
UC San Diego
Technical Reports

Title
JBIG Compression Algorithms for "Dummy Fill" VLSI Layout Data

Permalink
https://escholarship.org/uc/item/3wq4699r

Authors
Ellis, Robert
Kahng, Andrew
Zheng, Yuhong

Publication Date
2002-06-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wq4699r
https://escholarship.org
http://www.cdlib.org/

Technical Report: JBIG Compression Algorithms for

“Dummy Fill” VLSI Layout Data

Robert Ellis, Andrew Kahng, and Yuhong Zheng

VLSI CAD Laboratory
UCSD Department of Computer Science and Engineering

March 13, 2002

1

Contents

Abstract 3

1 Introduction 4

2 Bi-Level Data Compression Methods 6
2.1 JBIG* . 7
2.2 JBIG1 . 7
2.3 JBIG2 . 8

3 Taxonomy of Compression Heuristics 9
3.1 Asymmetric Cover . 10

3.1.1 Proportional Loss . 11
3.1.2 Fixed Speckle Loss . 12

3.2 Dictionary Construction . 13
3.3 A Component-Wise Taxonomy of New Algorithms 14

4 Experimental Results 16
4.1 Parameterization of Implementation . 16
4.2 Experimental Discussion . 22

5 Summary and Future Directions 25

Reference 27

Appendix A 29

2

Abstract

Dummy fill is introduced into sparse regions of a VLSI layout to equalize the spatial
density of the layout, improving uniformity of chemical-mechanical planarization (CMP).
It is now well-known that dummy fill insertion for CMP uniformity changes the back-
end flow with respect to layout, parasitic extraction and performance analysis. Of equal
import is dummy fill’s impact on layout data volume and the manufacturing handoff. For
future mask and foundry flows, as well as potential maskless (direct-write) applications,
dummy fill layout data must be compressed at factors of 25 or greater. In this work, we
propose and assess a number of lossless and lossy compression algorithms for dummy fill.
Our methods are based on the building blocks of JBIG approaches - arithmetic coding,
soft pattern matching, pattern matching and substitution, etc. We observe that the fill
compression problem has a unique “one-sided” characteristic; we propose a technique of
achieving one-sided loss by solving an asymmetric cover problem that is of independent
interest. Our methods achieve substantial improvements over commercial binary image
compression tools especially as fill data size becomes large.

3

1 Introduction

In modern VLSI manufacturing processes, material is deposited layer by layer, with
interlevel dielectric (ILD) between layers. Each layer needs to be polished flat by a
process known as chemical-mechanical planarization (CMP) [1]. For example, a pattern
of copper interconnects is deposited and silicon dioxide spun on as an insulator; the
resulting dual-material structure must be planarized before the next layer of copper
interconnects can be created.

Figure 1: Insertion of dummy features to decrease post-CMP variation of ILD thickness.

The CMP result will not be flat unless the layout geometries in the previous layer of
material exhibit uniform spatial density, i.e., every “window” of given size in the chip
layout contains roughly the same total area of copper wiring. Therefore, millions of
“dummy fill” features (typically, small squares on a regular grid) are introduced into
sparse regions of the layout to equalize the spatial density, as shown in Figure 1. The
downside of this is that layout data file size is dramatically increased. A small layout
data file is desired in order to quickly transmit the chip design to the manufacturing
process. Compressing the dummy fill data is a straightforward solution to the problem.

Further motivation for our work stems from the increased nonrecurring cost of pho-
tomasks, which according to Sematech reaches up to $1M per mask set in the 130nm
technology node. While improved mask production efficiencies - particularly in inspec-
tion and testing - may reduce this cost [18], maskless lithography is now a requirement in
the Lithography chapter of the semiconductor technology roadmap [20]. Work of Dai and
Zakhor [17] estimates that a compression factor of 25 is required to enable direct-write
maskless lithography (i.e., to transfer trillions of pixels per second onto the wafer). In-
deed, Dai and Zakhor investigate several lossless compression schemes that we also study;
however, their layout data is (5-bit) gray-scale and corresponds to functional layout data,
while our dummy fill data is almost perfectly represented by a binary (0-1) matrix. We
note that the fill data and the feature data must eventually be combined in order for the
mask write to make a single pass over the chip surface. We assume that these data are

4

Symbol Description

B fill data file, an m by n binary matrix
D data block, a b1 by b2 sub-matrix of B
R reference block, a b1 by b2 binary matrix
C cover block, a b1 by b2 binary matrix
C cover, a set of C’s “close” to a set of data blocks

m,n # of rows, columns of B
b1, b2 # of rows, columns of D, R, C

p m/b1, # of data blocks across a row of B
q n/b2, # of data blocks down a column of B

I
1 by pq array indexed by data blocks giving
indices of matching reference blocks

IPM

1 by pq array indexed by data blocks giving
indices of perfectly matching reference blocks

s(D) # of 1’s in D
g global loss ratio

k, f proportional loss ratio, fixed speckle loss
w(D) # of bits of D allowed to change from 1 to 0

H(D,R) Hamming distance between D and R
c D matches R iff H(D,R) ≤ b1b2c

OD size of the compressed D’s
ORB size of the compressed R’s
ORI size of the compressed I’s

OPMRI size of the compressed IPM ’s
h Total size of the compressed items (h =

∑
x
Ox)

Table 1: Terminology

compressed, transmitted and decompressed separately, and then combined in the mask
writer. This is consistent with today’s methodologies, which separately manage fill data
as a separate GDSII layer (cf. the concept of a “target layer” [19]), so as to avoid impact
on layout hierarchy.

The terminology that we use below is summarized in Table 1. A layout containing
dummy fill features can be expressed as a binary (0-1) matrix.1 Fill compression takes as
input an m × n binary matrix B and outputs compressed items (D’s, R’s, I, etc.) with
total size h. The objective of fill compression is to minimize h. The compression ratio is
defined as r = mn/h. In this work, we develop a number of compression heuristics based
on Joint Bi-Level Image Processing Group (JBIG) methods [2, 3, 4]. The algorithms can

1This is true of all major commercial fill insertion tools such as Mentor Calibre, Avant! Hercules and
Cadence Assura, even when operating in modes that output “tilted fill” or tiled “fill cells”.

5

be lossless when fill must appear exactly as specified, or lossy when a “close” approxi-
mation of the fill pattern suffices. Different loss tolerances can be applied according to
the application context. Our lossy compression algorithms allow both proportional loss
(a prescribed upper bound on the fraction of 1’s in a single data block which may be
changed to 0’s) and fixed loss (a prescribed upper bound on the absolute number of 1’s
in a single data block which may be changed to 0’s). In the former context, for a given
data block D we may change at most w(D) = ⌊k · s(D)⌋ of its 1’s to 0’s. All algorithms
that we study have the following outline.

Algorithm 1 (General compression scheme).

1. Segment data matrix B into blocks D.

2. If lossy compression is desired,
(a) generate a cover C for data blocks D (every D must match, modulo possible
loss, a cover block C ∈ C), and
(b) replace B with lossy matrix B′ by replacing each data block D with its
matching cover block C.

