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Abstract

In wearable optical sensing applications whose target tissue is not superficial, such as deep tissue 

oximetry, the task of embedded system design has to strike a balance between two competing 

factors. On one hand, the sensing task is assisted by increasing the radiated energy into the body, 

which in turn, improves the signal-to-noise ratio (SNR) of the deep tissue at the sensor. On the 

other hand, patient safety consideration imposes a constraint on the amount of radiated energy into 

the body. In this paper, we study the trade-offs between the two factors by exploring the design 

space of the light source activation pulse.

Furthermore, we propose BASS, an algorithm that leverages the activation pulse design space 

exploration, which further optimizes deep tissue SNR via spectral averaging, while ensuring 

the radiated energy into the body meets a safe upper bound. The effectiveness of the proposed 

technique is demonstrated via analytical derivations, simulations, and in vivo measurements in 

both pregnant sheep models and human subjects.
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1 INTRODUCTION

A growing number of applications involve deep tissue optical sensing using wearable-grade 

electronics. In such systems, light generated by emitters, such as light-emitting diodes 

(LEDs), is radiated into the body toward the tissue of interest. The radiated light diffuses 

into the tissue bed, and a small fraction of the diffused light is non-invasively detected 

by light sensors in the wearable system. The detected light may have propagated through 

multiple tissue layers, including a deep tissue of interest, whose chemical composition 

regulates light attributes, such as its intensity, thereby enabling the system to non-invasively 

sense specific tissue properties [34].

Human tissue is a highly scattering medium for light. As a result, the amount of light energy 

that is received by a light detector on the subject’s skin is far smaller than the radiated 

energy in the body. This makes the task of embedded system design challenging, as it needs 

to faithfully sense and capture very weak signals that are due to the deep tissue of interest.

An illustrative application of deep tissue sensing is non-invasive fetal oximetry, in which the 

goal of the wearable system is to perform pulse oximetry on an in utero fetus from outside 

of the maternal abdomen [32, 36]. A high-level sketch of this application is shown in Figure 

1. The red banana pattern highlights in the figure illustrate the average path that is traveled 

from the light emitters to the detectors by the majority of sensed light photons [6, 21].

The signal detected by the photo-detectors is essentially the photoplethysmogram (PPG) 

signal, which is obtained optically. It records the variations in light absorption caused 

by changes in blood volume. The PPG signal is commonly used in pulse oximetry 

applications, where the goal is to measure a patient’s blood oxygen saturation SpO2  using 

a wearable device typically attached to the finger. Pulse oximetry underpinnings rely on the 

principle that oxygenated and deoxygenated blood absorb light differently, depending on the 

wavelength of the light source [13]. By illuminating the tissue with two light sources of 

different wavelengths and measuring the changes in their respective light absorption, it is 

possible to establish a correlation between the change in light absorption and the patient’s 

SpO2.

The light signal detected by a sensor placed farther from the light source contains more 

information about the deep tissue, however, its detection is potentially challenging due to 

high attenuation over the longer path [1, 10]. A naive approach to solve this problem is to 

increase the amount of radiated energy into the body, to proportionally increase the detected 

signal. This approach would not offer a practical solution, as safety considerations limit the 

amount of radiated energy into the body [5].

The question then arises of whether the wearable embedded system can be designed to 

optimize the quality of the sensed light signal under a given constraint on the emitted optical 

energy. This paper addresses this very problem via two methods that complement each other 

on the light emission and light detection side of the system.

Specifically, we first explore the design space of the pulses, characterized by the two LED 

forward current IFD  and pulse duty cycle d  parameters, that are used to activate the light 
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emitter, and derive pulse activation functions that lead to improved SNR at the detector. 

Subsequently, we develop BASS, an application-specific signal averaging technique, which 

leverages scaled spectral copies of the signal to improve SNR. Unlike conventional time-

domain signal averaging methods [27], which find limited application in sensing dynamic 

systems, BASS utilizes scaled replicas of the signal spectrum that are concurrently sensed.

The objective of this paper is to propose a technique that can alleviate the burden on 

hardware design. The fundamental design of an optimized embedded system for deep 

tissue sensing must take power efficiency into account and at the same time report reliable 

readings.

The contributions of this paper are as follows:

• In the context of wearable light-based sensing, we identify, formulate and 

investigate the optimization of the light source activation signal to achieve 

maximum signal-to-noise ratio (SNR) under a critically-important given radiated 

energy budget.

• We propose a novel algorithm called BASS, which utilizes multiple scaled 

replicas of the tissue signal to improve the SNR of the deep tissue signal to 

improve the performance of the sensing modality.

• We provide analytical derivations and simulation results to support the proposed 

techniques’ effectiveness. Furthermore, we implement the proposed algorithms 

in an existing deep tissue sensing system prototype. We report experimental 

results based on measurements collected from benchtop tissue phantoms, animal 

models as well as human subjects.

2 RELATED WORKS

The main issue with deep tissue sensing is that the signal peak is very close to the noise 

floor and there have been many attempts in finding means to split the tissue signal from the 

noise floor. One application of deep tissue sensing is in fetal oximetry which we alluded 

to before. In one of our previous works, we explored the use of particle filters to estimate 

the fetal signal more accurately which was tested on pregnant ewe [19]. In another previous 

work, we looked into using adaptive noise cancellation techniques to suppress the maternal 

signal in the mixed signal detected in this deep tissue sensing modality as seen in [7] 

which was also explored in related works such as [2, 3]. In another work, the objective 

was designing algorithms to track the fetal signal amidst noise, utilizing prior information 

about the signal of interest [15]. In addition, spatial information fusion from multiple light 

detectors was used to enhance the accuracy of deep tissue oximetry utilizing LED light 

sources within the red to near-infrared (NIR) wavelength ranges as explained in [9, 17]. 

The effect of measurement depth in oximetry was also explored in related work [24] using 

spatially resolved near-infrared spectroscopy.

A non-invasive deep tissue optical sensing system was proposed in previous work [10], 

which involves the use of a NIR light source operating at approximately 850nm within 

a high-power LED package. This particular setup is known as the Transabdominal Fetal 
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Pulse Oximetry (TFO) system, which is specifically designed to extract fetal information 

from deep within the maternal abdomen non-invasively. To achieve this objective, improving 

the SNR of the fetal photoplethysmogram (PPG) signal in this application is crucial while 

minimizing exposure to the maternal skin. The improvements discussed in this paper involve 

the implementation of a novel and modified TFO system.

