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Abstract

The Destructive Birth of Massive Stars & Massive Star Clusters

by

Anna L. Rosen

The injection of energy and momentum into the interstellar medium by young mas-

sive stars’ intense radiation fields and their fast, radiatively driven winds can have a

profound influence on their formation and environment. Massive star forming regions

are rare and highly obscured, making the early moments of their formation difficult

to observe. Instead, we must turn to theory to elucidate the physics involved in the

formation of massive stars and massive star clusters (MSCs), which can host thousands

of massive stars. In my thesis, I developed analytical and numerical techniques to study

the formation of massive stars and how stellar wind feedback affects the dynamics of gas

that surrounds MSCs. To estimate the initial rotation rates of massive stars at birth,

I developed a protostellar angular momentum evolution model for accreting protostars

to determine if magnetic torques can spin down massive stars during their formation.

I found that magnetic torques are insufficient to spin down massive stars due to their

short formation times and high accretion rates. Radiation pressure is likely the dominate

feedback mechanism regulating massive star formation. Therefore detailed simulation

of the formation of massive stars requires an accurate treatment of radiation. For this

purpose, I developed a new, highly accurate radiation algorithm that properly treats the

absorption of the direct radiation field from stars and the re-emission and processing by

xv



interstellar dust. With this new tool, I performed a suite of three-dimensional adaptive

mesh refinement radiation-hydrodynamic simulations of the formation of massive stars

from collapsing massive pre-stellar cores. I found that mass is channeled to the massive

star via dense infalling filaments that are uninhibited by radiation pressure and gravi-

tational and Rayleigh-Taylor instabilities. To determine the importance of stellar wind

feedback in young MSCs, I used observations to constrain a range of kinetic energy loss

channels for the hot gas produced by the shock-heating of stellar winds to explain the

low X-ray luminosities observed in H ii regions. I demonstrated that the energy injected

by stellar winds is not a significant contributor to stellar feedback in young MSCs.
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Chapter 1

Introduction

Massive stars, those with initial masses & 8M�, play an essential role in the

Universe. Their explosive deaths produce most of the heavy elements, enriching the

interstellar medium (ISM) and future generations of stars. They are rare, yet the energy

and momentum they inject into the ISM dwarfs the contribution by their vastly more

numerous low-mass cousins. This stellar feedback sets an upper limit on stars’ masses,

thereby affecting elemental abundances. It also destroys their natal environments, and

may lead to the disruption of young star clusters. In galaxies, the integrated effect of

stellar feedback makes star formation an inefficient process and may also be responsible

for the launching of galactic scale outflows. All of these effects profoundly influence how

galaxies form and evolve. Therefore, it is crucial to understand how massive stars form

on both the individual and cluster scale.
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1.1 Introduction to Star Formation

Most stars form in clusters (Lada and Lada, 2003). These clusters, including

massive star clusters (MSCs; M? & 103M�, which are large enough to sample the

stellar initial mass function) form from the gravitational collapse of cold, dense, and

magnetized giant molecular clouds (GMCs). These clouds are supersonically turbulent

and this property imposes a log-normal distribution of densities within the GMCs,

creating a spectrum of gas condensations over a wide range of spatial scales and masses.

The densest and coldest condensations, which populate larger clumps within the GMC,

act as the seeds (pre-stellar cores) that collapse under their own gravity to form stars

(McKee and Ostriker, 2007).

For simplicity, and to illustrate the initial conditions for star formation at

the order of magnitude level, we focus on the effect that gas pressure has on the star-

formation process since it is perhaps the most basic force in opposing gravity during

collapse. For the purpose of this exercise we neglect contributions from magnetic fields

and turbulence, which can act as additional support against collapse and slow down the

star-formation process.

Consider an isolated, isothermal core with radius Rc, mass Mc, and temper-

ature Tc with corresponding sound speed cs ∝
√
Tc. We can evaluate the condition

for gravitational collapse of a pre-stellar core by comparing its gravitational potential

energy

EGR = −aGM
2
c

Rc
(1.1)
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where a is a factor of order unity that depends on the internal density structure of the

core, to the core’s kinetic energy, which we assume is dominated by gas pressure,

EKE =
3

2
Mcc

2
s. (1.2)

Collapse will proceed if |EGR| > EKE. This condition implies that a core with mean

density ρ ∼Mc/R
3
c will undergo collapse if its size is & RJ, where

RJ ∼
cs√
Gρ

(1.3)

where we have neglected factors of order unity and the subscript J denotes that this

critical length is the Jeans length first introduced by Jeans (1902). For a typical massive

core composed primarily of molecular gas cs ∼ 0.2 km s−1 and ρ ∼ 10−18 g cm−3,

RJ ≈ 0.01 pc.

This simplified argument demonstrates that the densest and coldest regions

in GMCs undergo gravitational collapse to form stars. It is also trivial to estimate the

characteristic time scale for a core with radius RJ and density ρ to undergo pressure-less

collapse. The gravitational acceleration of the core is g ∼ GMc/R
2
J and the distance it

will collapse for a time t is d = 1
2gt

2. Setting d = RJ and solving for t yields

tff ∼
√

1

Gρ
(1.4)

where we have neglected factors of order unity for simplicity. This time scale represents
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the minimum amount of time it would take for a pre-stellar core with mean density ρ

to collapse to a star and is commonly referred to as the free-fall timescale. We note

that including pressure support by sub-dominant magnetic fields and turbulence will

only act to slow-down gravitational collapse. For typical massive pre-stellar cores, with

Mc ∼ 100M� and Rc ∼ 0.1 pc yielding ρ ∼ 10−18 g cm−3, the corresponding free-fall

time is ∼ 105 yr.

The simplified arguments presented thus far apply to both low-mass and mas-

sive star formation. However, once a massive protostar begins to form in the collapsing

core the picture for massive star formation drastically changes from low-mass star forma-

tion because the internal evolution of an accreting massive protostar is quite rapid. This

is because the timescale that governs its thermal evolution, and hence its contraction to

the main-sequence (i.e., the Kelvin-Helmholtz timescale given by tKH = GM2
? /(R?L?)),

is much shorter for massive stars than low-mass stars due to their high luminosities. For

example, the time required for a 50 M� protostar to reach the zero age main-sequence

(ZAMS; i.e., the onset of core hydrogen burning) is tKH ≈ 20 kyr where we assumed

RZAMS = 10.7R� and LZAMS = 3.6 × 105 L� following the ZAMS fitting formulae by

Tout et al. (1996). For comparison, a Sun-like star has a contraction time scale of ∼ 50

Myr and will therefore reach the main-sequnce long after the star-formation process

is complete. Hence, massive stars will reach the main-sequence and attain their main-

sequence luminosities while they are actively accreting. Their high luminosities lead to a

variety of stellar feedback processes that inject energy and momentum into the infalling

gas and surrounding ISM, potentially limiting accretion onto the star. We summarize
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these processes next.

1.2 Introduction to Stellar Feedback

As mentioned above, massive stars contract to the main sequence very quickly

during their formation and as a result they attain their high effective temperatures

and main sequence luminosities while they are actively accreting (Shu et al., 1987;

Behrend and Maeder, 2001; Hosokawa and Omukai, 2009). This effect leads to a variety

of feedback processes that can limit accretion onto the star as we discuss below. In

addition, rapid contraction to the main sequence, along with accretion of material with

a high specific angular momentum content from the collapsing pre-stellar core, likely

causes massive stars to be born as fast rotators as we show in Chapter 2 (Goodman et al.,

1993; Bodenheimer, 1995). This, in turn, affects their stellar evolution by increasing

their luminosities and mass-loss rates (Nieuwenhuijzen and de Jager, 1990; Ekström

et al., 2012).

1.2.1 Winds

The first feedback mechanism we consider is the fast, nearly isotropic mass-

loss from the stellar surface known as stellar winds. These winds are launched from

the stellar surface via line scattering of the star’s continuum radiation field (Puls et al.,

2008). Wind launching becomes efficient once stars’ surface temperatures exceed ≈

2.5× 104 K. Due to their rapid contraction, massive protostars will cross this threshold

while still undergoing active accretion. The resulting mass-loss rates are of order Ṁw ∼
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10−6 M� yr−1 (Vink et al., 2001; Repolust et al., 2004) and the mass escapes the stellar

surface at velocities of vw ∼ 1000 km s−1 (i.e., at about the free-fall velocity of the star;

Leitherer et al. (1992)). In comparison, the accretion flow onto the star has a mass flux

of ∼ 10−4−10−3 M� yr−1 (McKee and Tan, 2003) and also arrives at approximately the

free-fall velocity at the stellar surface (i.e., vacc ≈ vff ≈ vw). Hence, the ram pressure

of the accretion flow is typically a factor of ∼ 102− 103 larger than the ram pressure of

the wind and therefore should be uninhibited by stellar winds.

In young MSCs winds may be more effective at limiting star formation. Stellar

winds that are no longer confined will shock with winds of nearby stars and the ISM,

producing hot shock-heated gas with temperatures of ∼ 107 K (Castor et al., 1975;

Weaver et al., 1977; Cantó et al., 2000). The hot gas will then adiabatically expand and

push on the surrounding cold ISM if it is highly coupled to the surrounding gas.

1.2.2 Ionization

A second feedback mechanism inherent to massive star and MSC formation

is ionizing radiation. Since massive stars attain their main-sequence effective tempera-

tures while they are actively accreting they can put out a significant fraction of their

luminosities above the Lyman limit, and this can ionize hydrogen in the envelope around

them. The absorption of ionizing radiation will heat up gas to ∼ 104 K, corresponding

to cs ∼ 10 km s−1, and therefore gas that is ionized may be able to escape from the

massive core. Walmsley (1995) shows that, in spherical symmetry, the accretion flow

will be halted by photoionization if it falls below a critical accretion rate given by
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Ṁcrit =

√
m2

HGM?S

αH
(1.5)

where S is the ionizing luminosity of the star, M? is its mass, and αB is the case B

hydrogen recombination coefficient. For a 20 M� star the ionizing photon flux is S ∼

1049 photons s−1 (Krumholz and Matzner, 2009), corresponding toMcrit ∼ 10−5 M� yr−1.

This value is much lower than the inferred accretion rates for massive stars and therefore

the warm gas will be confined to a small region near the star throughout the major-

ity of the accretion phase. Hence, photoionization should not be sufficient to shut off

accretion.

In star clusters photoionization can play a more important role once star for-

mation has ceased or if other feedback processes have removed most of the gas near

the young stars. In this later phase, once accretion is no longer able to confine the

photo-ionized regions around massive stars, the warm gas will expand and sweep up

ISM material as the cluster evolves. Furthermore, the ionizing radiation can escape

to greater distances and ionize ISM material further out. This effect can inhibit star

formation near the cluster and remove gas that can otherwise form stars.

1.2.3 Radiation Pressure

As we summarized above, feedback from winds and the photo-ionizing flux

from massive stars is unable to halt the accretion flow of material during massive stars

early formation. However, if the radiation field is large enough, then the resulting
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radiation pressure can halt accretion because the dusty envelopes around these stars

are highly opaque to the strong UV flux (Weingartner and Draine, 2001). Therefore,

the direct starlight will be absorbed by the dust that is immersed and coupled to the

gas, transferring energy and momentum to the infalling material. The associated direct

radiation pressure can oppose gravity and halt accretion onto the star (Yorke, 1979).

We can illustrate this process by comparing the direct radiation pressure (i.e.,

the momentum deposition rate per unit area by radiation) and the ram pressure of the

infalling material at the location r at which all of the direct starlight is absorbed by

dust. At this location, a slab of accreting material with column density Σ will experi-

ence radiation pressure associated with the direct starlight, Prad(r) = L?/(4πr
2c). The

corresponding rate per unit area that gravity deposits momentum into the accretion

column is Pgrav(r) = GM?Σ/r
2, where we have assumed isotropic accretion for simplic-

ity. Accretion will be halted in regions where Prad > Pgrav. For isotropic accretion, this

will occur when

L?
M?

& 1.3× 103

(
Σ

1 g cm−2

)
L�
M�

. (1.6)

This limit can be reached when the star reaches a mass of ∼ 20 M�, where we have

assumed Σ ∼ 1 g cm−2.

Additionally, the absorbing dust will heat up and re-emit in the infrared. The

associated dust-reprocessed radiation field diffuses throughout the envelope and en-

hances the total radiation pressure. This effect can also aid in impeding the accretion

flow at farther radii in the collapsing core, thereby lowering the column density of the
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accreting material (Kahn, 1974). This result suggests that the combination of radiation

pressure from the direct and dust-reprocessed radiation fields may be large enough to

halt accretion onto the star. As we discuss in Section 1.4.1, massive star formation

is not a spherically symmetric problem but this analysis demonstrates that radiation

pressure is potentially an important feedback mechanism that can regulate massive star

formation.

1.3 Observational Challenges of Massive Star Formation

Observational studies of massive star forming regions have increased our un-

derstanding of how massive stars form and how their associated stellar feedback – the

injection of energy and momentum by stars into their surroundings – may limit star

formation in star clusters and galaxies (Smith and Brooks, 2007; Lopez et al., 2011,

2013a; Doran et al., 2013). While it is accepted that massive stars form in magne-

tized high-density turbulent gas clumps (Crutcher et al., 2010) that are characterized

by short core-collapse times and high time-averaged accretion rates (McKee and Tan,

2003; Banerjee and Pudritz, 2007), direct observation of massive star formation remains

difficult for a variety of reasons.

First, massive stars are rare, representing only ∼ 1% of stars by number in a

newborn stellar population (Kroupa (2001), e.g., see Figure 1.1). Regions of massive

star formation are far less common and typically more distant than sites of low-mass star

formation. Luckily, the high luminosities associated with massive stars, also shown in
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Figure 1.1 The stellar initial mass function (IMF) for 0.08 − 150 M� stars (teal line,
left y-axis) following Kroupa (2001) and their associated ZAMS luminosities (pink line,
right y-axis) from the fitting formula of Tout et al. (1996). The shaded region denotes
massive stars. Integrating over the number of stars and stellar luminosities as a function
of mass we find that ∼ 1% of stars by number are massive (Mstar > 8M�) and that
these stars produce ∼ 98% of the total radiation energy for a newly formed population
of stars.

Figure 1.1 (Tout et al., 1996), makes observing them over large distances feasible. How-

ever, massive stars typically form in crowded, clustered environments characterized by

larger stellar densities than low-mass star-forming regions (Zinnecker and Yorke, 2007).

This effect makes observing individual massive stars particularly challenging because

the observations require high spatial resolution to avoid confusion by the numerous

low-mass stars that accompany each massive star.

A second problem inherent to observing massive star formation is that mas-

10



sive stars form in regions of high obscuration, with typical gas surface densities of

∼ 1 g cm−2, corresponding to a visual extinction of Av ≈ 200 (McKee and Tan, 2003).

As a result, massive star forming regions are highly opaque at both optical and near-

infrared (NIR) wavelengths. Consequently, most visible and NIR observations can only

probe massive star forming regions after the majority of the formation process has com-

pleted (i.e., when most of the natal gas has been converted into stars or ejected by

stellar feedback). In spite of these challenges, longer-wavelength sub-millimeter and

radio observations of massive star-less clumps with size scales of 0.1-1 pc, such as those

performed by ALMA, have probed the early, embedded phases of massive star formation

(Tan et al., 2013, 2016; Kong et al., 2017). However, the fact that massive star forming

regions are far away, rare, and highly-clustered makes longer-wavelength observations of

massive stars challenging since these observations tend to have poorer resolution than

at shorter wavelengths.

A third problem regarding the interpretation of observations of massive star

and MSC formation, that has received significant attention only within the last decade, is

determining what role stellar feedback plays in massive star formation. As summarized

above, feedback from massive stars’ intense luminosities can oppose gravity and halt

accretion onto the stars. While on larger scales, the combined feedback effects from the

light and radiatively-driven winds produced by the numerous massive stars in MSCs

may produce effects much more impressive than the simple addition of the individual

stars’ energy and momentum budgets would suggest. As a result, feedback in MSCs

shapes the surrounding ISM and may be able to eject the great majority of the molecular
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Figure 1.2 Hubble image of the giant nebula NGC 3603 – one of the most massive
young star clusters in the Milky Way. This image shows thousands of stars surrounded
by a vast region of dust and gas that was likely ejected by stellar feedback during the
star-formation process. Image Credit: NASA, ESA, and the Hubble Heritage.

gas that would otherwise form stars (e.g., see Figure 1.2). This efficient gas ejection

may also be responsible for the galactic winds observed in star-forming galaxies that

have extreme star formation rates (Bolatto et al., 2013; Geach et al., 2014).

Previous studies find that star formation in GMCs is a slow and inefficient

process where only ∼ 1% of the gas in a GMC will form stars per free-fall time across

several orders of magnitude (Krumholz and Tan, 2007). Over a GMC’s lifetime, only

∼ 5−10% of the gas mass is converted to stars before it is disrupted by stellar feedback
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(Williams and McKee, 1997).

Within the last decade, multi-wavelength studies have probed how different

modes of feedback affect the dynamics of the gas that surround young star clusters.

By exploiting radio, infrared, optical, ultraviolet, and X-ray data Lopez et al. (2011)

studied how the radiation pressure, warm photo-ionized gas pressure, and hot gas pres-

sure produced by feedback from the massive stars affects the dynamics of the gas that

surrounds 30 Doradus (30 Dor) in the Large Magellenic Cloud (LMC), which is the

most massive and largest H ii region in the Local Group. Figure 1.3 shows a composite

infrared, optical, and X-ray image of 30 Dor illustrating the damaging effects stellar

feedback can have on the surrounding, turbulent gas. Lopez et al. (2011) concluded

that the direct radiation pressure likely controlled the early expansion of 30 Dor and

that the warm ionized gas pressure controlled the expansion once the H ii region shell

reached a radius of ∼ 75 pc. They also concluded that the hot gas pressure, associated

with stellar wind feedback, was dynamically sub-dominant and that the hot gas was

only partially-confined by the H ii region. In contrast, Pellegrini et al. (2011), using

the same X-ray data, derive a hot gas pressure two orders of magnitude larger, and

conclude that the hot gas pressure dominated bubbles contained within 30 Dor control

the H ii region dynamics. Although 30 Dor is only one prototypical example H ii region

in which the role of stellar feedback has been studied extensively, the discrepancy in the

interpretation of observational results remains debated in the literature.

The low-number statistics of massive stars and challenges inherent to observing

the early phases of massive star formation makes understanding their early formation
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Figure 1.3 Composite Hubble, Chandra, and Spitzer image of 30 Dor. Hubble data,
shown in green, traces the light from the massive stars (i.e., the direct radiation field
from stars). Infrared emission from Spitzer, shown in red, traces the thermal emission
from the cool dust (i.e., the dust-reprocessed radiation field). The Chandra data, shown
in blue, detects gas that has been shock heated to ∼ 107 K generated by colliding stellar
winds and therefore traces the effect of feedback from stellar winds. This image demon-
strates that stellar feedback shapes the ISM that surrounds young star clusters. Image
credit: X-ray: NASA/CXC/PSU/L.Townsley et al.; Optical: NASA/STScI; Infrared:
NASA/JPL/PSU/L.Townsley et al.

elusive. Several questions persist: how does stellar feedback affect mass delivery to the

star? How does stellar feedback in MSCs limit the conversion of gas into stars and affect

the dynamics of gas that surround them? What physical processes are responsible for

setting the properties of massive stars at birth? In light of these challenges, further

progress requires theoretical modeling as we discuss next.
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1.4 Theoretical Challenges of Massive Star Formation

The theoretical challenges associated with modeling massive star formation

and with determining how stellar feedback affects the formation of individual stars

and the early evolution of MSCs, which are the focus of this thesis, are also quite

numerous. Modeling massive star and MSC formation is a multi-dimensional and multi-

physics problem. Furthermore, star formation occurs from the ∼pc size scales of GMCs

to the ∼ 1011 cm size scales of stars. Therefore the dynamic range can cover seven

orders of magnitude, making star formation a difficult problem to study computationally.

Luckily, the advancement of analytical and numerical techniques and the vast increase

in computational power over the last several decades have provided significant progress

in our understanding of massive star formation.

1.4.1 Individual Massive Star Formation

As Section 1.2.3 suggests, radiation pressure is likely the dominant feedback

mechanism that regulates massive star formation. Early theoretical investigations of

massive star formation, which considered spherically symmetric models and one-

dimensional numerical simulations, found that radiation pressure can limit the max-

imum masses of stars that can form, yielding a typical maximum mass of ≈ 25 M�

(Kahn, 1974; Yorke, 1977, 1979), much smaller than observations suggest (Crowther

et al., 2010, 2016).

Multi-dimensional (axisymmetric and three-dimensional) radiation-
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hydrodynamic (RHD) simulations of the gravitational collapse of massive laminar pre-

stellar cores have demonstrated that this radiation pressure barrier can be circum-

vented by accretion from an optically thick accretion disk (Yorke and Sonnhalter, 2002;

Krumholz et al., 2009; Kuiper et al., 2011, 2012). With this anisotropy, the radiative

flux easily escapes along the polar directions of the star, launching radiation pressure

dominated bubbles above and below the star, an effect commonly referred to as the

“flashlight effect” (Yorke and Sonnhalter, 2002; Kuiper et al., 2011). In agreement with

this scenario, observations confirm that disks are present around massive (proto)stars

(Chini et al., 2006; Cesaroni et al., 2007; Chini et al., 2011; Johnston et al., 2015).

Krumholz et al. (2009) performed the first three-dimensional adaptive mesh

refinement (AMR) simulation of the formation of a massive stellar system and found

that, in addition to disk accretion, the radiation pressure dominated-bubble shells that

expand away from the star become Rayleigh-Taylor (RT) unstable, thereby leading to

the growth of dense RT fingers that can penetrate the radiation-pressure dominated

bubbles and deliver material to the star. One limitation of this work was that they only

included the dust-reprocessed radiation pressure and deposited the stellar radiation

near the star, which then diffused through the bubbles. This treatment of the radiation

pressure underestimates the true radiation pressure felt by the expanding bubble shells

that are opaque to the direct radiation field.

Kuiper et al. (2011, 2012) performed a series of three-dimensional spherically

symmetric simulations that modeled both the direct and dust-reprocessed radiation

fields and found that the radiation-pressure dominated bubble shells remain stable and
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are eventually ejected from the core by radiation pressure. They argued that the de-

velopment of RT instabilities in the radiation pressure-dominated bubble shells is likely

an artifact of the underestimated radiation pressure used in Krumholz et al. (2009) and

that the direct radiation pressure is sufficient to inhibit accretion at late times. How-

ever, in their numerical setup the star was held fixed at the center of the computational

domain because they were limited to spherical symmetry. This requirement, and lack of

adaptivity in regions where instabilities may develop, may have suppressed the growth

of instabilities that could form.

In contrast to the idealized laminar cores modeled by the previous work dis-

cussed, McKee and Tan (2003) developed a spherically symmetric model of massive

star formation in which they assume that massive stars form from cores that are pri-

marily supported by supersonic turbulence, in agreement with observations of massive

star-forming regions. They argue that marginally unstable cores that are seeded with

supersonic turbulence leads to high accretion rates that carry a ram pressure sufficient

to overcome radiation pressure. In this scenario, an optically thick accretion disk is not

required for massive star formation as long as the ram pressure of the accreting mate-

rial can overcome the radiation pressure. However, this analytical model has not been

tested with multi-dimensional RHD simulations of the collapse of a massive turbulent

pre-stellar core.

While significant progress in our understanding of how massive stars form

has been made with the use of multi-dimensional RHD simulations there is still much

debate on how radiation pressure affects mass delivery to stars (Krumholz et al., 2009;
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Kuiper et al., 2011, 2012). As discussed above, previous three-dimensional simulations

of the formation of massive stars were either limited by the radiation pressure treatment

or geometry and set-up adopted. Furthermore, these simulations only considered the

collapse of initially smooth cores while observations find that massive star forming cores

are turbulent. In light of these limitations, we present a new hybrid radiation transfer

algorithm that models the direct radiation fields from stars and the subsequent dust-

reprocessed radiation field in AMR simulations in Chapter 3. We use this new method

to perform RHD AMR simulations of the collapse of initially smooth and turbulent

massive pre-stellar cores into massive stellar systems, which we present in Chapter 4.

1.4.2 Formation and Early Evolution of Massive Star Clusters

In MSCs, feedback from the numerous massive stars may eject gas over very

large scales, leading to low star formation efficiencies in molecular clouds. Efficient gas

expulsion by feedback may also lead to the disruption of young MSCs (Hills, 1980; Fall

et al., 2010). In young star clusters, massive stars inject energy and momentum into

the ISM via photoionization flows, direct radiation pressure, dust-reprocessed radia-

tion pressure, magnetically-launched collimated outflows, and the hot gas from shocked

stellar winds and supernovae.

Analytic calculations suggest that radiation pressure is the dominant feed-

back mechanism in dense, MSCs (i.e., those with Mstar & 104 M� and Σ = 1 g cm−2;

Krumholz and Matzner (2009); Fall et al. (2010)). SNe begin only after the & 3.6 Myr

lifetime of massive stars, much longer than the crossing time of MSCs. If this were
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the dominant feedback mechanism, then stars would form rapidly and consume its ISM

within 1-2 crossing times, long before SNe begin to explode. Collimated protostellar

outflows are only effective at removing interstellar material from clusters when the es-

cape speed is . 7 km s−1 (Matzner and McKee, 2000), much less than the escape speed

of dense MSCs (vesc & 10 km s−1). Likewise, the sound speed of photoionized gas is

. the escape speed of dense MSCs, making them unable to disrupt dense MSCs (Dale

et al., 2013).

However, the dynamical effect of the hot gas produced by shock-heating of

stellar winds remain uncertain. The integrated kinetic energy carried by these winds

is comparable to that delivered by supernova explosions, suggesting that at early times

winds could be an important form of feedback. Yet the interaction of these winds with

the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Several

studies have concluded that the hot gas produced by the shock-heating of stellar winds

is dynamically unimportant because rather than being confined, it tends to leak out of

MSCs (Harper-Clark and Murray, 2009; Lopez et al., 2011; Yeh and Matzner, 2012).

The question of leakage is intimately tied to the importance of stellar feedback in MSC

formation. In Chapter 5, we focus on the dynamical importance of wind feedback in

young MSCs.
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1.5 Outline of the Remainder of this Thesis

In this thesis we explore the early phases of individual massive star formation

and stellar feedback in young MSCs through the use of analytical in computational tech-

niques. In Chapter 2 we present a protostellar rotational evolution model for accreting

massive protostars to determine what physical processes set their initial rotation rates

at birth. In Chapter 3 we describe a new hybrid radiation transfer algorithm developed

for three-dimensional RHD simulations that models both the direct radiation fields from

stars and the subsequent dust-reprocessed radiation field from dust and gas. We use this

new tool to model the formation of massive stellar systems that form from the collapse

of pre-stellar cores in Chapter 4. Next we focus on understanding the importance of

stellar wind feedback in MSCs. Chapter 5 explores how the wind energy injected by the

numerous massive stars in MSCs, which shock heat and generate hot X-ray emitting

gas, can be lost through a variety of energy transfer mechanisms to explain the ob-

served low X-ray luminosities of H ii regions that surround MSCs. Finally, we conclude

in Chapter 6.
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Chapter 2

What Sets the Initial Rotation Rates of

Massive Stars?

A version of this chapter has been published as “What Sets the Initial Rota-

tion Rates of Massive Stars?,” Rosen, A. L., Krumholz, Ramirez-Ruiz. E., 2012, The

Astrophysical Journal, 748, 97.1

2.1 Introduction

While there has been significant theoretical attention to understanding the

initial rotation rates of Sun-like stars, far less work has been done on more massive

stars. Since the stellar evolutionary path depends on the rate of mass loss and internal

mixing, both of which are enhanced by rotation (Bjorkman and Cassinelli, 1993; Maeder

and Meynet, 2010), our inability to predict initial rotation rates is a limiting factor in

1 c©2012. American Astronomical Society. All rights reserved. Reprinted here with permission.

21



stellar evolution theory. Observations of young, massive stars provide evidence that they

form in a similar fashion to their low-mass counterparts: via gravitational collapse of a

molecular cloud core (McKee and Tan, 2003; Zapata et al., 2008; Davies et al., 2011).

These cloud cores are slowly rotating but have very large radii, and thus have high initial

angular momenta. This has led to the “angular momentum problem” in which the initial

angular momentum of a cloud core is at least three orders of magnitude greater than

the resulting star (Goodman et al., 1993; Bodenheimer, 1995; Larson, 2010) and must

be redistributed or removed during collapse.

Massive stars form in magnetized high-density turbulent gas clumps (Crutcher,

1999) that are characterized by short core collapse times and high time-averaged accre-

tion rates (McKee and Tan, 2003). Due to the high angular momentum content of the

diffuse gas, material is unable to be directly deposited on to the central object and is

instead circularized at a distance far from the star, resulting in a disk (Krumholz et al.,

2007a, 2009). Observations, although rare, confirm that disks form around massive pro-

tostars during cloud collapse (Cesaroni et al., 2006, 2007; Chini et al., 2011) and the

accretion onto these disks is regulated at least in part by the magnetic field (Vlemmings

et al., 2010). Furthermore, these disks might evolve like those located around young,

low-mass stars (Chini et al., 2006). The disk transfers mass and angular momentum

to the central protostar, which acts to spin it up. This transfer of angular momentum,

along with contraction of the protostar towards the main sequence, suggests that young

stars should be rotating at or near their break up speed, the rotational speed at which

the centripetal force at the equator balances gravity.
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Lin et al. (2011) found that gravitational torques prohibit a star from rotating

above ∼ 50% of its break up speed during formation. However, the observed projected

rotation rates of young low mass and some massive stars suggest that they rotate at a

much lower fraction. Observations of low-mass PMS stars suggest that their rotation

periods span a factor of ∼ 30 and approximately half are slow rotators, rotating at about

10% of their break up speed (Hartmann and Stauffer, 1989; Herbst et al., 2007). The

observed rotational velocities of massive stars suggest that they are spinning significantly

faster than their low-mass counterparts. Wolff et al. (2006) studied a sample of young

massive stars (M? > 25 M�) and found that their median rotation rate was 20% of

their break up speed. Huang et al. (2010) observed the projected rotational velocity

distribution of 220 young B stars and found that approximately 53.3% are rapid rotators,

rotating with a velocity that is at least 40% of their break up speed. How these initial

rotation rates are achieved and their dependence on stellar mass is still an unanswered

question.

The physical mechanism responsible for causing young low-mass stars to be

slow rotators has received considerable attention over the last three decades. One popu-

lar theory is that during the T Tauri phase (experienced by PMS stars with masses less

than ∼ 3 M�), when the accretion rate is low, Ṁa . 10−7 M� yr−1 (Hartmann et al.,

2006), the magnetic connection between the star and its accretion disk can transport

substantial angular momentum away from the star, resulting in spin rates well below

break up in agreement with observations (Koenigl, 1991; Armitage and Clarke, 1996).

The fact that T Tauri stars have strong magnetic fields, typically, several hundred G
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to several kG (Johns-Krull, 2007), long contraction timescales after their main assem-

bly, and long accretion disk lifetimes support this spin down scenario (Bouvier, 2007).

However, Matt and Pudritz (2005) and Matt et al. (2010) found that when the stellar

magnetic field lines open due to the differential twisting between the star and disk the

resulting rotation rates, while still below break up, are higher than those of the slowest

rotators.

Magnetic fields have been detected in a small sample of young and evolved

OB stars. These fields are between a few hundred G to several kG and typically have a

bipolar topology (Donati et al., 2006; Wade et al., 2006; Hubrig et al., 2008; Grunhut

et al., 2009; Martins et al., 2010). The origin of these fields is poorly understood,

since the envelopes of such stars are radiative rather than convective, excluding the

possibility of a Solar-type dynamo effect (Moss, 2001). The favored hypothesis for the

presence of magnetic fields in massive stars is that they are fossil fields that were either

accumulated or generated during star formation (Walder et al., 2012). Alecian et al.

(2008) discovered two very young B stars with strong surface magnetic fields. They

found that the younger of the two is a rapid rotator and situated in the first half of the

PMS phase, whereas the older star, which might already be on the main sequence, is a

slow rotator most likely spun down via magnetic torques.

This implies that massive stars likely have strong magnetic fields present during

their formation and that these fields, due to coupling with the accretion disk, may be

able to remove a substantial amount of angular momentum from the star, producing

spin rates on the zero-age main sequence (ZAMS) well below break up in a similar

24



fashion to their low-mass counterparts. However, massive stars reach the ZAMS very

quickly since they have short thermal equilibrium timescales. They also have higher

accretion rates during their formation and their magnetic fields are weaker relative to

their stellar binding energy as compared to low mass stars. They likely have shorter

disk lifetimes than contracting low mass stars, since their disks are likely to be quickly

photo-disintegrated due to their high luminosities (Cesaroni et al., 2007). All of these

factors make magnetic spin-down more difficult. In this chapter we explore whether

the initial spins of massive stars are regulated by the interaction of their accretion disk

with the stellar magnetic field. To study this issue we model the angular momentum

evolution for both low-mass and massive protostars by considering both magnetic and

gravitational torques. We apply the star-disk interaction model developed by Matt and

Pudritz (2005) (hereafter MP05) where the stellar magnetic field is connected to a finite

region of the accretion disk, and the twisting of the magnetic field lines due to the

differential rotation between the star and disk leads to a spin-down torque on the star.

This chapter is organized as follows. In the following section (Section 2.2),

we give a brief introduction to how the presence of surface magnetic fields during the

protostellar phase can extract angular momentum from the star. We describe our stel-

lar angular momentum evolution model, which include a prescription for protostellar

evolution and the star-disk interaction, in Section 2.3 . We state our results in Section

2.4. Lastly, we discuss our results in Section 2.5.
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2.2 Magnetic Torques: Theory & Background

Protostars embedded in circumstellar disks accrete material from an angular

momentum-rich mass reservoir. If the disk is Keplerian the specific angular momentum

content of the circulating material, j =
√
GM?r, increases outward and the angular

velocity increases inwards. The presence of a stellar magnetic field is able to disrupt

the disk outside the stellar radius and channel the disk material along field lines. Spin-

down torques will be conveyed to the star due to the differential twisting of the field lines

threading the accretion disk at radii where the disk rotates at a lower rate than the star.

In this section we give simple scaling arguments to demonstrate how spin evolution varies

with stellar mass, before proceeding to a more detailed numerical model in Section 2.3.

The derivation that follows is an oversimplification and ensures maximum spin down

via magnetic braking. We include this section for the reader who is unfamiliar with the

literature.

The radial extent of the accretion disk can be altered if the protostar has a

magnetic field. The magnetic field is able to truncate the disk at the Alfvèn radius

(denoted RA) where the magnetic pressure, B2/8π, balances the ram pressure, ρv2, of

the infalling material. Assuming the stellar magnetic field is dipolar and the magnetic

field axis is aligned with the rotation axis of the star, the z component of the field in

the equatorial plane at a distance r from the star is given by

Bz = B?

(
r

R?

)−3

(2.1)
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where B? is the magnetic field strength at the stellar surface. The location at which the

magnetic pressure is able to truncate the disk, assuming spherical free-fall accretion, is

RA

R?
= 2.26

(
B?

2 kG

)4/7
(

Ṁa

10−7M� yr−1

)−2/7(
M?

M�

)−1/7(R?
R�

)5/7

(2.2)

where Ṁa is the accretion rate. In the case of disk accretion, the truncation radius is

in general smaller than the value given in Equation (2.2) by a factor of order unity.

For simplicity and for the purpose of this section we neglect this factor in the following

discussion.

If the stellar magnetic field lines are connected to the disk the differential

rotation between the two will cause the field lines to twist in the azimuthal direction

inducing torques on the star. The disk co-rotates with the star at the location Rco ≡

(GM?)
1/3 Ω

−2/3
? where Ω? is the angular velocity of the star. The stellar field lines that

connect to the disk outside Rco spin up the disk and spin down the star. If the field

lines connect to a significant portion of the disk outside of Rco the star can be spun

down to a velocity well below its break up speed.

The stellar magnetic field lines threading an annulus of the accretion disk with

width dr will exert a torque:

dτm = BφBzr
2dr (2.3)

where Bφ is the azimuthal component of the field generated by the twisting of the field
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lines relative to the star and is given by

Bφ = Bz
Ω(r)− Ω?

Ω(r)
(2.4)

where Ω is the angular velocity of the Keplerian accretion disk. Integrating Equa-

tion (2.3) from RA to infinity the total torque on the star due to the stellar magnetic

field lines connected to the disk is

τm =
B2
?R

6
?

3

(
R−3

A − 2R−3/2
co R

−3/2
A

)
. (2.5)

The accretion of disk material at RA adds angular momentum to the star at a rate

τa = Ṁa

√
GM?RA. (2.6)

Notice that Equation (2.5) contains both spin-up and spin-down torques acting on the

star due to field lines connected to the disk within and outside of Rco, respectively. In

order for the net magnetic torque to transport angular momentum away from the star

(i.e., τm < 0) RA must be greater than

RA,min ≈ 0.63Rco. (2.7)

In a system where the stellar parameters (M?, R?, B?, Ṁa) are relatively
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constant there exists an equilibrium state, called the “disk-locked” state (Koenigl, 1991;

Armitage and Clarke, 1996; Matt and Pudritz, 2005), in which the stellar spin rate will

adjust to its equilibrium value (i.e., when τa+τm = 0). Setting τa = −τm the equilibrium

spin rate, as a fraction of the break-up speed (Ωbu =
√
GM?/R3

?), is

Ω?,eq

Ωbu
=

1

2

(
RA

R?