3. Else, perform lossless compression on B.

Section 2 surveys off-the-shelf software for compression and presents JBIG methods
for binary data compression. JBIG1 and JBIG2 methods will be used in Step 3 of the
above algorithm outline. Benchmarks of compression ratio and runtime performance
are provided by the off-the-shelf software. Classification of our compression heuristics is
given in Section 3, and experimental results are given in Section 4. Ongoing and future
research is presented in Section 5.

2 Bi-Level Data Compression Methods

Many methods have been developed for compression of bi-level data, including several
familiar off-the-shelf commercial tools for lossless compression.2 JBIG (Joint Bi-level
Image Experts Group) algorithms have emerged as the most promising for bi-level data
compression. JBIG algorithms combine arithmetic coding with context-based modeling
to exploit the structure of the data in order to obtain better compression ratios. We here
review the two classes of JBIG algorithms, with brief comments on existing commercial
compression tools.

2Winrar, Gzip and Bzip2 are obvious examples. Gzip and Bzip2 have better performance for bi-level
data compression compared to other commercial tools. The core of Gzip is Lempel-Ziv coding (LZ77)
[2]. Bzip2’s compression mechanism is based on Burrows-Wheeler block-sorting text compression and
Huffman coding; its performance is generally better than those of more conventional LZ77/LZ78-based
compressors [3].

6

2.1 JBIG*

JBIG [5] is an experts group of ISO [6], IEC [7] and CCITT [8] (JTC1/SC22/WG9
and SGVIII). Its goal is to define compression standards for bi-level image coding; in
1993 the group proposed JBIG1 as the international standard for lossless compression
of bi-level images (ITU-T T.82) [9]. In 1999, JBIG developed JBIG2 [3], which is the
first international standard that provides for both lossless and lossy compression of bi-
level images. We use JBIG* to refer to either JBIG1 or JBIG2. Arithmetic coding and
context-based statistical modeling are two key components of the JBIG* methods.
Arithmetic Coding. As the basis of most efficient binary data compression tech-
niques, arithmetic coding completely bypasses the idea of replacing an input symbol with
a specific code [10]. Instead, it takes a stream of input symbols and outputs a single
floating-point number. Generally speaking, the interval [0, 1) is partitioned so that each
part (subinterval) corresponds to a possible first symbol. A given subinterval is parti-
tioned so that each part corresponds to a possible second symbol, and so on, until the
desired string length is reached. The size of a symbol’s subinterval relative to that of
its parent interval is proportional to the probability of that symbol occurring. A sym-
bol stream is represented by the lowest value of its innermost subinterval. A detailed
description of arithmetic coding is given in Appendix A.
Context-Based Modeling. JBIG* performs context-based encoding. Context-based
compression methods assume that the value of a given bit can be predicted based on the
values of a given context of surrounding bits. The context of a bit consists of some fixed
pattern of its neighboring bits; when these bits have been scanned, we know the exact
context. These compression methods scan a binary matrix and for each distinct context
record the actual frequencies of the corresponding bit being either 1 or 0. Thus when a
given context appears in the matrix, an estimated probability is obtained for a bit to be
1. These probabilities are then sent to an arithmetic encoder, which performs the actual
encoding. Figure 2(a) shows a possible 7-bit context (the bits marked “P”) of the current
bit “X”, made up of five bits above and two on the left. The unscanned (unknown) bits
are marked “?”. We use the values of the seven bits as an index to a frequency lookup
table. The table stores frequencies of 0’s and 1’s already scanned for 27 = 128 different
contexts.3

2.2 JBIG1

In the JBIG1 algorithm, bits are coded in raster-scan order by arithmetic coding that
uses probabilities estimated from the bits’ contexts. The context of a bit for probability
estimation consists of a number of its neighbor bits that have already been encoded. A
10-bit template is generally used, as shown in Figure 2(b). Frequencies of 1’s and 0’s

3The frequency table should be initialized to nonzero values. It seems better to initialize every table
entry to have either bit 0 or 1 with a frequency of 1. When the process starts, the first bit to be scanned
does not have any neighbors above it or to the left. If the context pattern of a bit does not fit inside the
matrix, we assume that any context bits that lie outside the matrix are 0.

7

. . P P P P P . .

. . P P X ? ? ? ?

1 2 3
4 5 6 7 8
9 10 X

(a) (b)

Figure 2: (a) a 7-bit context, (b) a 10-bit template used in JBIG1 (the numbered bits
are used as the context of the bit marked “X”)

indexed by 1024 (210) context patterns are contained in a frequency table. The probability
is estimated adaptively in that the frequency of a bit’s context pattern is updated after
it is scanned:
for each bit of a matrix in raster-scan order do

Find its context (neighboring bits)
Find probabilities of the current bit being 0 or 1, given context
Encode current bit using arithmetic coding
Update table of 0-1 frequencies for this context

end for

2.3 JBIG2

A properly designed JBIG2 encoder not only achieves higher lossless compression ratios
than other existing standards, but also enables very efficient lossy compression with
almost unnoticeable information loss. Pattern matching and substitution (PM&S) and
soft pattern matching (SPM) are two compression modes of JBIG2. It is critical to note
here, however, that all new lossy compression algorithms presented in this paper will not
introduce loss using JBIG2, but rather by means described in Section 3.1. We present
below only lossless JBIG2 compression; for lossy JBIG2 compression, see [3, 4].
JBIG2 based on PM&S. PM&S compresses a data file by extracting repeatable
patterns and encoding these patterns, their indices, and their positions in the file instead.
Due to the relatively random distribution of dummy fill, we segment the input 0-1 ma-
trix into data blocks, and then use the PM&S method for compression. The encoding
procedure involves the following steps:

1. Segment input 0-1 matrix into data blocks

2. Construct a dictionary consisting of the set of distinct data blocks

3. For each data block

(a) search for an exactly matching reference block in the dictionary

(b) encode the index of the matching reference block

8

4. Encode the dictionary of reference blocks.

1 2 3
4 X

5
6 7 8
9 10 11

(a) (b)

Figure 3: 11-bit template used in SPM coding (the numbered bits are used as the context
of the bit marked “X”): (a) bits taken from the causal part of the current block, (b) bits
taken from the matching reference block

JBIG2 based on SPM. JBIG2’s SPM mode differs from the PM&S in that imperfect
matches from the dictionary are used to guide lossless compression of data blocks. In the
SPM method, we begin with the input binary matrix segmented into data blocks, and a
dictionary of reference blocks of the same dimensions as the data blocks. All of the bits
are encoded in raster-scan order by an arithmetic coder as in JBIG1, but using a different
context to estimate the current bit. An 11-bit context template, shown in Figure 3, is
generally used. Bits in the part of the context which has already been scanned are taken
from the input matrix. Bits in the part of the context which has not been scanned are
taken from the corresponding bits of the reference block that matches the current data
block. The geometric center of the current block is aligned with that of the matching
reference block. The bit numbered “7” corresponds to the bit marked “X”. This process
is also called refinement coding.

The pseudocode is:

Segment input 0-1 matrix into data blocks
Construct dictionary consisting of reference blocks
for each data block do

Search for an “acceptable” matching reference block
in the dictionary

if there is a match
Encode index of the matching reference block
Encode the data block using refinement coding

else Encode the data block directly
end if

end for

3 Taxonomy of Compression Heuristics

In this section, we present details of the general compression scheme of Algorithm 1. For
this model, introduction of loss and compression are kept completely separate; we first
introduce loss in Step 2, and then perform lossless compression in Step 3 of Algorithm 1.

