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Abstract

Personalized medicine asks if a new treatment will help a particular patient, rather than if it 

improves the average response in a population. Without a causal model to distinguish these 

questions, interpretational mistakes arise. These mistakes are seen in an article by Demidenko 

[2016] that recommends the “D-value,” which is the probability that a randomly chosen person 

from the new-treatment group has a higher value for the outcome than a randomly chosen person 

from the control-treatment group. The abstract states “The D-value has a clear interpretation as the 

proportion of patients who get worse after the treatment” with similar assertions appearing later. 

We show these statements are incorrect because they require assumptions about the potential 

outcomes which are neither testable in randomized experiments nor plausible in general. The D-

value will not equal the proportion of patients who get worse after treatment if (as expected) those 

outcomes are correlated. Independence of potential outcomes is unrealistic and eliminates any 
personalized treatment effects; with dependence, the D-value can even imply treatment is better 

than control even though most patients are harmed by the treatment. Thus, D-values are 

misleading for personalized medicine. To prevent misunderstandings, we advise incorporating 

causal models into basic statistics education.
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1. CAUSAL MODELS FOR INDIVIDUAL EFFECTS

1.1. Background: The D-value is Not the Proportion of Patients Harmed by Treatment

Despite great advances in causal modeling over recent decades, it still seems largely 

unrecognized that intuitive causal interpretations of statistical parameters can be rendered 

fallacious via their dependence on hidden assumptions about causal structure. This problem 

is well illustrated with a recent article (Demidenko [2016]) which made a number of 

remarkable causal claims about a measure of association called the D-value.1 Over the 

ensuing two years it became one of the most downloaded articles in The American 
Statistician – which is alarming in light of the fact that all the causal claims in the article are 

incorrect. Foremost, the article states in the abstract that “The D-value has a clear 

interpretation as the proportion of patients who get worse after the treatment.” This 

statement is false under even the simplest plausible causal model, yet is repeated on p. 37. 

Related incorrect assertions appear throughout the article, e.g., on p. 36 “The D-value is for 

personalized medicine when the treatment is sought, not on a group, but on an individual 

level”. Worse, under the quoted misinterpretations the D-value can indicate that the new 

treatment is better than the control (D<0.5) even though the treatment harms a majority of its 
recipients (Hand [1992], Fay et al. [2018]).

How were such profoundly erroneous claims justified? We will show that the claims can be 

derived by introducing a statistically nonidentified causal assumption, one which we regard 

as extremely implausible in every setting we can imagine. Because similar hidden 

assumptions appear to be behind other common misinterpretations of effect measures, and 

given the attention received by Demidenko [2016], we provide a detailed review of the core 

problem: failure to recognize when interpretations are based on strong and often implausible 

assumptions about the effect of treatment on outcome.

1.2. Experimental statistics and modern causal modeling theory

Scientists have been making causal inferences from experiments since the dawn of modern 

science, and formal causal models for the design and analysis of randomized experiments go 

back nearly a century (Neyman [1923], Welch [1937]). Since then, the topic of causal 

inference has become a major sub-branch of statistical theory with the growing recognition 

that causal claims require additional formal structure to link them deductively to statistical 

analyses. Starting with the earliest randomization-test literature, by far the most popular 

structures for this purpose have been in the form of potential outcomes, which have 

gradually begun to appear in textbooks, e.g., see recent examples by Morgan and Winship 

[2015], Imbens and Rubin [2015], VanderWeele [2015], Pearl et al. [2016], Rosenbaum 

[2017], and Hernán and Robins [2019]. Using this model to study effects of treatment, the 

traditional outcome or response variable is expanded into a list (vector) of potential 

outcomes that shows what the outcome would be for the same unit under different 

treatments; conditional independence (“ignorability”) assumptions about treatment 

assignment are then used to deduce tests and estimates of causal effects, with the latter 

1The D-value (possibly with tie adjustments) is also known as the Mann-Whitney parameter (Fay et al. [2018]), the probabilistic index 
(Thas et al. [2012]), the relative treatment effect (Brunner and Munzel [2000]), and for discrimination problems the concordance index 
or c-index (Harrell et al. [1996]), where it equals the area under the ROC curve (Demidenko [2016]).
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defined as contrasts comparing the marginal distributions of the different potential outcomes 

in the same study group (e.g., all trial participants).

