical properties of KXi , one considers

numerical properties of KXi + ∆i. Also, the singularities mentioned above actually refer

to singularities of the pair (Xi,∆i).

• Sometimes contractions aren’t enough; one has to consider other birational morphisms

called flips and flops. The introduction of this class of morphisms gives rise to a big

question, namely, whether performing one of these operations meaningfully brings one

closer to a termination point of the above procedure.

In fact, one actually considers “different sorts” of MMPs for higher-dimensional varieties

(e.g., an MMP with scaling, a relative MMP, etc.). The celebrated paper [BCHM10] proves that

the MMP exists for smooth projective varieties of general type. A lot of research now focuses on

generalizing the methods in these proofs to other settings and applications.

A new perspective

Ordinarily, one uses the MMP to establish a result like the following:

Theorem 5.1.3 (Cf. [CL12, Theorem 1.1]). Let X be a smooth projective variety and ∆ a

Q-divisor with simple normal crossings such that b∆c = 0. Then the log canonical ring

R(X,KX + ∆) :=
⊕
m

H0 (X,OX(bm(KX + ∆)c))

is finitely generated.

The surprising result of [CL13] is that, knowing the above result, one can actually

establish an MMP. Roughly speaking, finite generation of the log canonical ring characterises
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the cone of curves sufficiently well enough to detect extremal rays, which, as before, we’d like

to contract. The finite generation also (after a bit of work) demonstrates that the procedure

terminates.

In turn, and even more surprising, is that [CL12] demonstrates that theorem 5.1.3

follows simply from Kawamata–Viehweg vanishing. In a bit more detail, the idea is the following:

Kawamata–Viehweg vanishing allows one to “lift sections” for suitable divisors. That is, for a

suitable divisor D, one can show

H0(X,OX(KX +D))� H0(S,OS(KX +D)),

where S ⊆ X is a smooth divisor. (Again, this is a sketch; some of these statements are quite

imprecise.) Then careful bookkeeping in the study of adjoint rings and diophantine approximation

allows one to characterise the finite generation of R(X,KX +D) in terms of the finite generation

of the “restricted canonical ring”

resS R(X,KX +D) :=
⊕

resS H
0(X,OS(bm(KX +D)c)).

Then induction on the dimension of X establishes the result.

With the above outline of establishing of the MMP, it seems reasonable to hope that

sufficiently nice vanishing theorems could lead to minimal model programs in other contexts,

such as formal schemes.

5.2 Where do formal schemes stand?

Resolution of singularities and birational geometry

Of course, for any of the above to make sense for formal schemes, we need to have an

appropriate analogues, for formal schemes, of the following notions:

Birational morphisms of formal schemes don’t appear, at least not in a standard way with

any frequency, in the literature. However, admissible blow-ups of formal schemes receive

regular attention, and if any morphisms should be considered birational, blow-ups should be

among them. One problem, however, is that it is not necessarily clear what the birational

inverse of this admissible blow-up is. In Raynaud’s theory of formal models, one formally

inverts such morphisms by working in a category of formal schemes that has been localized

at such morphisms.

Smooth (or mildly singular) formal schemes are notions with somewhat precise meaning.

The papers [TL07] and [TLR09] propose notions for smooth morphisms of formal schemes.

The term nonsingular has traditionally been applied to formal schemes in the same sense

that it applies to ordinary schemes (i.e., all local rings are regular local rings); however,
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see the next point. Classes of “mild” singularities as are present in the MMP for varieties

have not yet been defined.

Resolution of singularities in characteristic zero now exists for formal schemes, due to the

work of Temkin. See [Tem11] for a heuristic overview of the known results, and [Tem12]

and [Tem17] for rigorous treatments. Of particular note is that these treatments make the

singular locus of a formal scheme a bona fide formal subscheme of the formal scheme of

interest, rather than a subset of the topological space (as is done for varieties).

Intersection theory on formal schemes hasn’t received much attention, though it seems likely

it would, in the case of locally Noetherian formal schemes, be the same as intersection

theory on the reduced subschemes of definition.

Divisors on formal schemes at this point only manifest as Cartier divisors; see the next sec-

tion for further commentary on this subject.

The takeaway from the above points, except perhaps the last one, is that it seems

plausible that the underlying machinery for a minimal model program might exist, especially

upon restriction to a “nice enough” class of formal schemes. It is clear, however, that quite a few

definitions would need to be made.

Divisors on formal schemes

One of the obstructions to carrying out the development of a minimal model program

is what a good notion of a divisor on a formal scheme would be. In the case of smooth varieties

over a field, we have a correspondence between Weil divisors and Cartier divisors, and we can

freely move back and forth between the two. For formal schemes, however, this is not the case:

Example 5.2.1. Consider the formal scheme X = Spf
(

lim←− k[x, y]/(xy)n
)

. This is a regular

formal scheme, isomorphic to the completion of A2
k along the two axes (see figure 5.1). The fact

that this is regular boils down to the fact from commutative algebra that the completion of a

regular local ring along its maximal ideal is again regular. (So that, in particular, the completion

of any smooth variety along a closed subscheme is regular.) Moreover, X is smooth over k, since

its structure morphism is the composition of the completion morphism (which is étale) X→ A2
k

with the projection A2
k → k (which is smooth).

However, the line bundle generated by
(

1
y

)
is not a Weil divisor, as its support is the

entire x-axis, i.e., a codimension 0 subset!

What exactly goes wrong in the example above is a little tricky to place. On the one

hand, as the example indicates, smooth, in the case of formal schemes over a field, does not imply

irreducible. On the other, one might say that the traditional formulation of Cartier divisors
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Figure 5.1: Spf
(
proj limn k[x, y]/(xy)n+1

)
somehow allows for “too many sections”: the section y in the example above is topologically

nilpotent, so it should be considered “almost a zero divisor”.

In any case, it is clear that some additional thought needs to go into how to discuss

divisors on formal schemes. We can, of course make use of Cartier (even, formally, Q-Cartier)

divisors, but it seems like they are not yet quite the tools we need.

So, could there be a minimal model program for formal schemes? At this point, the

answer seems to depend on the optimism of the one answering. Some of the machinery that goes

into building an MMP does exist for formal schemes. And, where it exists, it seems to work. The

problem thus seems to be a lack of fully-developed machinery, which, hopefully, time will solve.
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structure theorems for smooth maps of formal schemes. Journal of Pure and Applied
Algebra, (213):1373–1398, 2009.

http://arxiv.org/0805.0756
http://stacks.math.columbia.edu
http://arxiv.org/0912.2570


63

[Yas09] Takehiko Yasuda. Non-adic formal schemes. Int. Math. Res. Not., (2):2417–2475,
2009.