9

Loss is introduced by replacing the data blocks by using an asymmetric cover consisting of
cover blocks, where the replacement allows 1’s to change to 0’s but not vice versa. Section
3.1 describes the two types of asymmetric covers that will be used whenever we introduce
loss. Section 3.2 focuses on methods of lossless compression. The two main components
of lossless compression we are interested in are dictionary generation and dictionary
compression. In particular, we concentrate on the following lossless compression schemes:
JBIG2 PM&S, JBIG2 SPM, JBIG1 compression of dictionaries, and JBIG1 compression
of singleton data blocks (data blocks which match themselves only). The JBIG2 SPM
scheme also allows loss during soft pattern matching, but for conceptual clarity we will
only consider loss introduced in Step 2 of Algorithm 1, and thus only consider lossless
JBIG2 SPM schemes for use in Step 3.

3.1 Asymmetric Cover

The problem of building a cover for a set of data blocks is an instance of the Set Cover
Problem (SCP), which is known to be NP-hard [11]. One formulation of SCP is as follows.

Set Cover Problem (SCP). Given a ground set X and a collection C of subsets of the
ground set with ∪C∈CC = X, choose the smallest subset C0 ⊆ C such that ∪C∈C0

C = X.

Our cover problem is an instance of SCP which takes X to be the set of distinct
data blocks and by identifies a cover block C with the set of data blocks which it covers.
This set of data blocks is determined by the type of asymmetric cover considered. For
proportional loss, we allow at most a fixed percentage of the 1’s in a data block to change
to 0’s in order for it to be covered by the cover block reached by the bit changes. For
fixed speckle loss, we allow changing at most a fixed number of isolated 1’s in a data
block to 0’s for it to be covered by the resulting cover block. The radius of a cover
block C is maxD(H(C,D)), where the maximum is taken over all covered data blocks.
Thus proportional loss corresponds to a proportional-radius cover and fixed speckle loss
corresponds to a fixed-radius cover. In either case, loss is is controlled by a global loss
ratio g, which is the allowed global change in density of 1’s. The allowed proportional
loss is k = g/p1, where p1 is the fraction of bits in B that are 1’s, and the allowed fixed
speckle loss is f = ⌊g · b1b2⌋. In either case, the maximum number of 1’s changed to 0’s
in B will be g · mn.

A generalization of the fixed speckle loss cover is the fixed loss cover, in which a fixed
number of 1’s are allowed to be changed to 0’s regardless of the context of a given 1.
This situation is introduced and studied in [15], which for different cases gives exact or
asymptotic order-of-magnitude bounds on the minimal size of a cover for the set of all
possible data blocks. A major theoretical question is how efficient a fixed loss cover is
in covering the set of all possible data blocks. Efficiency is measured in terms of the
maximum number of data blocks covered by a cover block. Theorem 9 of [15] gives that
the smallest fixed loss cover is within a constant of maximum efficiency in covering the
set of all possible data blocks.

10

3.1.1 Proportional Loss

Because SCP is NP-Hard, we have little hope of obtaining an optimal set cover quickly,
and so reduce our goal to achieving a reasonably good heuristic set cover. Our method
for constructing C views the data blocks as vertices of a graph G with edges weighted
according to how many potential cover blocks there are for both given data blocks.4 We
refer to this heuristic as the proportional loss algorithm, and present the algorithm itself
after some necessary terminology.
Proportional loss algorithm background. Generally, we identify a number of
distinct data blocks which are clustered closely together, where closeness is roughly de-
termined by Hamming distance. A cluster of data blocks which can be covered by the
same cover block are identified, covered and set aside, until all data blocks have been
covered. This scheme can be implemented by simply constructing a list of data blocks
and searching through the list for the clusters, but a more efficient algorithm involves
constructing a graph whose vertices are the data blocks and whose edges are a measure
of potential for the two data blocks incident to the edge to be covered by the same cover
block. Data blocks are clustered together in the graph by successively contracting edges
and replacing a pair of data blocks with a single representative data block (which covers
both original data blocks). When a vertex becomes disconnected from the graph, it is
used as the cover block for all data blocks contracted into it, and then removed. The
algorithm terminates when the graph is empty.

An edge {D1, D2} between two data blocks is present in the graph with weight
w(D1, D2) if and only if the quantity

w(D1, D2) := min(t(D1) − HD(D1, D1 ∧ D2), t(D2) − HD(D2, D1 ∧ D2)). (1)

is nonnegative, where t(D) = ⌊k · s(D)⌋ is the total allowable loss for D, and ‘∧’ is the
bit-wise AND of two data blocks. This expression encapsulates the fact that D1 and D2

can be covered by the same cover block if and only if w(D1, D2) ≥ 0. In particular, D1

and D2 can be covered by the same cover block if and only if they can both be covered
by D1 ∧ D2. We cluster D1 and D2 together by replacing both vertices with the vertex
D = D1 ∧ D2 and setting t(D) = w(D1, D2). Then w(D,D3) must be updated by (1)
for any vertices D3 originally adjacent to both D1 and D2. If D3 is not adjacent to both
D1 and D2, it is impossible to cover all three with a single cover block. Given the above
definitions, we now present the proportional loss algorithm. The clustering operation in
Step 3 of the algorithm is illustrated in Figure 4.

Algorithm 2 (Proportional Loss Algorithm).

4Several random algorithms were implemented to search for good covers, but in every case, the search
space is extremely large, the complexity of randomly choosing a cover block for a given data block based
on any range of statistics is prohibitive, and the resulting random covers were noncompetitive with
greedy covers. Therefore, we present only our best greedy cover algorithm.

11

1. Build graph G with V (G) = {D: D a data block}. Initialize E(G) = ∅, C = ∅, and
t(D) = ⌊k · s(D)⌋.

2. Sort the vertices in decreasing order by weight s(D). For all pairs of data blocks
{D1, D2} with H(D1, D2) ≤ min(t(D1), t(D2)), compute edge weight w(D1, D2),
adding the edge to E(G) iff w(D1, D2) ≥ 0

3. Pick the first vertex D1 in sorted order.
(a) Pick the neighbor D2 of D1 maximizing w(D1, D2).
(b) Replace D1 and D2 with D = D1 ∧ D2, and set t(D) = w(D1, D2).
(c) Remove all edges incident to D1 or D2.
(d) For all data blocks D3, add an edge {D,D3} with weight w(D,D3) iff w(D,D3) ≥
0 (only D3’s previously adjacent to both D1 and D2 need be checked).
(e) Go to Step (a) until the cluster represented by D is disconnected from the rest
of the graph.
(f) Add the resulting vertex to C, use C as a cover block for all data blocks in the
cluster, and remove the vertex from the graph.

4. Repeat Step 3 until the graph has no vertices left.

111
111

00

1

1

101
101

111
101

111
000

111
101

101
101

111
0000 0

0

Figure 4: Step 3 of Algorithm 2 is illustrated by the clustering of data blocks 111111 and
111101, which will both eventually have cover block 111101 or 101101. Edges are labeled
by weight w, and k = 1/3.