The resulting causal-inference theory is more complex than classical regression or ANOVA, 

for there is now a vector variable inserted where only one outcome variable appeared before. 

Beyond that however it is distinct from traditional mathematical statistics to the extent that 

the latter focuses strictly on deductions derived from assumptions about probability 

distributions for the data. It has long been known that even complete knowledge of those 

probability distributions cannot pinpoint the exact causal mechanism (the explanation or 

“story”) generating the data; for example, two mutually inconsistent potential-outcome 

models arising from distinct mechanisms can lead to identical data distributions, even when 

treatment is randomized (Robins [1986, sec. 2A]; Robins and Greenland [1989ab]; Dawid 

[2000]; Pearl [2009, Section 11.1.1]).

Thus, although experimental designs can identify and contrast various marginal distributions 

for the component potential outcomes, without further assumptions they cannot identify 

their joint (vector) distribution. That limitation may be unsurprising: Once we apply a 

treatment to a group, we can only observe its outcome distribution under that treatment; the 

potential outcomes under the unreceived (counterfactual) treatments are now unobservable. 

Some critics have labelled this nonidentification a problem with potential-outcome models; 

others have responded that it is instead a valuable representation of an innate limitation of 

purely statistical studies of causation, e.g., contrast Dawid [2000] with its discussants.2 As 

we will explain in detail, it is precisely these inherent limitations that were overlooked in 

Demidenko [2016].

To show how the quoted claims fail, we will use a basic potential-outcome model for 

treatment effects in which Xi is what the outcome of a randomly selected trial subject 

indexed by i would be if given the control treatment (e.g., placebo or standard of care) and 

Yi is what the outcome of the same subject would be if given the new treatment (e.g., an 

experimental drug). In more common causal notation Xi is Yi(0) and Yi is Yi(1), but we here 

use Xi and Yi to better match Demidenko’s notation. Let (Xi,Yi) be the potential outcome 

vector for a random subject, i.e., the outcomes under control or new treatment for subject i. 
Randomization splits the subjects into two random samples from the total: A control sample 

in which only the control response X is observed and Y is missing; and a new-treatment 

sample in which only the new-treatment response Y is observed and X is missing. The 

randomization allows estimation (identification) of the marginal X and Y distributions by 

classical techniques (Rubin [1978]).

Nonetheless, as has been long known (e.g., see Dawid [2000] and discussants), treatment 

randomization3 does not identify the distribution of the pairwise (joint) potential-outcome 

2Indeed, one alternative to potential outcomes (Dawid [2015]) deals with the problem by using a reduced structure in which only 
marginal responses to treatments are defined. This causal model reproduces the same observable distributions as those derived from 
potential-outcome models, and so yields identical inferential implications and limitations of statistical experiments; it thus lacks 
sufficient structure to correctly represent concepts like “proportion harmed” and “probability of causation” which contrast potential 
outcomes within single individuals.
3This means any weaker condition such as ignorability (independence of treatment and potential outcomes across patients) will also 
not identify the (Xi,Yi) distribution.
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(Xi,Yi) distribution. Specifically, the randomized-trial design allows identification of only 

the marginal distributions of Xi and Yi. In particular, if higher outcome values are 

considered undesirable, the proportion of patients who would be harmed by the treatment is 

π = Pr(Yi>Xi), which is a statement about the pairs (Xi,Yi). It thus cannot be identified from 

the trial data alone because it depends on the joint (Xi,Yi) distribution. Because no complete 

(Xi,Yi) pair is observed, we cannot verify harm (Yi>Xi), benefit (Yi<Xi), or no effect 

(Yi=Xi) in any individual from the data alone; we only observe marginal averages over these 

individuals (Senn [2009]).