)−3/2

×[
0.014

(
M?

M�

)1/2
(

Ṁa

10−7M� yr−1

)(
B?

2 kG

)−2(RA

R?

)7/2

+ 1

]
. (2.8)

Assuming that the moment of inertia of the star stays constant, the characteristic

timescale to reach equilibrium is:

t?,eq = k2M?R
2
?

(
Ω?,eq − Ω?

τa + τm

)
(2.9)

where k is the dimensionless radius of gyration whose value depends on the stellar

structure. Equation (2.7) only holds when RA > R?, which is true if the star has a

surface magnetic field strength above a minimum value:

B? > 400

(
Ṁa

10−7 M� yr−1

)1/2(
M?

M�

)1/4(R?
R�

)−5/4

G. (2.10)

Figure 2.1 shows the equilibrium spin rate as a fraction of the star’s break

up speed and the corresponding time scales required for a 1 M� star and a 30 M�

star to reach equilibrium starting from rotation at break up, both as a function of the
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Figure 2.1 The equilibrium spin rate of a star as a fraction of its break up spin rate (top
panel), and the corresponding spin down time scale (bottom panel) for 1 M� (black
solid line) and 30 M� (teal dashed line) stars to reach equilibrium. Both stars have a
surface magnetic field strength of 2 kG with a dipolar topology and are initially rotating
at break up. The horizontal line in the top panel shows where the equilibrium spin rate
is equal to the break up rate.

accretion rate. We adopt surface magnetic field strengths of 2 kG similar to observations

(Wade et al., 2006; Johns-Krull, 2007; Grunhut et al., 2009) and assume k = 0.27 for

a radiative star (e.g., n=3 polytrope). We adopt radii of 3 R� for the 1 M� star (the
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typical radius of a T Tauri star of this mass) and 7.76 R� for the 30 M� star (ZAMS

value). We consider only accretion rates where the equilibrium spin rate is below the

break up rate. As the accretion rate increases, the equilibrium spin rate approaches the

break up rate and the equilibrium timescale quickly decreases. We find that magnetic

torques produce equilibrium spin rates below break up only for accretion rates below

Ṁa . 5 × 10−5 M� yr−1, regardless of the stellar mass. In this regard, low- and high-

mass stars are similar. The typical mass accretion rates during the main accretion

phase, where the majority of the stellar mass is accreted, for low- and high-mass star

formation are 5 × 10−6 M� yr−1 (Shu, 1977) and 5 × 10−4 M� yr−1 (McKee and Tan,

2003), respectively. For our adopted field strength, RA for the 30 M� star is within the

stellar surface at this accretion rate. In contrast, the disk is truncated very close to the

stellar surface for the 1 M� star, leading to an equilibrium spin rate close to break up.

We conclude that disk truncation does not occur for massive stars and is unimportant

for low-mass stars during the main accretion phase. At the lower accretion rates that

are likely to occur after the main accretion phase ends, we find that low- and high-mass

stars differ in that the latter have much longer equilibration timescales than the former

due to their larger inertia. For example, the equilibration timescale for the 30 M� star

for very low accretion rates is a significant fraction of its stellar lifetime, tms = 5.9

Myr (Parravano et al., 2003). Furthermore, at high accretion rates this timescale is

comparable to the star’s formation timescale (McKee and Tan, 2003) suggesting that

massive stars are unable to reach spin equilibrium. To further explore the consequences

of this analysis we follow the angular momentum evolution of massive protostars to
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determine the physical conditions that are required to spin them down by magnetic

torques.

2.3 Stellar Angular Momentum Evolution Model

The goal of this work is to determine if the initial rotation rates of massive stars

can be regulated by magnetic torques due to the interaction of the stellar magnetic field

and surrounding accretion disk during formation. To this end, we construct a simple

model to track the mass, radius, and angular momentum content of accreting protostars

subjected to gravitational and magnetic torques. We describe the elements of this model

in the following subsections.

2.3.1 Protostellar Model

We monitor the spin and angular momentum evolution by following the proto-

stellar radius and internal structure evolution during its formation with the use of the

one-zone model of McKee and Tan (2003) (hereafter MT03) as updated by Offner et al.

(2009). By treating the protostar as an accreting polytrope and requiring conservation

of energy, the evolution of the protostellar radius is given by:

dR?
dt

=
2ṀaR?
M?

(
1− 1− fk

agβP
+

1

2

d log βP

d logM?

)
− 2

(
R2
?

GM2
?

)
(Lint + LI − LD) (2.11)

where Ṁa is the accretion rate onto the protostar, fk is the fraction of kinetic energy

of the infalling material that is radiated away, βP is the ratio of radiation pressure to
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the total pressure, ag = 3/ (5− n) is the coefficient describing the binding energy of

a polytrope, Lint is the internal stellar luminosity, LI is the rate of energy required

to dissociate and ionize the infalling material, and LD is the rate at which energy is

supplied from burning deuterium (Nakano et al., 2000). The model also includes a few

discontinuous changes in polytropic index and radius to represent events such as the

onset and cessation of core deuterium burning and the formation of a radiative core.

We use the model parameters recommended by Offner et al. (2009), which are based on

the detailed stellar evolution calculations by Hosokawa and Omukai (2009). We refer

the reader to MT03 and Appendix B of Offner et al. (2009) for a detailed description

of the model and protostellar evolutionary states.

We treat the protostar as a solid body to follow its angular momentum content

( J? = I?Ω?). We evolve the stellar angular momentum content by computing the net

torque on the star due to the coupling of the stellar magnetic field with the surrounding

accretion disk described in Section 2.3.3.

2.3.2 Accretion History

The accretion history of our protostars is divided into two distinct accretion

phases. The first is the main accretion phase given by the turbulent core model from

MT03, which describes an accelerating accretion rate, where the majority of the stellar

mass is accreted. This model assumes that the star-forming core is marginally unstable,

massive, and supported by turbulent motions. Next, we follow the disk clearing phase

in which the accretion disk is no longer being fed by the core envelope. These accretion
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phases are described in Section 2.3.2.1 and Section 2.3.2.2.

2.3.2.1 Primary Accretion Phase: Core Collapse

We model the mass accretion using the two-component core model of MT03,

which assumes the central region of a molecular cloud core is dominated by thermal

motions and the core envelope is dominated by non-thermal motions (Myers and Fuller,

1992). This leads to a density distribution that is equivalent to the sum of a singular

polytropic sphere and a singular isothermal sphere:

ρ = ρs

(
Rcore

r

)kρ
+

c2
th

2πGr2
(2.12)

where ρs is the density at the surface of the core, Rcore is the core radius, and cth is

the thermal sound speed within the core and is assumed to be constant. We adopt the

fiducial value of kρ = 1.5 from MT03 in agreement with observations describing the

turbulence-supported density profile of massive star forming cores (Caselli and Myers,

1995; van der Tak et al., 2000; Beuther et al., 2002).

The accretion rate onto the disk, which is supplied by the background core, is:

Ṁa '
φ?M?,f

t?,ff

[(
M?

M?,f

)2j

+

(
φ?,th
φ?,nth

)2(
εcoreMth

M?,f

)2j]
(2.13)

where t?,ff =
(
3π/32Gρ

)1/2
is the free fall time evaluated at Rcore, M? is the current
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stellar mass, M?,f is the final stellar mass, and

j =
3
(
2− kρ

)
2
(
3− kρ

) . (2.14)

The dimensionless constants φ, φ?,th, and φ?,nth are of order unity and depend on kρ

and the magnetic field strength. The efficiency factor, εcore, describes how much of the

core mass will end up in the star rather than being ejected by protostellar outflows and

we adopt the value of 0.5 from MT03, which is typical of both low-mass (Matzner and

McKee, 2000) and high-mass star formation (Cunningham et al., 2011). The parameter

Mth describes the mass below which the thermal density distribution dominates. For a

core with surface density Σ = M?,fε
−1
core/πR

2
core, Mth is defined as:

Mth = 1.23× 10−3

(
T

20 K

)3(30εcoreM�
M?,f

)1/2

Σ
3/2
0 M� (2.15)

where Σ0 = Σ/
(
1 g cm−2

)
. We further assume that the accretion rate onto the disk is

the same as that onto the star and use this value for our protostellar accretion rate.

2.3.2.2 Secondary Accretion Phase: Disk Clearing

Late in the formation the core envelope will exhaust its reservoir of mass and

no longer feed the accretion disk. We assume that we are left with a thin, Keplerian

accretion disk that continues to transfer mass and angular momentum to the central

protostar. For simplicity and because observations of disks located around massive stars
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Figure 2.2 Accretion history of protostars with final masses of 0.5 - 50 M�, following
Equations (2.13) and (2.16), for our fiducial parameters given in Table 2.1 in Section 2.4.

are rare, we assume that this results in a decreasing accretion rate as a function of time

which we model as a decaying exponential (Collier Cameron and Campbell, 1993; Yi,

1994, 1995; Matt et al., 2010):

Ṁa =
MD

ta
e−t/ta (2.16)

where MD is the remaining mass in the accretion disk (i.e., the total amount of mass

that would accrete from t = 0 → ∞) and ta is the decay timescale. Since MD and ta

are highly unconstrained, we experiment with different values in Section 2.4. Figure 2.2

shows the accretion history, including both the core collapse and disk clearing accretion

phases, for stars with final masses of 0.5-50 M�.

36



2.3.3 Star-Disk Interaction Model

In Section 2.2 we showed how the presence of a stellar magnetic field can remove

angular momentum from the star as it accretes matter from an accretion disk. This

description assumed that the stellar field lines were connected at all radii of the disk

larger than RA. However, the differential rotation between the star and disk will twist

the connected field lines. This twisting will cause the magnetic field to undergo a rapid

inflation leading to an opening of the field lines, effectively decreasing the size of the disk

region that is connected to the stellar magnetic field (Lovelace et al., 1995; Uzdensky

et al., 2002; Matt and Pudritz, 2005). We now include this effect when calculating the

net magnetic torque on the star with the use of the model developed by MP05, which

is an extension to the disk-locking model first developed by Ghosh and Lamb (1978)

for accreting neutron stars and extended by Koenigl (1991) to describe the star-disk

coupling for magnetized T Tauri stars.

2.3.3.1 Magnetic Coupling to the Disk and the Connection State

The effect of the opening of the magnetic field lines depends on the strength of

the magnetic coupling to the disk and how strongly the field lines can be twisted until

they are severed. The variable γ(r) = Bφ/Bz describes the twisting of the magnetic

field between the star and disk. This twisting occurs rapidly so a steady state configu-

ration depends on how well the field couples to the disk (i.e., the balance between the

differential rotation and the tendency for the magnetic field to untwist). Uzdensky et al.

(2002) describe this coupling by a dimensionless magnetic diffusivity parameter,
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β ≡ ηt

Hvk
(2.17)

where ηt is the effective magnetic diffusivity and is of the order of magnitude of the

disk’s effective viscosity (Lovelace et al., 1995), H is the scale height of the disk, and vk

is the Keplerian rotation velocity. MP05 assume β is constant throughout the disk. The

field is strongly coupled to the disk for values of β < 1 and weakly coupled for β > 1.

Uzdensky et al. (2002) find that when γ exceeds a value of order unity (defined by the

critical twist parameter γc) the magnetic field will be severed because the magnetic

pressure force associated with Bφ will push outward and cause the dipole field loops to

open. The magnetic field is connected to the disk only in the location where |γ| ≤ γc.

MP05 use the values β = 0.01 and γc = 1 in their models, and we adopt the same

fiducial values in this work. They suggest that β = 0.01 is the most probable value for a

T Tauri accretion disk with the use of an α model prescription; however it is uncertain

that disks surrounding massive stars will have this same value. For example, massive

stars emit more ionizing radiation which will yield a higher ionization fraction on the

disk surface, causing β to decrease, but these disks are also more massive than those

surrounding low-mass PMS stars and are therefore thicker, causing β to increase. To

account for our uncertainty in this parameter we experiment with different values in the

following section.

MP05 show that the magnetic connection between the star and disk changes

38



at a threshold value of the stellar spin rate. Specifically, the stellar magnetic field will

only be connected to a small region of the disk within Rco if the stellar rotation rate as

a fraction of break up,

f =
Ω?

Ωbu
= Ω?

√
R3
?

GM?
, (2.18)

falls below:

f <
(
1− βγc

)(
γcψ

)
, (2.19)

where

ψ ≡ 2B2
?R

5/2
?

Ṁa

√
GM?

(2.20)

is a dimensionless parameter that relates the strength of the magnetic field to the

accretion rate. This connection state, which MP05 denote as state 1, will result in no

spin-down torques transferred to the star. If f exceeds this value then the system is in

state 2 which is characterized by a magnetic connection on either side of Rco resulting

in both spin-up and spin-down torques acting on the star.
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2.3.3.2 Magnetic and Accretion Torques

The twisting of the magnetic field by the differential rotation between the star

and disk causes torques to be conveyed between the two. The twisting of the magnetic

field within Rco leads to spin-up torques whereas the field lines connected to the disk

outside of Rco act to spin down the star. If the magnetic field is strong enough then the

disk will be disrupted by the stellar magnetosphere where the magnetic stress is able

to maintain the accretion rate within the disk. At this location, denoted by Rt, the

magnetic stress is large enough to remove the excess angular momentum and funnel the

disk material along the magnetic field lines. This material and its angular momentum

is transferred to the star. If Rt > Rco the magnetic stress hinders the accretion rate.

The location of Rt depends on the connection state of the system. In state 1

the truncation radius is

Rt = (γcψ)2/7R?. (2.21)

In state 2 the truncation radius is given by

(
Rt

Rco

)−7/2
[

1−
(
Rt

Rco

)3/2
]

=
β

ψf7/3
. (2.22)

We assume the accreted disk material is quickly integrated into the structure of the star

and adds angular momentum to the star at a rate given by Equation (2.6) where RA is
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replaced by Rt. This material acts to spin up the star.

The magnetic connection over a range in radii in the disk can extract angular

momentum from the star and transfer it to the disk. If the system is in state 2 then the

magnetic field is connected to the disk from Rt to Rout = (1 + βγc)
2/3Rco which yields

a net magnetic torque on the star:

τm =
B2
?R

6
?

3βR3
co

[
2 (1 + βγc)

−1 − (1 + βγc)
−2 − 2 (Rco/Rt)

3/2 + (Rco/Rt)
3
]
. (2.23)

If the system is in state 1 then the magnetic field is connected to only a small portion of

the disk which leads to a negligible torque on the star, so we set τm = 0 following Matt

et al. (2010). Note that Equation (2.23) reduces to Equation (2.5) for the limiting case

of no field opening (γc → ∞), marginal coupling (β = 1), and a disk that is truncated

at the Alfvén radius (RA) and extends to infinity.

2.4 Results

The initial star-forming core properties are determined by the core mass (Mcore),

core density profile (kρ), and core surface density (Σ). These parameters control the ac-

cretion rate for the primary accretion phase as described in Section 2.3.2.1. We initially

create a “pre-collapse” object with a mass less than 0.01 M� which grows in mass with

the accretion rate given by Equation (2.13). When the object reaches a mass of 0.01

M� we initialize our protostellar and angular momentum evolution model and assume

the protostar is initially rotating at 1% of its break up speed. When the protostar is

41



initialized, it is immediately spun up since the accretion rate is large, so our chosen

value for the initial rotation speed is unimportant. We solve Equation (2.11) with the

fourth-order Runge-Kutta scheme of Press et al. (2002) and update the angular mo-

mentum of the star by computing the net torque on the star arising from the accretion

and magnetic torques described in Section 2.3.3.2. We use this result to update Ω?.

We cap the stellar rotation rate at 50% of breakup, a limit imposed by gravitational

torques (Lin et al., 2011). The fiducial values used for our model parameters are given

in Table 2.1.

Parameter Fiducial Value

Σ 1 g cm−2

MD 0.02 M?,f

ta 106 yr
B? 2 kG
β 0.01
γc 1

Table 2.1 Table of fiducial values used for our model parameters.

2.4.1 Effect of the Star-Disk Magnetic Interaction

Figure 2.3 shows the radial and rotational evolution for stars ranging in final

stellar mass from 0.5 - 50 M�. These models were simulated with the fiducial parameters

given in Table 2.1. The disk-clearing accretion phase is assumed to last 3 Myr, although

as discussed in Section 2.1, this assumption is almost certainly not correct for high mass

stars. As we show below, using a shorter disk clearing timescale for the massive stars

would only strengthen our results. We choose to run the disk clearing phase for 3 decay
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time scales because accretion disks around low-mass stars survive for several million

years (Herbst et al., 2007), with an accretion rate that likely decreases with time. The

swelling in radius by a factor of three, shown in the upper plots of Figure 2.3, is a result

of the star transitioning from a convective to radiative core (Hosokawa and Omukai,

2009), which redistributes entropy within the star. For the stars presented in Figure 2.3

this occurs in the primary accretion phase for the most massive stars (M?,f ≥ 15 M�)

and during the disk clearing accretion phase for the 0.5, 1, and 5 M� stars. If the jump

in radius occurs during the main accretion phase, it causes the star to immediately slow

down, but the star is almost instantly spun back up because of the high accretion rate.

In the case of the 5 M� star, this jump in radius also significantly decreases the spin

rate of the star, but since it occurs when the accretion rate is much lower the star only

gradually spins up as it contracts and accretes material. In contrast, for the 0.5 and 1

M� stars magnetic torques are able to continue to spin down the star after the jump

in radius occurs. We note that Matt et al. (2010) produced Sun-like stars with faster

rotation rates (∼ 20 − 40% of break up) performing a similar analysis. We report a

lower rotation rate for our 1 M� protostar because it has a different radial history than

the stars produced by Matt et al. (2010). Our 1 M� protostar contracts more slowly

than the 1 M� protostar model used by Matt et al. (2010). After 3 Myr, our model

gives a radius of 3.8 R� as compared to Matt et al. (2010)’s ∼ 3 R�. At times <1 Myr,

the model radii can differ by factors of ∼2. The larger radii in our model produces more

spin-down. The differences in predicted radii likely arise because our model accounts

for the extra entropy provided both by deuterium burning and by ongoing accretion,
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Figure 2.3 The top left panel shows the stellar radius as a function of stellar mass for
stars with masses 0.5 - 50 M�. The other panels show the stellar radius (top right),
stellar period (bottom left), and stellar spin rate as a fraction of break up (bottom right)
as a function of time for stars with masses 0.5 - 50 M�. Figure 2.2 shows the accretion
histories.

while Matt et al. (2010)’s does not. We do warn, however, that there are significant

uncertainties in how much of the accretion entropy is actually absorbed by the star, and

differing assumptions on this point can produce significant differences in radial evolution

(Hosokawa et al., 2011).

We find that the torques that arise from the star-disk magnetic interaction are

unable to spin down both low-mass and massive protostars during the main accretion

phase, but are important during the disk clearing phase, especially for low-mass stars.
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Low-mass stars begin to spin down the instant the disk clearing accretion phase begins

whereas it takes approximately 2 Myr to begin to spin down massive stars for our

chosen fiducial values. This suggests that massive stars are difficult to spin down due to

their larger inertia and because their magnetic fields are weaker relative to their stellar

binding energy as compared to low mass stars.

Figure 2.4 shows snapshots of the stellar radius, disk truncation radius, stellar

period, and stellar rotation rate as a fraction of break up as a function of stellar mass

taken at different times during the disk clearing phase. First consider the upper left

panel, showing radius versus mass at different times. The R−M relation toward which

the models converge at high mass is the ZAMS; by 3 Myr all stars above ∼ 2 M� have

reached it. At smaller masses, the maximum radius occurs at a mass that corresponds

to stars that have just made the convective-radiative core transition at a given time.

This value shifts to progressively smaller masses at later times.

An interesting feature of Figure 2.4 is that the stellar rotation rates as a fraction

of break up show a bimodal distribution: stars with M?,f . 1 M� rotate at ∼10% of

their break up speed whereas stars with M?,f & 6 M� are rapid rotators. In between

these plateaus (i.e., the “transition region”) the rotation rates as a fraction of break

up increases with stellar mass. Furthermore, as time increases we find that the ratio

of rotation speed to break up speed decreases on both plateaus, but that this decrease

is more noticeable for the fast rotator plateau. This is because the stars located on

the fast rotator plateau have already reached the ZAMS and are no longer contracting

whereas those located on the slow rotator plateau are easy to spin down because of
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their low inertia, even though they are still contracting towards the ZAMS. In contrast,

we find that the rotation rates as a fraction of break up of the stars in the transition

region increases with time. This suggests that the magnetic torques conveyed by the

star-disk interaction are unable to counteract the increase in the stellar spin rate due

to contraction for stars in the transition region. However, once these stars have reached

the ZAMS magnetic torques do become important. The points located in the bottom

right panel of Figure 2.4 represents the minimum mass of stars rotating at &20% of

their break up speed. We use this as an indicator of the transition between slow and

fast rotators, which we discuss further in Section 2.4.3.

2.4.2 Sensitivity to Model Parameters

In the previous subsection we found that massive stars are much more difficult

to spin down than low-mass stars. This causes low-mass stars to become slow rotators

and massive stars to be rapid rotators, yielding a bimodal distribution in stellar rotation

speeds as a fraction of the break up speed. To explore if this qualitative result is sensitive

to our chosen model parameters, we vary certain parameters while holding the other

parameters fixed. In the figures that follow we see that by varying certain parameters

we do not lose this feature, but only alter it.

2.4.2.1 Varying Σ

Figure 2.5 shows the final stellar radius, disk truncation radius, stellar period,

and rotation rate as a fraction of break up as a function of final stellar mass for different
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Figure 2.4 Snapshots of the stellar radius (upper left), disk truncation radius (upper
right), stellar period (lower left), and rotation rate as a fraction of break up (lower right)
as a function of stellar mass taken at different times during the disk clearing phase for
our fiducial case. The times in the legend represent the time that has elapsed since the
disk clearing phase began. The points located in the bottom right panel represents the
minimum mass of stars rotating at & 20% of its break up speed. We use this as an
indicator of the transition between slow and fast rotators.

values of the initial core surface density, Σ. The accretion rate during the main accretion

phase increases for higher Σ, so varying this value affects the accretion history only

during this phase. We find that this parameter has little to no effect on the final spin

rate of the stars because the magnetic torques are unimportant during this accretion

phase. The very minor differences that do appear arise because the value of Σ affects the

time at which a star of a given final mass reaches the swelling phase: the swelling phase
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Figure 2.5 Same as Figure 2.4 but all quantities are shown at a time of 3 Myr, and we
vary Σ as indicated in the legend.

of the star occurs earlier in time at lower Σ. For each value of Σ used in our models there

is a slight kink in between M?,f ≈ 3−6M� and the location of this kink decreases in mass

for smaller values of Σ. Stars to the right of this kink experience the jump in radius,

discussed in Section 2.4.1, before the end of the main accretion phase whereas those to

the left experience the swelling during the disk-clearing accretion phase. However, the

net effect on the stellar rotation rate is obviously minor.
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2.4.2.2 Varying MD

Figure 2.6 shows the final stellar radius, disk truncation radius, stellar period,

and rotation rate as a fraction of break up as a function of final stellar mass for different

values of the initial disk mass, MD, used for the disk clearing accretion phase. Increasing

MD increases the accretion rate during the disk clearing phase, thus increasing the

accretion torque. A larger accretion rate also causes the disk to be truncated closer

to the star, effectively reducing the net spin down magnetic torque. This is because

the stellar magnetic field lines will connect to a greater portion of the disk within Rco

yielding greater spin up magnetic torques on the star while the magnetic spin down

torques remain unchanged. We find that altering MD changes the location and shape

of the transition between the slow and fast rotation plateaus, but the qualitative result

that rotation rates are bimodal, with slow rotation at low mass and rapid rotation at

high mass, remains unchanged. Also note that the models converge in the limit MD → 0.

2.4.2.3 Varying ta

Figure 2.7 shows the final stellar radius, disk truncation radius, stellar period,

and rotation rate as a fraction of break up as a function of final stellar mass for different

values of the disk decay time scale, ta, used for Equation 2.16. Smaller values of ta, as

compared to our fiducial value of 1 Myr, correspond to a higher initial accretion rate

that declines more rapidly for the disk clearing accretion phase. This yields lower final

spin rates at the end of 3 Myr. However, the overall shape of the distribution of final

spin rates as a function of stellar mass does not change.
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Figure 2.6 Same as Figure 2.4 but all quantities are shown at a time of 3 Myr, and we
vary MD as indicated in the legend.

2.4.2.4 Varying B?

Figure 2.8 shows the final stellar radius, disk truncation radius, stellar period,

and rotation rate as a fraction of break up as a function of final stellar mass for different

values of the stellar magnetic field strength. Clearly, a larger magnetic field strength

provides a greater spin down torque on the star, yielding smaller final spin rates as

a function of mass. As can be seen in this figure, stars above M?,f & 2 M� require

surface fields greater than 1 kG to experience any significant spin down torques and

do not become slow rotators, Ω?/Ωbu . 0.1, unless the field reaches ∼10 kG. Magnetic
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Figure 2.7 Same as Figure 2.4 but all quantities are shown at a time of 3 Myr, and we
vary ta as indicated in the legend.

fields this large have only been detected in the chemically peculiar (e.g., helium strong)

Ap/Bp stars (Borra and Landstreet, 1979; Oksala et al., 2010). Generally, as the field

strength increases the final spin rates decrease, but the qualitative division between

slow and fast rotators remains. We also find that this same trend in rotation rates as

a fraction of break up occurs as the field lines become weakly coupled to the accretion

disk, while holding the magnetic field strength fixed, as discussed next.
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Figure 2.8 Same as Figure 2.4 but all quantities are shown at a time of 3 Myr, and we
vary B? as indicated in the legend.

2.4.2.5 Varying β and γc

Figure 2.9 shows the final stellar radius, disk truncation radius, stellar period,

and rotation rate as a fraction of break up as a function of final stellar mass for different

values of β and γc. These parameters describe the coupling and connection of the stellar

magnetic field lines to the accretion disk (i.e., the location where the field lines open

and disconnect from the disk). A larger β for a given γc increases the extent of the

connected disk region. This is because the coupling of the stellar field lines to the disk

acts to resist the twisting of these lines due to the differential rotation between the star
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and disk. Thus, weaker field coupling will lead to a greater spin-down torque acting on

the star leading to lower rotation rates as depicted in Figure 2.9. Likewise, a greater γc

for a given β will allow the field lines to experience a greater twist before opening, also

increasing the size of the connected disk region. For the case where γc →∞ (i.e., field

lines are allowed to twist to large values without opening), the field lines will connect to

the whole disk outside Rt. This will lead to a greater spin down torque. The case where

β = 1 and γc = ∞ reduces to the case described in Section 2.2. Figure 2.9 shows that

as β increases for γc = 1, all stars have lower rotation rates. However the two plateaus

still remain.

2.4.3 The Characteristic Mass for the Slow to Fast Rotator Transition

In this work we have found a robust division between slow and fast rotators.

Specifically, we find that low-mass stars (e.g., stars with M? . 1 M�) are slow rotators,

easily spun down via magnetic torques that arise from the star-disk interaction, and

rotate at ∼ 10% of their break up speed, whereas massive stars (e.g., M? & 6 M�)

are preferentially fast rotators. This is because massive stars are difficult to spin down

due to their larger inertia and because their magnetic fields are weaker relative to their

stellar binding energy as compared to low mass stars. Furthermore, this division is

also dependent on the R-M relationship. The stars located on the fast rotator plateau

have reached the ZAMS by the end of the main accretion phase or early on during the

disk clearing phase; whereas, the stars located on the slow rotator plateau are shrinking

towards the ZAMS for the entirety of the disk clearing phase. Likewise, the stars located
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Figure 2.9 Same as Figure 2.4 but all quantities are shown at a time of 3 Myr, and we
vary β and γc as indicated in the legend.

in the transition region are contracting towards the ZAMS for a significant portion of

the disk clearing phase but are contracting much faster than the low-mass slow rotators,

leading to the sudden rise in rotation rates as a fraction of break up.

To further illustrate the division between slow and fast rotators for each of

our model parameters, in Figure 2.10 we plot the minimum stellar mass at which the

star ends accretion rotating at 20% of its break up speed, which we call M20. Each

panel shows how M20 depends on the individual parameters in our model (while setting

the other parameters to their fiducial values). The top panels show that M20 decreases
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by only a small amount as the disk lifetime (i.e., the amount of time the disk survives

and supplies mass to the star during the disk clearing phase) or disk decay time scale

increases. We also see that this characteristic mass, as a function of the initial core

surface density, is relatively constant as indicated by the nearly horizontal line on the

middle right panel of Figure 2.10. In contrast, M20 spans a larger mass range as we

vary the initial disk mass used for the secondary accretion phase as shown in the middle

left panel. This is because the accretion rate, and therefore the accretion torque, is

proportional to the disk mass used in our model. We find that as MD → 0 the values of

M20 become constant but we notice that M20 decreases most as the disk mass increases

from ∼ 10−3 − 10−2 M?. The division between slow and fast rotators slowly decreases

in stellar mass for initial disk masses above ∼ 10−2 M?. Even though varying this

parameter leads to larger variations in M20 as compared to the top panels, it does not

change the qualitative division between slow and fast rotators.

The bottom panels of Figure 2.10 show how the slow-fast rotator division is

affected by the stellar magnetic field strength and the coupling of the stellar magnetic

field lines to the disk, which are the parameters that are responsible for the removal of

angular momentum from the star. The black solid lines in these panels show that the

division between the slow and fast rotators (i.e., M20) diverges for large magnetic field

strengths (B? & 4.5 kG) or weak field coupling (β & 0.05) for a disk clearing accretion

phase that lasts for 3 Myr. This is because no stars will be rotating at or above 20%

of their break up speed at the end of 3 Myr for such high values of B? or β. For

comparison, and also because we expect disks to have shorter lifetimes around massive

55



stars, we also include the values of M20 at 0.5 Myr after the disk clearing phase began

(teal dotted lines). We find that M20 is larger at shorter times because these stars are

still contracting towards the ZAMS. At 0.5 Myr stars with masses greater than ∼ 5 M�

have reached the ZAMS, as indicated by the kink and faster increase of M20 in these

plots for the 0.5 Myr case.

2.5 Discussion

We have shown that massive stars are fast rotators at birth and that their

initial rotation rates are unlikely to be regulated by the star-disk magnetic interaction.

We have found that magnetic torques can only effectively spin down massive stars

that have low accretion rates, long disk lifetimes, weak magnetic coupling with the

disk, and/or surface magnetic fields that are significantly larger than what current

observational estimates suggest. We thus conclude that their initial rotation rates are

likely regulated by gravitational torques. Since massive stars arrive on the main sequence

as fast rotators, their variation in rotation rates as a fraction of their break-up rate

is likely a result of evolutionary spin down, due to stellar expansion and/or angular

momentum loss via stellar winds while on the main sequence.

2.5.1 Observational Implications

A topic of current debate is whether the distribution of the projected rotational

velocities of massive stars depend on birth environment or if this property is only affected

by evolutionary spin down (Strom et al., 2005; Dufton et al., 2006; Huang and Gies, 2006;
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Figure 2.10 This figure illustrates the sensitivity of the model parameters. The y-axes
show the minimum stellar mass where f ≥ 0.2, denoted as M20, for different parameters
as indicated on the x-axes. Except for the top left plot, the black solid lines indicate
that these values were taken for a disk lifetime of 3 Myrs. In the bottom panels, the
teal dashed lines show the value of M20 0.5 Myrs after the beginning of the disk clearing
phase for comparison.
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Wolff et al., 2006, 2008; Huang et al., 2010). Strom et al. (2005) observed the rotational

velocities of B stars located in high stellar density clusters and compared them to field

stars of similar age (∼12-15 Myr). They found that, on average, the cluster stars had

larger rotational velocities than the field stars in their sample and that only the most

evolved cluster stars had similar rotational velocities as their field star counterparts.

Likewise, Wolff et al. (2006, 2008) observed that massive stars (e.g., M? & 6 M�)

found in clusters characterized by a high stellar density are faster rotators than their

similar mass counterparts located in lower density clusters. These studies concluded

that the initial spin rates of these stars depend on the initial star-forming environment

since these stellar ensembles, which have survived as bound clusters, likely form in

molecular clouds characterized by high surface densities. Furthermore, Wolff et al.

(2006) compared the distribution of the rotational velocities of B stars in both young

and older high density and low density environments and did not detect a significant

evolutionary change.

In agreement, Huang et al. (2010) compared the rotation rates of cluster and

field B stars and found that, on average, cluster stars tend to rotate faster than field

stars. However, by grouping the stars by surface gravity, an age proxy, they found there

is little difference between the average rotational velocities for the field and cluster stars

as a function of age, and that they exhibit a similar spin-down with advanced evolution.

They also found that field stars are in general more evolved than cluster stars. These

results suggest that the observed trend in the rotational velocities of B stars are due

to evolutionary spin down rather than to the initial conditions of the environment in
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which they formed. They argue that the discrepancy between the average rotation rate

of the field stars and cluster stars in their sample is that the field stars have undergone

evolutionary spin down since the field star sample contained more evolved stars.

For a fixed surface magnetic field strength, we find here that the initial rotation

rates of massive stars, due to disk locking, have no dependence on the environmental

density. As described in Section 2.3.2.1, the accretion rate during the main accretion

phase does depend on the star forming environment, with larger surface density yielding

a greater time-averaged accretion rate. Wolff et al. (2006) proposed that the higher

rotation rates they report for stars in dense clusters are the result of disk-locking plus a

systematically higher accretion rate in dense clusters. However, we find that magnetic

torques are insignificant during the main accretion phase regardless of environment

density because of the high accretion rates. These torques only become important

during the disk clearing phase, and there is no obvious reason that the properties or

behavior of the disk during this phase should depend on the environment. However,

this does not rule out other factors that may depend on the environment. In this

work we assumed that all stars had the same surface magnetic field strength. If the

strength of the magnetic fields present during the star-formation process depends on

environment, either because the star-forming cloud has a different magnetic mass to

flux ratio and/or because the ambipolar diffusion process depends on density, then this

could provide a viable explanation for the difference in rotational velocities of young stars

in environments of varying density. Another possibility for the difference in rotational

velocities of stars born in different environments may be related to the lifetimes of disks
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in such environments. We have found that the rotation rates of these stars depend

crucially on the lifetime of the accretion disk. Thus, if disks have shorter lifetimes in

higher stellar density environments, possibly due to tidal dissipation from interactions

with neighbors or rapid photoevaporation due to radiation from nearby massive stars,

then the initial rotation rates of these stars will only increase as they contract towards

the ZAMS (Wolff et al., 2006).

2.5.2 Future Work and Caveats

In this work, we have omitted two potentially important effects: that magnetic

fields might be stronger early in stars’ lives, and that stars can be spun down by winds

on the main sequence. As mentioned in Section 2.1, magnetic fields in massive stars are

likely to be the decaying remnants of magnetic flux swept up during the star-formation

process. Therefore, it is plausible that accreting massive stars have stronger magnetic

fields than those we observe as main sequence O and B stars. If this is the case, then

massive stars will likely be spun-down via magnetic torques. If the decay process is the

same for all stars then we expect that the strongest magnetic fields should be observed

in the slowest rotators. However, we also discovered that the spin rates of these stars

depend heavily on how well the stellar magnetic field lines couple to the accretion disk.

As described in Section 2.3.3.1 the true value of β is highly uncertain because it depends

on the microphysics of the accretion disk. Since observations of disks around massive

stars are rare we are unable to provide a confident estimate for β. However, by exploring

a range of values for β we have determined that if the field lines are weakly coupled to
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the disk then magnetic torques can sufficiently spin down massive stars. Also, measuring

the rotation rates of young, massive stars can provide a better estimate for β. If the

slowest rotators prove to have weak magnetic fields, then it may be likely that the field

lines were weakly coupled to the disk, resulting in a larger β, thus producing these

slower rotators.

