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Abstract. The integral method is used to derive approximate solutions for the prob
lem of absorption of water into an initially unsaturated porous medium. This problem is 
governed by a nonlinear diffusion equation, for which exact solutions are generally not 
obtainable. Approximate solutions are obtained for media with two different commonly-used 
sets of characteristic curves. those of Brooks-Corey and van Genuchten-Mualem. The 
approximate solutions compare reasonably well with numerical results, and also have the 
advantage of clearly displaying the manner in which the solutions depend on the hydrological 
parameters of the problem. 

Introduction. The integral method for deriving approximate solutions to nonlinear 
partial differential equations that arise in engineering and the physical sciences was intro
duced by Pohlhausen [1] to treat the problem of laminar flow over a flat plate. Pohlhausen 
approximated the velocity distribution through the boundary layer by a low-order polynomial 
whose coefficients depended on the unknown boundary-layer thickness. Although the poly
nomial did not satisfy the governing momentum equation exactly, it was forced to satisfy the 
integral of this equation over the boundary layer thickness. This led to a simple ordinary 
differential equation that governed the thickness of the boundary layer along the length of the 
plate. The approximate solution thus derived, using only a quartic profile, compared reason
ably well with the exact numerical solution of Blasius [2]. In particular, the approximate 
solution predicted certain properties of interest, such as the skin friction, -to within 3% of the 
exact value. 

*Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, 
Berkeley, CA 94720. This work was done under U.S. Department of Energy Contract No. 
DE-AC03-76SF00098,adrninistered by the Nevada Operations Office, in cooperation with the 
U.S. Geological Survey, Denver. 
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The integral method seems to have been first brought to bear on diffusion problems by 
Landahl [3], who in the succeeding years derived approximate solutions to many diffusion 
problems arising in biophysics. The method has since been widely used in heat conduction 
problems (see [4], and references therein). Since linear diffusion equations can usually be 
solved by classical methods such as separation of -variables or Green's functions, the integral 
method is most useful in deriving approximate solutions to nonlinear problems for which 
closed-form solutions are not obtainable. One problem in the earth sciences which leads to a 
highly nonlinear diffusion equation is that of fluid flow in partially saturated' (also called 
"unsaturated") porous media. In such problems, the nonlinearities are usually fairly strong, 
thus limiting the usefulness of perturbation methods. Of course, numerical solutions can 
always be obtained for such problems [5]. Numerical methods, however, have the disadvan
tage of not clearly showing the manner in which the solution depends on the various parame
ters of the problem. The integral method leads to closed-form (albeit approximate) solutions 
which do give insight into the effect of the various boundary conditions and constitutive 
parameters. of the problem. The purpose of this paper is to illustrate how the integral 
approach can lead to simple, but relatively accurate, solutions to otherwise intractable unsa
turated flow problem~. 

Formulation of the Problem. Horizontal flow of water in an unsaturated medium is 
usually thought to be governed by Richards' partial differential equation [6]: 

~[kkr("') ~] = as . 
ax J.lCI> ax at. (1) 

In this equation, S is the liquid saturation, which is equal to the fraction of the pore space 
that is filled with water. '" is the potential, or capillary pressure, and is related to the satura
tion through a capillary pressure function, S = S ("'). In regions of partial liquid saturation, 
'" will be negative. k is the absolute (i.e., fully-saturated) permeability of the medium, cp is 
its porosity (assumed constant), and J.l is the viscosity of water. kr is the dimensionless rela
tive permeability function, which measures the decrease in the permeability of the medium to 
the presence of air ih some of the pores. If hysteretic effects are neglected, kr and S are 
single':'valued functions of'll. Equation (1) can also be used for the initial stages of vertical 
infiltration, when gravitational forces are still negligible. (-

Equation (1) embodies the principal of conservation of mass for the water, along with 
Darcy's law to relate the volumetric flux to the potential gradient. Although the physical 
problem of flow in an unsaturated medium actually involves both the water and the air 
phases, it is conventional to ignore the air by implicitly assuming it to be infinitely mobile, 
and at a fixed pressure of one atmosphere. Since the relative permeability and capillary pres
sure functions are always strongly varying functions of S. Equation (1) is highly nonlinear. 
Note that Equation (1) can be put into the form of a standard nonlinear diffusion equation as 
follows: 

~[kkr(S) ~ as] = ~[D(S) as] = as ; 
ax J.lcp dS ax ax / ax at (2) 
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where D (S) = kkr (S)'II'(S )/~cp. Although this fonn of the governing equation is frequently 
used in soil physics (e.g., [7]), we will find it convenient to use the fonn given in Equation 
(1). 