3.1.2 Fixed Speckle Loss

Given a data block, we may induce a gridgraph topology over the 1-bits by deleting ver-
tices corresponding to 0-bits. A speckle is a connected component of 1’s in this gridgraph.
Notice that if we allow at most a fixed number of 1’s to be lost from each data block,
the resulting blocks will correspond to a fixed-radius asymmetric cover of the original
blocks.5 We may choose the lost 1’s by discarding speckles of increasing size, until the
allowed fixed speckle loss f (corresponding to a given global loss bound, say, g = 2%)
is reached. We call this the fixed speckle loss method. We can modify Algorithm 2 by
initializing t(D) = f in Step 1, which causes the algorithm to construct a fixed-radius
cover instead of a proportional-radius cover. This results in a potentially more powerful

5In other words, in terms of Algorithm 1, the “cover blocks” in C are just the set of distinct data
blocks after speckles have been removed.

12

generalization of the fixed speckle loss method and remains to be investigated. We choose
the fixed speckle loss method because of the much lower computational cost of searching
in raster-scan order for speckles of small size.

3.2 Dictionary Construction

Dictionary construction is very important in JBIG2. A good dictionary should contain
a small number of reference blocks which match a much larger number of data blocks. A
small dictionary also means that reference indices (pointing from data blocks to reference
blocks) are shorter. Removing singletons from the dictionary will reduce the size of
reference indices without increasing the sizes of the compressed blocks (all reference
and/or singleton blocks). The simplest dictionary formation approach is order-dependent,
where the dictionary is generated in a sequential way. Initially, the first data block is
put into the dictionary as the first reference block. All the subsequent data blocks are
compared with reference blocks in the dictionary. A data block D matches a reference
block R provided that H(D,R) ≤ b1b2c; assign D’s reference index to the best match R
minimizing H(D,R). A data block is put into the dictionary as a singleton if it matches
none of the reference blocks. Currently, each data block matches exactly one reference
block.
Singleton exclusion. The dictionary may contain many singletons. A singleton
is a data block which is identical to its matching reference block, where the reference
block matches only with that one data block. Using a dictionary does not allow for
better compression of singletons, since each singleton data block must still be encoded;
in addition, inclusion of singletons in the dictionary causes reference indices to be longer.
A “singleton exclusion dictionary” encodes only those non-singleton data blocks by using
the dictionary, and compresses singletons separately using JBIG1. This prevents encoding
of a reference index for a reference block that would be used only once.
Dictionary compression. The dictionary itself is compressed using JBIG1 on the
reference blocks. Data blocks which match reference blocks in the dictionary are replaced
with reference indices, which are encoded with multi-symbol arithmetic coding.
Combining PM&S and SPM. JBIG2 compression can be used with a combination
of PM&S and SPM in the following fashion. For the PM&S part, some data blocks will
perfectly match a reference block. Only an index is encoded for these data blocks. The
other data blocks will only match a reference block imperfectly, and so SPM (refinement
coding) is needed to encode both an index and additional bits used to record the difference
between the data block and the reference block. Singletons may be removed first, if
desired. Also, we note that PM&S tends to be faster than SPM due to the complexity
of refinement coding.

13

3.3 A Component-Wise Taxonomy of New Algorithms

Table 2 summarizes the pieces that will be combined to construct compression algorithms.
Piece “A” corresponds to compressing the entire matrix with arithmetic encoding and
does not correspond to the framework of Algorithm 1. We use “A” as a comparison
benchmark. Pieces “B” and “C” respectively introduce proportional and fixed speckle
loss, corresponding to Step 2 of Algorithm 1; pieces “D-G” are schemes of lossless com-
pression which correspond to Step 3. Generally, there are four constituents of the com-
pressed data file: OD, ORI, OPMRI, and ORB. Because data blocks are fully replaced
by cover blocks, Step 2 does not affect the constituents of the compressed file; however
these constituents do depend on the choices made in Step 3. OPMRI consists of com-
pressed reference indices of data blocks which perfectly match reference blocks and only
appears with piece “D”. ORI consists of compressed reference indices, denoting matches
between data blocks and reference blocks, and only appears with piece “E”. OD consists
of compressed singleton data blocks and possibly SPM refinement coding information
and only appears with pieces “E” and “F”. ORB consists of compressed reference blocks
in the dictionary and only appears with piece “G”. We now list and summarize the best
heuristics we tested, classified by their component pieces (see Table 3)6.

Index Piece description
Benchmark A Compress matrix using JBIG1
Loss
Introduction

B Proportional loss (Algorithm 2)
C Fixed speckle loss (§3.1.2)

JBIG2
lossless
components

D JBIG2 PM&S
E JBIG2 SPM (lossless)
F Singleton exclusion & singleton

data blocks compressed by JBIG1
Compress dictionary G JBIG1 on reference blocks

Table 2: Description of algorithm pieces

• A1 (JBIG1, lossless, Pieces: A). The entire data file is compressed using
JBIG1. In particular, dictionary construction is not required. This algorithm is
used to benchmark other compression ratios against JBIG1.

• A2.1 (JBIG2, lossless, Pieces: D, E, F, G). The data is segmented into
data blocks, and a dictionary is constructed using an order-dependent method.
Singletons are excluded and compressed separately by JBIG1. Data blocks which
match reference blocks perfectly are encoded using PM&S. The other data blocks
are encoded using SPM. The dictionary is encoded with JBIG1.

6Heuristics comprised of all combinations of pieces were investigated; but the ones listed gave the
best compression ratios in nearly every test case.

14

A1 A2.1 A2.2 A2.3 A3 A4.1 A4.2 A5

Pieces

A X

B X X X X

C X

D X X X X X

E X X X X X

F X X X X X X

G X X X X X X X

Outputs

OD X X X X X X X

ORI X X X X X X

OPMRI X X X X

ORB X X X X X X X

Table 3: Components and output of heuristic algorithms

• A2.2 (JBIG2, proportional loss, Pieces: B, D, E, F, G). The data blocks
are replaced and proportional loss introduced using Algorithm 2. Then proceed as
in A2.1.

• A2.3 (JBIG2, fixed loss, Pieces: C, D, E, F, G). The data blocks are
replaced using fixed speckle loss (Section 3.1.2). Then proceed as in A2.1.

• A3 (JBIG2, proportional loss, Pieces: B, D, F, G). The data blocks are
replaced and loss introduced using Algorithm 2. Then an order-dependent dictio-
nary is generated, where PM&S is used to generate reference indices to be encoded
with multi-symbol arithmetic coding. Singletons are excluded and compressed sep-
arately by JBIG1. The other data blocks are encoded using PM&S. The dictionary
is encoded using JBIG1.

• A4.1 (JBIG2, lossless, Pieces: E, F, G). The data is segmented into
data blocks, and a dictionary is constructed using an order-dependent method.
Singletons are excluded and compressed separately by JBIG1. The other data
blocks are encoded using SPM. The dictionary is encoded with JBIG1.

• A4.2 (JBIG2, proportional loss, Pieces: B, E, F, G). The data blocks are
replaced and loss introduced using Algorithm 2. Then proceed as in A4.1.

• A5 (JBIG2, proportional loss, Pieces: B, D, G). The data blocks are re-
placed and loss introduced using Algorithm 2. Then an order-dependent dictionary
is generated, where PM&S is used to generate reference indices to be encoded with
multi-symbol arithmetic coding. All the data blocks are encoded using PM&S. The
dictionary is encoded using JBIG1.