Stars on the main sequence also shed mass and angular momentum via stellar

winds, which we have neglected in this work. In the presence of a stellar magnetic field,

these winds will couple with the field lines causing the star to lose a significant amount

of angular momentum as it evolves (Weber and Davis, 1967). Since the mass loss rates

of stars increases with stellar mass (Nieuwenhuijzen and de Jager, 1990) more massive

stars will lose angular momentum at a greater rate. If the spin rates of massive stars

are regulated by gravitational torques rather than magnetic torques produced by the

star-disk magnetic interaction then we expect that all massive stars should be rotating

at ∼50% of their break up speed once they are deposited on the ZAMS, assuming that

their disks survive long enough. Spin down will occur as they evolve and shed angular

momentum via stellar winds. This is consistent with the results of Huang et al. (2010)

who found that young stars with masses greater than ∼ 2 M� are preferentially fast

rotators and that the average rotation speed as a fraction of the break up speed, for

each mass bin, decreases for increasing stellar mass.
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Chapter 3

Numerical Methodology: Hybrid

Radiative Transfer for Adaptive Mesh

Refinement Simulations

A version of this chapter has been published as “Hybrid Adaptive Ray-Moment

Method (HARM2): A Highly Parallel Method for Radiation Hydrodynamics on Adap-

tive Grids,” Rosen, A. L., Krumholz, M. R., Oishi, J. S., Lee, A. T., Klein, R. I. 2017,

Journal of Computational Physics, 330, 924.1

3.1 Introduction

Radiation-hydrodynamics (RHD) is a challenging numerical problem, but it is

a crucial component in modeling several physical phenomena in the fields of astrophysics,

1 c©2017. Elsevier. All rights reserved. Reprinted here with permission.
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laser physics, and plasma physics. Accurate solution of the radiative transfer (RT)

equation, which governs the evolution of radiation interacting with matter, is difficult

because of its high dimensionality. This equation depends on six independent variables:

three spatial, two angles describing the direction of the propagation of photons, and

one frequency dimension. For time-dependent RHD calculations, this solution must be

obtained at every time step, and then coupled to the hydrodynamics. Even on parallel

supercomputers direct solution of the RT equation at each time step of a time-dependent

calculation is prohibitively expensive, because of this most numerical RHD codes use

approximations to treat the evolution of the radiation field and its interaction with

matter.

One common approach to solving the RHD equations is to reduce the dimen-

sionality of the problem. This class of approximations are known as moment methods

because they take the moments of the radiative transfer equation in direct analogy to

the Chapman-Enskog procedure used to derive the hydrodynamic equations from the

kinetic theory of gases (Krumholz, 2011; Teyssier, 2015). This method averages over

the angular dependence, and thus is a good approximation for smooth, diffuse radiation

fields such as those present in optically thick media when the radiation is tightly coupled

to the matter. The accuracy with which moment methods recover the angular depen-

dence of the true solution depends on the order at which the moments are closed, and

on the closure relation adopted. Common approximations include flux-limited diffu-

sion (FLD; closure at first moment) (Levermore and Pomraning, 1981; Krumholz et al.,

2007b; Commerçon et al., 2011), the M1 method (closure at the 2nd moment using
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a minimum entropy closure) (González and Audit, 2005; Rosdahl and Teyssier, 2015),

and Variable Eddington Tensor (VET; closure at the 2nd moment using an approximate

solution to the full transfer equation) (Dykema et al., 1996; Jiang et al., 2012; Davis

et al., 2012). Regardless of the order and closure relation, the computational cost of

these methods usually scales as N or N logN , where N is the number of cells, and the

technique is highly parallelizable (Krumholz, 2011).

An alternative technique used to solve the RT equation numerically is

characteristics-based ray tracing, which solves this equation directly along specific rays.

With this method, the directionality of the radiative flux is highly accurate, but the

accuracy depends on the sampling of rays. Two widely used schemes for ray tracing in

grid-based codes are long and hybrid characteristics. Long characteristics traces rays

on a cell by cell basis, and provides maximum possible accuracy. Hybrid characteristics

is a combination of long characteristics within individual grids and short characteristics

between grids (i.e., in which only neighboring grid cells are used to interpolate incoming

intensities) (Rijkhorst et al., 2006; Buntemeyer et al., 2016). The method of short

characteristics is faster but more diffusive compared to long characteristics methods.

The computational cost for both methods scales linearly with the number of sources, rays

traced, and grid cells with which the rays interact, making these methods prohibitively

expensive for treating diffuse radiation fields where every computational cell is a source.

Instead, they are ideal for treating the radial radiation fields of point sources. Even for

this application, however, one major drawback of ray tracing methods, especially long

characteristics, is that they are difficult to parallelize in a code where the hydrodynamics
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is parallelized by domain decomposition. In such a configuration, each ray will usually

cross multiple processor domains, creating significant communications overheads and

serial bottlenecks.

In summary, moment methods are better at approximating the diffuse radi-

ation field from a fluid but are poor at modeling the propagation of radiation from

point sources where the direction of the field is important. Characteristics methods, in

contrast, are good at approximating the direction-dependent radiation fields from point

sources but are too computationally expensive for practical use in simulating a diffuse

radiating fluid. When both point and diffuse radiation sources are present, therefore, a

natural approach is to combine both techniques by using long characteristics to model

the propagation of radiation from a point source and its subsequent interaction (e.g.,

absorption) with the fluid and then use a moment method to follow the subsequent

diffuse re-emission.

This technique has been developed in several numerical codes in the past 20

years, but these codes typically have been limited to cases where a geometric symmetry

simplifies the long characteristics solution. Wolfire and Cassinelli (1986, 1987) intro-

duced a formal decomposition between the direct and dust-reprocessed radiation fields

for a calculation in 1D spherical geometry. The first published 2D simulation using such

a method is Murray et al. (1994), who coupled long characteristics to FLD to model the

direct (ray tracer) and scattered (FLD) radiation field in accretion disk coronae. Kuiper

et al. (2010) incorporated a similar hybrid approach in the 3D grid based code Pluto,

but again limiting the problem to a special geometry: in this case a single point source

65



at the origin of a spherical computational grid. Most recently, Klassen et al. (2014)

developed a hybrid scheme in the FLASH adaptive mesh refinement (AMR) code but

uses FLD plus hybrid characteristics which, although faster, is less accurate than long

characteristic methods.

The reason that many authors have resorted to special geometries or aban-

doned long characteristics is the difficulty in parallelizing long characteristics in a gen-

eral geometry, particularly in the case of adaptive grids. The problem is difficult because

it is unknown a priori how far rays will travel and what grids they will interact with in

an adaptive grid framework. In a distributed memory paradigm where different grids

may be stored in memory on different processors, this can easily result in a complex

communication pattern with numerous serial bottlenecks. Indeed, all implementations

of long characteristics on adaptive grids published to date use synchronous commu-

nication algorithms in which processors must wait for other processors to receive ray

information (Wise and Abel, 2011), leading to exactly this problem.

In this chapter we present our Hybrid Adaptive Ray-Moment Method (HARM2)

which uses long characteristics to treat radiation from point sources coupled to a mo-

ment method to handle the diffuse radiation field from the fluid. HARM2 works on

adaptive grids with asynchronous time stepping. We have greatly improved the paral-

lelism of the long characteristics solve in a distributed memory framework through a

new, completely asynchronous, non-blocking communication method. The rest of this

chapter is organized as follows. We begin with a formal derivation of our method for de-

composing the radiation field into two components in Section 3.2. Section 3.3 describes
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our numerical implementation of our hybrid radiation scheme in the astrophysical AMR

code ORION. Next we confirm the robustness of our method by providing validation

and performance tests in Sections 3.4 and 3.5, respectively. Finally, we summarize our

methods and results in Section 3.6.

3.2 Decomposition of the Radiation-Hydrodynamics Prob-

lem

Here we describe a formal method to separate the radiation field into two

components – (1) the diffuse radiation from the fluid and (2) the direct radiation field

from point sources (Norman et al., 1998). Formally, we consider a system consisting of a

volume-filling radiating fluid plus point sources of radiation, and we wish to decompose

the radiation fields produced by the fluid and the point sources. An example where

such a decomposition is valuable is in the problem of simulating stars embedded in an

optically thick, dusty medium such as is present during the early formation of a star

cluster while the stars are actively accreting. The radiative flux from the stars will be

absorbed by nearby dust and the dust will re-emit thermal radiation in the infrared.

This radiation will be highly coupled to the interstellar medium and diffuse through the

dense gas.

We begin with the equations of radiation-hydrodynamics (RHD) written in
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the lab-frame (Mihalas and Klein, 1982; Mihalas and Auer, 2001):

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

∂

∂t
(ρv) +∇ · (ρvv) = −∇P + G (3.2)

∂

∂t
(ρE) +∇ · [(ρE + Pv)] = cG0 (3.3)

where ρ, v, E, and P are the density, velocity, specific energy (thermal plus kinetic),

and thermal pressure of the fluid, respectively; and
(
G0,G

)
is the radiation four-force

density which is the negative of the radiation energy stress tensor and is given by

cG0 =

∫ ∞
0

dν

∫
dΩ [κ(n, ν)I(n, ν)− η(n, ν)] (3.4)

cG =

∫ ∞
0

dν

∫
dΩ [κ(n, ν)I(n, ν)− η(n, ν)] n (3.5)

where I(n, ν) is the intensity of the radiation field at frequency ν in direction n. We note

that the physical quantities given in Equations (3.1)-(3.3) depend on spatial position and

time. The time-like and space-like components of
(
G0,G

)
represent the rate of energy

and momentum transfer from the radiation to the fluid, respectively. The intensity is

governed by the time-independent radiative transfer equation

n∇I(ν,n) = −κ(n, ν)I(n, ν) + η(n, ν) (3.6)

where κ(n, ν) and η(n, ν) are the direction and frequency dependent absorption and
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emission coefficients in the lab-frame, respectively. For simplicity, we have neglected the

effects of scattering because we expect to solve the equations of RHD in astrophysical

problems where absorption is the dominant transfer mechanism. However, it would be

straightforward to extend the method to include scattering in the diffuse component,

as we point out below. We also ignore the time-dependence of the radiative transfer

equation because our primary target application is systems where the light travel time

is orders of magnitude smaller than the system dynamical time, and thus the radiation

intensity is always in instantaneous equilibrium.

We now separate I(n, ν) into two components

I(n, ν) = Idir(n, ν) + Idiff(n, ν) (3.7)

to describe the direct radiation fields from point sources (Idir) and the diffuse radiation

field (Idiff) emitted by the fluid. Since the sources that contribute to the direct radiation

field are point sources we can represent their intensity as a sum of δ−functions

Idir(n, ν) =
N∑
i=1

Isrc,i(ν)δ (n− nsrc,i) , (3.8)

where nsrc,i = (x − xi)/|x − xi| for any position x in the computational domain, xi

and Isrc,i are the position and intensity of the ith point source, and we assume that the

sources are isotropic emitters, so Isrc,i is independent of n.2 With this formulation Idir is

2Note that this limits our method to non-relativistic problems, where we can neglect the effects of
relativistic beaming of the source radiation fields.
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non-zero only at special values of n, i.e., those that point from the position of a source

xi to the position in question x, and zero for all others; while Idiff will be non-zero

everywhere. However, because the four-force vector (G0,G) depends on integrals over

n, the δ-function contributions from Idir may dominate at some positions, while the

contribution from Idiff dominates elsewhere. This makes solution with a pure moment

method difficult, and motivates us to treat the radiation fields of the point sources and

fluid separately so that we can properly take into account the direction of the radiation

fields from point sources. With this decomposition Equations (3.4)-(3.5) become

cG0 =

∫ ∞
0

dν

∫
dΩ [κ(n, ν)Idir(n, ν)− ηdir(n, ν)]

+

∫ ∞
0

dν

∫
dΩ [κ(n, ν)Idiff(n, ν)− ηdiff(n, ν)] (3.9)

cG =

∫ ∞
0

dν

∫
dΩ [κ(n, ν)Idir(n, ν)− ηdir(n, ν)] n

+

∫ ∞
0

dν

∫
dΩ [κ(n, ν)Idiff(n, ν)− ηdiff(n, ν)] n (3.10)

where ηdir(n, ν) and ηdiff(n, ν) describes the emission due to point sources and the fluid,

respectively.

This decomposition allows the following general approach to a hybrid scheme:

(1) use a long characteristics method to solve for Idir, (2) use a moment method to solve

for Idiff , (3) add the two components to obtain the radiation four-force density (G0,G),

(4) update the hydrodynamic state using the radiation four-force density. As a further

benefit to this approach, we note that there is no requirement that steps (1) and (2) use

the same frequency resolution, since (G0,G) depends only on an integral over frequency.
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It is relatively straightforward to bin the intensity from the point sources by frequency

with a ray tracer since each ray can be approximated by an array of intensities, while

using a lower frequency resolution in the (generally more expensive) moment method.

This is ideal for point sources such as stars which have color temperatures much higher

than the absorbing medium.

3.3 The HARM2 Algorithm

In this section we describe the HARM2 algorithm. We have implemented

this algorithm in the ORION astrophysical adaptive mesh refinement (AMR) code

(Klein, 1999; Fisher, 2002; Krumholz et al., 2007b; Li et al., 2012) and we use this

implementation for all the algorithm tests described below. ORION uses grid-based

adaptivity (Berger and Oliger, 1984; Berger and Colella, 1989) with individual time steps

for each level, and the HARM2 algorithm can be applied to any AMR code following

this design. Variable definitions from this section are defined in table 3.1. ORION uses

the FLD approximation for its moment method (Krumholz et al., 2007b), and we will

use this for all tests below, but HARM2 is equally compatible with any other moment

method.

3.3.1 Update Cycle

Consider an adaptive mesh covering some computational domain of interest.

The mesh consists of levels with different cell sizes, with l = 0 denoting the coarsest level

and l = lmax the finest. Each level, in turn, is made up of a union of rectangular grids,
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each with the same cell size. In a distributed-memory parallel computation, different

grids may be stored in memory on different processors or nodes. The grids on a given

level need not be contiguous, but they are required to be non-overlapping, and the grids

are properly nested such that a cell of a level l grid may have as its neighbor the domain

edge, another level l cell, or a cell of level l − 1 or l + 1, but not a cell of any other

level. Point sources are only placed at locations covered by a grid of level lmax. Each

level advances on a time step dtl, ordered such that dtl ≥ dtl+1, and so that, after some

number of time steps on level l+ 1, the simulation time tl+1 on that level will be equal

to the time tl on the next coarsest level. That is, we require that, a level l + 1 syncs

up in time with the next coarsest level l. In all the tests we perform with ORION the

time steps obey dtl+1 = dtl/2, and synchronization occurs every 2 fine time steps, but

this is not required by HARM2.

Given this setup, our algorithm is as follows:

1. Operator split the direct and diffuse components of the radiation field:

(a) if l equals 0 or tstart,l is greater than tstart,l−1, where tstart,i is the current

time on level i, then

i. Loop over point sources and inject rays onto grids that belong to level

lmax where they are located.

ii. Advance rays across grids on level lmax and all coarser grids that the rays

interact with, store the rates at which radiative energy and momentum,
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dE/dt and dp/dt, are absorbed by the gas (Section 3.3.2).

iii. Restrict dE/dt and dp/dt from finer level grids down to level l.

(b) Add (dE/dt) dtl and (dp/dt) dtl to the gas energy and momenta, respectively.

(c) Update the diffuse radiation field with a moment method.

2. Apply the hydrodynamics update to all cells on level l.

3. Update point sources if l = lmax.

For the pattern of time steps used by ORION, whereby there are 2 fine time steps

per coarse time step, this method results in 2lmax ray trace updates per update on the

coarsest level. Note that, because we only perform a ray trace if tstart,l > tstart,l−1, we

do not perform any redundant ray tracing steps. In other words, we perform the ray

trace at a given time only if we have not already performed it at that time.

3.3.2 Direct Radiation Field: Adaptive Ray Trace

We now describe the adaptive ray tracing procedure that forms step 1a(ii) of

the algorithm above. Consider a single point source with a specific luminosity given by

Lν and luminosity given by L? =
∫∞

0 Lν dν. The generalization to multiple point sources

is trivial. We discretize the point source spectrum in frequency into Nν frequency bins,

with the ith bin covering a range in frequency (νi−1/2, νi+1/2). Let Li =
∫ νi+1/2

νi−1/2
Lν dν be

the luminosity of the point source integrated over the ith frequency such that
∑
Li = L?.

We generally expect that Li will be the energy radiated per unit time in a given frequency
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bin, but the algorithm is identical if we instead take Li to be a photon luminosity,

measured in photons per unit time.

We wish to solve the transfer equation along rays that end at this source.

Along a ray characterized by a direction n and a solid angle Ωray that it subtends,

the propagation of the radiation is described by the time-independent transfer equation

(i.e., Equation (4.16)), with the emission term η set to zero because we are taking the

direct radiation field to have zero emissivity except at the point sources. Multiplying

both sides of this equation by 4πr2/Ωray, we obtain an integrated form of the transfer

equation

∂Lray,i

∂r
= −κiLray,i, (3.11)

where Lray,i(r) is the luminosity along the ray at a distance r from the point source and

κi is the total absorption opacity for the ith frequency bin in units of cm−1. This equa-

tion is subject to the boundary condition Lray,i(0) = Li/Npix, where Npix = 4π/Ωray.

We solve this equation by discretizing it along the line segments defined by the intersec-

tion of the ray with the cells of the computational mesh. Specifically, when a ray with

luminosity Lray,i passes through a cell along a segment of length dl, the optical depth

of the segment is τi = κi dl, and the luminosity of the ray decreases by an amount

dLray,i = Lray,i

(
1− e−τi

)
. (3.12)
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In the process, the cell absorbs an amount of energy and momentum at a rate

dE

dt
=

Nν∑
i=1

dLray,i (3.13)

dp

dt
=

Nν∑
i=1

dLray,i

c
n. (3.14)

The total absorption rate for each cell is simply the sum of dE/dt and dp/dt over all

rays from all point sources that pass through it. When computing the line segments

dl, we only consider grids that are not masked by any finer grid. That is, when solving

Equation (4.17), we only ever consider the most highly spatially resolved data at any

given position.

We choose the directions n and solid angles Ωray using the angular discretiza-

tion introduced by Abel and Wandelt (2002) and Wise and Abel (2011). In this ap-

proach, n and Ωray are chosen using the Hierarchical Equal Area isoLatitude Pixelization

of the sphere (HEALPix) scheme (Górski et al., 2005), which divides the surface area

of a sphere into equal area pixels that can be further subdivided into four equal-area

sub-pixels. There are Npix(0) = 12 pixels at the coarsest HEALPix level, and there are

Npix(j) = 12 × 4j pixels on HEALPix level j; note that the HEALPix level j and the

AMR grid level l are distinct and in general are not the same. The scheme is adaptive

in that, as we trace rays away from point sources, we subdivide them as needed to

ensure that cells are adequately resolved. Specifically, we divide a ray into 4 sub-rays if
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it satisfies the condition

Ωcell

Ωray
=
Npix(j)

4π

(
∆x

r

)2

< Φc, (3.15)

where Ωcell = (∆x/r)2 is the solid angle subtended by a cell of linear size ∆x at a

distance r from the point source. The quantity Φc is the minimum number of rays

required to go through each cell, which we usually set to 4 following the resolution tests

of Krumholz et al. (2007c) and Wise and Abel (2011) but, in general, the exact value for

Φc is problem-dependent. The initial luminosity per ray for frequency bin i is Lray,i,j0 =

Li/Npix(j0) where j0 is the initial healpix level. When a ray splits, we solve the transfer

equation along the sub-rays using the boundary condition Lray,i,j+1(R) = Lray,i,j(R)/4,

where Lray,i,j(R) is the luminosity of the ray at frequency bin i on HEALPix level j.

As proposed by Krumholz et al. (2007c), we randomly rotate the orientation of the rays

every time they are cast to minimize errors due to discretization in angle. Finally, we

terminate the ray trace when either a ray exits the computational domain, or when

Lray,j(r) < 0.001Lray,j(0) where Lray,j(0) =
∑

i Li/
(
12× 4j−j0

)
, i.e., when 99.9% of the

energy originally assigned to that ray on ray level j has been absorbed.

3.3.3 Parallelization

Thus far the algorithm we have described is substantially identical to that of

Wise and Abel (2011). However, we adopt a very different, and much more efficient

strategy to parallelize this procedure. The primary challenge to parallelizing this algo-
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rithm is avoiding serial bottlenecks. The grids through which the rays must be traced

may be distributed across any number of processors, and solution of Equation (4.17) is

an intrinsically serial process because the rate of change of the energy and momentum

in any cell due to radiation arriving along a particular ray depends upon the properties

of all cells that lie between the point source and the cell in question. Since the num-

bers and positions of point sources and computational grids in the AMR structure, and

their distribution in memory, are not known a priori, minimizing bottlenecks requires

an opportunistic approach: rays should be able to be processed in arbitrary order, with

each processor performing ray tracing given the data available to it, and waiting for

other processors only when no useful work can be done. To this end, communication

must be non-blocking and asynchronous. At the same time, each process must be able

to determine when the entire ray trace has been completed, so that it can proceed to

the remainder of the update cycle (the moment method, hydrodynamics, etc.), and this

determination must be robust against race conditions.

Recall that we consider the tracing of a particular ray done when it either

exits the computational domain or when 99.9% of its energy has been absorbed. To

handle the problem of determining when the algorithm should terminate without relying

on blocking communication, we pretend we know how many rays could be created by

computing a maximum number of rays to be used as a counter:

Nmax = Nsrc × 12× 4jmax (3.16)
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where Nsrc is the number of sources and jmax is the maximum HEALPix level we allow;

we set this to 20 in all of our tests. Our algorithm involves accounting for “all rays”

that are destroyed on each processor by computing

Ndestroyed,k =
∑
Nray,k

4jmax−j (3.17)

where k is the processor number, j is the HEALPix level of the ray that is deleted due

to absorption or leaving the computational domain, and Nray,k is the total number of

rays that have been deleted on processor k. This information is communicated to all

other processors. Once the total destroyed,

Ndestroyed =
∑
NCPU

Ndestroyed,k , (3.18)

on each processor equals Nmax the ray trace is complete.

With this bookkeeping method understood, we present our message passing

scheme as Algorithm 1. Note that this algorithm requires version 3.0 or later of the

Message Passing Interface (MPI) standard, because only that version supports some of

the non-blocking communications we require (e.g., MPI Iprobe see Algorithm 1). A

detailed description of our parallelization strategy follows. Every processor has 4 flags

that can change: (i) alldone which is initially set to false and will be set to true

once all rays have been destroyed, (ii) workremains which is set to true if rays exist

on this processor and false otherwise, (iii) datarecv which is set to true when the
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processor can receive rays from other processor(s), and (iv) countrecv which is set

to true when the processor can receive Ndestroyed,k , the number of rays destroyed from

other processor(s). Every processor also has a counter, loopiter, which tracks the

number of times the parallelization algorithm is iterated over.

For each processor, our algorithm is as follows:

1. Inject rays from point sources to grids.

2. Compute Nmax (Equation (3.16)).

3. Set alldone to false, set loopiter = 0, and enter outer while(not alldone)

loop.

(a) Set workremains to true if rays exist on grids that belong to this processor,

otherwise set workremains to false.

(b) If workremains is true enter while(workremains) loop.

i. Loop over all grids that belong to this processor and for each grid

advance all rays that belong to that grid until they (i) leave the grid and

need to be moved to another grid, (ii) become extinct, or (iii) leave the

domain. Every time (ii) or (iii) occurs for a ray we delete the ray and

increase the value of Ndestroyed,k on this processor per Equation (3.17).

If (i) occurs we determine the new grid and processor for that ray.

ii. Set workremains to false.
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iii. Loop over rays that must be transferred to other grids and check if they

belong to a grid on this processor or another processor. If the former is

true place the ray on the correct grid and set workremains to true,

otherwise the ray must be transferred to another processor so we place

the ray in a linked list, outgoing ray list, to be communicated to the

other processors.

iv. Repeat until all rays have been either destroyed and/or placed into

outgoing ray list.

(c) Loop over rays in outgoing ray list. Place rays from outgoing ray list

into a contiguous array for MPI communication (one array per receiving

processor) and perform a non-blocking MPI Isend for each array to send it

to the appropriate processor.

(d) Set datarecv to true and if (loopiter modulo NCPU == 0)3 then enter

the while(datarecv) loop to begin receiving rays from other processors.

i. Probe other processors with the non-blocking MPI Iprobe function to

see if rays need to be received, if this is true set datarecv to true

otherwise set it to false.

ii. If datarecv is true then receive rays on this processor with MPI Recv.

Place the incoming rays onto the new grids they belong to.

iii. Repeat until MPI Iprobe returns false.

3This requirement reduces the time spent on performing MPI Iprobes which becomes more expensive
as Nprocs increases.
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(e) If this processor sent rays to another processor then perform non-blocking

MPI Testsome to test for some given ray send requests to complete.

(f) If workremains is false then perform non-blocking MPI Testsome to test

for some of the Ndestroyed, k send requests to complete.

(g) Set countrecv to true and if (loopiter modulo NCPU == 0) then enter

the while(countrecv) loop to begin receiving rays from other processors.

i. Probe other processors with the non-blocking MPI Iprobe function to

see if the value of Ndestroyed,k on those processors needs to be received.

If this is true set countrecv to true, otherwise set it to false.

ii. Receive Ndestroyed,k from processor k on this processor with MPI Recv

if countrecv is true and assign to the kth element of an array ray-

DestProc containing NCPU elements.

iii. Repeat until MPI Iprobe returns false.

(h) If Ndestroyed,k on this processor has increased in the outer loop iteration then

send this number with a non-blocking MPI Isend to all other processors.

(i) Compute sum of rayDestProc. If this value equals Nmax terminate the

outer loop, else repeat outer loop and increment loopiter by 1.

3.4 Validation Tests

In this section we demonstrate the accuracy of our adaptive ray tracing algo-

rithm, the absorption of the direct radiation field from point sources supplied by our
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Data: Rays and destroyed ray counts

compute maxRays;
all done = False;
do

do
foreach grid that belongs to this processor do

advance all rays, return number “destroyed” and add to
destroyedCount;

end
check grids to see if work remains;

while work remains;
Non-blocking MPI Isend rays to other processors;
do

Non-blocking MPI Iprobe other processors for rays;
if MPI Iprobe returns true then

Blocking MPI Recv(rays);
end

while MPI Iprobe for rays returns true;
Non-blocking MPI Testsome rays MPI Isend requests;
Non-blocking MPI Testsome destroyed counts MPI Isend requests;
do

Non-blocking MPI Iprobe other processors for destroyed counts;
if MPI Iprobe returns true then

Blocking MPI Recv(processor destroyed counts);
end

while MPI Iprobe for destroyed counts returns true;
if destroyedCount greater than previous destroyedCount then

Non-blocking MPI Isend(destroyedCount to all processors);
end
if no work Remains and Ray Send Requests == 0 and Destroyed
Count Send Requests == 0 and sum(destroyedCount) == maxRays
then

all done = True;
end

while not all done;

Algorithm 1: Asynchronous parallelization algorithm developed for the
communication of rays to other processors.
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Table 3.1 Variable definitions used in Section 3.3.
Variable Description

dl Path length of ray across cell
dE/dt Energy absorbed by fluid in cell from direct radiation
dp/dt Momenta absorbed by fluid in cell from direct radiation
dLray,i Absorbed luminosity from ray for the ith frequency bin
dti Time step on level i
j HEALPix ray level
j0 Initial HEALPix ray level
jmax “Maximum” ray level for adaptive ray trace
κi total absorption opacity for the ith frequency bin
l AMR Level
lmax Maximum AMR level
Lν Specific luminosity of point source
Li Luminosity of point source integrated over ith frequency bin
Lray,i Luminosity in ith frequency bin along ray
n Normal direction of ray
NCPU Number of processors
Ndestroyed,k Number of rays “destroyed” on processor k
Ndestroyed Number of rays “destroyed” on all processors
Nmax Maximum number of rays used as a counter
Nν Number of frequency bins used for adaptive ray trace
Npix(j) Number of HEALPix pixels on level j
Nray,k Number of rays deleted on processor k
Nsrc Number of point sources
∆x linear size of cell
Φc Angular resolution of ray trace [rays/cell]
Ωcell Solid Angle subtended by a cell
Ωray Solid angle associated with ray
τ Optical depth of cell

adaptive ray tracing scheme, and our hybrid radiative transfer algorithm by performing

four tests. In the first test, we turn off absorption of the radiation field to trace the

radiative flux from a point source located at the center to demonstrate that our method

recovers the correct r−2 fall-off of the flux. The second test focuses on the coupling of

the hydrodynamics with the adaptive ray trace. We also demonstrate that HARM2 can
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handle multiple sources with the third and fourth tests. Our third test demonstrates

that our hybrid radiative transfer method can properly cast shadows and transfer radia-

tive energy to the gas by illuminating a dense clump in a low-density medium with two

point sources when the hydrodynamics is neglected. Finally, our fourth test follows a

similar setup as the third test but demonstrates how the hydrodynamics are coupled to

HARM2. We set Φc = 4 for all validation tests in this section, and we use only a single

frequency bin. For the first two tests we disable the moment method part of HARM2,

so that we can focus on the ray-tracing part of the algorithm. Further validation tests

for the moment method have been presented in Krumholz et al. (2007b).

3.4.1 Flux Test

To demonstrate the accuracy of our adaptive ray trace and its ability to main-

tain spherical symmetry, we place a point source of luminosity L? at the origin of a

cubical domain extending from −1 to +1 pc in all directions. We set the opacity in all

cells to zero and take L? = 106 L� where L� = 3.84× 1033erg s−1 is the luminosity of

the Sun. We use a base resolution of 1283 and two levels of refinement. We refine cells

that are located within 16 cells from the star.

In this setup, the total energy contained in the region that is a distance < r

from the origin should be exactly Eexact(< r) = L?r/c, where the quantity r/c is simply

the light-crossing time of the distance r. We can compare this to the total energy in

this region returned by our code, which we can compute by noting that the radiation
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energy density of a given cell that is traversed by a series of rays is

Urad =
∑
i

Lray,i

dV

dli
c

(3.19)

where Lray,i is the luminosity for ray i, dV is the cell volume, and dli is the path length

of the ray through the cell. The total energy contained within cells whose distance rj

from the origin is < r is then

Enum(< r) =
∑

cells, rj<r

Urad,j dV (3.20)

where Urad,j is the total radiation energy density summed over all cells with distance

< r from the origin. Perfect agreement would consist of Enum(< r) = Eexact(< r).

Our results are shown in Figure 3.1. The left panel shows the line-of-sight

projected radiation energy density of the point source radiation field (i.e., Equation

(3.19)) integrated over the line of sight, which drops off as r−2 as expected. The two

right panels compare Enum(< r) and Eexact(< r). We find that the difference between

the numerical and exact results is always < 5%, with the maximum error occurring

close to the source where the resolution is poor. This error is expected because of the

fact that we are using Cartesian rather than spherical grids.

3.4.2 Radiation-Pressure-Dominated HII Region

Next we perform a test to illustrate the coupling of the radiative transfer from

the adaptive ray trace with the hydrodynamics, based on a similarity solution obtained
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Figure 3.1 Performance test for the adaptive ray trace. Left panel: Projection plot
of the stellar radiation density for a source with luminosity 106 L�. The source flux
falls off as F (r) ∝ r−2 as expected. Right panels: Comparison of the numerical and
analytical results of the energy enclosed within radius r (i.e, Enum(< r)) for the same
source. Top panel: The pink dashed line shows the exact analytical solution and the
teal solid line is the numerical result from the adaptive ray trace. The bottom panel
shows the residuals from the exact and numerical solutions.

by Krumholz and Matzner (2009). We consider an initially-uniform, cold gas with an

isothermal equation of state. At time t = 0 a point source of radiation with luminosity

L? turns on and begins depositing momentum in the gas. We consider material that has

a very high opacity to photons coming directly from the point source, but a very low

opacity to any re-emitted photons. A real-world example of this would be interstellar

dust absorbing ultraviolet photons from a star, and then re-emitting them as infrared

light, to which the dust is essentially transparent.

Because the opacity is high, all of the radiation from the point source is ab-

sorbed in an extremely thin layer, but then escapes immediately. Thus the point source

deposits radial momentum into the gas at a rate dp/dt = L?/c. After a short time the
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material around the point source will have been swept into a thin shell of radius rsh and

mass Msh = 4πr3
shρ0/3, where ρ0 is the initial density. The shell obeys an equation of

motion

d

dt
(Mshṙsh) =

L?
c
. (3.21)

This equation admits a similarly solution given by

rsh(t) = 1.15
( n0

105 cm−3

)−1/4
(

L?
106 L�

)1/4( t

Myr

)1/2

pc (3.22)

where n0 = ρ0/µmp is the number density, µ is the mean molecular weight which we

set to 2.33 for molecular hydrogen and helium mixed in the usual cosmic ratio, and mp

is the proton mass.

To test the ability of our code to reproduce this solution, we consider a domain

with a width of 1 pc, a uniform number density of n0 = 105 cm−3 (ρ0 = 3.89 ×

10−19 g cm−3), and a point source of luminosity L? = 106L� at the origin. We set the

specific opacity to κ/ρ = 106 cm2 g−1. We perform 3 tests on non-adaptive grids with

varying resolution (643, 1283, and 2563) to explore how the accuracy of the adaptive

ray trace depends on resolution.

Figure 3.2 shows a snapshot of the simulation results at t = 0.1 Myr. The top

panels show the density slices and the bottom panels show the deposition rate of the

stellar radiation energy density. We run the simulations to t = 0.35 Myr, but at later

times we develop the carbuncle instability which distorts the shape of shock waves that

move along grid directions (Pandolfi and D’Ambrosio, 2001; Stone et al., 2008). One
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can eliminate this instability by implementing extra dissipation in grid-aligned flows

(Stone et al., 2008), but since real applications are never perfectly grid-aligned, we have

not done so here.

In Figure 3.3 we show how the radius of the shell in our simulation compares

to the analytic similarity solution. We define the radius of the shell to be the density

weighted average distance from the origin for cells where the density exceeds 1.5 ρ0:

Rsh =

∑
cells, ρj>1.5ρ0

ρjrj∑
cells, ρj>1.5ρ0

ρj
. (3.23)

The top panel shows the shell radius as a function of time for each resolution and

for the analytic solution, while the bottom panel shows the residuals. As in Figure

3.1, the residuals are largest at early times when the shell is poorly resolved, but the

agreement becomes excellent at later times. The accuracy of the solution also improves

with increasing resolution, as expected.

3.4.3 Hybrid Radiation Tests with Multiple Sources

To demonstrate that our hybrid radiation algorithm can properly cast shadows

we perform two validation tests in which we have two point sources irradiate a dense

clump of material. These tests are similar to the tests presented in Rijkhorst et al.

(2006), Jiang et al. (2012), and Klassen et al. (2014). In our setup, we have a dense clump

of material with radius 267 AU at the center of a (2000 AU)3 computational domain.

We take the clump density to be ρc = 3.89×10−17 g cm−3 with uniform temperature of

88



0.4

0.2

0.0

0.2

0.4
z

(p
c)

643 1283 2563

0.4 0.2 0.0 0.2 0.4
y (pc)

0.4

0.2

0.0

0.2

0.4

z
(p

c)

643

0.4 0.2 0.0 0.2 0.4
y (pc)

1283

0.4 0.2 0.0 0.2 0.4
y (pc)

2563

10-20

10-19

10-18

D
en

si
ty

( g cm
3

)

10-16

10-15

10-14

U
,
a
b
s

[e
rg

s−
1

cm
−

3
]

Figure 3.2 Results from the radiation-pressure-dominated H ii region test to demon-
strate the performance of the adaptive ray trace coupled to the hydrodynamics. Top
(bottom) panels show slice plots of the gas density (rate of absorbed radiation energy
density per unit time) for our radiation dominated sphere test at three different uni-grid
resolutions (643, 1283, and 2563) taken at t = 0.1 Myr. As the bottom panels show,
the direct radiation is absorbed only by the dense shell due to the high specific opacity,
κ = 106 cm2/g, used.

20 K. It is surrounded by a low density medium with density ρa = 3.89× 10−20 g cm−3.

The clump is irradiated by two point sources, each with luminosity L = 1 L�. The

two point sources are both located 368 AU from the edge of the spherical clump, and

they are placed 90◦ apart from one another, so that they irradiate the clump from two

angles.

We perform two tests to show that our new hybrid radiative transfer method

can properly cast shadows and affect the hydrodynamics. The first test, presented in

Section 3.4.3.1, assumes that the ambient medium is at the same temperature as the
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Figure 3.3 Shell position (top panel) and residuals (bottom panel) as compared to
the analytical solution (i.e., eqn 3.22) for our radiation dominated sphere test at three
different uni-grid resolutions (643, 1283, and 2563). The largest deviations from the
analytical solution occur at early times when the shell is located close to the source but
the numerical result follows the analytical solution better as the shell expands.

clump (20 K) so that we can follow the radiative heating of the gas. For this test we

disable the hydrodynamics. In the second test, we set the temperature of the ambient

medium to be 20 × 103 K so that the clump is initially in pressure balance with the

low-density medium. In this test we enable the hydrodynamics. For both tests we

use one frequency bin for the absorption of the direct radiation field and assume that

the gas opacity is κ = 64 cm2/g following the frequency dependent dust opacities in

Weingartner and Draine (2001) (their Rv = 5.5 extinction curve) corresponding to a

frequency of ν = kTeff/h = 1.21 × 1014Hz, where we have assumed Teff = 5800 K (i.e,

the peak color temperature of the Sun). Our moment method uses the gray opacities
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from Semenov et al. (2003).

3.4.3.1 Irradiation of a Dense Clump by two Point Sources with HARM2

We perform our first hybrid radiation test on a uniform (256)3 grid, disabling

the hydrodynamics but allowing for absorption of the radiative energy by the gas. We

run this test for t = 2×106 s for two cases. In the first case, we only include absorption

by the direct radiation field, i.e., we do not use the moment method, and in the second

case we use the HARM2 algorithm. Figure 3.4 shows the irradiation from the direct

radiation field from point sources (left panel), the irradiation from the dust-reprocessed

radiation field (middle panel), and the combined irradiation from the point sources and

dusty gas (right panel). The white region for the source irradiation demonstrates that

our adaptive ray tracing method can properly cast shadows. The dusty gas absorbs

energy from the direct radiation field, heats up, and re-emits as shown in the middle

panel of Figure 3.4.