A basic problem in the field of unsaturated flow is that of absorption from a saturated 
boundary at some fixed potential "'W into a half-space that is initially at some unifonn satura
tion "'i. Without loss of generality, we can assume that Vw = 0, since the solution for 
"'W > 0 is related in a simple way [8] to the solution for the case "'W = O. The boundary and 
initial conditions for this problem are 

",(0, t) = 0 • (3) 

",(x, 0) = "'i . (4) 

lim ",(x, t) = Vi. (5) 
x-+oo 

The last condition reflects the fact that, at any finite time, the wetting front moving in from 
the saturated boundary cannot have penetrated infinitely far into the medium. Equations 
(1,3-5), along with expressions for the saturation and the relative penneability as functions of 
"', completely specify the problem of horizontal one-dimension3I absorption. 

The capillary pressure and relative penneability functions depend on the pore geometry 
of the medium (see [9]), and have different fonns for different media. Two of the more 
widely-used fonns for these "characteristic equations" are those of Brooks and Corey [10], 
and van Genuchten-Mualem [11,12]. Neither of these sets of functions are analytic, since 
they typically involve fractional powers of the saturation. Furthennore, the Brooks-Corey 
capillary pressure function is given by different algebraic expressions in different capillary 
pressure regimes. While these peculiarities hinder attempts to analytical solutions, that they 
pose no particular difficulty for the integral method. 

Solution for Brooks-Corey Media. The Brooks-Corey characteristic functions are 

~ _ S(",)-Sr I I 
.) ('II) - S -S = 1 if a'll ~ 1 , 

s r 

(6) 

= laVI-(3n +2) if lavl> 1, (7) 

. where Sr is the residual saturation, Ss is the saturation at zero potential, S is the nonnalized 
saturation, and a is a scaling parameter that is inversely proportional to the mean pore 
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diameter. The parameter n must satisfy the inequality n ~ 1, but is not necessarily an integer 
[131. The normalized saturation equals 1 for all \jf > -lla. after which it drops off to zero as 
\jf decreases, according to a power law. Since no~ir can enter the medium unless la\jfl > 1, 
lIa is often called the "air-entry pressure". The relative permeability monotonically 
decreases from 1 to 0 as the normalized saturation decreases from 1 to O. 

Before attempting to solve this problem, it is convenient to normalize all the variables, 
and transform the governing partial differential equation into an ordinary differential equation 
by applying a Boltzmann-type tI1lIl1iformation [141. If we define a normalized potential as 
~ = a\jf, and a similarity variable 11 as 

..I 

(8) 

then Equation (l) is transformed into 

(9) 

and the three boundary/initial conditions (3-5) are transformed into the two conditions 

~(O) = 0, (10) 

(11) 

The above transformation has the effect of reducing the problem to a two-point ODE 
boundary-value problem, given by Equations (9-11). 

The basic idea behind the integral method is to approximate the solution with some 
simple function that Contains an adjustable parameter, and then fix the value of this parameter 
by requiring the solution. to satisfy the differential· equation in an integrated sense. An impor
tant fact about the use of the integral method is that reasonable fonns for the solution can 
often be obtained merely by consideration of the boundary conditions and various simple pro
perties of the governing equation. For example, note that since", = 0 at 11 = 0, by continuity 
there will be a region near the boundary where \jf>-lIa. Equation (6) then shows thatS = 1 
in this region, which implies that the tenn liS /d11 in Equation (9) will be zero. Equation (9) 
then implies that d~/d11 is a constant, and so \jf will drop off linearly from 0 to -lla. The 
value of 11 at which ~ reaches - lIa will be denoted by A.. The -capillary pressure will con
tinue to decrease as 11 increases, reaching its initial value ~i at some point 11 = A. + o. These 
considerations suggest the following trial profile (Fig. 1): 

A A 11-1.. 
S=I-(I-S·) 

I 0 ' 
~ = _S-lIn; 
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(12) 

The profiles chosen for the first and third regions follow from the considerations discussed 
above, while a linear saturation profile is chosen in the second region merely for its simpli
city. 