2. WHY THE D-VALUE IS NOT THE PROPORTION HARMED

2.1. D-value vs. Proportion Harmed Under a Basic Model

Demidenko [2016] introduced the D-value first under normality assumptions for X and Y, 

and then (in his Section 3.1) non-parametrically, referring to the D-value as both the sample 

estimate and the population parameter. We focus on the D-value parameter, first defining it 

generally, then examine assumptions and their consequences.

Suppose we have N subjects in the study; then the complete unobserved potential outcomes 

are the N pairs, (X1,Y1), …(XN,YN). The treatment-assignment process picks n of the N 

subjects to get the control treatment (say subjects 2,3,5,8,…) and N-n subjects to get new 

treatment (say 1,4,6,7,9,…). Then we only observe (., Y1), (X2,.), (X3,.), (.,Y4),(X5,.), (.,Y6), 

(.,Y7), (X8,.), (.,Y9), and so on, where the “.” represents the missing part of the pair (Rubin 

[1978]). The D-value population parameter is δ = Pr(Yi > Xj), where Yi is the outcome of a 

patient randomly drawn from the new-treatment group, and Xj is the outcome of a distinct 

patient independently and randomly drawn from the control group (cf. Section 3.1 of 

Demidenko [2016]). Note well, δ is defined using different indices i and j to indicate that the 

two random variables in this sampling cannot be from the same individual, since δ is derived 

from sampling two distinct groups.

When larger response denotes more harm, one might be tempted to shorten the description 

of δ to “the proportion harmed,” leading to the incorrect causal interpretations in Demidenko 

[2016]. To see why, we must contrast the D-value, δ = Pr(Yi > Xj), to the proportion harmed, 

which is π = Pr(Yi >Xi). The key difference overlooked in Demidenko [2016] is that (in 

sharp contrast to δ), the indices of X and Y in the proportion harmed π are by definition 

identical: Use of the same index i in π denotes that the two outcomes must come from the 

same individual. This follows common sense: To claim patient i was harmed by the new 

treatment is to claim that patient i would have done better on the control treatment, i.e., that 

Yi>Xi.

To highlight the difference between δ and π, we revisit the example in Demidenko [2016] 

which compares placebo to a weight-loss drug in a randomized trial. The average ending 

weight is one pound less in the drug group than the placebo group; the corresponding D-

value is 0.486, which the paper states is “the proportion of patients who get worse after the 

treatment.” Suppose however that the 1-pound average loss arose because the diet drug 

produced some weight loss in every patient and on average that loss was one pound (e.g., as 

would happen if the treatment causes a one-pound weight loss relative to placebo in 
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everyone: Yi−Xi = −1 for all i); then no one was or would be harmed by treatment (π=0). 

Thus the D-value of 0.486 cannot be the proportion harmed.

If the outcome were transient with no carry-over or time trend, and the trial could be 

repeated in the same patient (an N-of-1 crossover trial), we could see both Yi and Xi, and 

thus see directly whether a patient was harmed (Yi>Xi), unaffected (Yi=Xi), or helped 

(Yi<Xi) by the treatment. Otherwise, one must turn to a causal model to impute the missing 

potential outcome (Xi missing in the treatment group, Yi missing in the control group) 

(Greenland et al. [2008]; Morgan and Winship [2015]; Imbens and Rubin [2015]; Hernán 

and Robins [2019]). The error in Demidenko [2016] can thus be attributed to not holding the 

individual subscript i constant when claiming to estimate the proportion harmed π or other 

“personalized” effects of treatment, and thus failing to recognize that the marginal 

distributions identified by randomization do not determine the joint distribution on which the 

proportion harmed π is defined. This oversight will invalidate any statistical claim about 

personalized effects based solely on the treatment-assignment mechanism (as opposed to 

assumptions about the mechanism connecting treatment to the outcome).