Figure 5 compares the temperature distribution for our run using the full

HARM2 algorithm (right panel) to a case where we use only the ray trace, and omit

the moment method (left panel). The temperature is highest near the point sources

due to the larger radiative flux, thus leading to a larger absorption rate by the low-

density gas. As the irradiation decreases farther away from the source, the gas attains

lower temperatures due to the decreased heating rate of the absorbing medium. The

right panel of Figure 3.5 shows that the re-emission by dust leads to lower temperatures

and smoothes the radiation field. Note the almost discontinuous change in the gas
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Figure 3.4 Irradiation of a dense clump by two point sources in an homogenous medium.
The left panel shows the irradiation by the point sources’ direct radiation fields while
the middle panel shows the dust-reprocessed irradiation. The right panel shows the
total irradiation by the stellar sources and dusty gas. The white region in the left panel,
which shows where the direct irradiation is zero, demonstrates that our method can
properly cast shadows.

temperature in the vicinity of the point sources in the full HARM2 case. This is a result

of a sharp drop in the opacity used for the moment method calculation, which causes

a corresponding drop in the emissivity of the gas and thus a rise in its temperature.

The physical origin of this discontinuity is sublimation of dust grains at temperatures

above ∼ 1000 K (e.g., see Figure 4 of Semenov et al. (2003)), but from a numerical

standpoint this is less important than the capability that this demonstrates. Our code

can properly capture situations where the opacity that should be used for the direct

radiation is very different than the opacity that is relevant for the reprocessed radiation

field, for example because the direct and reprocessed radiation fields have very different

color temperatures.
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Figure 3.5 Same as the left and right panels of Figure 3.4, except showing the gas
temperature where we only consider heating by the direct radiation field by including
the adaptive ray trace (left panel) and where we consider heating by the direct radiation
field and cooling by the dusty gas using HARM2 (right panel).

3.4.3.2 Irradiation of a Dense Clump by two Point Sources with HARM2and

Hydrodynamics

Our fourth validation test demonstrates our HARM2 algorithm operating in

the context of a full radiation-hydrodynamic problem. We set the initial conditions

to be exactly the same as the previous test except for the ambient gas temperature,

which we set to 20 × 103 K so that the clump is initially in pressure balance with

the ambient medium. Additionally, we enable the hydrodynamics and we also set the

ambient medium to be transparent to the direct and diffuse radiation fields. Our base

grid is (128)3 and we refine the entire clump to one greater level of refinement (i.e., the

clump has (256)3 refinement).

Figure 3.6 shows the evolution of the density, temperature, and clump velocity

of the simulation. This Figure demonstrates that the absorption of the point sources’
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direct radiation field heats up the sides of the clump that are closest to the sources,

causing the edges to expand. The momentum imparted by the direct radiation field to

the clump also causes it to expand non-uniformly. We note that as the cloud becomes

over-pressurized it expands into the ambient medium yielding large velocities along the

edges of the cloud. As the simulation evolves the cloud is slowly disrupted leading to

low density material expanding towards the point sources. The expansion of this low

density material leads to instabilities as the clump material mixes with the low density

gas. At late times the expansion of the low-density clump material closest to the point

sources slows as the direct radiation field imparts momentum to the gas.

3.5 Performance Tests

It is important for our code to scale well with number of processors, especially

for large simulations. Scaling tests demonstrate the efficiency of a parallel application

when increasing the number of processors. In this section we present both weak and

strong scaling tests to demonstrate the parallel performance of our adaptive ray trace

algorithm. We also perform a strong scaling test for our hybrid radiation algorithm in

section 3.5.2.3 in an AMR simulation to demonstrate the scaling capability of HARM2

for a demanding, research application. For all tests, we set Φc = 4 and also have the

initial ray level set to 4 so that 3072 rays are initialized at the beginning of each ray

trace step. All of the following performance tests were run on the Sandy Bridge nodes

on the NASA NAS machine Pleiades.
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Figure 3.6 Snapshots of the radiation-hydrodynamical time evolution of a dense clump
in a low-density transparent medium that is irradiated by two point sources using our
HARM2 radiative transfer method. Different columns show different times, and differ-
ent rows show different quantities: density (top), temperature (middle), and velocity
magnitude (bottom). The heating and momentum deposition by the point sources’ di-
rect radiation fields cause the edges of the clump to expand. The gray stars denote the
location of the radiating point sources.

3.5.1 Weak Scaling

Weak scaling tests demonstrate how well a parallel code scales with the number

of processors while the workload assigned to each processor remains the same. For this

purpose, we perform a weak scaling test on non-adaptive grids where each processor

has one 323 grid and one radiating sink particle. Each 323 grid represents a (1 pc)3

domain with constant gas density, n = 104 cm−3, with a radiating source placed at the
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center. The physics modules we include are the adaptive ray trace and hydrodynamics.

We set the opacity in all cells to zero so that no absorption of the radiation field occurs.

To ensure that each processor performs the same amount of work with the ray trace,

including the propagation of rays and the subsequent communication of rays to other

processors, we terminate rays once they have traveled 0.6 pc from their originating

source. This allows for rays to propagate to their neighboring grids and also enforces

that all grids, except the grids along the domain edges, communicate the same number

of rays to their neighbors. In short, the rays interact with the cells they cross but do

not add energy or momenta to the fluid.

Our weak scaling tests were run on NCPU = n3 processors, where n=[1,2,...,9,

10], for 50 time steps per weak scaling test. The weak scaling test results are presented

in Figure 3.7 and show the total time spent per time step (black solid line) and the

timing of the adaptive ray trace components: ray communication (gray dotted line),

ray trace across cells (pink dashed line), adaptive ray trace overhead (i.e., locating ray

grids, ray splitting, etc. – purple dot-dashed line), total adaptive ray trace (ray trace

and associated overhead – blue dashed line), and the full adaptive ray trace which

includes the ray communication (dot-dashed teal line). We note that a horizontal line

denotes perfect weak scaling.

Our timing results show that the tracing of rays across cells has near-perfect

weak scaling for all processor counts and that the adaptive ray trace overhead exhibits

near perfect weak scaling until ∼216 processors. We also find that the costs associated

with the overhead are more expensive than ray tracing alone. Finally, our ray commu-
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nication algorithm is cheaper than the ray tracing up to ∼343 processors and cheaper

than the costs associated with the adaptive ray trace overhead up to ∼729 processors.

The ray communication only becomes as expensive as the adaptive ray trace at ∼1000

processors. This is because our asynchronous communication algorithm, described in

section 3.3.3, has a N0.67
CPU dependence. These results confirm that our communication

algorithm is much more scalable and efficient when compared to previous methods.

For example, the ray communication timing in Wise and Abel (2011) followed a N1.5
CPU

dependence and became the dominant cost of the ray trace at only ∼ 200 CPUs, de-

spite the fact that their weak scaling test uses 643 rather than 323 blocks, and thus is

significantly less stringent than ours.

3.5.2 Strong Scaling

Strong scaling demonstrates how well the code performs as the number of

processors for a given problem increases while the total workload remains the same.

We perform three tests to demonstrate the strong scalability of the adaptive ray trace

and the HARM2 algorithm in a demanding, research application. The first two tests

are performed on non-adaptive grids. The first test measures the strong scalability of

the adaptive ray trace based on the number of cells that interact with rays (see Section

3.5.2.1) while the second test focuses on the strong scalability of the adaptive ray trace

as a function of the number of frequency bins used (see Section 3.5.2.2). The third test

shows the parallel performance of HARM2 in a demanding, research AMR simulation.

In addition to HARM2, this test also includes other physics modules in ORION such
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Figure 3.7 Weak scaling test with one 323 block per process. Each block is (1 pc)3

and contains one radiating source at its center. Rays are terminated after they have
traveled 0.6 pc from the source to ensure communication of rays to neighboring grids.
Weak scaling results are shown for the ray communication (gray dotted line), ray tracing
across cells (pink dashed line), overhead associated with the adaptive ray trace (purple
dot-dashed line), adaptive ray trace excluding the communication of rays (blue line), the
total cost of the adaptive ray trace including parallel communication of rays (teal dot-
dashed line), and the total time spent on the hydrodynamics and adaptive ray tracing
(solid black line). Ray communication is cheaper than the adaptive ray trace (ray trace
and associated overhead) for NCPU . 1000 processors. The communication shows a
N0.67

CPU dependence.

as hydrodynamics, self-gravity, and sub-grid star particles. Each test and their results

are described below.

3.5.2.1 Uni-grid Ray Trace Test with Varying Termination Lengths

We first use a setup similar to a single instance of our weak scaling test: a

(1 pc)3 domain with a single point source placed at its center. The resolution of the
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computational domain is 2563 cells and each grid consists of 163 cells yielding a total of

4096 grids, with no adaptivity. We perform three sub-tests with this setup in which the

rays are destroyed after traveling 0.2 pc from their source, 0.4 pc from their source, or

allowed to transverse the entire domain, respectively. These calculations were performed

on NCPU = 2n processors with n=[2,...,9,10] for 5 time steps per test.

Our strong scaling results are presented in Figure 3.8, which shows the total

CPU time per time step, tCPU, for the adaptive ray trace. (Note that, whereas in

Figure 3.7 we plotted the time per processor, here we plot the total time summed over

all processors, so that perfect scaling would again appear as a flat horizontal line.) To

better quantify the results, we perform a χ2 fit of our measured results to the functional

dependence tCPU ∝ Na
CPU; perfect strong scaling would be a = 0. We report these

results in Table 3.2.

When we allow rays to traverse the entire computational domain, we find near-

perfect strong scaling out to 1024 processors: tCPU ∝ N0.084
CPU . As we lower the distance

that rays propagate, the scaling deteriorates, for the obvious reason that processors

which are assigned computational domains that rays do not reach are simply idle because

they do not contribute to the ray trace computation. Indeed, we also report the fraction

of the computational volume over which rays propagate in Table 3.2, and it is clear that

the scaling is worse when this value is small.
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Table 3.2 Fitted scaling results from our uni-grid strong scaling tests presented in
Figure 3.8, together with the fraction of the computational volume over which the ray
trace is performed. A value of a = 0 would imply perfect strong scaling.

DRay Ray-interaction Volume a (Na
CPU)

0.2 pc 0.0335 0.52
0.4 pc 0.2681 0.27
Whole 1 0.084

3.5.2.2 Timing with Varying Frequency Bins

Our adaptive ray trace algorithm allows for an arbitrary number of frequency

bins Nν . Each ray has two arrays that contain Nν doubles (size 8 bytes) that hold the

ray’s initial and current frequency-dependent luminosities, respectively. The choice of

Nν impacts the cost of the computation in two ways: (1) the ray trace operations must

loop over all frequency bins when creating rays, advancing them across cells, and check-

ing if they become extinct due to absorption by the fluid; and (2) MPI communication

operations depend on the size of the message that is being sent and/or received. There-

fore, increasing the number of frequency bins for the adaptive ray trace will lead to an

increased cost in the overhead associated with the advancement and communication of

rays.

To test the scaling efficiency of the adaptive ray trace as a function of Nν we

ran a series of tests where we vary the number of frequency bins. Our initial setup

of our test problem is the same as the strong scaling test discussed in section 3.5.2.1

in which a radiating source is at the center of a (1 pc)3 box. We terminate the rays

after they have travelled 0.5 pc and perform tests for Nν = (1, 2, 8, 16, 20, 32, 48, 64)
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Figure 3.8 Strong scaling test with a 2563 uni-grid calculation with a radiating point
source at the center. We performed two tests where the rays are terminated after they
travel 0.2 or 0.4 pc from their source and a third test where the rays transverse the
entire domain. Perfect strong scaling would yield a flat line for each test. Our results
show that the strong scaling performance improves as the volume that the rays interact
with increases and that near-perfect strong scaling is attained when the rays transverse
the entire domain.

frequency bins. Our base grid is 2563 and we ran our scaling tests on 128 processors

for 50 time steps per test. Perfect strong scaling on this test would be a computational

cost proportional to Nν , since the number of ray-cell interactions is linear in Nν .

Our strong scaling results with varying Nν are shown in Figure 3.9. We find

that the wall clock time spent per ray trace increases with Nν as expected, but that

this increase is highly-sublinear, particularly at small Nν . We find tν ∝ N0.14
ν for 1-8

frequency bins and tν ∝ N0.65
ν for 16-64 frequency bins. While these results might at

first seem surprising, they make sense when we recall that the overhead associated with
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the ray tracing – solving the geometric problem of finding the paths of rays through cells

and grids, the probing and handshaking parts of the communication steps – does not

scale with Nν . As we increase Nν , this overhead is “amortized” over a larger number

of frequency bins, and thus we obtain what appears to be better-than-perfect strong

scaling. As the number of frequency bins increases, this effect becomes less important,

and the parts of the computation that do scale with Nν – computing the opacities of

cells and updating fluxes, transferring flux data between processors – begin to dominate.

For sufficiently large Nν we do begin to approach the expected N1.0
ν scaling, but our

results thus far demonstrate that we can use up to ∼ 10 frequency bins at near-zero

additional cost, and several tens at only modest cost, compared to the single-frequency

case.

3.5.2.3 AMR Simulation: Application to High-Mass Star Formation

Our final strong scaling test is an AMR simulation that includes hydrodynam-

ics, self-gravity, radiative transfer, and radiating sink particles to demonstrate how our

new HARM2 algorithm scales in a demanding research application. Here we perform

strong scaling tests for two different outputs from an ORION AMR simulation of the

formation of a high-mass stellar system. The results of this simulation are presented in

Rosen et al. (2017) and Chapter 4 but we briefly summarize our problem setup here.

Our initial condition is a rotating, laminar 150 M� molecular core with radius

0.1 pc. The core follows a ρ(r) ∝ r−3/2 density profile. We use a domain size of 0.4

pc on each side, a base resolution of 1283 and five levels of refinement which yields a
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Figure 3.9 Frequency bin scaling test where we have varied the number of frequency
bins Nν . There is one source at the center of a (128)3 domain and we truncate rays
once they have traveled 0.5 pc. The cost of the ray trace rises with Nν , as expected,
but this effect is small for low Nν .

maximum resolution of 20 AU on the finest level. To properly model the absorption of

the direct radiation field from stars we use the frequency dependent stellar atmosphere

profiles from Lejeune et al. (1997) to model the stellar spectra. Our choice of the

opacities depend on whether the primary absorber is dust or molecular gas. Dust is the

primary absorber for gas temperatures below Tsub = 1500 K (i.e., the temperature at

which dust sublimes) (Semenov et al., 2003) while molecular hydrogen is the primary

absorber for gas temperatures within Tsub ≤ T < TH ii where TH ii ≈ 104 K is the

temperature at which we expect hydrogen to become fully ionized, and thus to have

the usual Thompson opacity for electron scattering. If the primary absorber is dust
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we use the frequency dependent dust opacities from Weingartner and Draine (2001)

(their Rv = 5.5 extinction curve), if it is molecular hydrogen we set the molecular gas

opacity to 0.01 cm2 g−1, and if T ≥ TH ii we set the opacity to zero. The last of these

is a numerical convenience, because we have not implemented scattering or ionization

chemistry, and because the regions in our computation with T > TH ii generally contain

so little mass they will be optically thin anyway. We assume a dust-to-gas ratio of 0.01

and choose Nν = 10.

At t = 0 the molecular core begins to gravitationally collapse. As the core

collapses a star forms at the center and continues to grow in mass via accretion. An

accretion disk forms around the star due to conservation of angular momentum of the

infalling material. Gravitational instabilities develop in the disk causing it to fragment

into companion stars. The absorption of energy and momenta from the direct stellar

radiation field and the diffuse dust-reprocessed radiation field from the fluid results in

low-density, radiation pressure dominated bubbles near the poles of the most massive

star that expand with time. Figure 3.10 shows slices parallel to the x-direction of the

gas density (top panels) and absorbed direct radiation energy density (bottom panels)

by the dust and gas for two different snapshots of this simulation at t = 15.22 kyrs

and t = 23.67 kyrs. We only show the central (8000 AU)2 region of the computational

domain because the majority of the domain is not affected by the direct radiation field.

The most massive stars in these snapshots are 16.59 M� and 33.57 M�, respectively.

The early snapshot contains one star while the later snapshot contains eight stars where

the companions range from 0.01− 1.48 M� in stellar mass. These snapshots represent
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typical “early” and “late” stages of the computation, with the latter being much more

computationally expensive due to the larger number of sources and the greater distances

that the direct radiation can propagate before being absorbed. We note that both the

early and late stages are strong tests of the scalability, because the radiating sources are

confined to a small portion of the computational volume, rather than being scattered

throughout (c.f., the test presented in Wise and Abel (2011), which used a cosmological

simulation where point sources were distributed nearly-isotropically.)

Our strong scaling results are shown in Figure 3.11, where we measure the time

spent on the hydrodynamics, gravity, FLD, adaptive ray trace, and the total radiation

module (adaptive ray trace and FLD). A horizontal line would correspond to perfect

strong scaling. We ran each timing test for five time steps on NCPU = 16×n processors

where n = [1, 2, ..., 8]. The early snapshot contains 448 grids and the later snapshot

contains 1137 grids at the beginning of each test. The top panel shows the timing results

for the early snapshot and the bottom panel shows the results for the later snapshot.

Comparison of the two panels show that the scalability for all modules in ORION

become better at later times, especially for the adaptive ray trace when more grids are

processing rays. This is due to the increase in number of grids per processor which

reduces the MPI communication costs. A general rule of thumb for patch-based AMR

methods such as ORION is that the the code is efficient at ∼ 4 grids per CPU or more,

and our tests are consistent with this. We find that our timing results for the adaptive

ray trace follows tWC,ART ∝ N0.97
CPU for the early snapshot and tWC,ART ∝ N0.56

CPU for the

later snapshot. These results agree with our strong scaling results from Section 3.5.2.1
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Figure 3.10 Example AMR simulation that uses our HARM2 algorithm. Here we show
slice plots along the x-direction of the mass density (top) and absorbed direct radiation
energy density (bottom) for two snapshots of a simulation of the formation a high
mass star system. Gray stars denote the location of the stars, with the most massive
star being largest. The left (right) panels show the snapshot when the simulation has
progressed to 15.22 kyrs (23.67 kyrs) where the most massive star is 16.59 M� (33.57
M�).

which showed that our parallelization procedure for the adaptive ray trace becomes

more efficient as the number of grids that interact with rays increases. We find that

the moment method, FLD in our case, is the most expensive module while gravity is

the cheapest, and that the adaptive ray trace can be cheaper and/or about the same

expense as the hydrodynamics.
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Figure 3.11 Strong scaling test with a 1283 AMR simulation with 5 levels of refinement
of the formation of a massive star system shown at two different simulation outputs
from 15.22 kyrs (top) and 23.67 kyrs (bottom). The early (late) snapshot has 448
(1137) grids. The bottom panel shows that the scalability of the adaptive ray trace
increases as the simulation progresses because rays interact with a larger volume of the
computational domain (e.g., see Figure 3.10).

3.6 Summary

In this paper, we have presented our implementation of HARM2 – a new

highly-parallel multi-frequency hybrid radiation hydrodynamics module that combines

an adaptive long characteristics method for the (direct) radial radiation field from point

107



sources with a moment method that handles the (thermal) diffuse radiation field pro-

duced by a volume-filling fluid. Our new method is designed to be used with adaptive

grids and is not limited to specific geometries. We have coupled HARM2 to the hydro-

dynamics in the astrophysical AMR code ORION which includes flux limited diffusion,

but our method can be applied to any AMR hydrodynamics code that has asynchronous

time stepping and can incorporate any moment method. Although our implementation

is not the first hybrid radiation scheme implemented in an AMR code, it is more ac-

curate than previous methods because it uses long rather than hybrid characteristics.

Furthermore, our new algorithm can be used in a variety of radiation hydrodynamics

problems in which the radiation from point sources and diffuse radiation field from the

fluid should be modelled. Such examples are the study of the formation of isolated

high-mass stars and clustered star formation in the dusty interstellar medium.

One of the major difficulties with incorporating a long characteristics method

in an AMR code that allows for a general geometry, where the hydrodynamics is paral-

lelized by domain decomposition, is the parallel communication of rays. This is because

ray tracing is a highly serial process and each ray will usually cross multiple processor

domains. In order to avoid significant communication overheads and serial bottlenecks

that often occur with long characteristics methods we have implemented a new com-

pletely asynchronous and non-blocking communication algorithm for ray communica-

tion. We performed a variety of weak and strong scaling tests of this method, and found

that its performance is dramatically improved compared to previous long characteristics

methods. In idealized tests without adaptive grids we obtain near-perfect weak scaling
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out to > 1000 cores, and, in problems where the characteristic trace covers the entire

computational domain, near-perfect strong scaling as well. Previous implementations

became communications-bound at processor counts a factor of ∼ 4 smaller than this.

In a realistic, demanding research application with a complex, adaptive grid geometry,

and using 10 frequency bins for the characteristic trace, we find excellent scaling as long

as there are at least ∼ 3 − 4 grids per CPU, and we find that the cost of adaptive ray

tracing is smaller than or comparable to hydrodynamics, and significantly cheaper than

flux limited diffusion.

Since HARM2 works for adaptive grids in a general geometry, it can be used

in a variety of high-resolution simulations that require radiative transfer. Our imple-

mentation in ORION will be made public in an upcoming release of the ORION code,

and the HARM2 source code will be made available immediately upon request to any

developers who are interested in implementing HARM2 in their own AMR codes.
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Chapter 4

The Formation of Massive Stars with

Hybrid Radiative Transfer

A version of this chapter has been published as “An Unstable Truth: How

Massive Stars get their Mass,” Rosen, A. L., Krumholz, M. R., McKee, C. F., Klein, R.

I. 2016, Monthly Notices of the Royal Astronomical Society, 463, 2553.1

4.1 Introduction

Massive stars live fast and die young. They are the major contributors to

heavy element production in the Universe through their explosive deaths enriching the

interstellar medium (ISM). Massive stars are rare, representing only ∼ 1% of the stellar

population by number, yet they dominate the energy budget in the Milky Way and

other star-forming galaxies because of their strong radiation fields, stellar winds, and

1 c©2016. Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Reprinted here with permission.

110



supernova explosions. This stellar feedback – the injection of energy and momentum

by stars into the ISM – limits their masses thereby affecting nuclear yields, slows down

nearby star formation, and affects galaxy evolution.

Recent studies suggest that the pressure exerted by massive stars’ radiation

fields may be the dominant feedback mechanism during their formation (Krumholz et al.,

2009; Kuiper et al., 2011, 2012; Klassen et al., 2016). Massive stars have short Kelvin-

Helmholtz timescales (the time required for a star to radiate away its gravitational

binding energy) and contract to the main-sequence while they are accreting (Palla and

Stahler, 1991, 1992; Behrend and Maeder, 2001; Hosokawa and Omukai, 2009). There-

fore they attain their main sequence luminosities while they are still actively accreting

and the radiation pressure associated with their high luminosities can oppose gravity

and halt accretion (Larson and Starrfield, 1971; Yorke, 1979; Yorke et al., 1995; Wolfire

and Cassinelli, 1986, 1987; Yorke and Bodenheimer, 1999).

The relative importance of the radiative force (frad) and the gravitational

force (fgrav) can be described in terms of the Eddington ratio, fedd = frad/fgrav, which

simplifies to

fedd = 7.7× 10−5 (1 + ftrap)

(
L?
M?

)
�

(
Σ

1 g cm−2

)−1

(4.1)

where Σ is the surface density of the optically thick infalling material and (L?/M?)� is

the stellar light-to-mass ratio in solar units. The factor (1 + ftrap) included in frad de-

notes the combined contribution from the direct radiation pressure associated with the

first absorption of the stellar radiation field and the reprocessed thermal, diffuse radia-
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tion pressure associated with the re-emission by interstellar dust, respectively. Here ftrap

denotes the trapping factor at which the radiation field is enhanced by the subsequent

absorption and re-emission by interstellar dust. For spherically symmetric accretion,

Equation (4.1) exceeds unity for stars with masses above ∼ 15− 20 M� (Pollack et al.,

1994; Krumholz et al., 2009). If accretion onto the star were isotropic then stars with

masses in excess of this limit should not form, a problem commonly known as “the

radiation pressure barrier problem.” However, recent studies suggest that massive stars

with initial masses well in excess of 150 M� exist and can have a dramatic impact on

their environments (Crowther et al., 2010, 2016).

Given the existence of massive stars, a number of solutions to the radiation

pressure problem have been proposed in the literature. Nakano (1989) and Jijina and

Adams (1996) present analytic models suggesting that accretion through a disk could

circumvent the radiation pressure barrier, while McKee and Tan (2003) suggest that

high accretion rates could provide sufficient ram pressure even in spherical symmetry.

Krumholz et al. (2005) showed that escape of radiation through outflow channels could

ease the radiation pressure problem. Numerical simulations within the last several

decades generally support these hypotheses. Most of these simulations model the col-

lapse of isolated, slowly rotating, and initially laminar pre-stellar massive cores (Yorke

and Bodenheimer, 1999; Yorke and Sonnhalter, 2002; Krumholz et al., 2009; Kuiper

et al., 2011, 2012; Klassen et al., 2016). In these idealized simulations, the radiation

pressure barrier is circumvented by the formation of an optically thick accretion disk

that surrounds the massive star. With this anisotropy, the radiative flux easily escapes
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along the polar directions of the star, launching radiation pressure dominated bubbles

both above and below the star. This “flashlight” effect allows material to be funneled

to the star by the accretion disk and gravitational instabilities present in the disk can

enhance the accretion rate onto the star (Yorke and Sonnhalter, 2002; Krumholz et al.,

2009; Kuiper et al., 2011, 2012; Klassen et al., 2016).

Whether material is supplied to the star via disk accretion alone has been heav-

ily debated in the literature (Krumholz et al., 2009; Kuiper et al., 2011, 2012; Klassen

et al., 2016). Krumholz et al. (2009) performed the first adaptive mesh refinement

(AMR) 3D radiation-hydrodynamic simulation of the formation of a massive stellar

system and found that the dense shells that surround the radiation pressure dominated

bubbles become radiative Rayleigh-Taylor (RT) unstable. In this configuration, the

dense shells that surround the rarefied radiation pressure dominated bubbles develop

perturbations at the interface that grow exponentially, leading to “fingers” in the heav-

ier fluid (the accreting gas) that sink into the lighter, more buoyant fluid (represented

by the radiation field; Jacquet and Krumholz (2011)). These RT “fingers” can reach

the star-disk system if they are not pushed back by radiation pressure, and deliver a

significant amount of mass to the accretion disk that can then be incorporated into the

star.

The presence of these instabilities can allow stars to grow beyond their Edding-

ton limit but their development and growth is sensitive to how the radiation pressure is

treated. Krumholz et al. (2009) only included the dust-reprocessed radiation pressure,

which was modeled with the gray flux limited diffusion (FLD) approximation, and as-
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sumed that the stellar radiation energy was deposited within the vicinity of the star,

which underestimated the true radiation pressure. If the radiation pressure, especially

the component of the radiative force that is anti-parallel to the gravitational force, is

underestimated then the gas is less likely to be pushed away by radiation. Furthermore,

an anisotropic radiation field can lead to density perturbations in the dense shells of the

radiation pressure dominated bubbles that can then amplify and become RT unstable.

These instabilities can grow and deliver material to the star-disk system.

To better represent the true radiation field in massive star formation simu-

lations Kuiper et al. (2010) developed a hybrid radiation algorithm that included a

multi-frequency raytracer, in which a series of rays travel radially away from the star

and transfer energy and momentum to the absorbing dust, coupled to gray FLD to

model the diffuse dust-reprocessed radiation field. With this method, Kuiper et al.

(2011, 2012) performed a series of 3D simulations of the formation of massive stars from

the collapse of laminar pre-stellar cores on a non-adaptive spherical non-uniform grid

with resolution increasing logarithmically towards the center. The authors find that the

star is fed through disk accretion only and that the radiation pressure dominated bub-

bles do not become RT unstable. They conclude that inclusion of the direct radiation

pressure is responsible for maintaining stability of the expanding bubble shells.

The work of Krumholz et al. (2009) and Kuiper et al. (2011, 2012) both have

their advantages and disadvantages. AMR simulations with a general Cartesian geome-

try, such as the simulation presented in Krumholz et al. (2009), can handle an arbitrary

number of moving stars. The resulting gravitational interaction of the massive star with
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its accretion disk can induce gravitational instabilities leading to disk fragmentation. In

addition, movement of the massive star within the accretion disk can lead to shielding

of the stellar radiation field resulting in a greater asymmetry in the direct radiation

pressure, potentially seeding RT instabilities. One key advantage in AMR simulations,

as compared to a non-adaptive grid, is that instabilities that may develop in the dense

bubble shells can be resolved dynamically throughout the bubble evolution. In classical

RT theory, the smallest perturbations grow fastest in the linear regime and these pertur-

bations can only grow if they are resolved. The bubble shells in the work of Krumholz

et al. (2009) are resolved to the finest level, likely allowing for small RT instabilities to

grow large enough to deliver material to the star-disk system.

In contrast, the bubble shells in the work of Kuiper et al. (2011, 2012) are

poorly resolved because they use a non-adaptive spherical grid. Furthermore, the star

is artificially held at the origin of the grid, thereby suppressing potentially-important

instabilities that could seed RT instabilities. However, these simulations included a

much better treatment of the radiation field by incorporating a multi-frequency raytracer

to model the direct radiation field. In such a geometry raytracing becomes trivial

because the rays travel radially from the non-moving star, but this geometry can not

support additional stars or disk asymmetries induced by stellar movement. Hence, the

next generation of massive star formation simulations must include the advantages of

both methods to better understand how massive stars can overcome the Eddington limit

by including hybrid radiative transfer on adaptive grids.

The question of whether RT instability is important for massive star formation
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has been muddied further by studies of radiation pressure-driven instabilities in the

context of galactic winds. Krumholz and Thompson (2012); Krumholz (2013) study the

ability of radiation to drive galactic winds using the same FLD methods as Krumholz

et al. (2009), and find that RT instabilities arise and prevent the onset of winds entirely.

Rosdahl and Teyssier (2015) reach the same conclusion using an M1 closure to treat

the radiation. Davis et al. (2014), using a variable Eddington tensor method on a fixed

grid, and Tsang and Milosavljević (2015), using implicit Monte Carlo, concur that RT

instability occurs, but find that it does not prevent a wind from being launched, contrary

to the results of Krumholz and Thompson and Rosdahl and Teyssier. Moreover, none

of these calculations included a treatment of the direct radiation field.

The conflicting results discussed thus far have motivated the implementation

of a new generation of hybrid radiation solvers in AMR simulation codes. Both Klassen

et al. (2014) and Rosen et al. (2017) developed novel hybrid radiation schemes in the

FLASH and ORION AMR simulation codes, respectively. Both implementations model

the direct radiation field with a raytracer while the diffuse component is handled by

a FLD solver, and can be used with an arbitrary number of moving stars. The ray-

tracer employed in the Hybrid Adaptive Ray-Moment Method (HARM2) algorithm

developed by Rosen et al. (2017) (presented in Chapter 3) uses the method of long

characteristics, which traces rays on a cell by cell basis thus providing maximum pos-

sible accuracy. Their method is adaptive, in which rays are allowed to split as they

travel away from their source, greatly reducing the computational cost; and is capable

of representing multi-frequency stellar irradiation (Abel and Wandelt, 2002; Wise and
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Abel, 2011; Rosen et al., 2017). The multi-frequency treatment is ideal for stars since

they have color temperatures much higher than the absorbing medium. The raytracer

employed in Klassen et al. (2014) models only single frequency irradiation and uses

hybrid characteristics, which is a combination of long characteristics within individual

grids and short characteristics between grids (i.e., in which only neighboring grid cells

are used to interpolate incoming intensities; Rijkhorst et al. (2006)). The method of

short characteristics is typically faster but more diffusive than long characteristics. Be-

cause of this limitation the long characteristics method employed in Rosen et al. (2017)

has been highly optimized.

To revisit the problem of massive star formation and whether or not mass is

delivered to the star via RT instabilities, Klassen et al. (2016) simulated the collapse

of initially laminar pre-stellar cores with the new hybrid radiation algorithm presented

in Klassen et al. (2014). Like the work of Kuiper et al. (2011, 2012) they find that

their radiation pressure dominated bubbles remain stable and that the massive star is

fed by disk accretion alone. However, the authors employ poor refinement criteria in

their simulations, which results in the bubble shells being poorly resolved, potentially

suppressing RT instabilities that are not resolved. To address this, we perform similar

simulations of the collapse of a laminar massive pre-stellar core in which we choose

to resolve the bubble shells, like that of Krumholz et al. (2009), and use the HARM2

hybrid radiation algorithm to determine if RT instabilities are a real effect or if the

direct radiation pressure inhibits their growth. As we will show, the development of

RT instabilities is resolution dependent and therefore we find that authors can arrive
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at conflicting results if the bubble shells are not properly refined.

The simulations discussed thus far were highly idealized. To date only the

collapse of initially laminar massive pre-stellar cores have been studied numerically

with a detailed treatment of the direct and diffuse radiation fields, yet observations of

star forming regions show that star-forming cores are turbulent (Tatematsu et al., 2008;

Sánchez-Monge et al., 2013). In such a configuration, the initial turbulence should act

as seeds for RT instabilities. Furthermore, the asymmetric gas distribution in turbulent

cores can yield low-density channels where radiation can easily escape, even in the

absence of channels cut by outflows.

The purpose of this chapter is to study how radiation pressure affects the

formation of massive stars via direct numerical simulation. For this work, we use the

new highly accurate HARM2 algorithm described in Rosen et al. (2017), which treats

the direct radiation field from stars and the indirect radiation field associated with the

re-emission and processing by interstellar dust. In this work, we simulate the collapse

of both initially laminar and turbulent pre-stellar cores to determine how massive stars

attain their mass. For the laminar cores, we also examine how resolution and treatment

of radiation pressure can affect the onset of RT instabilities. We simulate the collapse of

an initially turbulent core to model a more realistic setup of how massive stars form to

show that RT instabilities are a common occurrence in their formation. The simulations

presented in this work are still highly idealized since we do not include magnetic fields or

outflows. This chapter is organized as follows: we describe our numerical methodology

and simulation design in Section 4.2, we present and discuss our results in Sections 4.3
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Figure 4.1 Specific frequency dependent dust opacities (per gram of dust) from Wein-
gartner and Draine (2001) for their Rv = 5.5 extinction curve (teal line) with black body
weighted binned opacities (pink diamonds) over-plotted for ten frequency bins used in
the simulations presented in this work.

and 4.4, respectively, and conclude in Section 4.5.

4.2 Numerical Method

In this chapter, we simulate the collapse of isolated laminar and turbulent mas-

sive pre-stellar cores with the ORION adaptive mesh refinement (AMR) code. ORION

includes hydrodynamics (Klein, 1999), radiative transfer (Howell and Greenough, 2003;

Krumholz et al., 2007b; Shestakov and Offner, 2008; Rosen et al., 2017), self-gravity

(Truelove et al., 1998), accreting sink particles (Truelove et al., 1997; Krumholz et al.,

2004), a protostellar evolution model used to represent the sink particles as radiating

protostars (Offner et al., 2009), protostellar outflows (Cunningham et al., 2011), and
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magnetic fields (Li et al., 2012). In order to treat both the direct (stellar) and in-

direct (dust-reprocessed) radiation fields we use the multi-frequency Hybrid Adaptive

Ray-Moment Method (HARM2) described in Rosen et al. (2017), which combines direct

solution of the frequency-dependent radiative transfer equation along long characteris-

tics launched from stars to treat the direct stellar radiation field with a gray flux-limited

diffusion (FLD) method to treat the radiation field produced by thermal emission from

dust (Krumholz et al., 2007b). We describe the equations solved by our code in Section

4.2.1, our stellar radiation feedback prescription in Section 4.2.2, the initial and bound-

ary conditions for our simulations in Section 4.2.3, and our refinement criteria and sink

creation requirements in Section 4.2.4.

4.2.1 Evolution Equations

ORION uses a Cartesian adaptive grid in which every cell has a state vector of

conserved quantities (ρ, ρv, ρe, ER). Here ρ is the density, ρv is the momentum density,

ρe is the total internal plus kinetic gas energy density, and ER is the radiation energy

density in the rest frame of the computational domain. In addition to the fluid, ORION

contains Lagrangian radiating sink particles that accrete from the gas and interact with

it via gravity and radiation. The star particles, indexed by subscript i, are characterized

by their position xi, momentum pi, mass Mi, and luminosity Li, as determined by the

protostellar evolution model described in McKee and Tan (2003) and Offner et al. (2009).