In a different study, researchers explored an invasive system for monitoring deep-tissue 

oxygen saturation using a wireless implant. This method utilizes LEDs for sensing oxygen 

saturation and allows for implantation within deep tissue, powered by an ultrasound linkage 

[28]. Additionally, efforts have been made to develop minimally invasive solutions. In one 

approach described in [22], an array of microneedle waveguides is utilized on a patch 

attached to the skin. These waveguides enhance the penetration depth of photons emitted by 

the LEDs, consequently improving the performance of deep tissue sensing.

In addition, different sensing modalities have been explored for similar deep tissue sensing 

applications. For instance, bioimpedance spectroscopy is used to investigate the tissue under 

contact points [16, 30] but would require more electronics attached to the skin and might not 

be suitable for wearable power-efficient embedded systems.

In various RF applications, shaping the input signal is standard practice. This technique 

is commonly used in digital communication to reduce signal distortion within the 

communication channel [20]. However, in optical sensing, this technique is employed to 

maximize the performance of LED emitters. One key difference is that the generated optical 

signal always has a non-negative amplitude due to the non-negativity of the LED current. In 

contrast, in RF applications, the input waveform is generated by the transmitter and applied 

to an antenna, which can have positive or negative amplitudes. Once the waveform reaches 

the target, it interacts with it causing modulation, and a portion of the signal is reflected back 

toward the receiver. Additionally, the amount of RF radiated power from the antenna is not 

exactly proportional to the generated signal power in the transmitter [26]. This necessitates a 

different optimization problem, which distinguishes it from optical sensing applications.

Previous studies have demonstrated that utilizing signal averaging methods can improve 

the SNR performance of sensing modalities. Traditional time-domain signal averaging 

techniques, such as those mentioned in [4, 27] rely on taking multiple measurements to 

reduce the impact of uncorrelated noise. However, in the case of the sensing modality 

proposed in this paper which is designed for dynamic systems, newly acquired data at 

different times may not exhibit a strong correlation with previous data. Therefore, in the 

proposed algorithm, signal averaging is applied to multiple harmonics within one frame of 

acquired PPG data as will be discussed in Section 5.

In RF applications, the measurement bandwidth is usually high, and accessing higher 

harmonics of the carrier signal is typically not feasible. Consequently, the wideband 

application requires capturing these higher harmonics, which increases the cost, the 

complexity of the hardware, and the power consumption [33]. In contrast, in optical 

sensing applications, the operation frequency is generally much lower, and accessing higher 

harmonics is not challenging when using a typical Analog-to-Digital Converter (ADC). 
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Therefore the algorithm proposed in this paper can be applied within the software domain 

which is favorable.

The proposed method in this paper is expected to work on any deep tissue sensing 

applications as long as LEDs are used as the light source. Essentially, LEDs are non-ionizing 

light sources that pose minimal risks to the tissue but require some additional considerations 

to achieve desirable performance. Previous works have looked into lowering the duty cycle 

of the input signal in an optical sensing application. Authors in [11, 29] have looked 

into lowering the duty cycle of a pulse oximetry system in favor of lowering the power 

consumption of the system which proved to be effective. However, it is pivotal to note that 

these works were studied on single-body patients and the target was not a deep tissue. So 

they could achieve desired performance with a low current by decreasing the duty cycle 

which is a challenge that will be discussed thoroughly in Section 4.2.

3 BACKGROUND

3.1 Safety Overview

The power of the reflected received signal from the deep tissue is proportional to the 

intensity of the emitted light from the light source. The higher the emitted light power, 

the higher the reflected received signal power from the deep tissue will be. However, the 

increase in the light source power rises the tissue temperature, which raises safety concerns 

for the patient.

In the case of human studies, the maximum permissible transmitted optical power is set 

by safety regulations. Complying with these standards consequently imposes a limit on the 

maximum penetration depth of the optical signal. Given this situation, the reflection from 

the deep tissue will be so small that it can be buried under the system’s noise. As a result, 

the ever-lasting challenge of deep tissue sensing is the extraction of the reflected signal from 

the deep tissue of interest, considering the limitation on the maximum transmitted optical 

power.

The safety regulations mentioned earlier are defined by IEC 60601-2-57, a Recognized 

Consensus Standard approved by the U.S. Food and Drug Administration (FDA) [5]. These 

regulations apply to commercial products that utilize non-ionizing radiation sources, similar 

to the system employed in this paper, which motivates the problem at hand. Adhering to 

this standard is crucial as it mandates that the radiance levels emitted by the system remain 

below the thresholds for optical signals projected onto the body, ensuring the system’s 

compliance for commercial and clinical purposes.

Throughout this paper, the average optical power generated by the light source PE  over the 

measurement capture time is considered a parameter that must be restricted. The findings 

are applicable and remain valid for any permitted threshold on PE, thus ensuring the 

generalizability of the results. The effect of instantaneous generated optical power which 

arguably has adverse effects on the skin is not ignored in this paper despite having a pulse 

with a very short duration.
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3.2 Optical Power for an LED

In this work, we utilize a non-ionizing light source to detect a signal buried in deep tissue 

inside the body. Specifically, in this paper, we investigate the use of LEDs for sensing, which 

are incoherent light sources and generally safer to use on human skin. As explained above, 

LEDs have more relaxed safety concerns compared to using lasers as the light source.

In this paper, we assume a linear relationship between the emitted optical power from the 

light source and the LED forward current IFD . Additionally, we assume that all the power 

generated by the light source is radiated toward the body. For an LED activated using a pulse 

signal at a fixed frequency of fc, the average power of the emitted light PE  from the light 

source can be calculated using Equation 1. Here, P IFD  represents the peak emitted optical 

power from the LED, which can be obtained from the LED’s datasheet for a fixed IFD . T p

denotes the pulse duration, and T  represents the period of the pulse signal. The ratio of T p/T
can also be denoted as d, which refers to the duty cycle of the activation pulse.

PE = P IFD
T p
T = P IFD d

(1)

This indicates that the average power of emitted light is proportional to the duty cycle at IFD, 

so if the duty cycle is decreased, effectively the light source power, and hence heat on the 

skin is decreased and vice versa.

Later we discuss how the LED activation signal has a direct effect on the optical power 

limitation then explain the trade-offs in optimizing the system’s performance while staying 

below a certain optical power budget.