2.2 D-value with Normality Assumptions

Demidenko [2016, Section 3] assumed the marginal distributions were normal, but made no 

explicit assumptions about the bivariate distribution Fxy. Gadbury and Iyer [2000] assumed 

that the (Xi,Yi) pairs were draws from a bivariate normal distribution; they noted that π is 

not identifiable from a two-sample randomized experiment because the correlation between 

Xi and Yi is not identifiable (since as noted above for each individual only one of the 

potential outcomes is observed). Under the bivariate normality assumption, we get δ = π if 

and only if the correlation is 0 so that Xi and Yi are independent. Although π is not 

identifiable, Gadbury and Iyer [2000] explored bounds on π under the bivariate normality 

assumption. Even without bivariate normality, if the outcomes of the same subject under 

different treatments are independent, Pr(Xi,Yi) = Pr(Xi)Pr(Yi); under randomization the 

latter product equals Pr(Xi)Pr(Yj), leading to δ = π; however, this independence would mean 

a subject’s control outcome has no predictive value at all for their treatment outcome. As we 

hope will become obvious to the reader, this is an untenable assumption.

It follows that any statement derived from confusing the D-value with the proportion harmed 

can be highly misleading, because strong positive correlations of potential outcomes should 

be expected: regardless of treatment, an individual will retain the same baseline outcome 

predictors, such as age, sex, baseline weight, their entire genome, their entire biome, and 

countless unmeasured predictors. Thus, a patient who would have ended with a higher 

outcome than other patients under control is also likely to end with a higher outcome under 

the new treatment, simply by virtue of having identical baseline predictors.

Not only can δ and π differ to a large extent, they can even differ in direction in the sense of 

δ<½<π, and thus convey a very different impression of typical direction of effect, so that the 

new treatment could look better in terms of the D-value (i.e., δ < ½) but could actually be 

worse for most patients (i.e., π>½). Hand (1992) showed how this could happen even if X 

and Y are marginally normal; specifically, with means μx and μy and the same variance, σ2, 

for X and Y, then it is possible to have opposite directional effects, and these opposite effects 
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can occur whenever 
μy − μx

σ < 1.35, a result sometimes called “Hand’s Paradox.” Under 

these normality assumptions, the D-value is δ = Φ
μy − μx

2 σ , where Ф is the standard normal 

distribution; it follows that the paradox (i.e., δ and π indicate opposite direction of effects) 

can occur whenever δ ∈(0.170, 0.830) (Fay et al [2018]). So even if δ indicates that 

treatment is worse than control, we cannot rule out the possibility that treatment benefits 

more than half the population. Basically, with δ, large harms for the minority can outweigh 

small benefits for the majority (and vice versa).

2.3. D-value without Normality Assumptions

To illustrate how the D-value behaves without normality assumptions, we explore three 

simple discrete-outcome examples. Let Fxy be the bivariate distribution of (Xi,Yi), and let Fx 

and Fy be the marginal distribution of Xi and Yi, respectively. Figure 1 shows three bivariate 

distributions Fxy, all with the same marginal distributions, Fx and Fy. The marginal 

distribution for X has probability ⅓ on each of the points: 2, 4, and 6, while the marginal 

distribution on Y has probability ⅓ on each of the points: 1, 3, and 5. As before, assume 

larger values are worse, so parameter values less than ½ imply that the new treatment is 

better than the control. Since the marginal distributions are the same in all three panels in 

Figure 1, the δ values are the same: all have δ = Pr(Yi > Xj) = ⅓. Figure 1a shows the 

bivariate distribution when X and Y are independent; this is the case when π = Pr(Yi > Xi) = 

δ = ⅓. Figure 1b shows the bivariate distribution with a constant effect Yi−Xi= −1 for all 

patients, for which case π=0 since everyone benefits from treatment (the effect is strictly 

downward monotonic); yet, under Demidenko’s misinterpretation of δ, we would falsely 

infer that δ=⅓ of patients would do worse under the new treatment than under the control. 

Finally, in Figure 1c illustrates Hand’s paradox where π=⅔>½, so that the new treatment 

harms most patients, yet under Demidenko’s misinterpretation of δ=⅓<½, we would falsely 

infer that most patients are not harmed by the new treatment. Of course, Hand’s paradox can 

occur with continuous data as well. To see this, imagine mixtures of bivariate normal 

distributions, with their centers at the points in Figure 1c.