They accrete mass, momentum, and energy from the computational grid at rates Ṁi,

ṗi, and ε̇i; the distribution of these quantities over cells in the computational grid is
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described by a weighting kernelW (x−xi), which is non-zero only within 4 computational

zones of each particle. Both the value of Ṁi and ṗi and the weighting kernel function

are determined via the sink particle algorithm of Krumholz et al. (2004). Each star

particle also produces a direct radiation field that injects energy and momentum into

the gas at a rate per unit volume ṗrad,i and ε̇rad,i; we defer discussion of how these two

quantities are computed to Section 4.2.2. With these quantities the equations governing

the evolution of the RHD fluid-particle system are

∂ρ

∂t
= −∇ · (ρv)−

∑
i

ṀiW (x− xi) (4.2)

∂ (ρv)

∂t
= −∇ · (ρvv)−∇P − ρ∇φ− λ∇ER

+
∑
i

[ṗrad,i − ṗiW (x− xi)] (4.3)

∂ (ρe)

∂t
= −∇ · [(ρe+ P )v]− ρv · ∇φ− κ0Pρ(4πB − cER)

+λ

(
2
κ0P

κ0R
− 1

)
v · ∇ER −

(
ρ

mp

)2

Λ(Tg)

+
∑
i

[ε̇rad,i − ε̇iW (x− xi)] (4.4)

∂ER

∂t
= ∇ ·

(
cλ

κ0Rρ
∇ER

)
+ κ0Pρ (4πB − cER)

−λ
(

2
κ0P

κ0R
− 1

)
v · ∇ER −∇ ·

(
3−R2

2
vER

)
+

(
ρ

mp

)2

Λ(Tg) (4.5)

Equations (4.2)-(4.5) describe conservation of gas mass, gas momentum, gas total en-

ergy, and radiation total energy. They include terms describing the exchange of these

quantities with the star particles, and exchange of energy between radiation and gas.
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The gas-radiation exchange terms are written in a mixed-frame formulation that allows

conservation of total energy to machine precision (Mihalas and Klein, 1982; Krumholz

et al., 2007b). We assume an ideal equation of state so that the gas pressure is

P =
ρkBT

µmH
= (γ − 1) ρeT, (4.6)

where T is the gas temperature, µ is the mean molecular weight, γ is the ratio of specific

heats, and eT is the thermal energy of the gas per unit mass. We take µ = 2.33 and

γ = 5/3 that is appropriate for molecular gas of solar composition at temperatures too

low to excite the rotational levels of H2; in practice the exact value of γ matters little

for our computation, because the gas temperature is set almost entirely by radiative

effects, with minimal influence from adiabatic compression or expansion. The fluid is a

mixture of gas and dust, and at the high densities that we are concerned with the dust

will be thermally coupled to the gas, allowing us to assume that the dust temperature

is the same as the gas temperature.

In addition to updating fluid quantities, at each time step we also update the

properties of the star particles. These change according to

dMi

dt
= Ṁ (4.7)

dxi

dt
=

pi

Mi
(4.8)

dpi

dt
= −Mi∇φ+ ṗi, (4.9)
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where φ is the gravitational potential that obeys the Poisson equation including contri-

butions from both the fluid and star particles:

∇2φ = 4πG

[
ρ+

∑
i

Miδ(x− xi)

]
. (4.10)

Our sink particle algorithm destroys information within four fine-level cells

around each star particle (i.e., the particle’s accretion radius) and thus we are unable

to properly determine if two sink particles will merge when they approach within one

accretion radius of one another (i.e., 80 AU). In light of this limitation, we employ the

following merging criteria: when two star particles pass within one accretion radius of

each other we merge them together if the smaller particle has a mass less than 0.05 M�

(Myers et al., 2013). This threshold corresponds to the largest plausible mass at which

second collapse occurs for the protostar (Masunaga et al., 1998; Masunaga and Inutsuka,

2000). At masses lower than this value the protostar represents a hydrostatic core that

is several AU in size and will likely be accreted by the more massive star. Larger mass

protostars will have collapsed down to sizes of roughly several R� and will unlikely

merge with the nearby protostar.

Finally, the radiation-specific quantities are the blackbody function B = caRT
4

4π ,

the co-moving frame specific Planck- and Rosseland-mean opacities κ0P and κ0R, a

dimensionless number λ called the flux-limiter, and the Eddington factor R2. The last

two quantities appear in Equation (4.5) and originate from the FLD approximation,

which assumes that the radiative flux in the co-moving frame is related to the gradient
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of the radiation energy density (Fick’s Law)

F = − cλ

κ0R
∇ER. (4.11)

ORION adopts the Levermore and Pomraning (1981) approximation for λ and R2 as

given by

λ =
1

R

(
cothR− 1

R

)
(4.12)

R =
|∇Er|
κ0RρER

(4.13)

R2 = λ+ λ2R2. (4.14)

The flux limiter, λ, has the advantage that in an optically thick medium λ → 1/3,

thereby giving F → − [(c/3κ0R)∇Er], the correct value for diffusion. In an optically

thin medium λ→ (κ0RER/|∇ER|) nR, where nR is a unit-vector that is anti-parallel to

∇ER, yielding F→ cERnR for the free-streaming limit (Krumholz et al., 2007b).

4.2.2 Treatment of Stellar Radiation

In star-forming environments radiation from stars will be absorbed by the dusty

gas and deposit momentum and energy (e.g., see Equations (4.3)-(4.5)). The dust, which

is highly coupled to the gas, will re-emit thermal radiation at infrared wavelengths and

transfer energy and momentum to the gas via collisions. At the high densities with

which we are concerned, thermal coupling is strong enough that we can safely assume
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that the gas and dust are at the same temperature. In order to properly model this,

we must know the magnitude and direction of the intervening stellar radiation field.

With this in mind we use the new HARM2 algorithm described in Rosen et al. (2017) to

treat the first absorption of the (direct) stellar radiation field from stars and subsequent

re-emission of radiation from the fluid. HARM2 is a new hybrid radiative transfer tool

developed for adaptive grids that employs an adaptive long-characteristics ray tracing

method, first introduced by Abel and Wandelt (2002) and extended to adaptive grids

by Wise and Abel (2011), to model the radiative flux from point sources. It is coupled

to a moment method, in our case FLD (e.g., see Section 4.2.1), which models the re-

processed diffuse radiation field intrinsic to the fluid. In short, HARM2 is used to model

both the direct and indirect radiation pressure in numerical simulations.

The method of long characteristics solves the radiative transfer equation along

specific rays on a cell by cell basis that originate from the point source. This method

provides the best possible accuracy for the radiative flux for point sources that represent

stars because it is less diffusive than short and hybrid characteristic methods (Rijkhorst

et al., 2006; Klassen et al., 2014). HARM2 has the advantage that it can be used to

model any number of moving point sources, handles multi-frequency radiation, and is

highly parallelizable as compared to previous long-characteristic methods developed for

adaptive grids (Wise and Abel, 2011). We choose to represent the luminosities of stars

by a spectrum of frequency-dependent luminosities rather than a bolometric luminosity,

L?, because the color temperatures of stars are much higher than the temperature of

the absorbing medium. In what follows, we briefly summarize the basic components of
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HARM2, and refer the reader to Chapter 3. for a full description of the algorithm.

We describe the deposition of energy and momentum to the fluid from the radi-

ation field of a single star but the generalization to multiple point sources is trivial. Each

star has a specific luminosity Lν, and bolometric luminosity given by L? =
∫∞

0 Lνdν.

We discretize the stellar spectrum in frequency into Nν frequency bins, with the jth

bin covering a range in frequency (νj−1/2, νj+1/2). The luminosity of the point source

integrated over the jth frequency bin is L?,j =
∫ νj+1/2

νj−1/2
Lν dν where

∑Nν
j=0 L?,j = L?.

We choose Nν = 10 for the simulations presented in this paper because this number of

frequency bins does not significantly increase the cost of the adaptive ray trace (e.g.,

see Figure 6 of Rosen et al. (2017)) and provides an adequate frequency sampling of

Lν . The frequency bins were hand-chosen to align with important features of the dust

opacity curve as shown in Figure 4.1.

We use the frequency dependent stellar atmosphere profiles from Lejeune et al.

(1997) to model the stellar spectrum of stars that form in our simulations. These profiles

provide the frequency dependent radiative flux of stars on a grid of values in log g and

Teff space, where g is the star’s surface gravity and Teff is the star’s surface temperature,

both of which are supplied by the sub-grid protostellar model in ORION (Offner et al.,

2009). At each raytracing step, we compute log g and Teff for each star and interpolate

between the frequency-dependent stellar atmosphere profiles that match most closely

to the star’s properties. The accretion of material onto the star will also contribute an
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accretion luminosity

Lacc = frad
GM?Ṁ?

R?
, (4.15)

and we model the accretion luminosity, Lacc,ν , as a blackbody with temperature Tacc =(
Lacc/(4πR

2
?σ)
)1/4

such that Lacc =
∫∞

0 Lacc,νdν. The resulting luminosity from the

star and accretion is Ltot =
∑Nν

j=0(L?,j + Lacc,j). The quantity frad is the fraction of

the gravitational potential energy of the accretion flow that is converted to radiation

rather than being used to drive a wind or advected into the stellar interior; we adopt

frad = 3/4, following the standard treatment in Offner et al. (2009) and this value is

reasonably consistent with x-wind models of the launching of stellar outflows (Ostriker

and Shu, 1995).

We wish to solve the time-independent radiative transfer equation

n∇I(ν,n) = −κ(n, ν)ρI(n, ν) + η(n, ν)ρ (4.16)

along specific rays that originate from point sources and transverse the computational

domain in the radial direction to model the absorption of the direct radiation field from

stars. Here I(n, ν) is the specific intensity of the stellar radiation field at frequency

ν in direction n and κ(n, ν) and η(n, ν) are the direction and frequency-dependent

specific absorption and emission coefficients. We set η(n, ν) to zero because the direct

radiation field has zero emissivity except at the location of stars. We also neglect the

effects of scattering because absorption is the dominant transfer mechanism in these

simulations. Finally, we note that we can neglect the time dependence of the radiative
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transfer equation because the light crossing time of a ray (tlc) will be much shorter than

the opacity variation time scale (i.e., tlc � κ/ (dκ/dt)) for the scales and time steps

considered in our simulations.

We discretize the transfer equation in angle on a series of rays originating at

the star and traveling radially outward. Each ray is characterized by a direction n

and solid angle Ωray that it subtends. Multiplying both sides of Equation (4.16) by

4πr2/Ωray, yields an integrated form of the transfer equation

∂Lray,j

∂r
= −κjρLray,j , (4.17)

where Lray,j(r) is the luminosity for the jth frequency bin at a distance r from the point

source and κj is the specific absorption opacity for the jth frequency bin. This equation

is subject to the boundary condition Lray,j(0) = Ltot,j /Npix, where Npix = 4π/Ωray. In

order to reduce cost we initially sample the radiation field for each star with 3072 rays

and adaptively split each ray into four sub-rays when the following condition is satisfied

Ωcell

Ωray
< Φc, (4.18)

where Ωcell = (∆x/r)2 is the solid angle subtended by a cell of linear size ∆x at a

distance r from the point source. The quantity Φc is the minimum number of rays

required to go through each cell, which we set to 3 in our simulations. This refinement

criterion ensures that the cells that interact with rays are adequately resolved.
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Our choice for κj depends on whether the primary absorber is dust or molecular

gas. Dust is the primary absorber for gas temperatures below Tsub = 1500 K (i.e., the

temperature at which dust sublimes; Semenov et al. (2003)) while molecular hydrogen

is the primary absorber for gas temperatures within Tsub ≤ T < TH ii where TH ii ≈ 104

K is the temperature at which we expect hydrogen to become fully ionized, and thus

to have the usual Thompson opacity for electron scattering. If the primary absorber

is dust we use the frequency dependent dust opacities from Weingartner and Draine

(2001) (their Rv = 5.5 extinction curve, e.g., see Figure 4.1) and assume a constant

dust-to-gas ratio of Mdust/Mgas = 0.01. If it is molecular hydrogen we set the molecular

gas opacity to 0.01 cm2 g−1, and if T ≥ TH ii we set the opacity to zero. The last

of these is a numerical convenience, because we have not implemented scattering or

photoionization chemistry, and because the regions in our computation with T > TH ii

will contain so little mass they will be optically thin to the direct radiation field. We

assume a dust-to-gas ratio of 0.01.

We solve equation (4.17) by discretizing it along the line segments defined by

the intersection of the ray with the cells of the computational mesh, considering only

the most highly spatially resolved data at any given position. Specifically, when a ray

with luminosity Lray,j passes through a cell along a segment of length dl, the optical

depth of the segment is τj = κjρ dl where ρ is the dust (gas) density when the primary

absorber is dust (molecular gas); and the luminosity of the ray decreases by an amount

dLray,j = Lray,j

(
1− e−τj

)
. (4.19)
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Here we compute dl following the method of Wise and Abel (2011) as the ray transverses

a cell. In the process, the cell absorbs an amount of energy and momentum at a rate

ε̇rad, ray =

Nν∑
j=1

dLray,j (4.20)

ṗrad, ray =

Nν∑
j=1

dLray,j

c
n. (4.21)

The total energy and momentum absorption rates for each cell, ε̇rad and ṗrad, that are

supplied to Equations (4.2) and (4.4), are simply the sum of ε̇rad, ray and ṗrad,ray over

all rays from all stars that pass through it, respectively. We terminate a ray when

Lray,j(r) < 0.001Lray,j(0), i.e., when 99.9% of the energy originally assigned to that ray

has been absorbed, if it exits the computational domain, or has left the collapsing core.

The last deletion criterion significantly reduces the cost of the ray tracing step if rays

leave the core because the ambient medium will not absorb any energy or momentum

from the rays, and deleting rays after they have traveled at least ten cells in the am-

bient medium without encountering core material therefore saves the need to continue

following them through the remainder of the computational volume.

4.2.3 Initial and Boundary Conditions

Our initial setup for all runs is as follows. We begin with an isolated sphere

of molecular gas and dust with mass Mc = 150 M�, radius Rc = 0.1 pc, temperature

Tc = 20 K, and density profile ρ ∝ r−kρ with kρ = 1.5. The resulting surface density,

Σ = Mc/(πR
2
c) = 1 g cm−2, is consistent with typical values observed in Galactic
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massive star forming regions (McKee and Tan, 2003; Swift, 2009; Sánchez-Monge et al.,

2013; Tan et al., 2014). The resulting mean density of the core is ρ̄ = 2.4×10−18 g cm−3

(1.2× 106 H nuclei cm−3) and the characteristic free-fall collapse time scale is

tff =

√
3π

32Gρ̄
≈ 42.6 kyr. (4.22)

Our choice of kρ = 1.5 for the core density profile is in agreement with observations of

star-forming regions at the ∼ 1 pc clump scale (Caselli and Myers, 1995; Mueller et al.,

2002; Beuther et al., 2007) and the ∼ 0.1 pc scale (Zhang et al., 2009; Longmore et al.,

2011; Butler and Tan, 2012; Stutz and Gould, 2016), which typically have kρ values

within the range of 1.5-2.0.

Each core is placed at the center of a 0.4 pc box that is filled with a hot, diffuse

ambient medium with a density equal to 1% of the core edge material and a temperature

of 2000 K so that the core is in thermal pressure equilibrium with its surroundings. We

set the opacity of the ambient medium to zero so that the ambient gas is unable to

cool. The base resolution for each run is 1283 and we allow for five levels of factors of

two in refinement giving a maximum resolution of 40963 cells on the finest level (∆xmin

= 20 AU). We initially fill the entire domain with a blackbody radiation field equal to

E0 = 1.21× 10−9 erg cm−3 corresponding to a 20 K blackbody.

We consider two classes of initial condition: laminar cores and turbulent cores.

For the laminar core we impose initial solid-body rotation at a rate such that the

rotational energy of the core is 4% of its gravitational binding energy (i.e., Erot/|Egrav| =
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0.04). Our choice follows from the work of Goodman et al. (1993), which found that

dense cores have values of Erot/|Egrav| within ∼ 0.01− 0.09 with a typical value of 0.02

where the authors assumed the cores followed a uniform density profile. For the case

of cores that follow a ρ ∝ r−3/2 density profile, like the cores simulated in this work,

these values are reduced by a factor of two. We do not impose a net rotation for the

turbulent core run and instead give the gas an initial weakly turbulent velocity field with

a non-thermal one-dimensional velocity dispersion σ1D = 0.4 km s−1 corresponding to

a virial ratio αvir ≈ 5σ2
1DRc/GMc = 0.12 and we allow the turbulence in the core to

decay freely, ensuring the core will undergo immediate collapse. The velocity power-

spectrum imposed follows a Burger’s turbulence spectrum, P (k) ∝ k−2, as is expected

for supersonic turbulence (Padoan and Nordlund, 1999; Boldyrev, 2002; Offner et al.,

2009). We include modes between kmin = 1 and kmax = 256 and our turbulence mixture

is chosen to be a mix of 2/3 solenoidal and 1/3 compressive modes, which is the natural

mixture for a 3D fluid (Federrath et al., 2010b). Although the turbulence should decay

freely as the core is assembled, physical processes such as converging flows and accretion

onto the core as it is assembled could sustain the turbulence as the core grows in mass

(Schneider et al., 2010; Matzner and Jumper, 2015).

Our boundary conditions for the radiation, gravity, and hydrodynamic solvers

are as follows. For each radiation update, we impose Marshak boundary conditions

that bathe the simulation volume with radiation from a 20 K blackbody but allows

radiation generated within the simulation volume to escape freely (Krumholz et al.,

2009; Cunningham et al., 2011; Myers et al., 2013). We set the gravitational potential,
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φ, to zero at all boundaries when solving Equation (4.10) (Myers et al., 2013). Although

this choice of boundary conditions for the gravitational potential can lead to square

artifacts near the boundaries we do not expect this choice to make any significant

difference since the collapsing core is far removed from the boundaries. Finally, we

impose outflow boundary conditions for the hydrodynamic update, meaning that we

set the gradients of the hydrodynamic quantities (ρ, ρv, ρe) to be zero at the domain

when advancing the hyperbolic subsystem of equations (Cunningham et al., 2011; Myers

et al., 2013).

We conduct four simulations. The first, which we call LamRT+FLD (where RT

denotes that this simulation includes ray tracing), follows the collapse of a laminar pre-

stellar core with the setup described above and includes our HARM2 hybrid radiation

scheme to model the direct (with an adaptive raytracing scheme) and indirect radiation

pressure (with FLD). Our second run, named LamFLD, is identical to LamRT+FLD except

that it only includes the FLD approximation for the indirect radiation field and assumes

that the stellar radiation energy is deposited close to the star. In this run we set the

terms ε̇rad and ṗrad to zero and add the source term
∑

i L?,iW (x − xi), where L?,i is

the combined accretion and stellar luminosity for star i, to Equation (4.5). This term

simply adds the radiation energy injected by stars to the radiation energy density over

the window kernel W (x− xi), which extends to a radius of four fine-level cells around

each sink particle. We include this run to compare how the choice of the treatment of the

radiation field can affect our results. The third run, named LamRT+FLD LR, is a repeat

of run LamRT+FLD but with a factor of 2 worse resolution (∆xmin = 40 AU rather than
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20 AU), and with significantly less stringent refinement criteria, as discussed in the next

section. We include this run to determine how the results depend on the resolution. Our

final run, which is called TurbRT+FLD, aims to be a better representation of massive star

formation because star forming cores are turbulent, and this run follows the collapse of

a turbulent pre-stellar core with the properties described above and includes our hybrid

radiative transfer treatment. The initial numerical conditions for our simulations are

summarized in Table 4.1.

4.2.4 Refinement Criteria and Sink Creation

The major advantage of AMR codes over fixed codes is that the user can

adaptively refine on areas of interest. This is advantageous in astrophysical simulations,

especially star formation simulations, which have large dynamic range but within which

only certain regions of the domain require high resolution (e.g., high density regions in a

molecular cloud that can undergo gravitational collapse to form stars). As the simulation

evolves the AMR algorithm automatically adds and removes finer grids based on certain

refinement criteria set by the user.

For each simulation we begin with a base grid with volume (0.4 pc)3 discretized

by 1283 cells and allow for five levels of refinement. This choice leads to a maximum

resolution of 20 AU on the finest level. As the simulation evolves we continuously flag

cells for refinement so that we can resolve areas in which stars may form or where

instabilities may develop, such as gravitational and Rayleigh Taylor instabilities. In all

simulations presented in this paper we flag cells for refinement if they meet one or more
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of the following criteria.

1. We refine any cell on the base level (i.e., level 0) that has a density equal to or

greater than the core’s edge density. This ensures that the entire pre-stellar core

is refined to level 1 at the start of the simulation.

2. We refine any cell where the density in the cell exceeds the Jeans density given by

ρmax,J =
πJ2

maxc
2
s

G∆x2
l

(4.23)

where cs =
√
kBT/(µmH) is the isothermal sound speed, ∆xl is the cell size

on level l, and Jmax is the maximum allowed number of Jeans lengths per cell

(Truelove et al., 1997). Throughout this work we take Jmax = 1/8.

3. We refine any cell that is located within at least 8 cells of a sink particle.

4. We refine any cell within which the radiation energy density gradient exceeds

|∇ER| > 0.15
ER

∆xl
, (4.24)

i.e., where the radiation energy density changes by more than 15% over the size

of a single cell. This criterion is critical to ensuring that potentially-unstable

interfaces are adequately resolved, and will become critical in our discussion later.

Indeed, at late times in our simulations this criterion is responsible for refining

more of the computational domain than any other one. We do not enforce this
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criterion for run LamRT+FLD LR because this run aims to see how the development

of RT instabilities depends on simulation resolution.

This procedure is repeated recursively on all levels after every two level up-

dates. A sink particle can only be created when the Jeans density is violated on the

finest level. When we check this criterion on the finest level we set Jmax = 1/4 in

Equation (4.23) following the artificial fragmentation tests of Truelove et al. (1997). If

a cell is flagged on the finest level because it exceeds the Jeans density we place a sink

particle in that cell whose mass is the excess matter in that cell. The new sink particle

will evolve according to the equations in Section 4.2.1.

4.2.5 Overall Algorithm

We solve the equations described in Section 4.2.1 with the astrophysical AMR

code ORION in a number of steps that we summarize below. First, we solve the

equations of hydrodynamics using a Godunov-type scheme with the HLLD approximate

Riemann solver (Klein, 1999; Miyoshi and Kusano, 2005). Next, we incorporate self-

gravity following the methods of Truelove et al. (1998) and Klein (1999) by solving the

Poisson equation (Equation (4.10)) with an iterative multigrid scheme provided by the

Chombo AMR Library (Adams et al., 2015). In the third step we apply the HARM2

radiative transfer algorithm described in Rosen et al. (2017). The HARM2 update

algorithm first applies an adaptive ray trace step for all star particles that belong to the

computational domain to inject the stellar radiation energy and momenta (Equations

(4.20)-(4.21)) from stars to the absorbing fluid and then performs the FLD step to evolve
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Figure 4.2 A series of density slice plots along the yz-plane (edge-on views) showing
the time evolution for our LamRT+FLD simulation. Each row corresponds to a specific
snapshot where each panel is a zoom in of the previous panel by a factor of two from
(40,000)2 down to (5,000 AU)2. The center of each panel corresponds to the center of
the computational domain; stars with masses greater than 0.1M� are over-plotted. The
stars are color-coded by mass with the most massive being largest in size. The time of
the simulation and mass of the most massive star are given in the top-left corner of the
first and second panels of each row, respectively.

the radiation energy density and compute the radiation specific terms in Equations

(4.3)-(4.5) (Rosen et al., 2017). The FLD step uses an operator split approach that first

solves the radiation pressure, work, and advection terms explicitly, and then implicitly

updates the gas and radiation energy densities for terms that involve diffusion and the

emission/absorption of radiation (Krumholz et al., 2007b). The implicit solve update

is handled by the iterative process described in Shestakov and Offner (2008) that uses
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pseudo-transient continuation to reduce the number of iterations. Finally, we update

the sink particle states with Equations (4.7)-(4.9) by computing their interactions with

the fluid.

4.3 Results

In this section we describe the results from our simulations presented in Sec-

tion 4.2.3 and summarized in Table 4.1. In Section 4.3.1 we first discuss our results

for our laminar core run LamRT+FLD, which includes our new hybrid radiation transfer

scheme. We then compare this simulation to run LamFLD, which only includes the ra-

diation pressure associated with the diffuse dust-reprocessed radiation field. We defer

discussion of our comparison low-resolution run, LamRT+FLD LR to Section 4.4.1. Next in

Section 4.3.2 we discuss our results from run TurbRT+FLD, which simulates the collapse

of an initially turbulent core with our HARM2 algorithm. All simulations presented

here were run on the NASA supercomputer Pleiades located at NASA Ames or the

Hyades supercomputer located at UCSC. We run each simulation to the point where

the timestep either becomes too short to be practical (as in the case of run LamFLD)

or until the point that the simulation takes too long to evolve because the majority of

the bubble shells are refined to the finest level, severely increasing the computational

cost of the simulation (as in runs LamRT+FLD and TurbRT+FLD). We use the yt package

(Turk et al., 2011) to produce all the figures and quantitative analysis shown below.
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4.3.1 Collapse of Laminar Pre-stellar Cores

Here we present the results of run LamRT+FLD. At the end of this simulation

the most massive star has a mass of 40.40 M�. We ran the simulation for a time of

t = 0.70 tff .

4.3.1.1 Evolution of Radiation Pressure Dominated Bubbles

We show a series of density slices at various times for run LamRT+FLD in Figure

4.2. We find that a radiation pressure dominated bubble begins to expand in the polar

direction above the star, but not below, when the star has reached a mass of ∼ 14.5 M�

at time t = 0.34 tff (not shown). A radiation pressure dominated bubble only begins to

expand below the star when it reaches a mass of ∼ 22.3 M� at time t = 0.43 tff (not

shown). As the radiation pressure dominated bubbles continue to expand small-scale

RT instabilities begin to develop in the dense shells, but their growth is slow initially.

This is likely due to the fact that the radiation pressure is able to push back on these

instabilities, inhibiting their non-linear growth when the shell is optically thick to the

direct stellar radiation field. For example, the absorption of the high-energy stellar

radiation field is not fully resolved because the minimum optical depth through a 20

AU cell (the resolution on the finest level) is of order unity, where we have assumed that

the shell density is ρ ∼ 10−16 cm−3 and the dust opacity to the high energy radiation

is κUV ∼ 104 cm2 g−1 (e.g., see Figure 4.1).

When the primary star has a mass of ∼ 26.3 M� at time t = 0.48 tff the

right side of the disk becomes flared and material is blown off the accretion disk by the
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direct radiation pressure. This injection of material into the upper bubble leads to an

asymmetric absorption of the direct radiation field. This asymmetry and the resulting

shielding of the direct radiation field causes RT instabilities to grow faster on the right

side of the bubble shell while suppressing the non-linear growth of RT instabilities on

the left side. Our results demonstrate that the seeding of RT instabilities and their

resulting non-linear growth is a direct result of the asymmetric absorption of the energy

and momentum from the direct radiation field across the bubble shell. Regions that

feel a weaker radiative force are thus more likely to allow RT instabilities to grow non-

linearly, leading to asymmetries in the bubble shells. These instabilities continue to grow

as the simulation evolves. Once these unstable regions grow large enough gas is able

to collapse directly onto the star-disk system if the material becomes sub-Eddington,

delivering mass to the accreting protostar. We first see this behavior begin when the

star reaches ∼ 30 M� at time t = 0.51 tff . At this time RT instabilities that develop

on the right side of the bubble shell become sub-Eddington and grow large enough that

the right edge of the shell deposits material onto the disk.

As the simulation progresses RT instabilities continue to develop across the top

and bottom shells at an accelerating rate. This is a result of the star’s movement in the

disk, which causes the disk to shadow the direct radiation field (see Section 4.3.1.2) and

is also due to the increasing surface density of the bubble shells as the core collapses.

The bottom shell goes unstable and begins to collapse when the star is ∼ 34.3 M�

at time t = 0.57 tff and this material reaches the disk at time t = 0.62 tff . Material

from the collapsed left side of the bottom bubble shell continues to deliver mass to the
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Figure 4.3 Density slices along the yz-plane with the velocity field (left panel) and
net acceleration due to gravity and radiation (right panel) over-plotted when the most
massive star is 40.4 M� at t = 0.7 tff for run LamRT+FLD. The region plotted is (8,000
AU)2 and the center of each panel corresponds to the center of the computational
domain. The gray star denotes the position of the most massive star.

star-disk system until the star has reached a mass of ∼ 38.6 M� at time t = 0.66 tff .

At this point the direct radiation pressure causes the left side of the bottom bubble to

expand again.

At the end of the simulation we see that regions of the top and bottom bubbles

are collapsing towards the star (bottom panel of Figure 4.2). To demonstrate this,

we show the velocity (left panel) and net acceleration of the gas due to radiative and

gravitational forces (right panel) in Figure 4.3 at the end of run LamRT+FLD. This Figure

shows that the gas velocities in some of the densest regions of the shell are in the

direction of the star-disk system even though the net acceleration along the majority

of the bubble shells tend to point away from the star. The regions that experience a

weaker net acceleration are more likely to go unstable while the regions that feel a larger

net force will expand away from the star at a faster rate leading to more asymmetries

in the bubble shells. It is these regions that go unstable and grow non-linearly, allowing
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Figure 4.4 Volume rendering of a snapshot from run LamRT+FLD when the star is 40.1 M?

at time t = 0.69 tff that shows RT instabilities are common throughout the radiation-
pressure dominated bubbles.

material to continue to fall towards the star. This process may ultimately supply mass

to the star-disk system and be accreted onto the star. Figure 4.4 shows that the majority

of the bubble shells have become RT unstable.

Run LamRT+FLD also shows that throughout the collapse of the laminar core

and growth of the massive protostar, a considerable amount of material is delivered

from the edges of the radiation pressure dominated bubbles to the accretion disk via

RT instabilities because these regions are shielded from the direct radiation field. We

find that shielding of the direct radiation field promotes RT instabilities because the

asymmetric absorption of the direct radiation field, which causes the direct radiation
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force to vary over the inner surface of the bubble shells, can lead to perturbations that

will then amplify and become RT unstable. This can be seen by observing where the

stellar radiation field is absorbed in the bubble shells. The left panel in Figure 4.5

shows a zoomed-in density slice plot of the star at the end of the simulation along

the yz-plane. Vectors showing the direction and magnitude of the direct radiation

momentum deposition are over-plotted. The right panel shows the acceleration from

the diffuse dust-reprocessed radiation field. Stellar radiation is able to stream freely

along the polar directions that are not shielded by the accretion disk and gas within the

bubble. In contrast, the accretion disk shields part of the radiation field near the left

and right sides of the star. Furthermore, the radiation is shielded to a greater degree

on the left side of the star because the disk is flared. Indeed, Figure 4.5 shows that

the left side of the top and bottom bubbles experience a greater degree of instability

than the right side of the bubbles suggesting that the growth and subsequent collapse

of these RT instabilities depends on the shielding and resulting patchiness of the direct

radiation field.

We find that throughout the simulation regions of the bubble shells that are

shielded by the accretion disk feel a weaker direct radiative force and are more likely to

go unstable and bring material to the star-disk system. This can be seen in Figure 4.6

that shows the same snapshot with the acceleration vectors over-plotted. In this figure,

the color of each vector is the value for the Eddington ratio, fedd = |frad|/|fgrav|, where

we have included the contribution from both the direct and dust-reprocessed radiation

fields. Values of fedd . 1 are subject to collapse. The bubble interiors have fedd � 1
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Figure 4.5 Same as Figure 4.3, but now the vectors show the acceleration due to the
direct (left panel) and diffuse (right panel) radiation fields.
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Figure 4.6 Same as Figure 4.3, but here arrows show the direction of the net
(gravitational plus radiative) acceleration. Vector colors show the Eddington ratio,
fedd = |frad|/|fgrav|, where frad is the total radiative force due to both the direct and
diffuse components.

because the bubble interiors are optically thin whereas regions of the bubble shells that

become unstable have fedd . 1. Our results demonstrate that RT instabilities, along

with disk accretion, deliver mass to the star, and that these instabilities become more

important as the system evolves.
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Figure 4.7 Surface density projections of the accretion disk in run LamRT+FLD showing
the disk’s time evolution. Each panel represents a projection of the accretion disk,
with the most massive star at the center of the panel, that is (3000 AU)2 in size. The
projection is taken over a height of 1000 AU above and below the massive star. Stars
with masses greater than 0.01 M� are over-plotted on all panels.

4.3.1.2 Accretion Disk Evolution

Next we examine the behavior and growth of the accretion disk. Figure 4.7

shows a series of surface density plots along the plane perpendicular to the core’s rotation

axis (xy-plane) that show the growth and evolution of the accretion disk around the

massive star. The top left hand panel of Figure 4.7 shows that a noticeable thick

accretion disk begins to form when the star reaches ∼ 25 M� (i.e., an accretion disk

with a radius larger than the 80 AU accretion zone radius of the sink particle). The

accretion disk continues to grow in size as the core undergoes inside-out collapse because

material with a higher starting radius and thus a larger specific angular momentum is

circularized farther away from the star. As the disk evolves it develops spiral arms
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that become unstable and fragment into companions. The first companion star forms

at time t = 0.51 tff when the primary star has a mass of ∼ 28.2 M�. The combined

interaction of the primary star, accretion disk, and companions induces gravitational

torques leading to even more companions. By the end of the run the primary has a mass

of ∼ 40.4 M� and has 29 companion stars with masses greater than 0.01 M�. The most

massive companion is only 4.43 M�; sixteen of the companion stars have masses greater

than 0.1 M�, but only four of these have masses greater than 1 M�. Thus at the end

of run LamRT+FLD we do not have a massive binary system, but rather a hierarchical

system consisting of a massive primary and a series of low mass companions. Figure 4.8

shows the total growth in mass of the primary star and its companions as a function of

time (top panel).

4.3.1.3 Comparison to Run LamFLD

To determine how the results depend on our treatment of the direct radiation

field, we perform run LamFLD, a comparison run that does not include the direct radiation

field and instead deposits the stellar radiation near the star. This method does not

properly model the momentum deposition by the stellar radiation field and only includes

gray dust opacities, which underestimates the true optical depth associated with the

stellar radiation field. For example, the frequency dependent dust opacities range from

∼ 10 − 1000 cm2/g for molecular gas (i.e., assuming a dust-to-gas fraction of 0.01)

for the high-frequency stellar radiation (e.g., see Figure 4.1) while the Semenov et al.

(2003) opacities used for the FLD method in ORION range from ∼ 1 − 10 cm2/g for
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Figure 4.8 Stellar mass and accretion rates for runs LamRT+FLD and LamFLD. Top panel:
Total mass in primary and companion stars as a function of time for run LamRT+FLD

(pink solid and dot-dashed lines, respectively) and run LamFLD (teal dotted and dot-
dashed lines, respectively). Bottom panel: Primary star accretion rate as a function of
time for run LamRT+FLD (pink solid line) and run LamFLD (teal dashed line).

molecular gas at temperatures below T . 1500 K. Run LamFLD follows the same initial

conditions as run LamRT+FLD but does not include the adaptive ray tracing from the

HARM2 algorithm. Figures 4.9 and 4.10 show the time evolution for run LamFLD, and

are analogous to Figures 4.2 and 4.7 for run LamRT+FLD.

In run LamFLD the radiation pressure dominated bubbles begin to expand along
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Figure 4.9 Same as figure 4.2, but for run LamFLD.

the polar directions (both above and below the star) when the star reaches ∼ 18 M�

(not shown in Figure 4.9) whereas in run LamRT+FLD a radiation-pressure driven bubble

began to expand above (below) the star when it reached a mass of ∼ 15 M� (∼ 22 M�).

Similarly, Kuiper et al. (2012) also found that their massive star formation simulation,

which only included FLD, launched radiation driven bubbles earlier than their compar-

ison run that included both ray tracing and FLD. Comparison of Figures 4.2 and 4.9

also shows that the direct radiation pressure is more efficient at evacuating material

interior to the bubble walls while also causing substantial RT instabilities to begin to

develop later. This is also demonstrated in the top panel of Figure 4.11, which shows

the volume weighted mass density as a function of radial distance of a three-dimensional
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cone above the center of the computational domain. In run LamFLD, the bottom bubble

becomes unstable and collapses onto the disk when the star has reached a mass of ∼23.7

M� while the bottom bubble first becomes unstable in run LamRT+FLD and begins to

collapse when the star has a mass of ∼ 35 M�. This difference is due to the fact that

the direct radiation force falls off as r−2 so infalling material will feel a greater force as it

falls towards the star, causing the direct radiation to push the material back towards the

shell; whereas the diffuse radiation pressure is roughly constant in the bubbles because

it follows the radiation energy density. Therefore, the diffuse radiation pressure is less

likely to inhibit the non-linear growth of RT instabilities allowing the shells to collapse

earlier. As the star becomes more luminous in both runs the bottom bubbles re-expand.

However, we find that, regardless of the radiation treatment, the radiation dominated

bubbles eventually become unstable and deliver mass to the star-disk system through

RT instabilities.