3.3 Synchronous Detection

x t  is the baseband signal that contains a signal of interest from the deep tissue that is 

aimed to be detected using this sensing modality. To detect this signal, the principles of 

synchronous detection as discussed in detail in [12] is utilized, where a light source is 

pulsated using an activation signal Π t  with the frequency of fc which modulates the x t  to 

higher frequencies to achieve better SNR performance. By pulsating the light source using 

Π t  and capturing the reflected light from the body, inherently, x t  will be “modulated” to a 

higher frequency, as shown in Figure 2a. Here it is assumed that the signal of interest from 

deep tissue is a physiological signal with a frequency of fBB limited to a few Hertz with the 

requirement of fc ≫ fBB.

Figure 2a illustrates that after pulsating the LED with a periodic signal, x t  will be 

modulated to harmonics of fc in the PPG signal received at the optical detector placed 

at a certain distance from the LED. The PPG signal is heavily attenuated as it has to traverse 

through and back from multiple shallower tissues as well as the deep tissue of interest. If we 

assume the tissue response to the LED is linear throughout all harmonics, we can express the 

PPG signal as such assuming that Π t  is a periodic even signal:
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ppg t = Lx t ⋅ Π t

= L
i

x t ⋅ aicos iωct

(2)

In Equation 2, L is a constant comprised of multiple coefficients including but not limited 

to the tissue loss, the responsivity of the LED to the driver current, the responsivity of the 

detector to the received light, the area of the detector, and the gain of the data acquisition 

system. Here, x t  is the deep tissue signal, and Π t  is the driving signal of the light source. 

In this paper, we assume that L remains constant across different frequencies, as well as 

across various amplitudes and shapes of Π t .

Next, the PPG signal is sampled using a data acquisition system with a sampling rate of Fs

assuming that the bandwidth of the data acquisition system is unlimited. The optical detector 

front-end and data acquisition pipeline will induce a noise added to the modulated signal. 

It is assumed this additive noise is a White Gaussian Noise (WGN) with the distribution of 

N 0, σN
2  and only affects the amplitude of the PPG signal.

Finally, as outlined in Figure 2b, the noisy tissue signal y1 t  can be extracted from the 

fundamental frequency of the detected PPG signal. The sampled PPG signal is passed from 

a bandpass filter (BPF) centered at the fundamental frequency fc and then mixed with a 

sinusoidal signal with the frequency of fc which has the same phase as Π t , followed by a 

final lowpass filter (LPF) to ensure that the outcome signal is band-limited to fBB. Here we 

“demodulate” the signal from fc back to the baseband.

4 LED ACTIVATION SIGNAL

Knowing the underpinnings of synchronous detection, it’s crucial to point out that the 

LED activation signal Π t  has an essential role in achieving optimum performance while 

maintaining the safety requirements of the application. The noisy tissue signal, which is 

extracted from the fundamental harmonic fc  of the PPG signal, can be represented as 

y1 t = s1 t + n1 t , where s1 t  denotes the tissue signal modulated at fc in the PPG signal, 

and n1 t  is the WGN of the data acquisition system present around fc as seen in Figure 2b. 

Here s1 t  is uncorrelated to noise E s1 t − τ n1 t = 0, ∀t, τ . SNR1 is defined around fc of the 

detected PPG signal formulated in Equation 3.

SNR1 = s1
2 t
−

E n1
2 t = S1

N1

(3)

Here, the power of the tissue signal S1 is the average sum of squares for all the samples in 

s1 t , and N1 is the expected noise power at around fc. The LED activation signal Π t  will be 
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converted to an optical signal by the LED which in turn assuming that the tissue responds 

linearly to the input optical signal, will affect the detected PPG signal from the deep tissue. 

This means that S1 is directly affected by the shape of the input signal Π t .

4.1 Optimal LED Activation Signal

The primary objective is to determine the optimal periodic signal for LED activation, 

ensuring the best SNR1 performance while keeping the average emitted power by the LED 

PE  below a certain threshold. For the general case, it is assumed the LED activation signal 

can have infinite bandwidth. So Π t  can have any shape or format as long as it’s a periodic 

signal with a period of T = 1/fc and has a non-negative value at each sample with an 

average below a certain threshold since the activation signal of the LED can not be negative. 

Furthermore, the average of Π t  is bounded in the conditions because it will correlate with 

the average emitted power of the optical light on which the optical power budget is enforced 

PE ∝ Π t−
.

Assuming Π t  is an even periodic function of t, which only has cosine coefficients in 

Π t  Fourier series ∑aicos 2iπt/T , in order to maximize S1, one can maximize the first 

cosine coefficient in Π t  Fourier series a1 . Assuming a sampling rate Fs ≫ 2fc, the signals 

will be sampled with sampling period T s = 1/Fs. In this case, we have Π n = Π nT s  where 

the sampled Π has N = T /T s samples in a period Π n + N = Π n . This will translate to 

the following optimization problem in the discrete domain which is a linear programming 

problem:

max  
n = 0

N − 1
Π n cos 2nπ

N
s.t. Π n ≥ 0, n = 0,1, …, N − 1

n = 0

N − 1
Π n ≤ Γ .

Here Γ is selected such that the average emitted optical power PE is within the specifications 

of the application.

Theorem 4.1. The solution to this problem in the discrete domain is a periodic Kronecker 
delta function that has a positive value when cos 2nπ/N = 1 and zero for the rest. This Value 
can be Γ  to satisfy the requirements. As a result, Π′ is the feasible and optimal solution to 
the problem, and within one period:

Π′ = Γ if n = 0
0 if n = 1, …, N − 1

(4)

which maximizes the objective function at ∑n Π′ n cos 2nπ/N = Γ.
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Proof. Suppose Π′ is not optimal. Then, ∃Π⋆, a feasible and optimal solution to the linear 

programming problem above, such that Π⋆ maximizes ∑n Π n cos 2nπ/N . Since Π′ is not 

optimal:

n = 0

N − 1
Π⋆ n ≥

n = 0

N − 1
Π⋆ n cos 2nπ

N ,  as Π⋆ ≥ 0

n = 0

N − 1
Π⋆ n cos 2nπ

N >
n = 0

N − 1
Π′ n cos 2nπ

N

n = 0

N − 1
Π⋆ n > Γ,

An optimal solution has to be feasible as well. Π⋆ is a feasible solution 

∑n Π⋆ n ≤ Γ&Π⋆ ≥ 0. Here Π⋆ does not satisfy the first feasibility requirements so it 

cannot be an optimal solution.