15

General Compression Algorithm (A2-A5).

1. Segment data matrix B into blocks D.

2. If lossy compression is desired, generate an asymmetric cover C with either pro-
portional loss or fixed speckle loss and replace data blocks (A2.2, A2.3, A3, A4.2,
A5).

3. Perform lossless compression using order-dependent dictionary and JBIG2:
(a) Exclude singletons (A2-A4)
(b) PM&S on data blocks with perfectly matching reference blocks (A2, A3, A5)
(c) SPM on remaining data blocks (A2, A4).

4. Compress dictionary using JBIG1 (A2-A5).

4 Experimental Results

We report compression ratios for our lossy compression algorithms and for off-the-shelf
benchmarks JBIG1 and Bzip2. Compression ratios meeting or exceeding the estimated
ratio of 25 needed to enable direct-write maskless lithography [17] are obtained in many
cases – especially for the larger data files. Section 4.1 motivates the choice of various
parameters such as JBIG1 context size and shape, and block size and shape. Section 4.2
presents the compression ratios and running times proportional loss and fixed speckle
loss compression methods.

4.1 Parameterization of Implementation

There are several parameters that control the implementation of the “pieces”. In this
subsection, we explain the empirical process that was used to select reasonable values for
these parameters (e.g., context size, block size, etc.).
Sensitivity of JBIG1 compression ratio to context size. Templates with different
context size could be used in JBIG1 for probability estimation, as shown in Table 4.
Several binary matrices are compressed using JBIG1 and a choice of templates in Table
4. The resulting compression ratios are shown in Table 5. Templates with more bits lead
to better results but need more CPU time.
Sensitivity of JBIG1 compression ratio to context shape. Templates with the
same context size but different context shape could also be used in JBIG1 for probability
estimation (see Table 6). The compression results show that using templates with bits
distributed in more rows will get better results; i.e., a 3-row template is better than 2-row
or 1-row template. Because better estimation of the probabilities are achieved in 3-row
than in 2-row or 1-row.
Sensitivity of compression ratio to matching ratio. For the purpose of lossless
soft pattern matching (SPM) compression in JBIG2, a matching ratio c is chosen to

16

1-bit 2-bit 4-bit 7-bit

c1 x
c1

c2 x

c1 c2 c3

c4 x

c1 c2 c3 c4 c5

c6 c7 x

10-bit 12-bit 14-bit 18-bit

c1 c2 c3

c4 c5 c6 c7 c8

c9 c10 x

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11 c12 x

c1

c2 c3 c4 c5 c6

c7 c8 c9 c10 c11

c12 c13 c14 x

c1 c2 c3

c4 c5 c6 c7 c8

c9 c10 c11 c12 c13 c14 c15

c16 c17 c18 x

Table 4: Templates with different context size in JBIG1

Index 1-bit 2-bit 4-bit 7-bit 10-bit 12-bit 14-bit 18-bit

1 40.75 43.16 51.28 55.15 59.49 59.47 59.67 63.10
2 8.5 11.6 16.63 16.75 22.07 22.10 24.16 25.72
3 0.75 0.91 1.10 1.11 1.33 1.33 1.40 1.44
4 7.36 10.69 14.00 14.08 16.97 16.96 17.96 18.11

Table 5: Compression ratios for different context size in JBIG1 for 4 test cases

Index
ccc

ccccc
ccx

cccccc
ccccx

cccc
cccc
ccx

cccc
cccc
ccx

cc. . .cx
ccccccc
cccx

1 59.23 57.92 59.49 59.61 48.87 56.72
2 22.07 17.10 22.04 22.06 11.33 17.07
3 1.33 1.27 1.33 1.33 1.03 1.11
4 16.97 15.95 16.90 16.90 9.94 14.14

Table 6: Compression results using different 10-bit context shapes in JBIG1 for 4 test
cases

determine whether or not a data block matches a reference block. A data block D
matches a reference block R provided that H(D,R) ≤ b1b2c. Choosing a larger c will
increase the range of matching reference blocks for a given data block. However, a larger
c will tend to decrease the similarity between D and any given match R, and so the
probability estimation used in the JBIG2 refinement coding is less accurate; this leads
to worse compression performance. Figure 5 and Table 7 show compression results of

17

Figure 5: Sensitivity of compression ratio to matching ratio

Matching ratio 0 0.025 0.05 0.075 0.1 0.2 0.4

A2.1 13.09 13.18 13.16 13.04 12.81 11.79 11.00
A2.2 (k=0.2) 13.09 13.18 13.16 13.05 12.80 11.78 11.00
A2.2 (k=0.4) 13.44 13.52 13.49 13.35 13.02 11.83 11.00

Table 7: Compression results using different matching ratios

a data file 50-50-10-fill-31250-2-L1 with size b1 · b2 = 60 · 60 = 3600 containing real
dummy fill features using different matching ratios. The compression heuristics used
are A2.1 (lossless) and A2.2 (proportional loss ratios k = 0.2, 0.4). In Figure 5, the
compression ratio generally decreases with increasing matching ratio, for both lossless
and lossy compression. We would rather have more accurate probability estimation than
more “matching” blocks; on the other hand, a matching ratio of 0 is not ideal either.
The optimal matching ratio tends to be very small (.5-2.5%), but nonzero.

Data block
size

16
(4×4)

64
(8×8)

256
(16×16)

400
(20×20)

900
(30×30)

1600
(40×40)

Output bits 6.79 8.95 12.35 12.82 13.17 13.14

Data block
size

2500
(50×50)

3600
(60×60)

4900
(70×70)

6400
(80×80)

8100
(90×90)

10000
(100×100)

Output bits 13.19 13.18 13.14 13.11 13.10 13.04

Table 8: Compression results using different data block size

Sensitivity of compression ratio to data block size. Segmentation of the input

18

Figure 6: Sensitivity of compression ratio to data block size

Figure 7: Variance of the four compressed output components with data block size

binary matrix into data blocks appears important in JBIG2-related algorithms. The
choice of the data block size is done largely empirically. Figure 6 and Table 8 show
compression results of the data file 50-50-10-fill-31250-2-L1 containing real dummy fill
features using different data block sizes and a matching ratio of c = .025. The lossless
compression heuristic A2.1 is used. As shown in Figure 6, the compression ratio increases
sharply with the increase of the block size up to some point, after which it becomes
nearly level. At the transition point, the compression ratio continues to decrease slightly.
Empirically, the data block size can be chosen as the point where the increase in the
compression ratio first slows to zero. The compressed files corresponding to the data
points in Figure 6 have component compressed pieces whose sizes vary with data block

19

Data Block Size 16 64 256 400 900 1600

OD (%) 0.68 35.08 84.19 90.98 96.86 98.40
ORI (%) 3.52 34.57 8.32 5.39 2.21 1.19

OPMRI (%) 94.27 19.76 3.01 1.22 0.23 0.07
ORB (%) 1.53 10.59 4.48 2.41 0.70 0.35

Data Block Size 2500 3600 4900 6400 8100 10000

OD (%) 99.05 99.30 99.48 99.09 99.29 99.80
ORI (%) 0.75 0.54 0.40 0.31 0.25 0.19

OPMRI (%) 0.03 0.03 0.01 0.03 0.02 0.01
ORB (%) 0.16 0.14 0.10 0.57 0.43 0.01

Table 9: Compression results of the four output components using different data block
sizes

Figure 8: Sensitivity of compression ratio to data block size for lossless (A1) vs. propor-
tional loss (A2.2) heuristics

size. Figure 7 and Table 9 illustrate this trade-off (total compressed file size = OD +
ORI + OPMRI + ORB). When the block size goes up, the dictionary of reference blocks
is smaller but the entries themselves are larger, so ORI decreases but OD increases. The
best choice of block size is large enough so that the gains in compression ratio (Fig. 6)
has leveled off.