In agreement with Kuiper et al. (2012) we also find that neglecting the direct

radiation field leads to underestimating the true radiation force density. Figure 4.12

shows volume weighted projection plots of the direct (top left panel), diffuse (top right

panel), and total radiation force densities (bottom left panel) for a snapshot of run

LamRT+FLD when the primary star has a mass of 36.1 M�. The bottom right panel of

Figure 4.12 shows the total radiation force density for run LamFLD at the same stellar

mass for comparison. The top two panels show that the radiation force density as-

sociated with the direct radiation field is much greater than the diffuse component in

regions of the bubble shells where the direct component is absorbed while comparison of
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the bottom two panels demonstrate that the radiation force density is greatly underes-

timated at the location of the bubble shells where the direct radiation is absorbed. This

is also observed in the bottom panel of Figure 4.11 which shows the volume weighted

averaged direct, diffuse, and total radiation force densities as a function of radius for

a three-dimensional cone above the center of the computational domain for the snap-

shots shown in Figure 4.12. We also find the integrated radiative force over a spherical

volume with radius 7000 AU around the primary star in run LamRT+FLD is a factor of

∼ 2 larger than run LamFLD when the star is 36.1 M�. Thus, we find that inclusion of

the direct radiation field leads to a larger total radiation force as expected but regions

of the bubble shells still become RT unstable regardless.

Although the development of RT instabilities is qualitatively the same for runs

LamRT+FLD and LamFLD, the structure of the accretion disk and the consequent creation

of companions is not. Comparison of Figures 4.7 and 4.10 show that the accretion disk

in run LamFLD is more extended and has an overall lower surface density than in run

LamRT+FLD. It also undergoes less fragmentation resulting in fewer companions. For

example, the primary star in run LamFLD has eight companion stars with masses greater

than 0.01 M� when the primary has a mass of 40.4 M�, whereas the primary star

in run LamRT+FLD has 29 companion stars when the primary has a mass of 40.4 M�.

Furthermore, the most massive companion in run LamFLD is 11.28 M� when the primary

has a mass of 40.4 M�, a factor of ∼2.5 larger than the most massive companion in run

LamRT+FLD for the same primary stellar mass.

Figure 4.8 shows the evolution of the primary and total companion star mass
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Figure 4.10 Same as figure 4.7, but for run LamFLD.

for both runs (top panel) and accretion rate onto the primary star (bottom panel).

We find that although the number of companion stars formed is different for each

run, the total mass contained in the companion stars is qualitatively similar when the

primary star has a mass of 40.4 M� (i.e., the final stellar mass in run LamRT+FLD). The

accretion rate onto the primary star in each run is also qualitatively similar. Initially

the accretion rate onto the primary star is smooth for both simulations, but it becomes

chaotic once the disk becomes gravitationally unstable and forms companion stars. This

chaotic behavior can be attributed to disk gravitational instabilities and RT instabilities

funneling material to the stars. Since run LamRT+FLD undergoes a greater degree of disk

fragmentation, we find that the total stellar mass in run LamRT+FLD is larger than that

of run LamFLD at t = 0.70 tff (the final time in run LamRT+FLD). The total stellar mass

at this time is 55.80 and 49.68 M� for run LamRT+FLD and run LamFLD, respectively.

The decrease in disk fragmentation in run LamFLD can be understood by looking
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Figure 4.11 Volume-weighted averaged mass densities (top panel) and direct, diffuse,
and total radiation force densities (bottom panel) as a function of radius for a three-
dimensional cone above the center of the computational domain for runs LamRT+FLD and
LamFLD when the primary star has a mass of 36.1 M�.

at the temperature structure of the accretion disks as shown in Figure 4.13. Collapse

can only occur in regions that become Jeans unstable, and this instability depends on

both the density and temperature of the gas. A hotter, lower density region is less likely

to fragment (e.g., see Equation (4.23)). Run LamFLD has a hotter accretion disk because

the radiation is deposited in the immediate vicinity of the stars, and it subsequently

diffuses through the disk, heating up the gas as shown in the bottom right panel of Figure

4.12. In contrast, the absorption of radiation for run LamRT+FLD is highly dependent on
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Figure 4.12 Volume-weighted projection plots of the radiation force densities along the
yz-plane for the direct radiation field (top left panel) and diffuse radiation field (top
right panel) in run LamRT+FLD and total radiation field in runs LamRT+FLD (lower left
panel) and LamFLD (lower right panel), respectively, when the star has a mass of 36.1
M�. Each projection covers a depth of 500 AU and area of (12,000 AU)2. The center
of each panel corresponds to the location of the most massive star.

the frequency-dependent optical depth of the cells that the rays transverse. Once an

evacuated region appears above and below the disk, much of the stellar radiation energy

is deposited in the bubble walls at a considerable distance from the disk, allowing the

disk to remain cooler. Furthermore, the accretion rate onto the stars depends on the

disk temperature, Ṁ ∝ c3
s (Shu, 1977). Thus the hotter gas in the accretion disk in run

LamFLD produces more massive companion stars, consistent with what we observe.
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Figure 4.13 Density-weighted mean projected temperature for the accretion disks
formed in runs LamRT+FLD (top row) and LamFLD (bottom row), respectively. Each
panel is a projection that is (5000 AU)2 in size and is projected over a height of 1000
AU above and below the massive star. The most massive star is at the center of each
panel, and stars with masses greater than 0.01 M� are over-plotted.

4.3.2 Collapse of Turbulent Pre-stellar Cores

Next we describe our results for run TurbRT+FLD, which follows the same initial

conditions as run LamRT+FLD except that the core is not initially placed in solid-body

rotation and is instead seeded with a weakly turbulent velocity profile with a 1D velocity

dispersion of σ1D = 0.4 km s−1. At the end of this simulation the most massive star has

a mass of 61.63 M�. We ran the simulation for a time of t = 0.87 tff .

4.3.2.1 Evolution of Radiation Pressure Dominated Bubbles

Figure 4.14 shows density slices along the yz-plane for a series of snapshots

from run TurbRT+FLD. The initial turbulence leads to a clumpy and filamentary core

density structure that begins to collapse and forms a star. As the core continues to
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collapse the star is primarily fed by dense filaments and clumpy material. We first

see a radiation pressure dominated bubble begin to expand when the star is ∼ 10 M�

but it is quickly quenched by the dense, inflowing material. Furthermore, these bubbles

instantly go RT unstable and deliver material to the star (i.e, within the 80 AU accretion

radius of the sink particle). This can be seen within the radiation pressure dominated

bubble interiors shown in Figure 4.14 because the size scale of the density fluctuations

within the bubbles is smaller than the density perturbations in the initial turbulence

surrounding the bubbles, thus suggesting that the interior bubble material has become

RT unstable. We find that the growth of a radiation driven bubble is continuously

suppressed by the flux of the infalling filamentary and RT unstable material until the

star reaches a mass of ∼ 21.7 M� at time t = 0.42 tff . At this time the direct radiation

pressure from the accreting star is able to effectively push material away from the star.

However, material is not fully evacuated along the polar directions of the star.

This quick onset of RT instabilities can be attributed to the initial turbulence.

The turbulent gas seeds the growth of these instabilities. In addition, when the star is

below ∼ 30 M� the star is moving rapidly in the core because the accreting material

carries momentum. Figure 4.15 shows that the stellar velocity decreases as the stellar

mass increases. The overall accretion flow onto the star is not spherically symmetric and

thus the asymmetrical momentum deposition to the star by the accreting gas causes the

star to move a significant distance in the collapsing core, a property also observed in the

massive star formation simulations presented in Cunningham et al. (2011). Throughout

the simulation the star travels a distance of 1968 AU from its initial position. The
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Figure 4.14 Same as Figure 4.2, but for run TurbRT+FLD. The center of each panel
corresponds to the position of the most massive star.

combination of the movement of the star, dense filaments accreting onto the star, and

RT instabilities delivering material to the star limit the growth and stability of radiation

pressure dominated bubbles around the star. When the star has a mass greater than

∼ 30 M� radiation pressure begins to evacuate low-density material away from the star

but dense filaments and material that become RT unstable continue to fall onto the star.

This effect is demonstrated in Figure 4.16 that shows density slices along the yz-plane

for a series of snapshots from run TurbRT+FLD with velocity vectors over-plotted.

Low density bubbles do not begin to appear until the star has reached a mass of

∼ 35 M� at time t = 0.59 tff and these bubbles are larger than those in run LamRT+FLD
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Figure 4.15 Three-dimensional position of the primary star in run TurbRT+FLD.

at a similar mass (∼4000 AU versus ∼3000 AU in run LamRT+FLD). At this mass the

stellar luminosity is large enough to push away the infalling material more effectively.

The bubbles then become episodic, expanding and collapsing as the ram pressure of the

inflow rises and falls due to the turbulence. This behavior continues throughout the rest

of the simulation but the bubbles survive longer and expand as the stellar luminosity

increases. At the end of run TurbRT+FLD, when the star has a mass of 61.63 M� at

time t = 0.87 tff , most of core has been evacuated by radiation pressure along the polar

directions of the star but material is still being fed to the star along directions that are

perpendicular to the poles of the star (e.g., see bottom panel of Figure 4.14).

To understand this behavior quantitatively, it is helpful to compare the pres-
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Figure 4.16 Density slices along the yz-plane with velocity vectors over plotted for run
TurbRT+FLD when the massive star is (from left to right) 23.82 M� at t = 0.43 tff , 30.03
M� at t = 0.53 tff , 41.08 M� at t = 0.65 tff , and 61.63 M� at t = 0.87 tff , respectively.
The region plotted is (10,000 AU)2 with the most massive star (over plotted gray star)
located at the center of each panel.

sure of the stellar radiation field to the ram pressure of the inflow. Consider a sphere

1000 AU in radius centered on the most massive star. To understand the force balance

in the problem, we compute three mean pressures on this sphere: the direct radia-

tion pressure (including the accretion and stellar luminosities, averaged over area), the

area-weighted mean ram pressure, and the mass-flux weighted mean ram pressure for

inflowing material. The former quantity is defined as

Prad =
L? + Lacc

4πr2c
(4.25)

and the latter two quantities are defined by

〈Pram〉 =

∫
ρv2
rw dA∫
w dA

, (4.26)

where vr is the radial velocity, and the weighting function w is unity for the area-

weighted average, and is ρvr for the mass flux-weighted average where we only include
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Figure 4.17 Comparison of the direct radiation pressure including contributions from
the stellar and accretion radiation fields (pink solid line) and the area-weighted and
mass-weighted ram pressure (teal dashed and purple dot-dashed lines, respectively)
from inflowing material taken over a 1000 AU sphere surrounding the accreting primary
star for run TurbRT+FLD. See main text for full details on how these averages are defined.

contributions from inflowing material. We include the mass-flux weighted mean ram

pressure because it is a better representation of the ram pressure of the material that

can be accreted onto the star. We plot these three quantities as a function of time

in Figure 4.17. We see that the radiation pressure overwhelms the area-averaged ram

pressure by the time the star reaches ∼ 30 M�, but that the mass flux-weighted mean

ram pressure is roughly an order of magnitude higher. Thus, even though the radiation

pressure is stronger than gas pressure when averaged over 4π sr, turbulence causes the

mass flow onto the star to be concentrated in narrow filaments that have much greater

ram pressure, and are much harder to stop. It is not until the star reaches ∼ 50 M� that

its radiation pressure becomes comparable to the mass flux-weighted ram pressure, and
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even then there are still periods when the ram pressure rises and is sufficient to punch

through the radiation and deliver mass. This episodic rise in the ram pressure (which is

mirrored in the density field by the episodic collapse of the radiation-dominated bubbles)

is a direct result of RT instability, accelerated and seeded by the pre-existing turbulence.

4.3.2.2 Accretion Disk Evolution

Figure 4.18 shows the growth and evolution of the accretion disk that forms

around the massive star in run TurbRT+FLD. Our results show that a thick accretion

disk begins to form around the massive star when it has reached a mass of ∼ 41 M� at

time t = 0.65 tff (i.e., an accretion disk with a radius larger than the 80 AU accretion

zone radius of the sink particle). Up until this point material is primarily fed to the star

through dense filaments and RT instabilities whose infall is not suppressed by radiation

pressure. Figure 4.19 shows the primary stellar mass and accretion rate onto the primary

star as a function of time. The accretion rate is relatively smooth up until a time of

t = 0.5 tff . After this time, when the star has a mass of ∼28 M�, RT instabilities and

dense filaments supply most of the mass onto the star leading to a chaotic accretion flow

onto the star. However, when a thick accretion disk forms, at t ≈ 0.65 tff , the accretion

rate onto the star becomes much more chaotic because gravitational instabilities in the

disk funnel gas to the star while dense filaments and RT unstable material are delivered

to the disk. The disk soon becomes unstable and begins to fragment when the primary

star has a mass of 57.62 M� at time t = 0.83 tff . At the end of run TurbRT+FLD the

primary star has three low-mass companion stars with masses between 0.034-0.11 M�.

161



M =30.03 M¯

t =0.53 tff

M =37.96 M¯

t =0.62 tff

M =41.08 M¯

t =0.65 tff

M =47.25 M¯

t =0.71 tff

M =54.12 M¯

t =0.79 tff

M =61.63 M¯

t =0.87 tff 10-2

10-1

100

101

102

M
[M

¯
]

101

102

Σ
[g

cm
−

2
]

Figure 4.18 Same as Figure 4.7, but for run TurbRT+FLD.

Again we form a hierarchical system consisting of a massive primary and a series of

much less massive mass companions similar to run LamRT+FLD.

4.4 Discussion

The purpose of this work is to understand how mass is delivered to massive

stars during their formation. Primarily, we are interested in determining if the radia-

tion pressure dominated bubbles that expand away from the star become RT unstable

and if these instabilities contribute to disk accretion or direct accretion onto the star.

To answer this question, and compare our work with previous 3D simulations of the

formation of massive stars, we developed a new highly parallel hybrid radiation algo-

rithm that models the direct radiation pressure from stars with a multi-frequency long-

characteristics ray tracing solve coupled to (gray) flux-limited diffusion to model the

re-emission and processing by interstellar dust in the ORION radiation-hydrodynamics
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simulation code (Rosen et al., 2017). With this new tool we have performed the collapse

of initially laminar and turbulent massive star-forming cores.

Our results lead to two key differences from the simulations presented in Kuiper

et al. (2011, 2012) and Klassen et al. (2016). The first crucial difference, which we

discuss in Section 4.4.1, is that we find that the radiation pressure dominated bubbles

that expand around the accreting massive star become unstable and deliver mass to the

star-disk system for both initially laminar and turbulent cores. The second difference

we find, which we address in Section 4.4.2, is that inclusion of direct radiation pressure

leads to unstable accretion disks that fragment into a hierarchical system consisting of

a massive primary and a series of much less massive companions. Finally, we also find

if the pre-stellar core is initially turbulent the growth of radiation pressure dominated

bubbles are suppressed at early times as compared to massive stars that form out of

initially laminar cores. For initially turbulent cores, we find that most of the mass is

supplied to the star via dense filaments and RT instabilities rather than extended disk

accretion. We discuss these differences in Section 4.4.3.

4.4.1 Revisiting Rayleigh Taylor Instabilities

Kuiper et al. (2011, 2012) and Klassen et al. (2016) find that the expanding

radiation pressure dominated bubbles that form around accreting massive stars are

stable and the massive star is only fed by disk accretion. They suggest that the bubbles

that form in the simulation presented in Krumholz et al. (2009) develop RT instabilities

because only the diffuse dust-reprocessed radiation field is modeled and therefore the
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true radiation pressure is underestimated. These authors conclude that inclusion of the

direct radiation field from the star leads to a larger radiation pressure resulting in stable

bubbles that are not subject to collapse. In contrast, we find that, while an improved

treatment of the direct radiation field does lead to a larger radiation pressure it only

delays the onset of substantial RT instabilities that are capable of delivering mass to the

star-disk system in the case of a laminar core, it does not prevent them entirely. At late

times these instabilities grow non-linearly in regions that are shielded from the direct

radiation field and deposit material to the star-disk system. This material can then

be fed to the accreting star. We would like to understand the origin of this difference

in results, though we caution that, in the light of our results for run TurbRT+FLD, this

discussion is somewhat academic. This run shows that, in a realistic, turbulent core,

the flow is “born” RT unstable, in the sense illustrated by Figure 4.17 – a configuration

whereby the angle-averaged radiation force is stronger than gravity and ram pressure,

but the majority of the mass flux arrives over a small solid angle where the ram pressure

force is stronger than the radiation force.

Since Kuiper et al. (2011, 2012) and Klassen et al. (2016) hypothesize that

the absence of RT instability in their simulations was due to the direct radiation force,

we begin this investigation by examining when the presence of direct radiation pressure

could possibly make a difference to the outcome. We therefore investigate when the

gravitational force per unit area, fgrav(r) = GM?Σ/r
2, exceeds the direct radiative force

per unit area, frad,dir(r) = L?/(4πr
2c). Here M? and L? are the mass and luminosity

of the massive star, respectively; and Σ(r) =
∫ r

0 ρ(r′)dr′ is the column density of a
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slab of core material as seen by the star. The relative importance of direct radiation

force and gravity can be described in terms of the Eddington ratio given in Section 4.1

where we now ignore the contribution of the trapped diffuse radiation force, fedd,dir =

frad,dir/fgrav, given by

fedd,dir = 7.7× 10−5

(
L?
M?

)
�

(
Σ

1 g cm−2

)−1

. (4.27)

The notation (...)� denotes that L? and M? are in units of L� and M�, respectively.

A value of fedd,dir & 1 implies that direct radiation pressure is dynamically dominant,

while a value of fedd < 1 implies that gravity dominates. In the latter regime the force

exerted by the diffuse radiation field may still exceed the force of gravity, but in such

regions we expect RT instability to occur (Jacquet and Krumholz, 2011). Locations

where fedd,dir < 1 can therefore collapse and deliver mass to the star-disk system.

We compute fedd,dir as a function of position within the initial pre-stellar cores

modeled by Krumholz et al. (2009), Kuiper et al. (2011), Kuiper et al. (2012), Klassen

et al. (2016), and this work (using the core properties listed in Table 4.2) for light to

mass ratios appropriate for zero age main sequence stars with masses M? = 35−45 M�,

and plot the results in Figure 4.20. For the purposes of this computation, note that the

core density profile in all of these simulations is ρ(R) = ρedge(R/Rc)
−kρ where ρedge =

(3 − kρ)Mc/(4πR
3
c) for a pre-stellar core with mass Mc and radius Rc. The resulting

column density, as seen by the star at a distance R, is Σ(R) = ρ0R
kρ
c R1−kρ/(kρ − 1).

Of these simulations only those presented in Krumholz et al. (2009) and this work find
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Figure 4.19 Stellar mass (top panel) and accretion rate (bottom panel) for the primary
star in run TurbRT+FLD.

that the radiation-pressure dominated bubble shells become RT unstable, and Figure

4.20 makes it clear that at least part of this discrepancy is simply a matter of initial

conditions. We find that the cores with kρ = 2 presented in Kuiper et al. (2011)

and Kuiper et al. (2012) have fedd,dir > 1 over a substantial portion of their radial

extent, as a result of the cores’ steeper density profile, and lower overall surface density.

As a result, direct radiation pressure alone, without any assistance from the diffuse

reprocessed radiation field, is sufficient to expel material from the cores simulated by
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Kuiper et al. (2011), and possibly also Kuiper et al. (2012). It is not surprising, given

such a setup, that RT instability does not develop – the diffuse radiation field never

matters, because direct radiation alone guarantees a net positive radial acceleration.

While this simple argument explains why the cores simulated by Kuiper et al.

(2011) and perhaps Kuiper et al. (2012) never develop RT instabilities, it does not

explain the discrepancy between our results and those of Klassen et al. (2016), who

have direct Eddington ratios comparable to those in our simulation. One key difference

between the work of those authors and the simulations we present here is refinement

of the bubble shell. Refining the bubble shell is crucial for studying the growth of RT

instabilities in massive star formation simulations because the amplitude η of linear

perturbations (which is the relevant regime for the non-turbulent simulations) grows

with time as η(t) ∝ exp (ωt), where ω ∝ λ−1/2 and λ is the wavelength of the perturba-

tion (Jacquet and Krumholz, 2011). Thus for radiation RT instability, as for classical

hydrodynamic RT instability, the smallest perturbations grow fastest. However, per-

turbations can only grow if they are resolved, and we warn that RT instabilities with

wavelengths smaller than the cell size on the finest level can not be resolved, thereby

suppressing smaller scale perturbations that will grow faster in the linear regime.

Based on this analysis, the lack of RT instability in the work of Kuiper et al.

(2012) and Klassen et al. (2016), and its presence in our simulations, is likely a resolution

effect. We can make this point quantitatively as follows. In this work, and the work of

Krumholz et al. (2009), we adaptively refine on the Jeans length and locations where

the gradient of the radiation energy density exceeds 15%. Figure 4.21 shows density
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and radiation energy density slices, with the level 4 and 5 grids over-plotted, at the

time when the star in run LamRT+FLD has a mass of 40.4 M� at time 0.7 tff . This

Figure shows that the radiation pressure dominated bubbles are refined up to level 4

(40 AU resolution) and that most of the bubble shells have level 5 refinement (20 AU

resolution). The level 5 refinement for the bubble shell is due to our radiation energy

density gradient refinement criterion, because this refinement condition is triggered by

the sharp gradient in the radiation energy density at the shell location (i.e., where it

transitions from optically thin to optically thick material).

In contrast, Kuiper et al. (2012) use a non-adaptive spherical grid that provides

much higher resolution than we achieve near the star, but that coarsens rapidly at large

distances. The grid has a resolution of 5.625◦ in the θ direction, which at a distance of

4,000 AU, roughly the sizes of our bubbles at the point where they become unstable,

corresponds to ≈ 400 AU. Thus their resolution is a factor of ∼ 20 lower than ours, and

the linear growth rate is a factor of ≈ 4.5 lower. This may push the development of the

instability back to times longer than the time required for all the mass to be accreted.

The situation for Klassen et al. (2016) is similar. While they do have adaptivity, they

refine only on Jeans length and not on gradients in the radiation energy density, and

thus their bubble walls are at much lower resolution than the peak they achieve. Visual

inspection of their published results (their Figure 12) suggests that a typical resolution

in their bubble walls is 160 AU, giving a growth time ≈ 3 times longer than we have.

We can also test the resolution hypothesis directly. To do so, we perform a low

resolution run, run LamRT+FLD LR, which has four levels of refinement (40 AU maximum
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Table 4.2 Comparison of the initial laminar pre-stellar core conditions from this work
and previous numerical work.

Work Mc [M�] Rc [pc] kρ Σc
a[g cm−2] RTI?b

This work 150 0.1 1.5 1 Yes
Klassen et al. (2016) 100, 200 0.1 1.5 0.67, 1.33 No
Kuiper et al. (2012) 100 0.1 1.5, 2 0.67 No
Kuiper et al. (2011) 120 0.2 2 0.2 No
Krumholz et al. (2009) 100 0.1 1.5 0.67 Yes

aΣc ≡Mc/πR
2
c

bRayleigh Taylor instabilities present?

References. — Krumholz et al. (2009); Kuiper et al. (2011, 2012); Klassen et al. (2016)
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Krumholz+2009, Kuiper+2012, Klassen+2016
(Mc = 100M¯ , ρ = 1. 5)

Kuiper+2012 (Mc = 100M¯ , kρ = 2)

Kuiper+2011 (Mc = 120M¯ , kρ = 2, Rc = 0. 2pc)

This Work (Mc = 150M¯ , kρ = 1. 5)

Klassen+2016 (Mc = 200M¯ , kρ = 1. 5)

Figure 4.20 Eddington ratio associated with the direct radiation field (fedd,dir) for the
initial core properties listed in Table 4.2 as a function of radius within the core. Shaded
regions denote L?/M? values computed for a zero age main sequence star between 35
(bottom line) and 45 (top line) M� in mass. The horizontal black dashed line denotes
where fedd,dir = 1.
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resolution) and only refines on the Jeans length. Thus run LamRT+FLD LR uses the same

refinement criteria as Klassen et al. (2016). This reduction in refinement criteria ensures

that the shell will be poorly resolved. Figure 4.22 shows density slices along the yz-plane

showing the evolution of the expanding radiation dominated pressure bubbles for run

LamRT+FLD LR. Comparison of Figure 4.22 with Figure 4.2 demonstrates that when the

shell is poorly resolved RT instabilities are unlikely to develop. In run LamRT+FLD we

found that RT instabilities began to have noticable growth when the star was ∼ 30 M�

whereas the bubbles in run LamRT+FLD LR remain stable until the star has reached a

mass of ∼ 37.5 M�, and even after this point the instability is clearly less violent and

delivers less mass than in the higher resolution run. Clearly resolution matters a great

deal for the development of RT instability.

The late-onset instability in our low resolution run also points to one more

potentially important difference between our simulations and those of Klassen et al.

(2016). The instability in run LamRT+FLD LR first appears when the left side of the disk

becomes flared and most of the direct radiation is absorbed by the disk, shadowing the

left side of the bubble. Shadowing of the direct radiation field is clearly an important

process. Our direct radiation treatment uses the method of long characteristics which is

more accurate than the method of hybrid characteristics used in Klassen et al. (2016).

Far away from the source, as the rays cross many grids, this method will not resolve sharp

shadows as well as long characteristics, and will likely underestimate the asymmetry in

the direct radiation field thus suppressing the development of RT instabilities.

170



4.4.2 Revisiting Disk Fragmentation

Most massive stars are found in multiple systems. Chini et al. (2012) performed

a spectroscopic study of massive stars and found that > 82% of stars with masses greater

than 16 M� belong to close binary systems. Likewise, Sana et al. (2014) found that

all massive main-sequence stars in their sample are in tight binaries or higher order

multiples. Both authors conclude that this large binary fraction originates from the

formation process rather than direct capture. In agreement with these observations,

we formed multiple systems in runs LamRT+FLD and TurbRT+FLD where companions

form from disk fragmentation. At the end of each run we are left with a hierarchical

system consisting of a massive primary and a series of low-mass companions. Contrary

to our results, Klassen et al. (2016) only form a single massive star in each of their

simulations while Krumholz et al. (2009) form a massive binary system. We attribute

these differences in stellar multiplicity to be due to the different sink particle creation

and merging algorithms employed.

The accretion disks formed in the work of Klassen et al. (2016) become gravi-

tationally unstable but do not fragment. This result is likely attributed to their stricter

sink particle creation algorithm while our production of many low-mass companions

may be due to our more lenient algorithm. In this work, sink particles are created

following the algorithm described in Krumholz et al. (2004), which allow sinks to form

in regions that are Jeans unstable on the finest level and are undergoing gravitational

collapse. The sink particle algorithm employed in Klassen et al. (2016) includes these
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requirements but also enforces additional criteria following the work of Federrath et al.

(2010a). These additional requirements for sink particle creation are: (1) the flow must

be convergent, (2) the location at which a sink can form must be a minimum for the

gravitational potential, and (3) the total energy within a control volume around the

potential sink particle be negative (Egrav + Eth + Ekin < 0). These additional require-

ments are essentially untested in the context of an unstable accretion disk, and it is

not clear if they help prevent artificial fragmentation, or if they suppress the formation

of fragments that would in fact form if the simulation had been carried out at higher

resolution.

In contrast to our hierarchical systems, Krumholz et al. (2009) form a massive

binary with a mass ratio of q = m2/m1 ≈ 0.7. One key difference between the work of

Krumholz et al. (2009) and run LamRT+FLD presented in this work, besides the method

of radiative transfer used, is the criterion used for merging sink particles. As described

in Section 4.2.1 we allow two sink particles to merge when the lower mass particle

has a mass less than 0.05 M�. Krumholz et al. (2009) use the same sink particle

creation algorithm as our work but allow particles to merge once two particles are

within an accretion radius (i.e., 4 cells) of one another regardless of their mass. This

lenient merging criteria allows for a series of disk-borne companions to merge together

to form a more massive companion star, eventually resulting in a massive binary system.

Furthermore, as run LamFLD demonstrated, the disk properties are highly dependent on

the radiative transfer method employed. When the direct radiation pressure is neglected,

we are left with hotter accretion disks that are less prone to fragmentation. The hotter

172



10-18

10-17

10-16

10-15

10-14

D
en

si
ty

[g
cm

−
3
]

10-6

10-5

10-4

E
R

[e
rg

cm
−

3
]

Figure 4.21 Density and radiation energy density slices along the yz-plane for run
LamRT+FLD when the star has a mass of 40.4 M� at t = 0.7 tff . Level 4 grids (40 AU
resolution – gray rectangles) and level 5 grids (20 AU resolution – black rectangles)
are over-plotted. The region plotted is (12,000 AU)2 and the center of each panel
corresponds to the primary star location.

gas yields higher accretion rates onto the companion stars, leading to larger masses.

Comparison of our results with previous work demonstrates that the multiplic-

ity and companion mass distribution produced in massive star formation simulations is

highly sensitive on the simulation resolution, radiative transfer, and algorithms used to

create and merge sink particles. Since the fragmentation and resulting system multiplic-

ity is sensitive to the numerics, we advise the reader that the fragmentation produced in

our idealized numerical simulations and other simulations does not provide an adequate

solution to the multiplicity of observed massive stars. Future work must include addi-

tional physics, such as magnetic fields and outflows, to further understand the observed

multiplicity of massive stellar systems.
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4.4.3 Revisiting the Flashlight Effect

In agreement with previous work, we find that disk accretion supplies most

of the mass to the primary star in run LamRT+FLD. The presence of an optically thick

accretion disk shields the stellar radiation field leading to the “flashlight” effect in which

the radiative flux escapes along the polar axis and into the polar cavities, launching

radiation pressure dominated bubbles above and below the star (Yorke and Sonnhalter,

2002; Krumholz et al., 2009; Kuiper et al., 2011, 2012; Klassen et al., 2016). As the

bubbles expand they become unstable and deliver material to the star-disk system that

can then be accreted onto the star. The asymmetry induced by the flashlight effect

allows radiative flux to escape while mass from the disk can be accreted onto the star.

In run TurbRT+FLD, however, we find that the flashlight effect is less important

and that the initial turbulence allows for asymmetry in the radiation field. Instead of

extended disk accretion the majority of the mass is delivered to the star by dense fila-

ments and RT instabilities that are not destroyed by radiation pressure. The radiation

freely escapes through low density channels that are not necessarily located along the

polar directions of the primary star. The rapid infall of dense material inhibits the

growth and stability of radiation pressure dominated bubbles at early times thus only

allowing the “flashlight” effect to occur at late times when the star has a larger luminos-

ity. Therefore, we find that if the matter distribution of the core is asymmetric to begin

with then the flashlight effect is not necessary for the formation of massive stars out of

turbulent cores. However, our simulations neglect the effect of bipolar stellar outflows
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Figure 4.22 Density slices along the yz-plane with velocity vectors over-plotted for run
LamRT+FLD LR when the massive star is (from left to right) 24.70 M� at t = 0.43 tff , 30.05
M� at t = 0.46 tff , 34.22 M� at t = 0.50 tff , and 40.34 M� at t = 0.57 tff , respectively.
The region plotted is (8,000 AU)2 with the most massive star (over plotted gray star)
located at the center of each panel.

that have been shown to enhance the flashlight effect (Cunningham et al., 2011; Kuiper

et al., 2015).

For example, Cunningham et al. (2011) were the first to perform 3D radiation-

hydrodynamic simulations of the collapse of initially turbulent pre-stellar cores that

included feedback from bipolar stellar outflows and radiation, but they neglected the

direct radiation field. They found that inclusion of bipolar outflows from the massive

protostar increases the ejection of ambient material along the polar directions of the star,

enhancing the flashlight effect. This effect is enhanced because regions of the core that

are expected to experience a large net force by the outward radiation force lie within the

outflow cavity. The stellar outflows evacuate material along the polar directions of the

primary star. These outflow cavities provide significant focusing of the radiative flux in

the polar directions, resulting in the radiative flux to escape while accretion continues

through regions of the infalling envelope uninhibited by the radiative force.
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4.5 Conclusions

In this paper, we have used our powerful new hybrid radiation transfer tool,

HARM2, in a suite of radiation-hydrodynamic simulations that followed the collapse

of initially laminar and turbulent massive pre-stellar cores to study the formation of

massive stars. HARM2 uses a multi-frequency adaptive long-characteristics ray tracing

scheme to capture the first absorption of the direct radiation from stars by the interven-

ing interstellar dust and molecular gas, and flux limited diffusion to model the diffuse

radiation field associated with the subsequent re-emission by interstellar dust. Our

method is highly optimized and can run efficiently on hundreds of processors, works on

adaptive grids, can be coupled to any moment method, and can be used for an arbitrary

number of moving stars (Rosen et al., 2017).

The primary goal of our work is to determine how massive stars attain their

mass when radiation pressure is the only feedback mechanism considered (i.e., in the

absence of magnetic fields, outflows, and photoionization). Do massive stars obtain

their mass through disk accretion alone? Or do radiative Rayleigh Taylor instabilities

that develop in the radiation pressure dominated bubble shells, which are launched by

the stars’ intense radiation fields, deliver material directly via collapse onto the stars or

star-disk systems? Or is it a combination of both of these processes?

For initially laminar cores, we find that the majority of mass delivered to

the massive star is due to disk accretion, but that RT instabilities are responsible for

bringing material onto the disk before it is subsequently incorporated into the star.
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For initially weakly turbulent cores, in contrast, we find that dense filaments and RT

unstable material supply most of the mass to the accreting massive star directly, without

mediation by an extended disk (i.e., an accretion disk with a radius larger than the 80

AU accretion zone radius of the sink particle) for the run time considered. However, we

find that once an extended disk formed, disk accretion supplies material to the primary

star. Our results show that the radiation escapes through low density channels that

are not necessarily located along the polar directions of the star and that sustained

radiation pressure dominated bubbles do not appear until late times when a significant

accretion disk develops. For stronger turbulence at the level seen in many massive cores,

we would expect this effect could be enhanced. Our results suggest that the “flashlight”

effect that occurs in our laminar runs, which allows the radiative flux to escape along

the polar directions of the star and material to be accreted onto the star by an optically

thick accretion disk, is not required for massive stars that form from turbulent cores.

Instead, the asymmetric density distribution allows the radiation to escape through the

path(s) of least resistance, allowing the dense infalling material to fall onto the star

regardless of its location.

Our results also demonstrate that RT instabilities are a natural occurrence in

the formation of massive stars regardless of whether the star-forming core is initially

turbulent or laminar. These instabilities arise immediately for turbulent cores because

the initial turbulence seeds the instabilities. RT instabilities develop later for laminar

cores because the initially symmetric gas distribution must be perturbed. These per-

turbations can then seed RT instabilities that grow in time and can eventually deliver
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material to the star-disk system. We find that the development of an accretion disk

and gravitational torques induced within the disk destroy the symmetry of the gas dis-

tribution and seed the initial perturbations that lead to RT instabilities in the bubble

shells as first shown by Krumholz et al. (2009). Our work suggests that the seeds for RT

instabilities that arise in initially laminar pre-stellar cores are asymmetries induced by

the shielding of the direct radiation field by the accretion disk and the non-symmetric

distribution of material within the bubbles. These asymmetries arise from disk flar-

ing, disk fragmentation, and the gravitational interaction of the massive star with the

accretion disk and companions.

Previous work that simulated the collapse of initially laminar cores concluded

that the direct radiation field inhibited the growth of RT instabilities (Kuiper et al.,

2012; Klassen et al., 2016). Contrary to their results we find that inclusion of the direct

radiation field only suppresses the non-linear growth of these instabilities at early times.

As the asymmetry in the system grows, these instabilities can grow non-linearly and

become dense enough to overcome the radiation-pressure barrier and deliver material to

the star-disk system. We argue instead that poor shell resolution is the likely culprit as

to why Kuiper et al. (2012) and Klassen et al. (2016) do not obtain bubble shells that

become RT unstable. We check this hypothesis directly by conducting a resolution study

where we intentionally de-resolve the bubble shell to the point where our resolution is

comparable to that used in earlier work, and we show that doing so both delays the

onset of instability and reduces its intensity. We further find in the work of Kuiper et al.

(2012), that limitations of their fixed grid approach with a star that is centrally fixed
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in a spherical grid does not permit the movement of the star-disk system that would

naturally allow asymmetries to arise and lead to seeding the RT instability.

We find that both turbulent and laminar cores lead to hierarchical star systems

that consist of a massive primary star and several low-mass companions. We find that

our multiplicity results are sensitive to the physics included, radiative transfer treatment

used, and sink creation and merging criteria employed. Inclusion of the direct radiation

pressure leads to cooler disks that are prone to greater fragmentation when compared

to our comparison run that neglected the direct radiation field and assumed that the

stellar radiation was immediately absorbed within the vicinity of the stars. However,

given the idealized nature of our simulations, we cannot address the true multiplicity

properties of massive stars.

Despite this limitation, our work settles a long-debated question in massive

star formation: how does radiation pressure limit the masses of stars? We find that

radiation pressure is still an important feedback mechanism that must be considered

in massive star formation, but RT instabilities can overcome the radiation pressure

barrier, at least in the context of the idealized numerical experiments performed thus

far. However, there are still many other physical processes at play that we neglect.

These include collimated outflows, fast stellar winds, and magnetic fields. Future work

will include these other feedback mechanisms to determine a more complete picture of

how massive stars form and how their associated feedback can limit stellar masses.
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Chapter 5

Gone With the Wind: Where is the

Missing Wind Energy from Massive Star

Clusters?