As in the case where Fxy is bivariate normal, in the general case we can identify δ but not π 
using only the marginal distributions Fx and Fy (which are all that are identified by the 

randomization indicator alone, as in classical randomization tests and their 

approximations).4 Nevertheless, we can get bounds on π. Fay et al. [2018] review bounds 

for π given the marginal distributions Fx and Fy under both non-parametric and semi-

parametric assumptions.

For continuously distributed responses, Fx=Fy implies δ=½, but for discrete responses we 

can have δ<½ when, unlike the examples of Figure 1, there is the possibility of ties (i.e., 

Pr(Yi=Xj)>0). We could adjust the D-value for ties using Pr(Yi>Xj) + Pr(Yi=Xj)/2, so that 

when Fx=Fy then the adjusted D-value parameter equals ½ even with discrete responses with 

ties. We could similarly adjust π to Pr(Yi>Xi) + Pr(Yi=Xi)/2 but this adjustment would 

4To see this note that δ is a functional gδ(Fx,Fy) = Pr(Yi > Xj) of the randomization-identified marginal distributions, whereas π is a 
functional gπ(Fxy) = Pr(Yi > Xi) of the nonidentified bivariate distribution.
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destroy its interpretation as the proportion harmed; for example, π would then equal ½ for a 

treatment with no harm or benefit, i.e., Pr(Yi=Xi) = 1, and would equal ¼ for a treatment 

that harmed no one and benefitted half the patients, i.e., Pr(Yi>Xi)=0, 

Pr(Yi=Xi)=Pr(Yi<Xi)=½.

3. Personalized Medicine and Statistical Inferences

In order for any measure to be used for personalized medicine, we need baseline covariates 

to describe different subgroups with different effects. Without subgroup analysis we can 

only approach individual effects via their group averages. Examples in simple two-sample 

randomized trials include the average causal effect E(Yi) – E(Xi) = E(Yi−Xi), which shows 

how the usual mean difference is a simple average of individual effects, a property not 

shared by other measures; notably, odds ratios are not weighted averages of individual 

causal effects (Greenland et al. [1999]). In the next section we show how δ−½ can be 

reconstructed as an average individual effect, albeit not a simple one. Because these effects 

are averaged over individuals for each group, it is misleading to state “the D-value is for 

personalized medicine when the treatment is sought, not on a group, but on an individual 

level” (Demidenko [2016, p. 36]).

If we want to come closer to individual effects we must measure baseline covariates to allow 

us to “personalize” the effects. Given data sufficient in quantity, quality, and detail (as from 

large trials and pooling projects), personalized treatment decisions can be aided by 

estimating potential outcomes as functions of baseline covariates Z available in the trial data 

(Robins [1986, sec. 3C; 2004], Murphy [2003]). Even with such resources however we think 

it probable that Y and X will remain highly correlated within covariate levels, and thus may 

render the covariate-specific D-values far from the actual proportion harmed.

4. A Causal Interpretation of the D-value

To summarize to this point: We can interpret δ causally by viewing its departure from its 

null value of ½ as one measure of the change in the marginal outcome distribution produced 

by the new treatment relative to the control. Nonetheless, as we have seen this interpretation 

is not a patient-specific (“individualized”) causal effect because it averages over within-

patient effects within each group, so the same average effect can come from very different 

distributions of individual effects. For example, δ=½ if there is no individual effect (Yi=Xi 

for everyone, in which case π=0), but δ=½ could also occur if everyone was affected (e.g., if 

half the patients had Yi−Xi=1 and half had Yi−Xi=−1, in which case π=δ= ½).