Furthermore, sensitivity of compression ratio to data block size for lossless and pro-
portional loss heuristics is studied using the same data file and matching ratio (c = .025)
as in Figures 6 and 7. Figure 8 and Table 10 show sensitivity results for compression
heuristics A1 (lossless), A2.2 (proportional loss) with k = .2, and A2.2 with k = 0.4.
Compression ratios for proportional loss heuristics benefit from larger data block size by

20

Data Block Size 900 2500 3600 4900 6400 8100 10000

A2.1 13.17 13.19 13.18 13.14 13.11 13.10 13.04
A2.2 (k=0.2) 13.19 13.23 13.18 13.15 13.10 13.10 13.04
A2.2 (k=0.4) 14.06 13.88 13.52 13.53 13.50 13.53 13.22

Table 10: Compression results of lossless and lossy heuristics using different data block
size

being able to change more 1’s to 0’s; the optimal data block size for proportional loss
heuristics shifts to a larger value than the optimal size for a lossless heuristic.

Figure 9: Sensitivity of compression ratio to data block shape for lossless (A2.1) vs.
proportional loss (A2.2) heuristics

Sensitivity of compression ratio to data block shape. Figure 9 and Table 11
show compression ratios on the data file 50-50-10-fill-31250-2-L1 containing real dummy
fill features using data blocks with size 3600 but different dimensions b1 × b2. The
heuristics used are A2.1, A2.2 (k = 0.2), and A2.2 (k = 0.4), with matching ratio of
c = .025. Compression ratio is sensitive to data block shape only when the allowed
proportional loss is high (k = .4), due to the resulting large change in the number of 1’s;
for the rest of the experiments, we choose blocks of varying dimensions.
Sensitivity of compression ratio to proportional loss ratio. Allowing a higher
proportional loss ratio k gives more latitude in changing 1’s to 0’s in generating the
asymmetric cover, and thus gives better compression ratios. This is true especially since
most fill data is dominated by 0’s, and so changing 1’s to 0’s via loss suggests better
compressibility simply by considering that there is an even smaller proportion of 1’s to
0’s. Figure 10 and Table 12 show this property using proportional loss heuristics A2.2
and A3 on the data file 50-50-10-fill-31250-2-L1 with data block dimensions 60 × 60,

21

Data block shape 100×36 30×120 40×90 60×60 50×72 80×45 90×40

A2.1 13.12 13.15 13.15 13.18 13.19 13.17 13.14

A2.2 (k=0.2) 13.13 13.16 13.20 13.18 13.20 13.17 13.15

A2.2 (k=0.4) 13.49 13.31 13.58 13.52 13.69 13.67 13.75

Table 11: Compression results using different data block shape (block size = 3600)

matching ratio c = .025, and proportional loss ratios k = 0.1, 0.2, 0.4, 0.6, 0.8. In the
figure, compression ratios increase slowly with increasing k at first, and then increase
radically for larger k’s. This is because the size of the proportional loss asymmetric cover
decreases exponentially in k (see [15] for details), which in turn causes a much smaller
dictionary to be required in the lossless compression stage. It should be mentioned here
that a proportional loss heuristic is allowed to change up to the fraction k of 1’s in each
data block to 0’s, but will only exploit whatever loss it determines helpful; furthermore,
the possible global density change in 1’s is bounded above by k times the original global
density of 1’s.
Experimental assumptions from sensitivity studies. All results from the above
sensitivity studies are typical and suitable for all of the heuristics implemented and have
also been tested for many different binary data files.

4.2 Experimental Discussion

All lossless and proportional loss methods are used to compress 15 real dummy-fill data
files (cases 1-15) and 4 randomly generated data (cases 16-19). The number of binary
bits is 2476 × 1167 in cases 1-6; 3973 × 4178 in cases 7,9, and 11; 4952 × 2333 in cases

Figure 10: Sensitivity of compression ratio to proportional loss ratio k for heuristics A2.2
and A3

22

k (%) Real lossy ratio (%) A2.2 (%) A3 (%)

0.1 0.0055 13.18 13.09
0.2 0.147 13.18 13.09
0.4 5.11 13.52 13.44
0.6 27.59 16.25 16.26
0.8 71.41 30.07 36.04

Table 12: Compression results using different proportional loss ratios k

8 and 10; 580 × 541 in cases 12-15; 500 × 600 in cases 16-17; 1000 × 1200 in case 18;
and 2000× 2500 in case 19. Resulting compression ratios and running times are listed in
Tables 13 and 14, respectively. Table 14 lists running times of the heuristics on all test
cases. The system configuration is a Sun SPARC ULTRA-10 with 1GB DRAM. In all
heuristics, a matching ratio of .025 is used. The block dimensions are 50× 50 for case 1,
60 × 60 for cases 2-6, 100 × 100 for cases 7-11, 25 × 25 for cases 12-15, 30 × 30 for cases
16-17, 100 × 80 for case 18, and 40 × 60 for case 19.

The improvement in compression ratio r of algorithm Y over algorithm X is calculated
by (rY − rX)/rX . We make the following observations.

Figure 11: Compression results for fixed speckle loss heuristic A2.3 with various global
loss ratios g.

• For compression ratios in lossless compression, A2.1 is best in nearly all test cases,
saving 3.2%-113% vs. the best commercial software, Bzip27, and having an average
improvement of 29.3%.

7Gzip and WinRAR were also used to test all cases, but Bzip2 performed better in every case while
still having favorable running times.

23

Case Lossless Lossy (k = 0.2) Lossy (k = 0.4)
Gzip Winrar Bzip2 A1 A2.1 A4.1 A2.2 A4.2 A3 A5 A2.2 A4.2