A version of this chapter has been published as “Gone With the Wind: Where

is the Missing Wind Energy from Massive Star Clusters?,” Rosen, A. L., Lopez, L. A.,

Krumholz, M. R., Ramirez-Ruiz, E. 2014, Monthly Notices of the Royal Astronomical

Society, 442, 2701.1

5.1 Introduction

Massive star clusters (MSCs; M? & 103 M�) are born in the dense regions of

giant molecular clouds (GMCs). The resulting injection of energy and momentum by

1 c©2014. Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Reprinted here with permission.
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the young stars (i.e., stellar feedback) terminates star formation and expels gas from

the MSC. These feedback processes are likely responsible for the low star formation effi-

ciencies observed in GMCs (Matzner and McKee, 2000; Krumholz and Tan, 2007), they

control the dynamics of the H ii regions surrounding these young clusters (Krumholz

and Matzner, 2009; Lopez et al., 2011, 2013a), and they may be responsible for the

dissolution and ultimate disruption of their host molecular clouds. For recent reviews,

see Krumholz (2014) and Krumholz et al. (2014).

Newborn stars in these clusters dramatically affect the surrounding interstellar

medium (ISM) via photoionization flows (e.g., Dale et al. 2013), direct stellar radia-

tion pressure (e.g., Krumholz and Matzner 2009; Fall et al. 2010; Murray et al. 2010),

dust-reprocessed radiation pressure (e.g., Thompson et al. 2005; Murray et al. 2010),

protostellar outflows (e.g., Cunningham et al. 2011), and hot gas shock-heated by stel-

lar winds (e.g., Castor et al. 1975; Weaver et al. 1977; Cantó et al. 2000; Stevens and

Hartwell 2003; Harper-Clark and Murray 2009) and supernovae (SNe; e.g., McKee and

Ostriker 1977; Chevalier and Clegg 1985). The expansion of a cool, dense shell of inter-

stellar material surrounding the H ii region is driven by these processes (Castor et al.,

1975; Weaver et al., 1977; McKee and Ostriker, 1977; Krumholz and Matzner, 2009).

It is still uncertain which of these processes dominate stellar feedback and thus

drive the subsequent expansion of the H ii region shell. Recent studies of H ii regions

that host MSCs suggest that the thermal pressure of the warm (∼ 104 K) ionized gas

dominates H ii region dynamics at late times, while radiation pressure may dominate

during H ii regions’ infancy (for RHII . 1 − 100 pc; Krumholz and Matzner, 2009;
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Fall et al., 2010; Lopez et al., 2011, 2013a). However, the importance of stellar winds

remains uncertain (Lopez et al., 2011; Pellegrini et al., 2011; Rogers and Pittard, 2013;

Lopez et al., 2013a). The total energy injected by stellar winds is quite large for MSCs

(Kudritzki et al., 1999; Repolust et al., 2004), but whether this energy contributes

significantly to the dynamics of the shell, or if most of it escapes or is radiated away,

remains unresolved.

Massive stars have mass-loss rates on the order of Ṁw ∼ 10−6 M� yr−1 (Repo-

lust et al., 2004). This mass escapes the stellar surface at velocities of vw ∼ 1000 km s−1

(Leitherer et al., 1992), resulting in an energy injection rate of (1/2)Ṁwv
2
w ∼ 100 L�

per massive star. In a MSC, these fast stellar winds collide with the winds of nearby

stars, producing multiple shocks with complex morphologies. The hot, collective stellar

wind will then produce an outward-directed “cluster wind” as the hot gas adiabatically

expands and ultimately leaves the cluster (Cantó et al., 2000; Stevens and Hartwell,

2003). The resulting “super-bubble” (Bruhweiler et al., 1980) fills the surrounding H ii

region with hot, shocked stellar wind material at temperatures of ∼ 107 K, and produces

diffuse X-ray emission. This X-ray emission has been detected from numerous MSCs

in the Milky Way (MW; Moffat et al. 2002; Townsley et al. 2003, 2006, 2011a) and the

Large Magellenic Cloud (LMC; Lopez et al. 2011, 2013a).

While the source of the X-ray emission is well understood, its luminosity is

not: the X-ray luminosity of H ii regions associated with MSCs is less than expected

if the kinetic energy supplied by winds was retained within the super-bubbles. There

are several competing theoretical models to account for the X-ray luminosity in bubbles
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around MSCs, and these models imply different dynamical importance for stellar winds

(and SNe, which also produce shocked hot gas). Castor et al. (1975) and Weaver et al.

(1977) assume that the hot gas in the bubble is fully confined by a cool shell expanding

into a uniform density ISM, whereas Chevalier and Clegg (1985) ignore the surrounding

ISM and simply assume a steady, freely-expanding wind. Compared to observations

of M17 (Townsley et al., 2003), the Carina Nebula (Townsley et al., 2011b), and 30

Doradus (30 Dor; Townsley et al. 2006; Lopez et al. 2011), the models of Castor et al.

(1975) and Weaver et al. (1977) over-predict the observed X-ray luminosity, while that

of Chevalier and Clegg (1985) under-predicts it (Dunne et al., 2003; Harper-Clark and

Murray, 2009; Lopez et al., 2011). This result led Harper-Clark and Murray (2009) to

introduce an intermediate model, where the hot gas expands into a non-uniform ISM,

producing a “porous” shell from which the hot gas can leak. This model is capable of

fitting the observed X-ray luminosities, but the porosity is treated as a free parameter,

not independently predicted.

The model of Harper-Clark and Murray (2009) assumes the low X-ray lumi-

nosities are caused by hot gas leakage, but there are several other channels by which the

wind energy can be lost. One possibility is that hot and cold gas may also exchange en-

ergy via laminar or turbulent conduction; the latter process occurs when turbulence at

the hot-cold interface produces small-scale mixing of hot and cold gas, greatly acceler-

ating conductive transfer between the two (McKee et al., 1984; Strickland and Stevens,

1998; Nakamura et al., 2006). A closely related possibility is that turbulence at the hot-

cold interface mixes dust grains into the hot gas, or that dust is produced in situ within
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the super-bubble by evolved stars. Dust grains immersed in hot gas will eventually be

destroyed by sputtering, but they will absorb thermal energy and radiate it in the IR

before that. A final possibility is that the hot gas can transfer energy to the ISM by

doing mechanical work on the cold, dense shell that bounds the H ii region, leading to

either coherent or turbulent motions (Breitschwerdt and Kahn, 1988).

As previously mentioned, the effect of leakage is intimately tied to the ques-

tion of stellar wind feedback in MSC formation. The contribution of stellar winds to

H ii region dynamics, and their importance as a mechanism for limiting star formation

efficiencies, depend on how much of the stellar wind energy is used to do work on the

cold ISM, and how much energy is transferred to other channels. In this chapter, we

attempt to determine this division of energy through observations. We examine four

well-studied H ii regions (30 Doradus, Carina, NGC 3603, and M17), and we evaluate

how the energy stored in the hot gas is lost via these different mechanisms using X-ray

observations coupled to ancillary radio data. By conducting this energy census, we esti-

mate the wind energy which leaks from the H ii shells, and we explore the implications

regarding the role of stellar winds in regulating star formation in MSCs. This paper is

organized as follows: Section 5.2 presents the theoretical framework by reviewing the

many different avenues the hot X-ray emitting gas can lose energy. Section 5.3 discusses

our source selection criteria and describes our resulting MSC sample. We present the

results of our analysis of these regions in Section 5.4, and discuss their implications in

Section 5.5. Finally, we summarize and conclude our analysis in Section 5.6.
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5.2 Theory & Background: Energy Budgets

5.2.1 Lw: Energy Injection by Stellar Winds

Consider an idealized, simple spherical H ii region with a MSC at its center,

injecting wind energy at a rate of

Lw =

N∑
i=1

1

2
Ṁw,iv

2
w,i (5.1)

where Ṁw, i and vw, i are the mass-loss rate and wind velocity for star i, and N is the

total number of massive stars in the MSC. For typical MSCs in the MW and LMC, Lw

has values of ∼ 1037 − 1039 erg s−1 (Crowther and Dessart, 1998; Dunne et al., 2003;

Smith, 2006; Doran et al., 2013). The region has a radius R, and is bounded by a shell of

cold, dense material expanding at velocity vsh. It is filled with hot gas with temperature

T and electron number density nX. We assume that its filling factor is unity to assess

the global dynamical effect of the hot gas on the shell (Lopez et al., 2011). This picture

is an oversimplification of the structure of a real H ii region around a MSC. However, as

we shall see below, the missing wind energy is so large that even this simplified model is

able to provide meaningful constraints on the missing kinetic energy carried by stellar

winds.

For the purposes of this study, we only consider the energy injected by stellar

winds and ignore the contribution by SNe. This assumption is reasonable for the fol-

lowing reasons. First, all of the H ii regions considered in this paper have young MSCs
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(of ages ∼1–3 Myr) so that SNe have not occurred yet. Second, the mechanical energy

of one SN (∼ 1051 erg) is comparable to the amount injected by winds over a single

massive star’s lifetime (Castor et al., 1975). As a result, ignoring SNe amounts to, at

most, a factor of 2 error in the total kinetic energy injection. Finally, as we demonstrate

later, we cannot account for the total energy injection by winds alone. Including the

heating contribution from SNe would only strengthen our conclusions. Therefore, by

using the observed X-ray, stellar population, and kinematic properties of several H ii

regions, we examine the possible avenues that the hot gas can transfer energy in these

H ii regions. From our analysis we determine which processes, if any, can account for

the missing kinetic energy. The remainder of this section discusses the various energy

sinks for the hot gas.

5.2.2 Lcool: Radiative Cooling of the Hot Gas

The energy injected by winds can be lost via several channels, the first of

which is radiative cooling. The hot gas cools primarily via thermal bremsstrahlung and

metal-line cooling. An optically thin “parcel” of hot gas with volume dV and electron

and ion number densities of nX and ni, respectively, loses energy via radiation at a rate

dQ = −nXniΛ(T, xi, Z)dV dt, (5.2)

where Λ(T, xi, Z) is the radiative cooling function (with units of ergs s−1 cm3), which

depends on the temperature T , ionization state xi, and metallicity Z of the hot gas. For
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Figure 5.1 Radiative cooling functions from chianti for MW (Z = Z�; pink dash-dot
line) and LMC (Z = 0.5 Z�; teal solid line) metallicities assuming that the hot gas is
in CIE.

a fully ionized plasma of Solar composition, ni = 0.9nX. Since nX is dominated by the

free electrons liberated from H and He, the ratio of ni/nX is nearly identical for the LMC

and MW sources. For a low-density, optically thin plasma, Λ(T, xi, Z) is independent of

density. We use chianti (Dere et al., 1997) to calculate Λ(T, xi, Z) for MW and LMC

metallicities, as shown in Figure 5.1 (Grevesse and Sauval, 1998; Russell and Dopita,

1992). The ionization state is determined by assuming the plasma is in collisional

ionization equilibrium (CIE; we discuss deviations from CIE in Section 5.5.1), and that

charge exchange, radiative recombination, and dielectronic recombination are the only

processes altering the ionization balance (Draine, 2011). In this case, the ionization
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fractions, xi, depend only on the gas temperature, and hence Λ only depends on T and

Z. Under these assumptions, the total energy loss rate via cooling is

Lcool = 0.9n2
xΛ(T,Z)V, (5.3)

where V is the H ii region volume. For typical shocked gas temperatures of H ii regions

(∼ 107 K), most of the photons produced by this cooling have ∼ keV energies, and thus

are observable with X-ray telescopes, such as the Chandra X-ray Observatory.

We can use this result to place a constraint on the number density of the

hot gas, since Lcool ∝ n2
X. If we assume that radiative cooling is the sole mechanism

responsible for removing the kinetic energy injected by winds (i.e., Lcool = Lw), then

the electron density of the hot gas is

ncool =

√
Lw

0.9Λ(T )V
. (5.4)

To illustrate our calculation, we consider two example H ii regions with radii

of 25 pc and 50 pc, respectively. Figure 5.2 shows the value of ncool versus temperature

(solid teal line) for these two example regions, using a kinetic energy input rate of Lw =

1038 erg s−1. Energy conservation requires that the hot gas density and temperature

must be at or below the ncool versus T curve, since the gas cannot radiate more energy

than is injected by stellar winds. The shaded region above the ncool line denotes the

disallowed region and highlights the combinations of thermodynamic properties that
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Figure 5.2 Allowed number densities and temperatures (white regions) for the plasma
filling simulated H ii regions with radii of 25 pc (left panel) and 50 pc (right panel),
respectively. We take Lw = 1038 ergs s−1 and vsh = 20 km s−1. Curves denote the loci
in the T − nX plane where each of the energy sinks discussed in Section 5.2 are capable
of removing all of the energy injected by winds. Shaded regions denote values of nX

and T that are disallowed because the energy loss rate exceeds the energy input rate.

violate energy conservation.

5.2.3 Lmech: Mechanical Work on the Dense Shell

The second channel by which the hot gas can transfer energy is by doing

mechanical work on the cooler gas around it – either the cold neutral ISM, or the warm

(∼ 104 K) gas produced by photoionization. Observations of H ii regions show that

they are generally undergoing coherent expansion at speeds comparable to or larger

than their internal turbulent velocities (e.g., Balick et al., 1980; Clayton et al., 1985),

so we can think of this process as the hot gas acting as a piston pushing on a dense

shell bounding the H ii region. The thermal pressure of the hot gas is given by PX =

1.9nXkBT , and the rate at which this pressure does work W on the surrounding shell
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is dW/dt = 4πR2PXvsh. The factor of 1.9 arises from the fact that the total number

density (e.g., n = ni + nX) contributes to the pressure, and we have assumed that

nX = 0.9ni. We note that PX = 2
3uX where uX is the energy density of the hot gas and

4πR2vsh is the rate that the volume increases as the H ii region expands. Under these

assumptions, the rate at which the hot gas does work on the bubble shell is

Lmech = 7.6πR2vshnXkBT. (5.5)

Note that it does not matter whether this work is being done on 104 K photoionized

gas, ∼ 100 K cold neutral gas, or some combination of the two, so long as the working

surface at the hot-cold interface is roughly 4πR2, and the pressure of the hot gas greatly

exceeds that of the cooler gas on which it is pushing. If the latter does not hold and the

pressure of the cooler gas is actually greater than that of the hot gas, then the direction

of energy flow will be reversed (i.e., the cold gas will do mechanical work on the hot

gas), and our estimate of Lmech will be an upper limit.

As with radiative cooling, we can obtain an upper limit on the electron density

by considering the highest value that it could have without the resulting work exceeding

the available kinetic energy supply provided by the winds (i.e., Lmech = Lw). We find

that the maximum allowed number density of the hot gas is given by

nmech =
Lw

7.6πR2vshkBT
, (5.6)
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which is also shown in Figure 5.2 (dot-dashed pink line). For this example, we take

vsh = 20 km s−1 which is typical for young H ii regions (e.g., see Table 5.1). Similarly,

since Lmech increases with increasing nX, the hot gas is only allowed to have number

densities less than or equal to nmech. This result places another constraint on nX, and

produces another disallowed region in the nX − T plane.

We note that for temperatures below ∼ 106 K, all wind energy is lost via radi-

ation. At temperatures above a ∼few ×106 K, mechanical work is more effective than

cooling at removing the wind energy. This transition is easily discerned by calculating

the ratio

Lcool

Lmech
= 0.16

Λ(T,Z)ΣX

kBTvsh
, (5.7)

where ΣX = nXR is the surface density of the hot gas. This ratio is less than unity for

temperatures where nmech < ncool.

5.2.4 Lcond: Thermal Conduction

Conduction is a third possible kinetic energy sink. In the absence of magnetic

fields, thermal conduction by the hot electrons can be an efficient energy loss mechanism

at the inner edge of the cool bubble shell, since the conductive heat flux from a fully

ionized plasma depends sensitively on temperature (∝ T 7/2, Spitzer, 1962). This process

creates a region of intermediate temperature gas (T ∼ 105 K) between the hot bubble

interior and the cold shell, and this region will shed energy rapidly via metal line cooling

in the far-UV. This light would be extremely difficult to detect observationally, due to
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the high opacity of the ISM at these wavelengths and the even greater opacity of the

Earth’s atmosphere.

For classical conductivity, the heat flux is qc = −κc∇T , where

κc = 0.87
k

7/2
B T 5/2

m
1/2
e e4 ln ΛC

(5.8)

is the thermal conductivity of the hot electrons with temperature T , and

ln ΛC = 29.7 + ln

(
n
−1/2
X

T

106 K

)
(5.9)

is the Coulomb logarithm for T > 4.2× 105 K (Spitzer, 1962; Cowie and McKee, 1977;

Draine, 2011). Cowie and McKee (1977) find that when the electron mean free path

becomes comparable to or greater than the temperature scale height, T/|∇T |, the heat

flux saturates and takes on the value

qs = 0.4

(
2kBT

πme

)1/2

nXkBT. (5.10)

The total energy loss rate due to conduction for an H ii region with radius R filled with

hot gas at a temperature T is therefore

Lcond = 4πR2 min(κc|∇T |, qs). (5.11)

We further assume that |∇T | ∼ T/R, which is true at the order of magnitude level.
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If thermal conduction is responsible for removing the bulk of the energy in-

jected by stellar winds (Lcond = Lw), then the required number density of the hot gas

is

ncond =

(
T

106K

)2

exp

(
59.4− 6.96π

k
7/2
B T 7/2R

m
1/2
e e4Lw

)
, (5.12)

assuming that the heat flux is not saturated. This result follows from Equations (5.8),

(5.9), and (5.11). However, if the temperature is large enough such that the conduc-

tive heat-flux becomes saturated, then the number density required for conduction to

dominate the energy loss is

ncond =
(me

2π

)1/2 Lw

1.6R2k
3/2
B T 3/2

, (5.13)

which follows from Equations (5.10) and (5.11). These results are also shown in Figure

5.2 (purple dashed line). The shaded region to the right of this curve denotes the

forbidden region where conductive losses exceed the wind energy input.

Finally, we note that Equation (5.11) is almost certainly a large overestimate

of the true conductivity, because a non-radial magnetic field, even a dynamically sub-

dominant one, will greatly reduce the heat flux (Soker, 1994). We address the effects

of magnetic fields on conduction in more detail in Section 5.5.2. If the conductive heat

flux is less than Equation (5.11), then ncond will shift to higher temperatures, thereby

reducing the size of the forbidden region.
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5.2.5 Ldust: Collisional Heating of Dust Grains

The next energy sink we consider is the transfer of thermal energy from the

hot gas to dust grains via collisions, followed by thermal radiation from the grains. The

molecular clouds out of which MSCs form are dusty, and this dust can mix with the

hot gas in two ways. First, the dust in ISM material can mix with the shocked wind

material. Second, the expanding shell around the H ii region will become corrugated

with instabilities (Strickland and Stevens, 1998), and the resulting turbulence at the

hot-cold interface can mix dust grains into the hot gas. One final process by which dust

can be supplied to and mixed with the hot gas is independent of the molecular cloud

material: in situ formation of dust surrounding evolved stars such as red supergiants

in the young MSC (Levesque, 2010). Regardless of its source, dust grains immersed in

hot gas will eventually be destroyed by sputtering, but they will absorb thermal energy

via inelastic collisions and radiate it in the IR before that.

The importance of these processes depends on how well the dust is mixed with

the hot gas and on how the sputtering and destruction time scales compare (Smith et al.,

1996; Draine, 2011). These parameters depend on the properties of the dust grains and

on the density and temperature of gas in the turbulent mixing layer. We address this

question in detail in Section 5.5.3, but to be conservative we perform the calculation

assuming that dust is able to survive in the hot gas with the same abundance as in the

cold gas. Under this assumption, the gas-dust energy exchange rate by collisions with
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dust grains per unit volume of the hot gas is given by

Λgd = nXndσd

(
8kBT

πme

)1/2

ᾱT (2kBTd − 2kBT ) (5.14)

where nd is the dust grain number density, Td is the dust temperature, T is the hot

gas temperature, σd = πa2γe is the dust cross section where the factor γe allows for

Coulomb focusing/repulsion of the hot electrons. Here ᾱT is the averaged accommo-

dation coefficient for an astrophysical mixture of gases which describes the fraction of

kinetic energy of the impacting electron may be converted to heat (Burke and Hollen-

bach, 1983; Draine, 2011; Krumholz, 2013). For dust grains immersed in hot gas with

temperatures greater than ∼ 106 K, the electric potential is much less than the thermal

energy of the impacting electrons, and thus the dust grain can be treated as neutral

(i.e., γe = 1; Dwek, 1987). We assume that the accommodation coefficient is equal for

both H atoms and the hot electrons, with a value ᾱT = 0.3 (Burke and Hollenbach,

1983; Dwek, 1987; Krumholz et al., 2011). For canonical values of the dust-to-gas mass

ratio and the dust grain cross section, assuming that the total surface area of grains is

proportional to the metal abundance, we find that the total energy exchange rate from

the hot gas to the dust is

Ldust = αdg, en
2
XV T

3/2, (5.15)

where

αdg, e = 2.20× 10−31 Z

Z�
erg cm3K−3/2s−1 (5.16)
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is the grain-gas coupling parameter, which is proportional to nX/m
1/2
e (Krumholz et al.,

2011).

If heat exchange from the gas to the dust is primarily responsible for removing

the bulk of the energy injected by winds, then the number density of the hot gas is

ndust =

√
Lw

αdg, eV T 3/2
. (5.17)

These results are also shown in Figure 5.2 (dashed blue line). Again, the shaded region

above this curve denotes the forbidden region within which the energy loss rate exceeds

the injection rate.

Finally, we warn the reader that Equation (5.15) is likely an overestimate of

the true energy transfer rate of the hot gas colliding with dust. The value of αdg, e is

dependent on the adopted dust-to-gas ratio. Here, we have assumed that the dust-to-

gas ratio for the hot gas is the same as that of the neutral ISM, where dust is perfectly

mixed with the gas. The true dust-to-gas ratio in the hot gas is likely to be smaller,

and the value will depend on the competition between turbulent mixing at the hot-cold

interface and the sputtering of grains in the high temperature medium.

5.2.6 Lleak: Physical Leakage of the Hot Gas

The final energy sink that we will calculate is that associated with bulk motion

of the hot gas. The hot gas may be only partially confined by the cold gas in the shell,

either because the surrounding ISM is non-uniform or because stellar feedback punches
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holes in the shell. In either case, the hot gas, which has a much larger sound speed

than the cool gas, will flow out of the holes, expand adiabatically, and cool radiatively

(Harper-Clark and Murray, 2009). In this scenario, the energy injected by stellar winds

is ultimately radiated as low-surface brightness X-ray and far-UV emission over an area

much larger than the observed H ii region.

Harper-Clark and Murray (2009) define a confinement parameter Cf that de-

scribes the “porosity” of the cold shell, where Cf = 1 describes a shell with no holes and

Cf = 0 describes a completely porous shell (i.e., no shell exists). The holes allow the

hot gas to escape the H ii region at its sound speed, cs, with an energy flux given by

Lleak = (1− Cf) 4πR2 5

2
ρhc

3
s (5.18)

where ρh = 1.9µmpnX is the density of the hot gas, µ = 0.62 assuming He is fully

ionized and its mass fraction is 0.3, and cs =
√
kBT/µmp is the sound speed of the hot

gas. Note that since Lleak ∝ c3
s , a large amount of leakage can occur even if the shell

has a large covering fraction.

5.2.7 Other Forms of Energy Loss

The energy losses by the mechanisms discussed previously in this section can

be estimated easily under the stated assumptions. However, other avenues of energy

loss also exist, including “turbulent conduction” and “turbulent work.” As we shall

see below, the former mechanism may likely dominate the energy loss of the hot gas.
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Unfortunately, both channels are much harder to assess using observations, even at

the order-of-magnitude level. Nonetheless, we summarize these underlying physical

mechanisms here.

Turbulent conduction (McKee et al., 1984) describes how cold gas can mix

rapidly with hot gas via Kelvin-Helmholtz instabilities that occur as hot gas flows past

cold clouds, either in the hot bubble interior or as it leaks out (Strickland and Stevens,

1998; Nakamura et al., 2006). As with the estimate provided above for thermal con-

duction, this mixing will lead to rapid conductive transmission of the thermal energy,

producing gas at temperatures of ∼ 105 K which sheds energy rapidly via metal line

cooling in the far-UV.

The difference between thermal conduction and turbulent conduction is that

if a turbulent mixing layer is present, then the effective area of the hot-cold interface

and the sharpness of the temperature gradient can be orders of magnitude larger than

the laminar estimate given by Equation (5.11). Moreover, if the turbulent mixing layer

produces mixtures of hot and cold gas on scales smaller than the electron gyro radius,

then magnetic confinement of the electrons will not be able to restrict the rate of energy

interchange between hot and cold gas. Thus, the presence of a turbulent mixing layer

might lead to a conductive loss rate much higher than the simple laminar estimate

presented in Section 5.2.4.

The final energy loss mechanism we consider is turbulent work, where hot gas

collides with the cold ISM and does work on it, converting its thermal energy into a

turbulent cascade in the cold gas (Breitschwerdt and Kahn, 1988). This process leads to
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the formation of shocks and to the energy being radiated in the IR (if dust cooling of the

cold ISM dominates) or radio (if molecular line cooling dominates). Turbulent work is

related to the mechanical luminosity we have estimated above, but it would manifest as

large incoherent velocities rather than the coherent expansion in the previous estimate.

It is unlikely that turbulent work would dominate over mechanical work because the

total amount of work done on the cold ISM depends on the total surface area of the

working surface (i.e., the bubble shell). As the shell expands coherently, the work done

on the shell will be much greater than that over the turbulent regions. We therefore

conclude that turbulent work is not a dominant energy sink for the hot gas.

5.3 HII Region Sample

5.3.1 Sample Selection Criteria

In the previous section, we have reviewed the various physical processes that

can contribute to the energy accounting problem. In the following sections, we derive

constraints on the effectiveness of each process in depleting the injected wind energy

from a sample of well-studied H ii regions. We have selected this sample using several

criteria. First, there must be X-ray data available to enable us to determine the physical

properties of the hot gas and estimate the rate of radiative energy losses. Second, we

require radio observations that allow us to characterize the dense shells bounding the

H ii regions, since the radius and velocity of this shell enter in our estimates for the

mechanical luminosity.
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Finally, we require robust observational estimates of the wind energy output

by the stars. To obtain an accurate accounting of the wind energy, the spectral types of

the majority of the luminous stars are necessary, so that star-by-star surface gravities

and temperatures can be determined. Given these constraints, we have restricted our

analysis to four well-studied H ii regions in the LMC and MW, which we describe briefly

below. All our sources have young aged clusters (∼1–3 Myr old), and thus their X-ray

emission is predominantly powered by stellar winds from their MSCs.

5.3.2 Individual HII Regions

5.3.2.1 30 Doradus

30 Doradus (hereafter 30 Dor), located in the LMC (at a distance D ∼ 50 kpc),

is the most luminous and largest H ii region in the Local Group, with a radius of ∼ 100

pc and a bolometric luminosity of ∼ 2.3 × 108 L� (Lopez et al., 2013a; Doran et al.,

2013). It is primarily powered by NGC 2070 which contains ∼ 2400 OB stars. At its

center lies R136, a young (tage ∼ 1−2 Myr) dense star cluster with a stellar mass density

of 5.5× 104 M� pc−3 (Parker, 1993; Hunter et al., 1995). The total energy input by the

stellar winds is 2.2× 1039 erg s−1 (Doran et al., 2013), and its bubble shell is expanding

at an average speed of ∼ 25 km s−1 (Chu and Kennicutt, 1994). The X-ray emission

from 30 Dor was observed using the Chandra Advanced CCD Imaging Spectrometer

(ACIS) for an integrated time of ≈ 94 ks (PI: L. Townsley). Lopez et al. (2011) found

that the total diffuse unabsorbed X-ray luminosity of 30 Dor in the 0.5–2 keV band is

4.5 × 1036 erg s−1. From the X-ray spectra, Lopez et al. (2011) found that the X-ray
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emission can be characterized by a hot plasma with a temperature of 7.4× 106 K.

5.3.2.2 The Carina Nebula

The Carina Nebula, located at a distance of D ∼ 2.3 kpc, is one of the nearest

regions of active massive star formation (Allen and Hillier, 1993; Smith, 2006). This

complex is a “cluster of clusters”, containing 8 open clusters. It hosts ∼70 O stars, of

which 46 belong to the young star cluster Trumpler 16 (tcl ∼ 2− 3 Myr; Smith, 2006),

the home of the well-known luminous blue variable η Carina. The total bolometric

luminosity of the stars in the Carina Nebula is 2.5× 107 L�, and the total energy input

by stellar winds is ∼ 3.5 × 1038 erg s−1, with 70% of the energy budget coming from

Trumpler 16 (Smith, 2006; Harper-Clark and Murray, 2009). The nebula has a radius

of ∼ 20 pc (Harper-Clark and Murray, 2009; Townsley et al., 2011a) and its outer shell

is expanding at a velocity of ∼ 20 km s−1 (Smith et al., 2000; Smith and Brooks, 2007).

Carina has been studied extensively with Chandra. Townsley et al. (2011b) obtained a

1.2 Ms, 1.42 deg2 ACIS-I mosaic of the complex to characterize its diffuse emission and

to identify thousands of X-ray point sources (e.g., low-mass pre-main sequence stars and

massive stars). They found that the total integrated diffuse emission from the Carina

Nebula in the 0.5–7 keV X-ray band is 1.7 × 1035 erg s−1. To derive the temperature

of the hot gas, Townsley et al. (2011a) fit the X-ray spectra with three non-equilibrium

ionization (NEI) plasma components. For our purposes, we assume that the observed

hot gas temperature is the surface-brightness weighted value taken from Townsley et al.

(2011a). This yields a temperature of 4.5× 106 K.
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5.3.2.3 NGC 3603

The giant H ii region NGC 3603, located at a distance of D ∼ 7 kpc, contains

the most compact and youngest (tcl ≈ 1 Myr) massive “starburst” cluster located in the

MW (HD 97950; Crowther and Dessart, 1998). With a mass density of ∼ 105 M� pc−3,

HD 97950 is more compact than R136 (Hofmann et al., 1995). Assuming a distance of

D ∼ 8.4 kpc (Goss and Radhakrishnan, 1969), Balick et al. (1980) found that the radius

of NGC 3603 (i.e., the region which contains 90% of the radio flux) is 25 pc. Assuming

a distance of 7 kpc, the radius of NGC 3603 reduces to ∼ 21 pc. Balick et al. (1980)

also studied the dynamics of NGC 3603 by measuring multiple emission lines, including

Hα and N ii. They found that the N ii lines are double peaked and separated by ∼ 20

km s−1. Furthermore, they also measured the velocity dispersion of the Hα turbulent

line widths to be 20 km s−1. These results suggest that NGC 3603 is expanding at a rate

of ∼ 20 km s−1. Performing a stellar census of the massive stars in NGC 3603, Crowther

and Dessart (1998) estimate that the total mechanical energy input by stellar winds is

6.2× 1038 erg s−1. Smith (2006) suggest that the actual wind luminosity for NGC 3603

is smaller than this value because Crowther and Dessart (1998) do not consider the

effect of wind clumping in their analysis. However, Smith (2006) does not quantify

what this value is so we adopt the wind luminosity estimate from Crowther and Dessart

(1998) and warn the reader that this may likely be an overestimate. NGC 3603 was

observed with Chandra with 46 ks of usable time (Moffat et al., 2002). Townsley et al.

(2011a) re-analyzed these data and found 1328 X-ray point sources in the 17′ × 17′
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ACIS-I field. After removing these point sources, Townsley et al. (2011a) found that

the diffuse emission of NGC 3603 in the 0.5–7 keV band is 2.6× 1035 erg s−1. Similarly

to Carina, they fit the X-ray spectra by a multiple component plasma. Taking the

surface-brightness weighted average of their results, we adopt a hot gas temperature of

6.2× 106 K.

5.3.2.4 M17

The emission nebula M17, located at a distance of D ∼ 2.1 kpc, is on the

eastern edge of a massive molecular cloud, M17SW, and exhibits a blister-like structure

with a radius of ∼5.8 pc (Townsley et al., 2003). It is powered by the open cluster NGC

6616, which consists of a ring of seven O stars ∼ 0.5 pc in diameter (Townsley et al.,

2003). NGC 6616 is quite young, with an estimated age of . 1 Myr (Hanson et al.,

1997). Assuming a distance of 2.1 kpc to the nebula, Hoffmeister et al. (2008) found

that the total bolometric luminosity of the stellar population in M17 is 3.8 × 106 L�.

Dunne et al. (2003) estimate that Lw ∼ 1 × 1037 erg s−1. The bubble shell of M17

is expanding at a rate of ∼ 25 km s−1(Clayton et al., 1985). Townsley (2009) created

a deep (total ACIS-I integration time of 320 ks) mosaic of M17. From these data,

Townsley et al. (2011a) found that the total integrated diffuse emission from M17 in

the 0.5–7 keV X-ray band is 2.0 × 1034 erg s−1. They modeled the X-ray spectra by

a multiple component plasma, and from their model we adopt the surface-brightness

weighted value of 5.3× 106 K for the hot gas temperature.
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5.4 Results

In this section, we assess which sinks are responsible for removing the wind

kinetic energy injected by MSCs in our four H ii regions. We perform this analysis in

several steps. First, in Section 5.4.1, we constrain the actual densities and temperatures

of the hot gas in our sample H ii regions using the available observations of their diffuse

X-ray emission. Second, in Section 5.4.2, we evaluate all of the sink terms discussed in

Section 5.2 to determine which of them, if any, might be responsible for removing the

bulk of the wind energy. We use these calculations to evaluate the global energy budget

for stellar wind energy injection in Section 5.4.3.

5.4.1 Observational Constraints on the Hot Gas Density and Temper-

ature

The density and temperature of the hot gas are jointly constrained by the

observed (absorption-corrected) X-ray luminosity, while the temperature is constrained

by the shape of the X-ray spectrum. We focus on the former constraint first. A “parcel”

of hot gas with temperature T , electron number density nX, and volume V will have an

X–ray luminosity given by

LX, obs = 0.9n2
XV

∫ ν1

ν0

jν(T,Z)dν (5.19)

where jν(T,Z) is the emissivity of the hot gas and (ν0, ν1) is the frequency band of the

X-ray telescope. For our purposes, we focus on the soft (0.5–2 keV) X-ray band when
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Figure 5.3 Frequency-integrated emissivities from chianti for MW (Z = Z�) and LMC
(Z = 0.5 Z�) metallicities assuming that the hot gas is in CIE. The LMC emissivity is
integrated over the 0.5-2 keV Chandra band and the MW emissivity is integrated over
the 0.5-7 keV Chandra band.

available, since the luminosity at these energies originates from the diffuse structures

created by the collision of stellar winds. These are brighter by an order of magnitude

than the point sources (Townsley et al., 2006). From the literature, we only have LX for

the 0.5–2 keV band for 30 Dor (Lopez et al., 2011), whereas we have LX for the 0.5–7

keV band for the MW H ii regions (Townsley et al., 2011a). We use chianti to compute

jν(T,Z) for both MW and LMC abundances (Russell and Dopita, 1992; Grevesse and

Sauval, 1998), and we show the results in Figure 5.3. Under our simple assumption of
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a uniform hot gas filling the H ii region, we can then combine the observed luminosity

with the approximate volume of the region to obtain the number density of the hot

X-ray emitting gas,

nX =

√
LX, obs

0.9V
∫ ν1
ν0
jν(T,Z)dν

. (5.20)

From the X-ray data, one can also determine the temperature of the hot gas

by modeling the X-ray spectrum as an absorbed hot diffuse gas. For this purpose, we

adopt the surface-brightness weighted temperatures derived from the observations, as

discussed in Section 5.3.

Figure 5.4 illustrates the locus in the T − nX plane allowed by the observed

luminosities of our sample H ii regions, with points marked along these curves corre-

sponding to the temperatures inferred from the spectra. The nX versus T curves for

the MW sources have the same shape because they all use the same metallicity and

bandpass for jν(T,Z), but have different observed luminosities. The curve for 30 Dor

in the LMC has a slightly different shape due to the difference in both the frequency

band used for the observations and in the gas metallicity.

5.4.2 Energy Sinks

We next estimate the energy sinks discussed in Section 5.2 for our sample H ii

regions, in order to produce for each one a plot of the same type as shown in Figure 5.2

(i.e., the loci in the T−nX plane where each potential energy sink is capable of removing

all of the kinetic energy injected by the winds). The inputs to these calculations are
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Figure 5.4 Allowed hot gas number density, nX, versus temperature, T , constrained by
X-ray observations for the 30 Dor, Carina, NGC 3603, and M17 H ii regions. As can be
seen, the allowed nX for the MW H ii regions (Carina, NGC 3603, and M17) follow the
same shape but have different offsets due to their differing LX, obs. The points denote
the temperatures inferred by spectral fitting (see Table 5.1).

the observed H ii region properties given in Table 5.1. We show the results of these

calculations in Figure 5.5, with the curves of nX versus T inferred from the observed

X-ray emission overlaid.