A relationship between the parameters A. and 0 can be found by requiring continuity of 
the capillary pressure gradient at 11 = A.. We first calculate the capillary pressure gradient iii 
the two regions as follows: 

Equating these two gradients yields 

1.0 
z 
'0 

~ 0.8 
0::: 
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U1 

0 
0.6 
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0.2 
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I 
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SIMILARITY VARIABLE, 17 

(13a) 

(13b) 

(13c) 

S = Sj 

·2.5 3.0 

Figure 1. Assumed saturation profile for absorption into a Brooks-Corey medium, as given by 
Equation (12). 
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Note that we do not require the capillary pressure gradient to be continuous at T) =A+O; 
imposition of this condition leads to only slight increases in accuracy, at the expense of much 
additional algebraic complexity. If desired, one can imagine that there is a small "tail" on 
the saturation profile at T) = A+ 0 that smoothly connects the two piecewise-linear parts of the 
profile (see Fig. 1), but which is sufficiently localized so as to have no appreciable effect on 

. the required integrals (see Equation (15)). 

To find an expression for 0, we integrate Equation (9) from 11 = 0 to 11 = co. The first 
tenn in Equation (9) integrates out to 

k (S) dV] 00 -1 -(I-.5j ) 

r d11 0 = T = n-o " (14) 

Since the tenn tiS /dT) is non-zero only in the range A < T) < A:+o, the second tenn integrates 
out to 

00 A+a ~ 

J
T) dS I 11 (1-.)j) 
--dT) = - - d11 
2 dT) 2 0 

(15) 

Combining Equations (14) and (15) gives 

(16) 

Using Equation (l3c) to eliminate A from Equation (16) leads to 

± = 02 [1 + 2n,,], 
n (1-Sj). 

- (17) 

which can be solved for 

0= 2[n[1 + 2n" ]]-112 
(1-Sj) 

(18) 

Equations (12,13,18) specify the approximate solution to the proble~. 

The instantaneous liquid flux into the medium, per unit surface area, can be found 
from Darcy's law as follows: 
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- [ ] 112 = -k..!...::l <XJl<\>(Ss -S,) 
Jl <X A. Jet 

(19) 

If we write the instantaneous -flux q (I) as S/2ft: then the cumulative flux up to some time t 
is equal to 

I I 

Q (I) = ! q('t)d't = !~ 't -112 d't = Sl l12 
• (20) 

The constant S is often referred to as the sorptivity [7,15], From Equation (19) and (20), S 
can be expressed as 

(21) 

In order to judge the accuracy of the approximate solution, we can compare it to the 
results of numerical solutions to Equations (9-11). These equations represent a two-pOint 
(ordinary differential equation) boundary-value problem, which can be solved using the 
shooting method [16]. Figs. 2 and :3 compare the capillary pressure and saturation profiles of 
the approximate solution and the numerical solution for a Brooks-Corey medium with n =2, 
for two different initial saturations. This value of n is close to the values that have been 
estimated [17] for the welded tuffs at Yucca Mountain, Nevada, a potential site of an under
ground nuclear waste repository. The approximate solution very accurately predicts A., the 
length of the fully saturated zone, but slightly overpredicts 0, the width of the partially
saturated zone. Since the sorptivity is proportional to the slope of the capillary pressure 
profile at 11 =0, and to the area bounded by the saturation profile and the line S =Si, it is 
clear that the approximate solution estimates S very accurately. Fig. 4 shows the normalized 
sorptivity S/[k<\>/<XJl]ll2 plotted against the initial saturation, for a few different values of n. 
For simplicity, S, is taken to be 0, and Ss is taken to be 1. The approximate solution is seen 
to estimate the sorptivity very accurately, over the entire range of initial saturations. 
Although the accuracy is higher for larger values of n, and for higher values of the initial 
saturation, in all cases the approximate sorptivity is correct to within 10%. 
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Figure 2. SaturatioIl;profiles for absorption into a Brooks-Corey medium, according to the 
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Figure 3. Potential profiles for absorption into a Brooks-Corey medium, according to the 
approximate and numerical solutions. 
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Figure 4. Sorptivity of a Brooks-Corey medium as a function of the initial saturation, for 
various values of the parameter n. 