To understand the limitations of δ within a causal model, we can imagine that the patients 

enrolled in the trial define a population of potential outcomes under control treatment (the X 

marginal distribution) and a population of potential outcomes under the new treatment (the 

Y marginal distribution). Then δ is the probability that a randomly selected potential 

outcome under the new treatment is larger than an independently selected potential outcome 

under the control treatment. In contrast, π refers to pairs (Xi,Yi) of these potential outcomes 

matched by patient: π is the probability that a randomly selected patient has a potential 

Greenland et al. Page 7

Am Stat. Author manuscript; available in PMC 2021 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outcome under new treatment that is larger than that same patient’s potential outcome under 

the control treatment.

While in general δ≠π, we may ask if there is at least some sort of precise causal 

interpretation for δ in terms of the change in outcome distribution produced by treatment. It 

turns out there is one for the null-centered version δ−½, albeit one much less straightforward 

than the causal interpretation for π because it depends on averaging explicit quantiles of the 

marginal distributions of X and Y under the different treatments. Specifically, Fay et al. 

[2018] derive δ−½ in terms of what they call the expected quantile difference (EQD) causal 

effect.5 For simplicity we will only describe the EQD under the continuity assumption; see 

Fay et al. [2018] for the general tie-adjusted version.

We first define the randomized outcome quantile level for the total patient population in a 

1:1 randomized experiment. Let the observed outcome be Wi = RiYi + (1−Ri)Xi, where Ri is 

the independent random (Bernoulli) treatment-assignment indicator with P(R=1) = ½. wi 

represents randomized observation of one of the two potential outcomes Y and X for the ith 

individual, which yields the ith individual’s observed response. The distribution of wi is 

G(w) = (Fx(w) + Fy(w))/2 = Pr(Wi ≤ w). With G(wi) = qi, the observed outcome wi for 

patient i is then at the qi
th quantile of G, and qi is the quantile level of the observed outcome 

in the total patient population. The difference in quantile levels for the ith individual due to 

treatment is Di = G(Yi) – G(Xi) which Fay et al. [2018] called the quantile difference causal 

effect for the ith individual. Di represents an individual causal treatment effect insofar as it 

measures the change in the individual’s ordinal outcome location in the total patient 

population produced by the new treatment. For example, if Di is 0.10, then the quantile level 

for the ith individual would increase by 0.10 on treatment (e.g., go from 0.16 on control to 

0.26 on treatment). Fay et al [2018] showed that the expectation of those individual causal 

treatment effects is δ−½, i.e.,

δ − ∕21 = E(Di) = E(G(Yi)) − E(G(Xi)) .

Since G is a function of the marginal distributions only, δ is identifiable. So a proper causal 

interpretation of δ−½ from a randomized experiment is the expectation of individual 

difference in quantile level causal effects. Although the causal interpretation of δ is less 

straightforward than that of π, the lack of identifiability of π limits its practical use, and so it 

may be unsurprising that most of the modern causal modeling literature has focused on 

models for treatment effects on marginal distributions.

5. Discussion

The difference between the D-value parameter δ and the proportion harmed π has long been 

known (e.g., see Hand [1992]) yet has been overlooked repeatedly. One reason for the 

oversight may be that in a randomized trial the observed outcomes on which δ is defined (Xj 

and Yi from different patients j and i) are independent, while the potential-outcome pairs on 

5which should not be confused with the quantile causal effect Fy
−1(Y i) − Fx

−1(Xi); see Xu et al [2018].
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which π is defined (Xi and Yi from the same patient i) are likely to be highly correlated. 

Confusion thus seems inevitable when (as in Demidenko [2016]) there is no underlying 

causal model that distinguishes the two cases. Once such a model is given, the mistake of 

confusing δ with π can be seen as a mistake of equating independent marginal sampling to 

joint-distribution sampling (sampling of patient-specific potential-outcome pairs).

This issue is closely related to other confusions of marginal and individual causal measures. 