The Lcool = Lw curve (i.e., Equation (5.4) – the solid teal line) indicates

density-temperature combinations such that all the kinetic energy injected by stellar

winds is radiated away. We remind the reader that the hot gas can only lie on or below

the ncool line in order to conserve energy (i.e., the gas can not radiate more energy than
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Figure 5.5 Same as Figure 5.2 but for the H ii regions in our sample. The gray lines with
stars along them indicate the values of nX versus T constrained by the observed X-ray
luminosities, with the stars indicating the temperatures inferred by spectral fitting (see
Table 5.1).

is injected into it). Clearly, the required number densities for cooling to dominate the

energy loss are much larger than the number density constrained by the observed X-ray

emission for all H ii regions in our sample for T & 106 K. The observationally-inferred

gas temperatures are well above this limit. We conclude that radiative cooling is not

an important energy sink, consistent with previous results (Dunne et al., 2003; Lopez

et al., 2011; Townsley et al., 2011a).
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Next, we consider the Lmech = Lw curve (i.e., Equation (5.6) – the dot-dashed

pink line), the locus of density-temperature combinations for which mechanical work on

the dense shell removes the bulk of the wind energy. We find that for temperatures of

& 1− 2× 106 K, mechanical work becomes more efficient at removing energy since the

hot gas pressure increases with temperature and Lmech ∝ nX. Thus, the Lmech = Lw

curve requires lower number densities than radiative cooling to remove the wind energy.

However, we find that nmech is still larger than the number density constrained by the

observed X-ray emission for all H ii regions unless the hot gas temperature exceeds

∼ 0.2 − 1 × 108 K. None of the H ii regions in our sample are in this temperature

range. Thus, we conclude that mechanical work on the bubble shell is not responsible

for removing the bulk of the wind energy.

The next energy sink we consider is thermal conduction. The Lcond = Lw

curve (i.e., Equations (5.12) and (5.13) – the dashed purple line) is nearly vertical at

low temperatures because Lcond depends only weakly on density (e.g., Equation (5.9))

in the unsaturated regime. Only when the heat flux reaches the saturated value does

the conductive luminosity exhibit any significant density dependence. We find that

the observationally-constrained number densities and temperatures do lie in the region

where conduction is capable of removing the bulk of the wind energy for 30 Dor and

M17. However, we remind the reader that our estimate of the conductive heat flux

is almost certainly a sizable overestimate, as we have entirely neglected the effects of

magnetic fields. Thus, our results show that for densities and temperatures consistent

with observations, thermal conduction can be an important energy sink for stellar wind
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energy as long as it is not significantly inhibited by magnetic fields.

Lastly, we consider the energy transfer of the hot gas to dust via collisions. The

Ldust = Lw curve (i.e., Equation (5.17) – the dashed blue line) indicates the density-

temperature combinations at which all of the energy injected by stellar winds is trans-

ferred to the dust via collisions with the hot gas. We find that the heating of dust is

more effective at removing energy from the hot gas than cooling and mechanical work

for T & 106 K. We also find that the Ldust = Lw curve is quite close to the observational

constraint line nX,obs for temperatures consistent with the observed spectrum in 30 Dor

and M17. This result suggests that dust heating could be a significant energy sink for

30 Dor and M17, but probably not in NGC 3603 and Carina. However, as with con-

duction, our energy loss estimates for dust heating are likely to be large overestimates,

since they assume that the dust content in the hot gas matches that in the cool ISM.

We defer a calculation of the rate of energy leakage via bulk motion to Section

5.4.4 since the confinement factor Cf is unconstrained observationally.

5.4.3 Implications for the Energy Budget

In order to better constrain the dominant source of kinetic energy removal, and

to illustrate the problem of the missing wind energy, we next calculate the various energy

sinks as a function of the hot gas temperature. We perform this calculation at each

temperature T by using the observed X-ray luminosity to calculate the corresponding

density nX,obs from Equation (5.20). For each T − nX,obs pair, we then compute all

the energy sinks discussed in the previous Section: radiative cooling, mechanical work,
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Name nX [cm−3] Lcool
Lw

Lmech
Lw

Lcond
Lw

Ldust
Lw

Cf
a Cf, all

b

30 Doradus 0.058 0.37% 15% < 97% < 40% > 0.84 –
Carina 0.14 0.16% 4.3% < 22% < 11% > 0.36 < 0.58
NGC 3603 0.13 0.10% 3.7% < 41% < 11% > 0.36 < 0.70
M17 0.27 0.55% 38% < 392% < 48% > 0.95 –

Table 5.2 Inferred number densities, luminosities, and confinement factors.

Note. — For each H ii region in the sample, nX is the number density inferred from the observed
X-ray luminosity and best-fitting temperature. The columns Lcool/Lw, Lmech/Lw, Lcond/Lw, and
Ldust/Lw show the radiative cooling, mechanical work, conduction, and dust cooling luminosities
normalized to the wind energy injection rate; the latter two are upper limits. Finally, Cf (Cf, all) is the
confinement factor that would be required to remove the unaccounted-for wind energy via bulk motion.

aDerived Cf includes energy loss due to mechanical work and radiative cooling. These act as lower limits
since the values obtained for these energy loss mechanisms are reasonable estimates.
bDerived Cf, all includes energy loss due to mechanical work, radiative cooling, thermal conduction, and
dust heating via collisions. These act as upper limits since the values obtained for thermal conduction
and dust heating via collisions are likely overestimates.

thermal conduction, and dust heating via collisions, and compare the sum of these

cooling rates to the wind energy input rate.

Figures 5.6 - 5.9 show the results. Given the uncertainties in the true rates

of conductive and dust heating, we perform this calculation both excluding them (left

panels) and including them (right panels). The top panels show the absolute values of

the individual and total energy loss rates, whereas the bottom panels show the energy

loss rates as a fraction of the total energy injection rate by stellar winds. We remind

the reader that values above the horizontal lines in these figures are not allowed due

to energy conservation. The shaded regions illustrate how much energy is missing, i.e.,

what fraction of the injected wind energy cannot be accounted for by the sum of the

various sinks we have been able to calculate. We also report these values, using the
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Figure 5.6 Hot gas temperature versus the energy loss rates for the energy loss mecha-
nisms described in Section 2 for the observationally constrained hot gas number density
for 30 Dor. The horizontal line in the top and bottom panels denote the stellar wind
energy injection rate for 30 Dor. The left panels consider only Lcool and Lmech, since
these values are reasonable estimates whereas the left panels also include thermal con-
duction and dust heating via collisions, which are likely overestimates. Stars denote the
values of TX inferred by spectral fitting.

temperatures inferred from fitting the X-ray spectra, in Table 5.2.

For temperatures reasonably consistent with the observationally-inferred val-

ues (4.5× 106 K . TX, obs . 7.5× 106 K, c.f. Table 5.1), we find that radiative cooling

acts as a negligible energy sink, contributing to < 1% of the fractional energy loss for
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Figure 5.7 Same as Figure 5.6 but for Carina.

all H ii regions. Mechanical work accounts for 3.7% − 38% of the energy injected by

winds, and for < 15% in three of our four sample regions. We find that mechanical work

can account for 38% of the stellar wind energy injected in M17. This large fraction of

energy transferred to mechanical work is likely due to M17’s small size. The inferred

number density from the X-ray emission is inversely related to the H ii region volume

(i.e., nX ∝ V −1/2), thus a smaller volume for a given X-ray luminosity and plasma

temperature would yield a larger inferred number density and hot gas pressure.
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As illustrated in the right panels of Figures 5.6 - 5.9, the situation is different

if we include dust heating and/or thermal conduction. By combining these energy sinks

with mechanical and radiative losses in Carina and NGC 3603, we can account for 37%

and 55% of the injected energy, respectively. In the remaining two H ii regions, setting

the conductive and dust cooling rates to their maximum would lead to a luminosity

greater than that injected by winds. However, this assumption is only true if magnetic

fields do not inhibit conductive losses in any way and the dust to gas ratio is the same in

the hot gas as in the cold ISM. Neither of those assumptions are likely to be true, as we

discuss further in Section 5.5, even at the order of magnitude level. Only in M17, where

we find Lcond/Lw ≈ 4.8 (see Table 5.2), is there a significant margin of error. In all the

other regions, if the failure of these assumptions were to reduce the real conductive and

dust luminosities by even a factor of a few compared to our upper limit, we would no

longer be able to account for all the injected wind energy.

5.4.4 Ways Out: Where’s the Missing Energy?

We have shown that the combined effects of radiative cooling and mechanical

work cannot account for the missing energy of the hot post-shocked stellar wind material

in our sample. Thermal conduction and dust heating via collisions might, but only if

the assumptions described above are true. Are there other ways out?

One possible solution is that the hot gas acts as an energy reservoir for the

winds. If storage in the thermal energy of the hot gas is significant, and has been over

the cluster’s lifetime, then the present-day thermal energy of the hot gas is of order of
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Figure 5.8 Same as Figure 5.6 but for NGC 3603.

the total energy that has been injected since the winds started blowing, Ew ∼ Lwtcl.

The resulting energy density for the stellar winds is uw = Lwtcl/V . Equating the stellar

wind energy density to the energy density of the hot gas, uX = 3
2(1.9nXT ), yields a

number density of

nw = 0.05

(
Lw

1038 erg s−1

)(
tcl

Myr

)(
T

107 K

)−1( Rsh

50 pc

)−3

. (5.21)
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Figure 5.9 Same as Figure 5.6 but for M17.

Assuming that the wind energy is stored in the thermal energy of the hot gas, we find

that the required nw is 0.6, 17, 8.4, and 6.4 cm−3 for 30 Doradus, Carina, NGC 3603, and

M17, respectively for T = 5× 106 K, roughly the observationally-inferred value. Figure

5.5 shows that these number densities are well above the observationally-constrained

nX − T curve and well into the forbidden region where one or more loss mechanisms

would remove energy faster than it is injected. This immediately demonstrates that

depositing the wind energy into the thermal reservoir of the hot gas is not a viable
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Figure 5.10 Contours of constant confinement parameter, Cf , for all H ii regions in our
sample. The value of Cf shown is that which would be required for physical leakage
to account for all of the wind energy not removed by radiative cooling and mechanical
work on the bubble shell. The curve of nX,obs versus T required for consistency with
the observed X-ray emission is over-plotted. Stars denote the values of T inferred from
the spectral fitting.

solution.

Since the above argument suggests that the wind energy is not stored in the

hot gas another possible solution is physical leakage of the hot gas. If the bubble shell

is porous, the hot gas can physically leak out since the sound speed of the hot gas is

greater than the expansion rate of the bubble shell (as discussed in Section 2.5). The

energy loss by physical leakage is controlled by the porosity of the bubble shell, which
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Figure 5.11 Same as Figure 5.10 for Carina and NGC 3603 but also including the energy
transfer associated with thermal conduction and collisional heating of dust grains.

we can parameterize by the covering fraction Cf . If the shell is very porous, the shock-

heated gas will escape easily, resulting in a significant loss of the wind energy from the

bubble, greatly reducing the X-ray luminosity. From the energy loss processes discussed
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in Section 2, we have that the total energy loss of the hot gas is

dE

dt
= Lw − Lcool − Lmech − Lcond − Ldust − Lleak. (5.22)

Using Equation (5.18) and assuming that these processes account for the total energy

loss of the hot gas (i.e., dE
dt = 0), Cf is given by

Cf = 1− 2

5

[Lw − Lcool − Lmech − Lcond − Ldust]

4πR2µmpnXc3
s

(5.23)

which depends on both nX and T .

Figure 5.10 show contours of the values of Cf required to account for the

missing energy as a function of hot gas density and temperature. To generate this

figure, we solve Equation (5.23) at each point in the T − nX plane, assuming that only

radiative cooling, mechanical work, and physical leakage contribute to energy loss, i.e.,

that Lcond = Ldust = 0. We also show the loci in the T −nX inferred from the observed

X-ray emission. The plot shows that physical leakage can adequately account for the

missing energy for these H ii regions for plausible values of the confinement factor. For

the observationally-favored temperature and the corresponding derived density values

(denoted by points in the Figure), the required values of Cf are in the range 0.36− 0.95

(also see Table 5.2). Adopting non-zero values of Lcond or Ldust would increase these

values as can be seen in Figure 5.11 and Table 5.2 for Carina and NGC 3603.

Finally, we note that there is one additional mechanism that we have not con-

sidered because we lack the ability to calculate it: turbulent mixing of the hot gas with
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cooler gas followed by conduction. As the shell expands into the ISM, the bubble shell

interface becomes corrugated by instabilities (Strickland and Stevens, 1998). These in-

stabilities will lead to the addition of cooler, denser material in the bubble interior. This

material can then mix with the hot gas, and the resulting large temperature variations

over small scales will produce very rapid thermal conduction. For example, if the hot

gas (T ∼ 106 − 107 K) mixes with the surrounding warm, ionized gas (T ∼ 104 K) the

resulting mixture will have temperatures of ∼ 105 K (Dunne et al., 2003) and this gas

will cool rapidly via metal-line cooling in the far-UV before adiabatically expanding and

filling the whole H ii region. Figure 5.5 shows that the cooling of the denser, mixed gas

can effectively radiate all of the wind energy.

5.5 Discussion

5.5.1 Deviations from Collisional Ionization Equilibrium

Throughout our analysis we have assumed that the post-shocked wind material

responsible for the diffuse X-ray emission in H ii regions is in CIE. This assumption

allows one to easily determine the allowed locus in the T − nX plane for an optically

thin plasma given its observed X-ray luminosity. This is because the ionization fractions

of the plasma depend only on T and Z under the assumption of CIE, as does the

emissivity, jν , and the radiative cooling function Λ. However, a hot plasma which was

initially in equilibrium will deviate from equilibrium if the gas cools faster than it can

recombine. The rapid cooling will cause the gas to become “over-ionized” (Gnat and
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Sternberg, 2007). One such example is if the hot plasma undergoes rapid adiabatic

expansion before significant radiative losses can occur (Breitschwerdt and Schmutzler,

1999) which has been observed in SN remnants (Lopez et al., 2013b, and references

therein). This scenario is likely the case for the hot gas we are considering in MSCs

because the initial post-shock wind material will adiabatically expand and fill up the

entire H ii region before suffering drastic radiative losses.

Gnat and Sternberg (2007) studied the time-dependent behavior of a hot, low-

density plasma and found that non-equilibrium effects cause the radiative cooling rate

to be suppressed by a factor of 2− 4 as compared to an equilibrium plasma. This result

leads to an increase in the cooling time of a non-CIE plasma, rendering radiative cooling

even more unimportant than our fiducial analysis suggests. Hence, our assumption of

CIE likely only over-estimates the cooling rate for a given density.

Similarly, the emissivity, jν , integrated over the X-ray band, is of order Λ

for the temperatures that we consider (e.g., T & 106 K). Thus, if Λ is suppressed by a

factor of at most 4, then the integrated emissivity will decrease by a similar factor. This

decrease in the emissivity will lead to the derived nX to increase, at most, by a factor

of 2, which would cause Lmech and Ldust to increase by factors of 2 and 4, respectively.

Furthermore, Lcool will remain the same since the decrease in Λ will cancel the increase

in nX. Lcond will remain approximately the same since the energy loss due to conduction

in the unsaturated regime depends very weakly on density. Hence, we conclude that if

the hot gas is not in CIE then radiative cooling is still an inefficient energy sink for the

hot gas. The energy transfer due to mechanical work on the shell and dust heating via
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collisions will be larger than our fiducial estimates, but only by factors of order unity.

5.5.2 Thermal Conduction and Magnetic Fields

In our analysis, we found that thermal conduction can remove a significant

amount of energy from the hot gas, but only if we assume that it is not substantially

suppressed by the presence of a magnetic field oriented with field lines parallel to the

wall of the bubble. If such a magnetic field is present, it inhibits electron transport

between the hot and cold gas, reducing the conduction coefficient compared to our

fiducial value by a factor of order (re/`e)
2, where re is the electron gyroradius and `e is

the electron mean free path. In a plasma of 107 K gas with a density of 1 cm−3, roughly

our observationally-inferred values, `e ∼ 0.04 pc. In comparison, for a magnetic field of

strength B, the gyroradius is re = 108
√
T7/B0 cm, where T7 = T/107 K and B0 = B/1

µG, so the ratio (re/`e)
2 ∼ 10−20 even for an extremely weak field of 1 µG. Thus even

such a weak field will completely suppress conduction across field lines, and the only

remaining question is the magnetic field geometry.

The molecular clouds out of which MSCs form are magnetized (Crutcher,

2012). A number of authors have simulated H ii regions expanding into magnetized

media (e.g., Krumholz et al., 2007c; Wise and Abel, 2011; Arthur et al., 2011; Gendelev

and Krumholz, 2012), and a generic result of these simulations is that, as the H ii re-

gion expands, advection of material out of the low-density interior into the surrounding

swept-up dense shell results in a decrease in field strength in the H ii region interior

and an increase in field strength at the swept-up shell. This same phenomenon tends
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to reconfigure the field orientation such that, over most of the swept-up shell, the field

is oriented parallel to the shell wall, i.e., the configuration that should be most effective

at suppressing thermal conduction between the hot and cold phases. Although mea-

suring magnetic fields in the shells that bound H ii regions is difficult, there is some

observational evidence for this phenomenon operating. Pellegrini et al. (2007) measure

the field strength in the photodissociation region (PDR) bounding the M17 H ii region

to be ∼ 100 µG, far above the mean interstellar value, suggesting that field amplifi-

cation has taken place and that conduction is being suppressed. Indeed, Dunne et al.

(2003) conclude that such a strong field is required to explain the observed low X-ray

luminosity of M17.

Although M17 is just one example, and in it we have only circumstantial

observational evidence that the field is oriented parallel to the dense shell wall, that

plus the simulation results is highly suggestive that magnetic suppression of conduction

is probably very effective in most H ii regions, with the effectiveness depending on the

detailed magnetic field configuration. It is therefore likely that conduction is not a

significant source of energy loss. Note that this statement does not apply to what we

have termed turbulent mixing followed by conduction. The reason is that turbulence

will cascade down to scales comparable to the electron gyroradius, and on such small

scales conduction is no longer suppressed by magnetic fields. Magnetic fields suppress

only laminar conduction, not conduction that is the end product of a turbulent cascade

originating at an unstable interface.
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Figure 5.12 Ratio of the dust destruction time scales to the crossing times for our H ii
region sample. The points denote the observed TX and the corresponding nX values
obtained from our derived T − nX plane.

5.5.3 Dust Sputtering and the Dust Cooling Rate

We also found that the heating of dust by collisions with the hot electrons can

be an important energy sink for the hot gas, but to be conservative we performed this

calculation assuming the same dust to gas ratio in the hot gas as in the cold ISM. This

assumption is unlikely to be satisfied. To see why, it is helpful to compare the mixing

timescale of the dust that is entrained into the hot gas with the timescale for this dust

to be destroyed by sputtering. The mixing timescale will be of order the crossing time,

τcr = R/cs, of the hot gas. In comparison, the approximate lifetime of dust grains
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immersed in hot gas is

τd ≈ 1× 105

[
1 +

(
T

106 K

)−3
](

a

0.1µm

)( ni

cm−3

)−1
yr (5.24)

where a is the dust grain size (Draine, 2011).

Figure 5.12 shows the ratio of dust grain lifetimes and crossing times for the

H ii regions in our sample using our derived nX, where we have assumed a typical grain

size of 0.1 µm in Equation (5.24). We find that under our derived conditions, the dust

grains will survive from a few ×105 years up to a couple Myrs. This results in the

dust surviving from a few to ∼ 10 crossing time scales for the temperatures given in

Table 5.1. This suggests that it is possible for dust grains with sizes greater than 0.1

µm to survive for some length of time in the hot gas. However, since the crossing and

destruction timescales are not very different, our assumption that the dust abundance

in the hot gas matches that in the cold gas is likely still a substantial overestimate. To

keep the dust abundance so high, cold gas would have to be continually mixed into the

hot H ii region interior on times not much greater than the hot gas crossing timescale.

Such rapid mixing would likely in itself be a major cooling source, rendering the dust

of secondary importance.

5.6 Conclusion

In this chapter, we have examined the many different ways that MSCs can lose

the kinetic energy injected by fast stellar winds from massive stars. These winds collide
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with each other and the ISM, generating hot shock-heated material at temperatures of

∼ 107 K, and the mechanical luminosity associated with the production of this gas is

comparable to that provided by supernovae at later stages of stellar evolution. However,

the effects of this gas on the ISM depend critically on where the energy ultimately ends

up – does it go into bulk motion of the cold ISM, possibly disrupting gas clouds and

halting star formation? Is it radiated away as X-ray emission? Is it lost in some other

way?

To address these questions, we have used the empirically determined properties

from four LMC and MW MSCs. For each of these, the set of observational constraints is

sufficient to allow us to estimate the wind energy input, and conversely, to estimate the

rates of energy loss due to radiative cooling, mechanical work on the dense H ii region

shell, thermal conduction, collisional dust heating, and physical leakage of hot gas out

of the dense shell. We find that radiative cooling of the hot gas accounts for less than

1% of the total energy injected by stellar winds for the observed hot gas temperatures

in the H ii regions we have considered. While this might appear to favor a significant

fraction of the energy going into mechanical work and thus being available as a form of

feedback, our estimates of the rate of mechanical work on the dense H ii region shell

suggest that this is not the case. Instead, for all but one of the H ii regions (M17), we

find that at most ∼ 15% of the injected wind energy goes into doing mechanical work on

the ISM. This limits the potential importance of winds as a stellar feedback mechanism,

since it suggests that the efficiency with which they can be converted to bulk motion is

fairly low.
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This raises the question: if the bulk of the wind energy does not go into

radiation nor mechanical work, where does it go? We identify four possible scenarios.

The first is that the energy could be lost via thermal conduction at the hot-cold shell

interface, followed by line radiation from this gas at far-UV wavelengths. However,

this scenario appears to be viable only under the most optimistic possible assumptions.

Thermal conduction will be dramatically reduced if there is a magnetic field parallel to

the hot-cold interface, a configuration that simulations suggest should be common. It is

possible to check this possibility via observations in several ways. If thermal conduction

is the dominant loss mechanism, then observations of far-UV radiation in H ii regions

should discover a significant mass of ∼ 105 K gas in these objects. More indirectly,

polarization studies and Zeeman line splitting measurements of the gas in H ii regions

and their shells can allow one to determine the orientation of the magnetic field and

magnetic field strength. If the magnetic field is indeed parallel to the hot-cold interface,

then thermal conduction will be strongly suppressed.

A second scenario is that wind energy stored in the hot gas is transferred to

dust grains via collisions, and then radiated as infrared continuum. While this provides a

sufficient energy sink to account for most of the injected wind energy if the dust content

of the hot gas is the same as that of the cold gas, this too seems highly improbable.

Grains ∼ 0.1 µm in size will be destroyed by sputtering in the hot gas in a time that is

only a factor of a few larger than the crossing timescale, which suggests that it would

be difficult to maintain a large population of such grains. Observationally, one might

be able to evaluate this possibility by checking for distortions in the dust continuum
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spectrum. Since sputtering will preferentially destroy small grains, the infrared spectral

energy distribution (SED) produced by the remaining grains should be shifted to longer

wavelengths than the usual dust SED.

The third way the energy can be accounted for is if the hot gas physically leaks

out of the H ii region through holes in the bubble shell. These holes can be a result

of stellar feedback punching holes in the dense H ii region shell or because the shell

expands into a non-uniform ISM. We find that, for plausible values of the confinement

factor of the dense shell, this loss mechanism would be sufficient to account for the

missing energy. In support of this scenario, Rogers and Pittard (2013) simulate the

interaction of the mechanical energy input by stellar winds of three O-stars in a GMC

and find that the hot gas generated by the shock heated stellar winds flows out of the

GMC through low-density channels.

Our fourth and final scenario is that the hot gas can lose a significant amount

of energy by mixing with the cold gas, followed by thermal conduction at the turbulent

interface between the two – turbulent conduction. The resulting mixed gas will have

temperatures of ∼ 105 K and will drastically cool via radiation in the far-UV. There is

one indirect piece of observational evidence for this scenario: Bowen et al. (2008) report

high O vi absorption in Carina, suggesting an overabundance of ∼ 105 K gas as com-

pared to the normal ISM in the MW. Such an excess might also be evidence of laminar

conduction without turbulent mixing, and one can distinguish between these scenarios

by measuring the magnetic field strength and orientation. If a magnetic field parallel

to the hot-cold interface is present, then the energy loss will most likely be dominated
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by turbulent conduction. We conclude that the either this scenario or physical leakage

is the most likely explanation for the missing energy.

These four possible scenarios suggest that one productive avenue for further

investigation is three-dimensional simulations of stellar wind feedback. Simulations of

wind feedback including self-gravity and a realistically-turbulent confining molecular

medium are quite rare. Rogers and Pittard (2013) is one of the few examples. How-

ever, even these simulations include none of the physical mechanisms – magnetic fields,

thermal conduction, dust sputtering – that would be required to address any scenario

except bulk leakage. Incorporating these mechanisms into future simulations would be

a valuable complement to observational studies such as this one, and might lead to the

development of new observational diagnostics that could be used to track down the

missing energy.
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Chapter 6

Conclusions & Future Work

This thesis explored a breadth of topics in massive star formation and early

MSC evolution. With the use of analytical and numerical techniques we studied how

massive stars form, what physical properties set their initial properties at birth, and

how these stars feed back on their environments with their intense radiation fields and

fast, radiatively driven winds.

In Chapter 2 we presented an analytical model that described the rotational

evolution of accreting massive protostars. Our work showed that, thanks to the speed

with which they form, massive stars should all be born rotating at high speeds in

agreement with observations (Wolff et al., 2006). This effect makes massive stars more

disruptive to their environments since fast rotation leads to higher luminosities and

stronger winds.

As discussed, one of the greatest barriers in the formation of massive stars

is the radiation pressure associated with their high luminosities. The resulting radia-
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tion pressure can oppose gravity and halt accretion. Therefore, detailed simulation of

massive star formation requires an accurate treatment of radiation. As we described

in Chapter 1, past three-dimensional simulations have provided progress in our under-

standing of how these stars form. However, these simulations have either used ad-hoc

prescriptions to model the radiation field from stars (Krumholz et al., 2009); have only

been able to simulate a single star fixed in space, thereby suppressing potentially im-

portant instabilities (Kuiper et al., 2011, 2012); or did not provide adequate resolution

at locations where instabilities may develop (Klassen et al., 2016)

To remedy this we developed a new, highly accurate hybrid radiation scheme

that handles both the absorption of energy and momentum from the direct stellar ra-

diation field and its subsequent re-emission and processing by interstellar dust. We

added our new method to the ORION astrophysical adaptive mesh refinement code.

Our hybrid radiative transfer algorithm was presented in Chapter 3. Our new method,

HARM2, uses a long characteristics ray tracer to model the direct stellar radiation field,

which traces rays on a cell by cell basis thus providing maximum possible accuracy. Our

method is adaptive, in which rays are allowed to split as they travel away from their

source, greatly reducing the computational cost (Abel and Wandelt, 2002); and is capa-

ble of representing multifrequency stellar irradiation for an arbitrary number of moving

stars. The multifrequency treatment is ideal for stars since they have color temperatures

much higher than the absorbing medium. In HARM2, the dust-reprocessed radiation

pressure is handled by a Flux Limited Diffusion solver (Krumholz et al., 2007b). We

showed that our method is highly parallel and can run efficiently on hundreds of pro-
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Figure 6.1 Massive star formation schematic. From left to right: (a) Initial magnetized,
turbulent pre-stellar core. (b) Collapse of pre-stellar core leads to star surrounded by an
accretion disk. Radiation pressure from the star launches radiation pressure dominated
bubbles above and below the star. (c) Collimated outflows will punch holes in the ISM
along the polar directions of star. (d) Stellar winds will shock-heat infalling material
and ablate the accretion disk. (e) The combination of these feedback processes will eject
ambient material and may inhibit further accretion onto the star.

cessors, as required for a computational challenge of this magnitude.

With this new tool, we performed a series of massive star formation simula-

tions from the collapse of initially laminar and turbulent pre-stellar cores, presented in

Chapter 4. We found that mass is channelled to the massive star via gravitational and

Rayleigh-Taylor (RT) instabilities. For laminar pre-stellar cores, we found that proper

treatment of the direct radiation pressure produces later onset of RT instability, but

does not suppress it entirely. RT instabilities arise immediately for turbulent cores be-

cause the initial turbulence seeds the instabilities. Furthermore, we showed that dense

infalling filaments supply a significant amount of mass to the massive star. This work

represents the most accurate and high-resolution radiation-hydrodynamic simulations

of massive star formation performed to date.

The simulations presented in Chapter 4 only focused on how radiative feedback

may limit massive star formation. However, the feedback associated with the star’s fast,

stellar winds and magnetically launched collimated outflows may also limit accretion

onto massive stars at late times during their formation. Yet no massive star formation
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simulations to date have included feedback from winds and collimated outflows in con-

junction with the highly-accurate treatment of the radiation pressure presented in this

thesis.

Collimated protostellar outflows impart momentum to the stellar environment,

ejecting material along the polar directions of the star. This effect will eventually cut-

off accretion as the opening angle of the outflows grow larger with time (Kuiper et al.,

2015). Furthermore, outflows may make mass delivery via RT instabilities less significant

(Cunningham et al., 2011). Previous theoretical and observational studies find that the

typical mass ejection rate from outflows is ∼ 1/3 of the accretion rate (Beuther et al.,

2002; Seifried et al., 2012). In addition, stellar winds collide with infalling material

and shock-heat gas to ∼ 107 K that will expand and push on the infalling material,

eventually ejecting low density material (Weaver et al., 1977). The interaction of these

stellar winds may also lead to disk ablation that will eventually stop disk accretion (Kee

et al., 2016). Figure 6.1 illustrates how these different feedback processes can affect the

formation of massive stars.

While observations suggest that massive stars with initial masses well in excess

of 150 M� may exist (Crowther et al., 2010, 2016), it is unclear how these stars attain

such high masses and what role feedback plays on the upper mass limit of the stellar

initial mass function. Therefore a complete picture of how the most massive stars form

remains incomplete and future work should consider how the combination of radiation

pressure, stellar winds, and protostellar outflows can limit accretion onto massive stars,

especially at late times in the formation process.
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Numerical simulations that include these feedback mechanisms can address

several outstanding questions raised by observations of massive star formation: How

does feedback determine the star formation efficiency of pre-stellar cores? Is there an

upper mass limit to the masses of stars that can form by accretion? If so, how does

this upper mass limit compare to observations? If accretion sets a lower limit than

observations imply, then are stellar mergers responsible for stars with masses above this

limit (de Mink et al., 2014)? If feedback sets an upper mass limit, then which feedback

mechanism sets it? Determining which feedback mechanism regulates the formation

of massive stars will also provide the foundation to study how the variation of the

upper mass limit set by accretion depends on galactic properties. For example, the

winds of low-metallicity stars are much weaker due to the lack of iron opacity (Vink

et al., 2001). If winds are the dominant feedback mechanism regulating massive star

formation then the upper mass limit should be higher in low-metallicity environments.

Likewise, radiation pressure will also be weaker in low-metallicity environments because

these environments contain less dust. Both of these effects will affect the upper mass

limit set by accretion in different galactic environments, while feedback from outflows

should have no dependence on metallicity. Thus, while the work presented in this thesis

provides an outlet for the radiation pressure barrier in massive star formation there is

still much work to be done.

In Chapter 5 we also considered how the kinetic energy from the shocked

stellar winds from the numerous massive stars can transfer energy to the surrounding

gas in H ii regions that host MSCs. As we discussed, previous observational studies
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suggest that the hot gas produced by the shock-heating of stellar winds in MSCs is

dynamically unimportant because rather than being confined, it tends to “leak” out of

the surrounding H ii region. The primary piece of evidence for this hypothesis is the

surprisingly weak X-ray emission observed in numerous H ii regions (Harper-Clark and

Murray, 2009; Lopez et al., 2011), which is much weaker than simple theoretical models

suggest (Weaver et al., 1977).

By using observations and considering several energy loss mechanisms, we

found that laminar conduction and dust heating via collisions could account for a large

fraction of the wind energy, assuming the H ii region shell is unmagnetized and that

the dust is perfectly mixed with the hot gas. Work done on the ISM is usually sub-

dominant, and with the available data it is not possible to estimate loss rates due to

physical leakage or turbulent conduction. However, it still remains uncertain if stellar

wind feedback is important during the early formation of MSCs.

These results suggest that further progress requires simulations of MSC for-

mation with radiation and stellar wind feedback. Only a couple relevant simulations

have been published (Freyer et al., 2003; Rogers and Pittard, 2013), and none thus far

have included the physical mechanisms – radiation, magnetic fields, thermal conduction,

dust sputtering – that would be required to address any scenario except bulk leakage.

Furthermore, the relative role of winds versus other feedback modes (such as photoion-

ization flows, radiation pressure, and SNe) have not been tested. In particular, radiation

pressure is the most likely to play an important role in MSCs (Krumholz and Matzner,

2009; Fall et al., 2010; Murray et al., 2010; Yeh and Matzner, 2012), yet no simulations
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to date have included it. Luckily, with the use of HARM2 and MHD in AMR codes

like ORION, the next generation of simulations can simulate the early phases of MSCs

with the relevant feedback mechanisms to improve our understanding of MSC formation

and their early evolution. Finally simulations such as these can also shed light on the

importance of stellar feedback in galaxy formation and evolution since stellar feedback

is likely responsible for the low star formation efficiencies and efficient gas expulsion

observed in many galaxies.

To conclude, the work presented in this thesis has paved the way for the next

generation of massive star and MSC simulations required to study how stellar feed-

back from radiation, protostellar outflows, and stellar winds impact their formation.

Future work must contain these relevant feedback processes and also magnetic fields

since massive star forming regions are magnetized. Such work will lead to a more com-

plete understanding of how the most massive stars and star clusters form. Furthermore,

the next generation of simulations can also be used to develop detailed sub-grid stellar

feedback models that can be used in future cosmological simulations. Such work will

facilitate unprecedented strides in our understanding of how stellar feedback can limit

star formation and influence galaxy formation and evolution.
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Mücke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; Pittard, J. M.;

Pollock, A. M. T. and Brandner, W. Galactic Starburst NGC 3603 from X-Rays to

Radio. ApJ 573, 191 (2002).

Moss, D. Magnetic Fields in the Ap and Bp Stars: a Theoretical Overview. In Mathys,

G.; Solanki, S. K. and Wickramasinghe, D. T., eds., Magnetic Fields Across the

Hertzsprung-Russell Diagram (2001), vol. 248 of Astronomical Society of the Pacific

Conference Series, p. 305.

257



Mueller, K. E.; Shirley, Y. L.; Evans, II, N. J. and Jacobson, H. R. The Physical

Conditions for Massive Star Formation: Dust Continuum Maps and Modeling. ApJS

143, 469 (2002).

Murray, N.; Quataert, E. and Thompson, T. A. The Disruption of Giant Molecular

Clouds by Radiation Pressure & the Efficiency of Star Formation in Galaxies. ApJ

709, 191 (2010).

Murray, S. D.; Castor, J. I.; Klein, R. I. and McKee, C. F. Accretion disk coronae in

high-luminosity systems. ApJ 435, 631 (1994).

Myers, A. T.; McKee, C. F.; Cunningham, A. J.; Klein, R. I. and Krumholz, M. R. The

Fragmentation of Magnetized, Massive Star-forming Cores with Radiative Feedback.

ApJ 766, 97 (2013).

Myers, P. C. and Fuller, G. A. Density structure and star formation in dense cores with

thermal and nonthermal motions. ApJ 396, 631 (1992).

Nakamura, F.; McKee, C. F.; Klein, R. I. and Fisher, R. T. On the Hydrodynamic

Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud

Boundaries on Cloud Destruction and Cloud Turbulence. ApJS 164, 477 (2006).

Nakano, T. Conditions for the formation of massive stars through nonspherical accre-

tion. ApJ 345, 464 (1989).

258



Nakano, T.; Hasegawa, T.; Morino, J.-I. and Yamashita, T. Evolution of Protostars

Accreting Mass at Very High Rates: Is Orion IRc2 a Huge Protostar? ApJ 534, 976

(2000).

Nieuwenhuijzen, H. and de Jager, C. Parametrization of stellar rates of mass loss as

functions of the fundamental stellar parameters M, L, and R. A&A 231, 134 (1990).

Norman, M. L.; Paschos, P. and Abel, T. Simulating inhomogeneous reionization.

Mem. Soc. Astron. Italiana 69, 455 (1998).

Offner, S. S. R.; Klein, R. I.; McKee, C. F. and Krumholz, M. R. The Effects of

Radiative Transfer on Low-Mass Star Formation. ApJ 703, 131 (2009).

Oksala, M. E.; Wade, G. A.; Marcolino, W. L. F.; Grunhut, J.; Bohlender, D.; Manset,

N.; Townsend, R. H. D. and Mimes Collaboration. Discovery of a strong magnetic

field in the rapidly rotating B2Vn star HR 7355. MNRAS 405, L51 (2010).

Ostriker, E. C. and Shu, F. H. Magnetocentrifugally Driven Flows from Young Stars

and Disks. IV. The Accretion Funnel and Dead Zone. ApJ 447, 813 (1995).
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