Solution for van Genuchten Media. Another commonly-used fonn for the charac
teristic curves of a porous rock or soil are those of van Genuchten [11] and Mualem [12]: 

(22) 

(23) 

The parameters Ss' Sr' and (X have similar interpretations as they do in the Brooks-Corey 
expressions (6) and (7), while the parameter m is merely a shorthand expression for 1- lin . 
The parameter n should satisfy the inequality n ~2 [13]. The main qualitative difference 
between the Brooks-Corey and van Genuchten characteristic equations is that, in the latter 

. case, the capillary pressure is a single-valued and continuous function of saturation in the 
region near S = O. ) 

, If the similarity transformation (8) is used on the governing equations, they again 
reduce to the two-point boundary-value problem given by Equations (9-11). In order to 
arrive at an appropriate form for the trial saturation profile, we first note that, for the flux of 
liquid into the medium to be finite, the slope d",ldll must be finite at 11 = O. Since ",(0) = 0, 
this implies that", = -all + '" for small values of 11, where a is some constant. Substi
tution of this into Equation (22) shows that, to first order, S = I-ma n lln • If we denote the 
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length of the wetted zone by 0, a saturation profile of the fonn S = 1":: ma" 11" will only 
satisfy the condition S(O):::=Si if ma" = (I-Si)!O", so that 

(24) 

Note that, as for the Brooks-Corey medium, we are using the simplest profile that is con
sistent with the boundary conditions and continuity requirements. 

The parameter 0 is found by integrating the governing equation (9) froml1 = 0 to 
11=00, with the saturation profile (24) substituted for S (11). The first tenn in Equation (9) 
integrates to 

k (S) d V j 00 = a = 
r dll 0 

(l-sd/" 
ml/"o 

(25) 

The second tenn in Equa~ion (9) integrates to 

-(l-Si)nO 
=----

2(n+l) 
(26). 

Combining Equations (25) and (26) leads to the following expression for 0: 

(27) 

Application of Darcy's law, as in Equation (19), along with the use of Equations (8) and 
(20), leads to the sorptivity in the fonn 

. (28) 

As an example of the accuracy of this approximate solution, consider the problem of 
one-dimensional absorption from, say, a saturated fracture into the adjacent rock in the Topo
pah Spring unit at Yucca Mountain, Nevada, a potential site of an underground repository for 
high-level radioactive waste. This unit is a welded volcanic tuff whose hydraulic properties 
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have been estimated [17] to be <\>= 0.14, k = 3.9 X 10-18 m2
, Ss = 0.984, Sr = 0.318, 

n = 3.04, m = 0.671, and a = 1.147x 1O-5 Pa-1. Consider the problem of absorption of 
water into a block of Topopah Spring welded tuff that is initially at a capillary pressure of 
-1 bar, which corresponds to an initial liquid saturation of 0.6765. If the temperature is 
taken to be 20°C, then the viscosity of the water will be 0.001 Pas (1 cp). The saturation 
profiles of the approximate and essentially exact (numerical) solutions after I x 107 s (116 
days) of infiltration are shown in Fig. 5. Note that the approximate solution predicts the 
location of the wetting front extremely accurately, while the sorptivity, which is proportional 
to the area under the saturation curve, is overpredicted by a few percent. This is due to the 
fact that the while saturation follows a power-law profile near the boundary, this simple one
parameter expression (Equation (24» does not represent the actual profile throughout the 
entire wetted zone with complete accuracy. However, the remarkable fact remains that a rea
sonably accurate approximate solution has been obtained, requiring neither extensive 
mathematical manipulations, nor any particular "physical insight" in order to arrive at the 
proper fonn for the saturation profile. 

Conclusions. The integral method has been used to develop closed-fonn approximate 
solutions to the problem of water absorption into porous rock or soil. Solutions were 
developed for two widely-used forms of the capillary pressure and relative permeability equa
tions, those of Brooks and Corey and van Genuchten-Mualem. The method requires only ele
mentary integrations and differentiations, and leads to sorptivity predictions that are typically 
accurate to within better than 10%. In contrast to numerical solutions, the results of the 
integral method clearly display the manner in which the parameters of the problem affect the 
solution. Another point which was illustrated by these examples is that acceptable profiles 
can be found merely from consideration of boundary and continuity conditions. Other exam
ples of the use of the integral method to find approximate solutions of porous media flow 
problems can be found in [18-20]. 
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Figure 5. Saturation profile after 116 days of absorption into Topopah Spring welded tuff. 
The tuff is modeled as a van Genuchten medium; hydrological parameters are listed in text. 
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