01 8.53 10.54 12.20 12.24 13.19 13.02 13.23 13.03 13.17 12.16 13.88 13.50
02 8.81 5.00 10.45 12.22 17.74 17.51 17.73 17.49 17.78 16.24 17.86 17.56
03 9.18 11.35 13.04 16.98 18.35 18.10 18.31 18.04 18.33 16.93 18.53 18.19
04 3.64 5.45 5.14 10.75 10.93 10.87 11.10 11.01 11.12 10.73 11.36 11.24
05 6.26 8.03 8.88 9.67 10.20 10.11 10.19 10.11 10.17 9.45 10.41 10.28
06 6.15 7.52 8.91 12.29 12.82 12.74 12.83 12.75 12.84 11.72 13.00 12.84
07 32.57 37.74 80.00 85.47 85.39 83.41 90.52 87.10 87.43 77.74 110.27 107.32
08 11.12 16.18 23.30 22.08 23.56 23.18 23.56 23.16 23.16 22.35 24.30 23.84
09 25.58 29.50 62.50 64.52 64.50 63.55 70.29 67.05 65.50 57.93 90.62 83.34
10 5.00 8.58 12.00 19.49 19.81 19.68 19.97 19.81 19.63 18.92 20.44 20.31
11 12.55 15.58 28.65 38.76 38.82 38.61 41.23 40.33 39.07 36.65 55.76 54.35
12 1.17 1.08 1.23 1.67 1.66 1.66 1.66 1.65 1.67 1.54 2.40 2.32
13 0.88 0.89 0.95 1.33 1.33 1.33 1.33 1.33 1.34 1.26 1.93 1.88
14 1.42 1.47 1.85 2.26 2.25 2.25 2.25 2.25 2.26 2.01 2.33 2.30
15 1.05 1.07 1.27 1.57 1.56 1.56 1.56 1.56 1.57 1.46 1.56 1.56
16 23.78 20.19 40.45 77.48 70.36 69.96 70.36 69.96 75.45 62.81 71.84 70.75
17 12.27 11.56 19.23 31.35 30.89 30.92 30.89 30.92 31.04 28.67 35.05 30.92
18 1.65 1.70 2.08 2.89 2.89 2.89 3.00 2.97 3.05 3.01 4.51 4.41
19 2.99 3.03 3.98 6.09 6.06 6.05 6.07 6.05 6.10 5.84 9.52 9.30

(Average) 9.23 10.33 18.00 23.16 23.28 23.02 24.05 23.53 23.79 21.40 27.89 26.83

Table 13: Compression ratios on 19 test cases using best performing lossless and propor-
tional loss heuristics

• A1 gives competitive compression ratios, saving 3.2%-109% vs. Bzip2, with average
savings of 28.7%.

• For compression ratios in lossy compression, A2.2 and A3 perform similarly in all
test cases, with A2.2 on average being significantly slower but yielding slightly bet-
ter compression ratios. On average, A2.2 saves 33.6% vs. Bzip2 with proportional
loss ratio k = 0.2, and saves 54.8% on average with k = 0.4. On average, A3
(k = 0.2) saves 31.9% vs. Bzip2.

• For lossless compression, A1 is the most cost-effective method, taking only 2.7×
longer than Bzip2 on average. A2.1 is nearly as cost effective, but takes 5.9× longer
than Bzip2 on average.

• A3 is the most cost-effective proportional loss method, taking 3.7× longer than
Bzip2 on average. The running time of A2.2 is 9.4× longer than Bzip2 on average
with proportional loss ratio k = 0.2 and 10.3× longer with k = 0.4.

Figure 11 and Table 15 show compression ratios for the fixed speckle loss heuristic,
A2.3. The three test cases are for the same data, block sizes, and matching ratio as the
correspondingly numbered cases in Table 13; global loss ratios g = .25%, .5%, .75%, 1%,

24

Case Lossless Lossy (k = 0.2) Lossy (k = 0.4)
Gzip Bzip2 A1 A2.1 A4.1 A2.2 A4.2 A3 A5 A2.2 A4.2

01 0.4 24.78 26.78 45.45 130.67 101.06 186.93 68.72 68.52 100.52 185.41
02 0.38 23.78 26.83 36.52 117.56 69.48 149.42 49.12 49.05 72.24 154.91
03 0.39 25.54 27.65 30.22 101.08 76.67 147.35 59.68 59.37 80.19 151.74
04 0.65 24.95 26.85 60.66 183.08 72.06 196.29 36.96 36.67 83.54 203.01
05 0.46 24.33 27.53 47.07 144.89 66.47 164.31 40.26 39.97 73.47 170.56
06 0.45 24.88 26.69 46.14 145.46 67.99 168.04 41.24 41.20 74.23 173.48
07 1.73 13.92 154.2 272.46 858.66 531.44 1041.63 165.00 155.74 548.48 1024.29
08 1.50 51.96 107.14 182.02 591.99 370.46 776.98 110.29 106.06 394.57 799.45
09 1.87 10.22 153.93 350.68 1116.96 609.92 1267.56 166.89 157.77 629.22 1216.68
10 2.1 43.29 107.17 314.04 985.33 370.68 1051.72 130.62 126.19 434.49 1077.94
11 2.2 12.13 154.14 479.65 1593.42 600.26 1646.3 188.25 178.34 623.96 1481.05
12 0.15 2.14 2.92 6.09 16.32 10.63 21.18 7.61 7.52 13.91 23.82
13 0.16 1.62 2.95 6.18 16.47 9.71 21.35 7.62 7.56 14.29 24.35
14 0.1 2.95 2.90 6.16 16.23 9.13 19.44 6.00 5.93 10.85 21.05
15 0.14 4.11 2.91 6.02 16.34 9.19 19.68 6.06 6.04 11 21.37
16 0.04 2.28 2.78 1.36 4.76 5.49 8.86 4.78 4.66 5.52 8.88
17 0.04 2.37 2.79 1.19 4.79 5.99 9.6 5.30 5.32 5.99 9.59
18 0.36 10.12 11.27 15.00 28.06 17.7 32.88 13.42 12.53 17.14 33.86
19 0.102 37.63 46.83 124.15 435.53 253.25 570.84 173.49 172.85 258.02 518.37

(Average) 0.70 18.05 49.30 106.90 342.51 171.45 394.76 68.48 66.27 187.55 396.66

Table 14: Running times using best performing lossless and proportional loss methods
(unit: s)

2%, and 4% are used. For case 1, A2.3 gives compression ratio 14.31 with running time
24.63s for g = .025; this is 3.1% better and 75.5% faster than using A2.2 with k = .4,
which corresponds to g = .025 since the percentage of 1’s in the matrix of case 1 is 6.31%.
For case 10, A2.3 gives compression ratio 24.48 with running time 246.74s for g = .075;
this is 19.8% better and 43.2% faster than using A2.2 with k = .4, which corresponds to
g = .074 since the matrix in case 10 is 18.4% 1’s. For case 11, A2.3 gives compression
ratio 46.71 with running time 398.50s for g = .075; this is 16.2% worse but 36.1% faster
than using A2.2 with k = .4, which corresponds to g = .072 since the matrix in case 11
is 17.93% 1’s.

5 Summary and Future Directions

We have implemented algorithms based on JBIG* methods in combination with PM&S,
alternative dictionary generation mechanisms, and the new concept of one-sided loss, to
compress binary data files of dummy fill features. Experimental results show that JBIG1
is quite effective, improving compression ratios by 28.7% vs. the best commercial tool
Bzip2 on average, with (unoptimized) runtime penalty of approximately 2.7×. However,
our new heuristics A2-A3 and the fixed speckle loss heuristic offer better compression

25

Defined global lossy ratio (%) 0 0.0025 0.005 0.01 0.02 0.04

Case 1 13.19 14.31 15.36 17.35 21.1 28.74
Case 2 19.81 21.97 23.5 25.99 29.95 36.84
Case 3 38.82 43.48 45.45 47.76 50.74 55.26

Table 15: Compression results for fixed speckle loss heuristic A2.3 with various global
loss ratios g.

with slower runtime, especially as data files become larger (cf. cases 7-11); data file size
in real applications are expected to be at least as large as the largest cases considered
here. Algorithm A2.1, based on JBIG2, improves compression ratios by 29.3% on aver-
age, with a runtime penalty of 5.9×; this lossless method may be a more effective basis
for compression than JBIG1. Introduction of one-sided loss does not contribute signif-
icantly to compression performance unless the allowed proportional loss ratio is large
(> 40%). However, the proportional loss algorithms A2.2 and A3 are still promising in
some respects, and respectively improve average compression ratios by 33.6% and 31.9%
versus Bzip2. Finally, the concept of fixed speckle loss constitutes a fixed-radius type
of asymmetric cover (just as proportional loss constitutes a proportional-radius type of
asymmetric cover) and gives exceptionally promising results, with resulting compression
ratios improving by 128.6% vs. Bzip2. The fixed radius regime is reasonable in practice
since feature density constraints are set by the foundry with respect to window size, and
are independent of the feature area in a given design.

Our ongoing work combines compression techniques with the identification of large
rectangles of contiguous fill features. Such rectangles can be removed and compressed
separately: their removal improves arithmetic coding based compression by further bi-
asing the ratio of 1s to 0’s in the input. We are also investigating the generation of
compressible dummy fill features. The algorithms that we discuss here may be directly
connected to hierarchical VLSI layout generation by use of AREF and SREF constructs
[21] to represent dummy fill features.

26

References

[1] G. Nanz and L. E. Camilletti, “Modeling of chemical mechanical polishing: A
review,” IEEE Trans. Semiconduct. Manufact., vol. 8, no. 4, pp. 382–389, 1995.

[2] “Information technology - coded representation of picture and audio information -
progressive bi-level image compression,” Tech. Rep. ITU-T Recommendation T.82
— ISO/IEC 11544:1993, International Telecommunications Union, 1993, (Com-
monly referred to as JBIG1 standard).

[3] “JBIG2 final draft international standard,” Tech. Rep. JTC1/SC29/WG1 N1545,
ISO/IEC, December 1999.

[4] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, W. Rucklidge and F. Ono,
“The emerging JBIG2 standard,” IEEE Trans. Circuits Syst. Video Technol., vol.
8, no. 5, pp. 838–848, September 1998.

[5] JBIG Homepage,
http://www.jpeg.org/public/jbighomepage.htm.

[6] “International organization for standardization,” website,
http://www.iso.ch/iso/en/ISOOnline.openerpage.

[7] “International electrotechnical commission,” website, http://www.hike.te.chiba-
u.ac.jp/ikeda/IEC/home.html.

[8] “Commité consultatif international de telecommunications et telegraphy,” website,
http://www.crs4.it/∼luigi/MPEG/mpeggloss-c.html#CCITT.

[9] “International telecommunication union,” website,
http://www.itu.int/home/index.html.

[10] David Salomon, Data Compression: the complete reference, Springer, second edition,
2000.

[11] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y., 1972), pp. 85–103. Plenum, New York, 1972.

[12] P. Howard, “Lossless and lossy compression of text images by soft pattern matching,”
in Proceedings of the 1996 IEEE Data Compression Conference (DCC), J. A. Storer
and M. Cohn, Eds., March 1996, pp. 210–219, Snowbird, Utah.

[13] P. Howard, “Text image compression using soft pattern matching,” Computer
Journal, vol. 40, pp. 2–3, 1997.

27

[14] A. Moffat, T. C. Bell and I. H. F. Witten, “Lossless compression for text and
images,” Int. J. High Speed Elect. & Syst., vol. 8, no. 1, pp. 179–231, 1997.

[15] J. N. Cooper, R. B. Ellis and A. B. Kahng, “Asymmetric binary covering codes,”
J. Combin. Theory Ser. A, to appear.

[16] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and In-
dexing Documents and Images, Morgan Kaufmann, San Mateo, CA, second edition,
1999.

[17] V. Dai and A. Zakhor, “Lossless Layout Compression for Maskless Lithography Sys-
tems,” Proc. Emerging Lithographic Technologies IV, Santa Clara, February 2000,
SPIE volume 3997, pp. 467-477.

[18] J. Robertson, “Vendors believe ‘million-dollar reticles’ can be avoided in next-
generation fabs,”
http://www.siliconstrategies.com/story/OEG20010718S0019 .

[19] F. M. Schellenberg, O. Toublan, L. Capodieci and B. Socha, “Adoption of OPC and
the Impact on Design and Layout,” Proc. ACM/IEEE Design Automation Confer-
ence, 2001, pp. 89-92.

[20] International Technology Roadmap for Semiconductors, December 2001,
http://public.itrs.net.

[21] GDSII Stream Format,
http://www.vsi.org/library/contech/gdsii.pdf.

28

Appendix A. Arithmetic Coding

Arithmetic coding is a well-established coding technique that compresses a sequence of
data optimally with respect to a probabilistic model. The idea behind arithmetic coding
is to have a probability line, 0 ∼ 1, and assign every symbol to a range in this line based
on its probability. The higher the probability is, the higher the range assigned to it will
be. Once we have defined the ranges and the probability line, every symbol is encoded
through defining where the output floating point number lands. Arithmetic coding is the
basis of most efficient bi-level data compression techniques.

1. Conceptual description

Encoding process:
Begin with a ”current interval” [L, H) initialized to [0,1).
For each coming event, two steps are performed:

Subdivide the current interval into subintervals, one for each possible event.
The size of an event’s subinterval is proportional to the estimated probability
that the event will be the next event.
Select a subinterval corresponding to the event that actually occurs next and
make it the new current interval.
Output enough bits to distinguish the final current interval from all other
possible final intervals.

The decoding process is similar.

2. Compression Ratio

Shannon proved the ideal compression ratio of a series of events is the entropy of p de-
noted by

H(p) =
n∑

k=1

−p{ek} log
2
p{ek} (2)

where p{ek} is the probability of the event ek. An optimal code outputs -log2 p bits to
encode an event whose probability of occurrence is p.

Figure 12: Compression ratio vs. probability of 1 (or 0)

29

For a bi-level data file, the ratio will be

H(p) = −p{e0} log
2
p{e1} − p{e1} log

2
p{e1} (3)

Figure 12 shows the relationship between compression ratio and the probability of bit
1 (or 0) appearing in a data file. The ratio reaches its minimum value at the two ends
(p{e1}=0 or 1) and reaches its maximum value in the middle point (p{e1}=.50). Thus
the compression ratio will be better for a data file that has a more unbalanced content
of bit 0 or 1.

3. Pseudo code

Encoding:
Set low to 0.0
Set high to 1.0
while not the end of the input matrix B

Get next character from the matrix B
range = high - low high = low + range
high range of the character low = low + range
low range of the character

end while
Output low to the matrix O

Decoding:
Get number for the matrix O
do

Find a character that has high > number and low < number
Set high and low corresponding to the character output the character
range = high - low
number = number - low
number = number / range

until no more characters

4. Examples

Let’s say we have

Symbol Probability Range

a 2 [0.0,0.5)
b 1 [0.5,0.75)
c 1 [0.75,1.0)

The symbol stream to be compressed is ”baca”.
Encoding:

30

Symbol Range Low value High value

0 1
b 1 0.5 0.75
a 0.25 0.5 0.625
c 0.125 0.59375 0.625
a 0.03125 0.59375 0.609375

Output number: 0.59375
Decoding:

Number Range Symbol

0.59375 0.25 b
0.375 0.5 a
0.75 0.25 c
0.75 0.5 a

31