So Π′ n = Γδ n ± kN  where k = 0,1, 2, … is the optimal periodic function to use as the LED 

activation signal which maximizes S1 and adheres to limits enforced over PE.

Realistically, in the time domain, a signal with a high value at a specific time and zero for 

the rest has infinite bandwidth and even if we use it as the activation signal of conventional 

high-power LEDs, the emitted optical signal has limited bandwidth. Thus, we settle for a 

pulse train instead with a short duty cycle but high amplitude to drive the LED.

4.2 SNR vs Duty Cycle of the LED Activation Pulse

Henceforth Π t  will be denoted as the LED activation “pulse”, which is a periodic pulse 

train with a duty cycle of d, frequency of fc, and current amplitude of A expressed as 

Π t = Ad + ∑i = 1
∞ aicos iωct . Here ai = 2Adsinc id  where sinc id = sin πid / πid . As indicated 

in Equation 1, the peak emitted optical power from the LED is proportional to the LED 

forward current IFD  which is defacto the amplitude of the pulse train A . In addition, 

here we assume that tweaking P  and d, will not affect the system noise. The extracted 

tissue signal from fc in the detected PPG signal is S1 = s1
2 t
−

= L2A2d2sinc2 d x2 t
−

 if the LED 

activation pulse has a duty cycle of d and pulse amplitude of A, assuming constant loss term 

L.

Yet, we have to make sure the average emitted optical power complies with the power 

budget. PE must be contained which translates to keeping the average of activation pulse Π‾
constant, and as such Π‾ = A1d1 = A2d2. Thus the SNR improvements for two design points 

with different duty cycles of d1 and d2 but the same PE will be:

SNR1 d2
SNR1 d1

= S1 d2
S1 d1

= A2
2d2

2sinc2 d2

A1
2d1

2sinc2 d1
= sinc2 d2

sinc2 d1

(5)
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Considering the SNR of the extracted tissue signal from fc SNR1  after activating an LED 

with a pulse train with d = 50% and a period of 1/fc as the baseline, the SNR improvement 

for various duty cycles while maintaining constant PE is expected to follow Figure 3 with 

theoretical SNR improvement of 3.89dB for activating the LED with d = 5% and 10× higher 

amplitude compared to d = 50%.

5 SELECTIVE SPECTRAL AVERAGING

We propose BASS (Band Averaged Sensing Scheme), which employs scaled copies of the 

tissue signal spectrum that are simultaneously captured. Essentially by utilizing the fact that 

a pulse train has harmonics at not just the fundamental frequency but also integer multiples 

of the fundamental frequency in the frequency spectrum. As mentioned in Section 2, the 

technique discussed here operates on a single data frame collected.

This algorithm calculates an averaged extracted tissue signal which was initially modulated 

to the harmonics of the light carrier ifc  by spectrum band averaging to reduce the noise 

floor of the tissue signal. As indicated before, it is assumed that the tissue has a linear 

response to the LED activation pulse which translates into the linear scaling of all the 

harmonics in the detected PPG signal.

5.1 Proposed Algorithm

Harmonic content M: Assuming that the data acquisition system has unlimited 

bandwidth, M denotes the amount of Harmonic content in the average extracted tissue 

signal. This indicates that the tissue signal copies are extracted from the first M harmonics 

of the PPG signal and selected to average.

In Figure 4, the high-level process of the BASS algorithm is depicted where the PPG signal 

from the light detector, which carries the tissue information modulated over all harmonics 

of the LED signal, is filtered around each harmonic ifc where fc is the fundamental 

frequency of the LED activation signal and i = 1,2…M and brought back to the baseband 

by employing synchronous detection principles. Here slightly more advanced technique than 

the conventional synchronous detection method which was demonstrated in Figure 2b is 

utilized. After the detected PPG signal is passed from band-pass filter (BPF) banks centered 

at each harmonic ifc , each output is mixed with a generated sine wave with the frequency 

of ifc and phase-synced to each signal with a phase-locked loop (PLL) which will be called 

the In-Phase component I . Here the concept of I /Q demodulation is utilized where in 

addition to the In-Phase component, the phase-synced sine wave is shifted by 90° and mixed 

again with the output of each BPF, and the output signal will be denoted as the Quadrature 

component Q  [20]. Finally, the magnitude of the mixed signal which is the root sum 

of squares of I and Q components is passed from LPF banks, all with the same cutoff 

frequency of fBB, to extract the demodulated tissue signal from the M harmonics, as seen in 

Figure 4.
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However, as mentioned before the extracted tissue signal from this algorithm is noisy. Here, 

yavg t = 1
M ∑i = 1

M yi t , where yi t  is the noisy extracted tissue signal from each harmonic of 

the fundamental frequency of the detected PPG signal. Here, the noisy extracted signal 

is yi t = si t + ni t , where si t  is the copy of the tissue signal which was modulated to 

ifc and ni t  is WGN present around the itℎ harmonic. The copies of tissue signal si t  are 

uncorrelated to the noise around the corresponding harmonic E si t − τ ni t = 0, ∀t, τ .

SNRavg is defined to measure the signal-to-noise ratio of the average tissue signal yavg t
calculated from the BASS algorithm and formulated in Equation 6.

SNRavg = Savg
Navg

=

1
M2 i = 1

M si t
2

1
M2E i = 1

M ni t
2 = i = 1

M si t
2

E i = 1
M ni t

2

(6)

In Equation 6, Savg is the average power of M tissue signal copies si t  modulated at 

ifc, i = 1, …, M, and Navg is the average power of noise ni t  at corresponding harmonics. It is 

assumed that the WGN of the data acquisition system is stochastic throughout the spectrum, 

which means the noise floor in all harmonics is the same N1 = E n1
2 t = ⋯ = E nM

2 t . By 

averaging the noise from the first M harmonics, Navg will be N1/M assuming that noises 

around each harmonic are uncorrelated with each other E ni t − τ nj t = 0, i ≠ j, ∀t, τ .

A pulse train is used as the LED activation signal having components at integer multiples of 

fc in the frequency spectrum, which means the same baseband signal will be modulated to 

all the above harmonics, per modulation theorem, [25]. So the corresponding tissue signal 

copies at each of these harmonics si t  are actually correlated with each other.

So, it is relatively safe to assume the extracted tissue signal from the itℎ harmonic of the 

PPG signal is a scaled replica of the tissue signal copy from the fundamental frequency of 

the PPG signal where si t = αis1 t  for the same duty cycle.

In Equation 7, αi
2 represents the ratio of the tissue signal power extracted from the i-th 

harmonic compared to the extracted tissue signal power from the fundamental. This ratio 

can be calculated based on the relationship between s1 t  and si t , where s1 t ∝ a1x t  and 

si t ∝ aix t .

Si
S1

= si
2 t

s1
2 t

= ai
2

a1
2 =

sinc2 id

sinc2 d
= αi

2

(7)

As seen in Equation 6, the term ∑i si t 2 can be replaced with ∑i αi
2s1

2 t  due to the 

correlated nature of the tissue signal copies around harmonics. Therefore, Equation 6 can 
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be reformatted to Equation 8 for calculating the SNR of the first M extracted tissue signals 

averaged with duty cycle of d:

SNRavg d, M = i = 1
M si t

2

E i = 1
M ni t

2   = i = 1
M αi

2

M ⋅ S1
N1

=   i = 1
M αi

2

M SNR1

(8)

A limitation of this method is that even though the noise floor is reduced, the averaged 

extracted signal from different harmonics will have lower power compared to the extracted 

tissue signal from the fundamental. This is evident by analyzing the Fourier series of the 

LED activation pulse, where the magnitude of the Fourier coefficients decreases as the 

harmonic number increases. However, if the focus is shifted to pulse trains with a lower 

duty cycle (less than 10% duty cycle), the Fourier coefficients diminish less, resulting in 

similar magnitudes. This leads to tissue signal copies around the harmonics having more 

comparable amplitudes.

5.2 BASS in a Simulated Setup

The signal from the deep tissue was simulated as a sinusoidal wave with a frequency of 

2.5Hz and the activation pulse as a pulse train with a frequency of fc. In this simulated setup, 

the average emitted optical power PE was kept constant while varying the LED duty cycle. 

We considered the baseline case with a duty cycle of d = 50% and an LED activation pulse 

amplitude of A = 1. For other duty cycles, we adjusted the pulse amplitude by increasing 

it by 0.5/A to maintain a constant average activation pulse Π‾  as explained previously. The 

PPG signal was generated by mixing the modeled tissue signal with the modeled optical 

signal from the LED activated by a pulse train. This PPG signal was then sampled with 

a frequency of Fs. In these simulations, the WGN noise was stochastic and randomly 

generated with a predetermined variance of σN
2  and then was added as an amplitude noise to 

the sampled PPG signal.

Figure 5 displays the Power Spectral Density (PSD) of the average extracted tissue signal 

in two examples. In Figure 5a, the SNR of the extracted tissue signal from the fundamental 

of the PPG signal is compared between two cases: LED duty cycle of 50% and LED duty 

cycle of 33%, while keeping the average activation pulse Π‾  constant. As shown in Figure 

5a, the SNR of y1 for a duty cycle of d = 50% is approximately 11.81dB. An improvement 

of approximately 2.3dB is achieved when switching to 1.5× higher LED activation pulse 

amplitude and a duty cycle of d = 33%, which aligns with the expectations from Equation 

5, and Figure 3. The noise floor remains roughly the same between these two cases but the 

peak of the tissue signal improves from −103.47dB to −101.17dB.

In Figure 5b, only the LED activation signal with d = 33% is simulated, and the SNR of 

the extracted tissue signal y1  from fc is compared to the SNR of the averaged extracted 
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tissue signal (yavg) from fc and 2fc in the PPG signal. As shown in Figure 5 b, by averaging 

two copies of the signal located at the fundamental and the 2nd harmonic in the simulated 

PPG signal, the peak of the tissue signal slightly decreases (approximately 1.91dB), while 

the noise power decreases by half (3dB). The decrease in the noise floor is greater than the 

decrease in the peak, resulting in an increase in the overall SNR of yavg by 1.09dB which 

aligns with the expectation from Equation 8 when M = 2.

These simulated examples demonstrate the potential of the BASS algorithm where an overall 

SNR improvement of approximately 3.39dB was achieved by using an LED activation pulse 

with d = 33% and averaging the extracted tissue signal from fc and 2fc compared to the 

conventional method of activating the LED using a pulse signal with d = 50% and extracting 

the tissue signal only from fc. This improvement in SNR is achieved without exceeding the 

baseline case’s threshold for average emitted optical power PE .

6 SNR OPTIMIZATION

In this section, we formulate the design space of the extracted tissue signal as a multi-

objective optimization problem based on the BASS algorithm. The problem arises from the 

limitation on the optical power that can be emitted on the skin from the light source, which 

directly affects the detected PPG signal. In this case, we assume that the heat from the LED 

is proportional to the optical power emitted by the light source.

The objective would be to maximize the SNR of the averaged extracted tissue signal (yavg) 

while staying below a specific budget for the emitted optical power, as shown in Equation 

9. The design space parameters include PE, which represents the average emitted optical 

power, d, the duty cycle of the pulse train activating the LED, and Harmonic Content M. It 

is important to note that the limit imposed on PE can easily be translated to a limit on the 

average of the LED activation pulse Π‾ .

Equation 8 was derived to calculate the SNR of the averaged extracted tissue signal for the 

case when d is constant. However, as discussed in Section 4.2, the Equation 8 can be used to 

compare the SNR of the average extracted tissue signal with different duty cycles d1 and d2 , 

as long as the average emitted optical power PE  is kept constant for these two cases, which 

implies that Π‾ = A1d1 = A2d2. This leads to a multi-parameter optimization problem similar to 

those discussed in [8, 35]:

max SNR χ
s . t . PE χ ≤ ρ

χ ∈ X

(9)

The deep tissue optical sensing system can be configured by adjusting the design parameter 

χ  within the feasible design space solutions X  to achieve optimal performance while 

ensuring that the heat generated on the skin remains within acceptable limits PE ≤ ρ . The 

design space is as follows:
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• LED activation pulse amplitude A  or LED forward current IFD : This 

parameter is controlled by the LED driver and for LED activation pulse, A
corresponds to the forward current IFD . The peak emitted optical power P  is 

determined by IFD and can be obtained from the LED’s datasheet. Increasing A
can enhance the SNR of the tissue signal, but it also leads to an increase in PE

resulting in higher heat generation on the skin.

• The pulse train duty cycle d: This parameter defines the ratio of the LED pulse 

on time to the LED pulse duration. The duty cycle affects both the SNR and the 

average emitted power, as discussed earlier. Increasing d can improve the system 

performance, but it also raises PE and subsequently increases heat generation on 

the skin.

• Harmonic content number M: This parameter determines the number of PPG 

signal harmonics from which the tissue signal is extracted to calculate the 

average tissue signal yavg. This parameter does NOT affect the heat output but 

helps reduce the system’s noise floor.

By maintaining a constant PE at the limit PE = ρ, the relationship between A and d can be 

determined as Π‾ = Ad = const, because PE is a linear function of Π‾ . As a result, the design 

space effectively becomes two-dimensional for exploration. Any design parameter, such as 

χ = d, M  is a possible solution if it’s feasible and the objective is to find optimal solutions 

that maximize the SNR while adhering to the power constraint imposed by the light source.

Here the average emitted optical power PE is fixed, and the baseline SNR is derived from the 

design parameter χ0 = d = 50%, M = 1  which represents the conventional sensing method, 

where the LED is activated using a pulse train with d = 50% and only the information present 

on the fundamental is preserved while discarding the rest of the harmonics. it is assumed 

that all the emitted optical power by the LED is transmitted into the body, the response of 

the tissue to the input light is linear, and the loss inside the tissue is constant across the 

frequency spectrum. These assumptions must hold true for the baseline SNR calculation.

Figure 6 illustrates the exploration of the design space and the theoretically 

expected improvements for each design point χ = d, M  compared to the baseline 

χ0 = d = 50%, M = 1  while keeping PE constant. As observed in Figure 6, the performance 

of the LED activation pulse with a duty cycle of d = 50% consistently deteriorates when 

the tissue signal is extracted using more harmonics than the fundamental harmonic. This 

makes sense looking at the Fourier coefficients of a pulse train with d = 50% duty cycle. 

Consequently, when utilizing the BASS algorithm, the SNR of the average tissue signal yavg

starts to degrade from M = 2 onwards in this case.

It’s important to note that the first measurable improvement using the BASS algorithm 

is obtained using an LED activation pulse with d = 33% and incorporating harmonic 

content from both fc and 2fc (design point χ = d = 33%, M = 2  to extract tissue signal. 

This design point is expected to yield an average improvement of approximately 0.6dB
compared to extracting the tissue signal solely from the fundamental frequency (design point 

VALI et al. Page 14

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



χ = d = 33%, M = 1 ). In this case, the overall SNR performance increases by approximately 

2.9dB compared to the baseline SNR of χ0. It’s worth noting that when using an activation 

pulse with d = 33%, there is no advantage in averaging the extracted tissue signal from 

M = 3 harmonic contents fc, 2fc, and 3fc  as the SNR of the average signal would degrade 

compared to using M = 2 harmonic contents fc and 2fc .

As mentioned earlier, the BASS algorithm demonstrates greater effectiveness when the duty 

cycle is lower. The results of the design space exploration support this assertion, as it is 

observed that for LED activation using a pulse train with d ≤ 25%, there are more potential 

gains to be achieved by averaging extracted tissue signals from two or more harmonics. 

A periodic pulse function with a lower duty cycle approaches closer to a periodic impulse 

function, which we established as the optimal LED activation signal in Section 4.1.

Theoretically, we anticipate that the best-performing design parameter would be χ = 5%, M
with a higher M if possible. However, certain constraints, such as the limited bandwidth 

of the data acquisition system, impose a maximum limit on M. In real-world data, the 

maximum value of M is restricted to M < Fs/ 2fc , where Fs represents the sampling 

frequency of the data acquisition system, in order to prevent aliasing. Additionally, the 

dynamic nature of the system can sometimes make direct comparisons between different 

design parameters challenging, as we will discuss in the next section.

7 EXPERIMENTAL RESULTS

The ideas presented in this paper are validated through three experimental methods. First, a 

test bench experiment is conducted where a high-power LED is pulsed from the bottom into 

a tissue phantom that simulates the optical properties of human abdominal tissue. The PPG 

signal is received by an optical probe placed on top of the phantom as shown in Figure 7. 

The effectiveness of the techniques proposed in this paper is demonstrated using a modified 

TFO system, which was previously reported in our work [10]. Furthermore, the setup is 

validated in vivo using a pregnant sheep model. In this case, the optical probe is placed 

on the belly of a pregnant sheep to capture the reflected light from the deep lamb tissue. 

This experiment aims to evaluate the performance of the proposed techniques in a realistic 

physiological scenario. Finally, the BASS algorithm is tested on a pregnant patient during a 

Non-Stress Test (NST) to confirm its functionality in real-world applications involving deep 

tissue sensing, such as non-invasive fetal signal detection.

7.1 Test Bench Setup

The optical tissue phantom, with a thickness of 5 cm, was custom-made to mimic the optical 

properties (absorption and scattering) of maternal abdominal tissue in term pregnancy. 

The optical properties were determined using parameters obtained from [7, 14]. The TFO 

system, as described in [10], was placed on top of the optical phantom, and an LED 

was positioned at the bottom which was activated with a pulse train with programmable 

amplitude and duty cycle. In this experiment, four different duty cycles were selected: 

d = 50%, 33%, 25%, and 20%. The amplitude of the activation pulse was adjusted inversely 

proportional to the duty cycle to maintain a constant average activation pulse. Consequently, 
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the forward current of the LED was set to A = 200mA, 300mA, 400mA, and 500mA for each 

respective duty cycle. The measurements were conducted for approximately 10 minutes, 

and the output of the photo-detector was sampled using a data acquisition system with a 

sampling frequency of Fs = 8kSps.

As the test bench setup does not include a tissue signal, only the DC component of yavg was 

used to calculate the SNR. However, the rest of the analysis is conducted similarly to the 

case where there is a pulsating signal from the deep tissue. Table 1 presents the SNR of yavg

for each test case. Additionally, we measured the system’s noise floor as a reference when 

the LED was turned off. The results are provided in Table 1. The trend in the noise floor 

aligns with our expectations, with a reduction in noise power of approximately M times 

when averaging extracted signals from the first M harmonics compared to only fundamental 

M = 1 .

The SNR values in this table are relatively high and do not precisely represent the situation 

in deep tissue sensing, such as non-invasive fetal pulse oximetry. This is because there are 

no pulsating components present from the deep tissue, and the SNR calculation is based 

on the DC component of the light carrier injected into the phantom. As a result, the SNR 

values appear higher. The best result from each measurement is indicated in bold text. It 

can be observed that there are SNR improvements when using lower duty cycles while 

increasing the pulse amplitude A  to maintain a constant PE. Additionally, there are mostly 

improvements when averaging more harmonics for duty cycles of d = 25% and d = 20%. The 

optimal design point, in this case, would be χ = 20%, 3 .

Uncorrelated Noise: The noise present at each harmonic is uncorrelated which was 

verified by looking at the cross-correlation of yi t  excluding the DC which should 

approximate ni t . Here an infinitesimal correlation value was observed between ni t  and 

nj t  where i ≠ j.

7.2 Case Study on a Pregnant Sheep

The design space exploration results from the BASS technique were tested on a novel 

TFO system, focusing on detecting a lamb’s PPG signal inside the ewe’s abdomen using 

pregnant sheep models. The data was acquired using the modified TFO system placed on 

the ewe’s belly, as depicted in Figure 8, by pulsating an 850nm light source located at a 

distance of 7cm from the light detector. Measurements were conducted at various duty cycles 

while maintaining a fixed current, with each measurement lasting for 5 minutes. In this 

experiment, the deep tissue of interest was the fetal tissue located approximately 2cm deep 

from the maternal skin., and the signal of interest was the fetal heart rate signal, which was 

externally measured at approximately 3.02Hz or 185 beats-per-minute (bpm). The lamb’s 

signal is indicated by the red box in Figure 9, while the remaining peaks are related to the 

ewe’s physiological system. The noise floor was recorded when the LED was not activated, 

as previously mentioned. It is important to note that all procedures used in this study were 

evaluated and approved by the UC Davis Institutional Animal Care and Use Committee 

(IACUC).
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Due to limitations in this experiment, the pulse amplitude was not adjusted to maintain 

the same average emitted optical power PE  while varying the duty cycle. As a result, 

when the duty cycle was decreased, the effective PE also decreased. Consequently, there 

was a decrease in the extracted tissue signal power as the duty cycle increased, without 

compensating for the change in pulse amplitude. The data in Table 2 is reported as if 

the LED activation pulse amplitude was adjusted to account for the reduction in duty 

cycle. Therefore, when comparing the measurements to the baseline with a duty cycle of 

d = 50%, the SNR values highlighted with ⋆ are adjusted in post-processing to consider the 

increase in the LED activation pulse amplitude by 20log 0.50/d dB for other duty cycles. 

This adjustment is made under the assumption of a constant tissue attenuation multiplier.

Here, the optimal design parameter is χ = 10%, 5 , followed by the expected optimal design 

parameter χ = 5%, 5 . If the system’s bandwidth allowed, capturing more harmonics of the 

PPG signal would have further improved the SNR of the average extracted tissue signal. 

The trend observed in this study mostly aligns with the theoretical analysis pattern depicted 

in Figure 6, except for the optimal design parameter. This inconsistency can be attributed 

to the dynamic nature of the experiment, where the lamb is active. In such conditions, the 

lamb’s signal and dynamics vary, leading to deviations from the expected results. In a stable 

condition, where the lamb’s signal and dynamics remain relatively constant, the results 

would follow expectations more closely. Unfortunately, in the next case study, the unstable 

dynamics of the physiological system also persist.

7.3 Case Study on a Pregnant Patient

This protocol was approved by the UC Davis Institutional Review Board (IRB) to test 

this novel system in conjunction with the Non-Stress Test (NST) during antenatal visits of 

the pregnant patients participating in the study. Furthermore, the skin temperatures of the 

patients were closely monitored to ensure that increasing A and reducing d would not result 

in excessive heat emitted from the LEDs.

This setup was tested in experiments designed to evaluate non-invasive fetal oximetry in 

pregnant women, similar to the study conducted in [18]. The TFO system was placed on the 

pregnant mother’s belly, as shown in Figure 10, to detect the reflected light from the deep 

fetal tissue. In this case, the tissue signal was defined as the signal present at approximately 

2 − 2.5Hz, corresponding to the fetus’s heart rate in this experiment 120 − 150bpm . The 

main focus of this experiment was to study the effect of increasing the Harmonic Content 

M and observe the SNR improvement obtained by averaging multiple copies of the tissue 

signal. The average emitted optical power PE was kept constant throughout the experiments. 

For these measurements, duty cycles of d = 50%, d = 33%, and d = 25% were selected, with 

pulse amplitudes of A = 400mA, 600mA, and 800mA respectively, to drive the high-power 

LED with a wavelength of λ = 850nm mounted on the optical probe, and the photo-detector 

was positioned 4.5cm away from the source. Each measurement took approximately 2 

minutes to capture, and the nature of these measurements was highly unpredictable, as the 

mother moved around and the fetus exhibited high activity levels.
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We considered the noise floor to be constant across the experiments and used the average 

noise floor obtained from the three experiments, as reported in Table 3. It is important to 

note that the human experiment had an inherently higher noise floor compared to the animal 

experiment due to increased motion and a more dynamic measurement environment. This 

is why the dark noise floor from the previous case studies was not utilized in the SNR 

calculation for this case study. As observed in Table 3, it is challenging to draw a direct 

conclusion regarding the optimal setup when lowering the duty cycle. The dynamic nature 

of the system, with fast changes in the fetus’ location, can result in a lower fetal signal at 

times, as observed in the case of d = 33%. This implies that the SNR of y1 SNR does not 

precisely follow the pattern depicted in Figure 3 when M = 1 and the duty cycle is changed. 

Additionally, it should be noted that the patient in the experiment was moving, which 

influenced the readings obtained from the TFO device. In an ideal scenario where the patient 

is completely stationary and measurements are taken simultaneously, we would expect an 

improvement in SNR from d = 50% to d = 25% that aligns with Equation 5, resulting in 

approximately a 3dB improvement.

However, when we shift our focus to the SNR improvement for the average extracted tissue 

signal yavg  at different duty cycles, we observe a pattern in the human data that aligns 

well with the results from the test bench and animal experiments. Figure 11 illustrates the 

change in SNR resulting from averaging more harmonic content for different duty cycles 

individually. Each data point in this figure represents the SNR difference between the design 

parameters χ = d, M  and χ = d, 1 , where d represents the duty cycle and M represents the 

total averaged harmonic content. For example, in the case where d = 25%, the optimal design 

point is achieved at M = 3, where the drop in the noise floor is more compared to the drop in 

the peak of the average extracted signal compared to M = 1 as expected. These observations 

provide further evidence of the effectiveness of the BASS algorithm. By conducting more 

measurements, we can continue to demonstrate the efficacy of the BASS algorithm and 

further validate its performance.

8 DISCUSSION AND FUTURE WORK

The results presented in this paper were obtained using an LED with a wavelength 

of λ = 850nm based on its favorable penetration and absorption properties, which make 

it suitable for deep tissue signal sensing [23]. However, depending on the specific 

requirements of the application, a different peak wavelength for the light source can be 

chosen. It is important to note that the discussions and findings in this paper remain 

applicable and valid for the selected wavelength corresponding to the specific requirements 

of the deep tissue application. The validation of this algorithm involved conducting 

experiments at different time intervals, with slight modifications to the hardware used in 

each experiment. The sheep experiment was conducted prior to the human study, and at that 

time, the system did not reliably support increasing LED power. Despite these challenges, 

diligent efforts were made to test various duty cycles within a short timeframe for each 

study, aiming to provide multiple samples and scenarios to validate the BASS algorithm.
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The test bench setup represents an ideal scenario and clearly demonstrates that the 

experimental results align with the expectations set by the BASS algorithm. However, 

it is essential to note that the stability of the physiological system was not consistent 

in both empirical case studies, particularly during the human study, where significant 

maternal motion was observed. To mitigate environmental turbulence and improve the 

reliability of the optical sensing system, various measures can be implemented. For 

example, incorporating motion reduction techniques and additional sensors can help reduce 

turbulence. Additionally, using accelerometers to detect motion and vibration artifacts, 

along with adaptive filtering techniques, can be explored to mitigate their impact on the 

data. Furthermore, employing multiple detectors and utilizing simultaneous information 

captured from different locations can enhance confidence in deep tissue signal acquisition. 

These strategies can help overcome the challenges posed by the dynamic nature of the 

physiological system and improve the robustness of the optical sensing system.

In future work, it would be interesting to investigate the optimization of harmonic selection 

in a broader sense. This would involve selecting harmonics with a weight assigned to them, 

considering all harmonics captured within the data acquisition bandwidth, rather than being 

limited to the summation of the first M harmonics of the fundamental, as discussed in 

the BASS algorithm presented in this paper. This approach resembles the feature selection 

problem, where the optimal number of features is selected to maximize system performance 

given information around each captured harmonic as a feature where the features are located 

at fc and its harmonics. Machine learning methods can be explored to tackle this problem, 

aiming to maximize performance by utilizing time-domain or frequency-domain information 

extracted from each harmonic of fc. This could potentially enhance the robustness and 

accuracy of the deep tissue sensing system.

9 CONCLUSION

In this paper, we have investigated the specific challenges associated with wearable optical 

sensing applications, particularly in the context of deep tissue sensing. The importance 

of optimizing the LED activation signal to maximize the SNR of the deep tissue signal 

is discussed while adhering to the constraints on optical power emitted onto the body. 

Additionally, the impact of varying the duty cycle of the LED activation pulse on the SNR of 

the extracted tissue signal is examined under safety considerations and limitations.

To overcome these challenges, the BASS algorithm is introduced, which employs multiple 

scaled copies of the tissue signal obtained from the PPG signal to enhance performance. The 

algorithm’s effectiveness has been theoretically analyzed to evaluate its potential benefits. 

Furthermore, the effectiveness of this algorithm is validated through a comprehensive 

analysis conducted on an optical phantom in a test bench setting. Finally, in vivo 
measurements were conducted by acquiring data from both a pregnant ewe and a pregnant 

patient, aiming to non-invasively sense deep tissue and specifically target fetal tissue within 

the mother’s abdomen. The effectiveness of the proposed algorithm in overcoming the 

SNR challenge in wearable deep tissue optical sensing applications was underscored by the 

findings.
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Fig. 1. 
High-level overview of non-invasive fetal pulse oximetry, an illustrative application of deep 

tissue optical sensing [10].
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Fig. 2. 
Synchronous Detection procedure
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Fig. 3. 
SNR improvement of y1 for different duty cycles compared to d = 50% with constant PE.

VALI et al. Page 26

ACM Trans Embed Comput Syst. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The high-level BASS algorithm scheme. M indicates the depth of each filter.
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Fig. 5. 
Examples of averaged extracted tissue signal PSD.
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Fig. 6. 
SNR improvements at each χ = d, M  design point compared to baseline χ0 = 50%, 1  for 

theoretical and experimental results.
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Fig. 7. 
The setup on a tissue phantom with LED underneath.
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Fig. 8. 
Deep tissue optical sensing in a hypoxic sheep model
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Fig. 9. 
PPG spectrogram when d = 50%. Here the whereabouts of the lamb’s signal are indicated 

with red over time.
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Fig. 10. 
TFO on a human experiment.
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Fig. 11. 
SNR improvements at each χ = d, M  design points with respect to χ0 = d, 1 .
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Table 1.

yavg SNR from test bench setup at various d, M  where PE is kept constant.

Average Extracted Tissue Signal SNR

M = 1 M = 2 M = 3 M = 4 M = 5

Duty Cycle (d)

50% 90.90dB 88.55 dB 88.95dB 88.10dB 88.19dB

33% 93.59dB 94.52dB 93.07dB 92.84dB 92.91dB

25% 94.80dB 96.68dB 96.48dB 95.45dB 95.18dB

20% 95.28dB 97.64dB 98.07dB 97.79dB 97.10dB

Noise Power

−144.90dB −148.05dB −149.76dB −151.04dB −152.14dB
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Table 2.

yavg SNR in a sheep model at various d, M  for activation pulse.

Average Extracted Tissue Signal SNR

M = 1 M = 2 M = 3 M = 4 M = 5

Duty Cycle

50% 53.72dB 50.83dB 51.39dB 50.16dB 50.36dB

33%★ 56.24dB 56.87dB 55.14dB 55.10dB 55.09dB

10%★ 58.51dB 61.30dB 62.57dB 63.30dB 63.71dB

5%★ 57.36dB 60.31dB 61.82dB 62.85dB 63.63dB
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Table 3.

yavg SNR and noise power in an experiment on a pregnant patient.

Average Extracted Tissue Signal SNR

M = 1 M = 2 M = 3 M = 4 M = 5

Duty cycle(d)

50% 11.28dB 8.31dB 9.44dB 9.01dB 9.30dB

33% 0.04dB 0.46dB −0.98dB −0.20dB −0.62dB

25% 9.78dB 11.38dB 11.59dB 11.12dB 11.11dB

Noise Power

−99.76dB −102.77dB −105.08dB −107.15dB −108.36dB
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