Consider a binary outcome or failure-time outcome. Most textbooks of the past century as 

well as many legal and policy documents mistakenly equated the attributable fraction φ = 

(Pr(Yi=1)−Pr(Xi=1))/Pr(Yi=1) (“attributable risk” or excess fraction) to the probability of 

causation Pr(Yi>Xi)/Pr(Yi=1) = π/Pr(Yi=1). But as above for δ versus π, the fraction φ is 

defined from the marginal distributions and is thus identified by treatment randomization, 

whereas π is not (Greenland and Robins [2000]). Without strong assumptions about the 

bivariate distribution of potential outcomes (Xi,Yi) we can only say φ ≤ π/Pr(Yi=1) ≤ 1 

(Robins and Greenland [1989ab]).

Demidenko [2016] repeats the well-known fact that a P-value does not represent an effect-

size estimate, which certainly bears emphasis. Unfortunately, his article concludes that 

replacing the P-value with the D-value offers a partial solution to “the poor reproducibility 

of scientific experiments.” We strongly disagree with that statement regardless of the chosen 

measure of effect. Any measure is vulnerable to data-driven or otherwise motivated selection 

effects by the analyst, including artefacts of subgroup analysis. Even with perfectly honest 

and valid reporting, in fields like psychology, social sciences, and medicine, effect sizes can 

and should be expected to vary dramatically across groups due to differences in the 

distribution of innumerable modifiers of the effect. It is for example often lamented that the 

effects of drugs seen in randomized trials do not predict well the effects seen in clinical 

practice – a fact unsurprising when one realizes that trials have numerous admission criteria 

that could alter effects (e.g., excluding reproductive-age women), but clinical prescribers can 

and do prescribe far beyond those limits and practice in a much less controlled environment.

Those estimation problems aside, there seems to be poor understanding that a valid P-value 

should vary dramatically across studies (Senn [2001, 2002], Gelman and Stern [2006], Boos 

and Stefanski [2011], Greenland [2019]). Consequently, “replication failures” are often 

simply an artefact of using an arbitrary and easily crossed threshold such as 0.05 to 

dichotomize results into “positive” and “negative” and from focusing on only one hypothesis 

and its P-value (Poole [1987], Rothman et al. [1999]. Senn [2001, 2002], Greenland [2017a], 

Amrhein et al. [2019]). Such dichotomania and nullism has been condemned in scores if not 

hundreds of sources, and is addressed simply by reporting precisely and discussing the 

different P-values that one gets from testing different parameter values, rather than focusing 

on where those P-values fall relative to some arbitrary if conventional cutoff (in this journal 

see recent articles by Wasserman and Lazar [2016], Greenland et al. [2016], and Greenland 

[2019]). Simply adopting a different measure of effect does nothing to address this core 

source of spurious “nonreproducibility.”

The main goal of this note has been to highlight the misinterpretation of statistical 

parameters that arise when the parameter is not precisely defined by an explicit causal 
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model. This has been illustrated by claims that the D-value (δ) is the proportion harmed (π), 

when in fact those are two different parameters which may not even be close under realistic 

assumptions. It is difficult to see that the two parameters are different without using potential 

outcomes or similar causal formalisms. Although there remains disagreement about the 

relative merits of formal and informal approaches to causal inference (Greenland [2017b]), 

we strongly advise that basic causal models become part of elementary statistics education 

so that mistaken intuitive interpretations of effect estimates can be avoided and valid 

methods for effect prediction can be more widely deployed.
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Figure 1: 
Three bivariate distributions, all with the same marginal distributions: Fx has equal 

probabilities on 2,4, and 6, and Fy has equal probabilities on 1,3, and 5. Circle areas are 

proportional to the probabilities.

Greenland et al. Page 12

Am Stat. Author manuscript; available in PMC 2021 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	CAUSAL MODELS FOR INDIVIDUAL EFFECTS
	Background: The D-value is Not the Proportion of Patients Harmed by Treatment
	Experimental statistics and modern causal modeling theory

	WHY THE D-VALUE IS NOT THE PROPORTION HARMED
	D-value vs. Proportion Harmed Under a Basic Model
	D-value with Normality Assumptions
	D-value without Normality Assumptions

	Personalized Medicine and Statistical Inferences
	A Causal Interpretation of the D-value
	Discussion
	References
	Figure 1:



