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Markov Chains and Radiative Transfer 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

INTRODUCTION 

This paper concludes the current series on radiative transfer theory 

in discrete spaces •*•"' by showing how a connection can be established 

between the theories of radiative transfer and I'arkov chains. 

The series so far has been concerned with the internal affairs of 

the discrete theory: On the theoretical side, the details of formulation 

of the principle of local interaction were carried to the point where 

the fundamental equations for the light field were solved on an arbitrary 

discrete space Xn (reference 1). The discrete-space formulations were 

then used to derive the invariant imbedding relation which in turn 

yielded the principles of invariance on Xn (reference 2). In reference 3 

the discrete-space formulations were extended to include the phenomenon 

of polarization. On the practical side of the internal affairs we have 

the explicit solution, ready for numerical evaluation, of the general 

two-flow equations on a linear lattice (reference h). The practical 

utility of the discrete formulations was further underscored in 

reference 5> wherein the numerical computation procedure of reference h 

was extended to cover the twenty-six-flow problem in a cubic lattice 

representation of a plane-parallel optical medium (the type of medium 
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which occurs in the study of light fields in planetary atmospheres and 

hydrospheres). Finally, in references 6 and 7, it was shown how the 

problems of the plane and point-source generated light fields could be 

formulated and solved on an arbitrary discrete space using the techniques 

developed in reference 1. These solutions can, in particular, be 

directed toward the problems of bioluminescence in the sea, and auroral 

and night-glow phenomena in the atmosphere. 

The present paper complements the preceding seven by concentrating 

on certain apparently external aspects of discrete-space theory: It is 

shown how the notions of discrete-space radiative transfer can explicitly 

and in great detail he linked to a wide class of physical concepts which 

at first may be expected to lie outside its usual domain of ideas. This 

link is forged by demonstrating that the key principle of discrete-

space transfer theory, namely the local interaction principle, can be 

cast into a form which satisfies the axioms of a Markov chain. In this 

way the set of ideas within the discrete space theory are explicitly 

given membership in the large class of physical processes — ranging 

from probabilistic processes in atomic theory, through the dynamics of 

biological mutations, up to the mechanics of stellar motions in 

galaxies all of which fall within the domain of Markov chains or 

stochastic processes in general. 

Besides serving to place discrete-space radiative transfer theory 

in its proper perspective within the modern domain of physical concepts, 

•the theory is now open to the many analytical tools available in the 

discipline of Markov chains. Further, in order to effect the connection 
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with the main stream of physics, the local interaction principle 

underwent a generalization which now includes a description of the 

phenomenon of scattering with change in wavelength. 

MARKOV CHAINS 

If one places a Mexican jumping bean at random on a checkerboard 

fitted with an encircling wall to keep the bean on the board, we have 

the realization of a Markov chain: Let E| ,, ., , B(oH be the squares 

of the board numbered from left to right, top to bottom of the board. 

At time -fc = O , which we shall call the initial time, let ^2 f .. . } p g, 

be the probability that the bean is initially at rest on square £., , 

• •• ? &6i , respectively. Now suppose that at £- 0 the bean is 

actually in E / . We agree to let time increase on the board by one 

unit for every jump executed by the bean. Suppose further that at 

t~ I t i.e., after its first jump, the bean lands in E.^ . There is 

a probability for this event. Denote it by j2lit . This number is 

found experimentally by repeatedly placing the bean on £i and observing 

the number Aie, of times out of a total number /? of trials that it 

lands in E 6 . In general, we define fi^j as the probability that the 

bean lands in Ey on the condition that it started its hop from E'A- . 

We assume y2</ is independent of the time of the experiment. It is 

quite clear that we require of the numbers f. ° that 



SIO Ref: 59-72 - h -

and tha t for each fixed c) /< / < C4 , we require that 

61 

L ^y = / 
J" 

These... then are the essential ingredients of a Markov chain: A space £ 

on which certain determinate or indeterminate events take placej a set 

of numbers f.^ which measure the initial probability of an event on 

each point EA- of C , aid a set of numbers /2yy which give a measure 

of how the events at a point £"x- may influence or give rise to an 

event at a generally different point E{ of £ . Formally, we have the: 

Definition*: A Markov chain is an ordered triple C(fP P° ®) in which: 

(i) £=• (ir,)... 7£ n)is a finite**, ordered set of elements of 

some set C . 

( i i ) P i s a non-negative valued function on g such tha t i t s 
n 

values P°(E;) -/&° have the property -ZT/2j?=/ . 
( i i i ) (p i s a non-negative valued function on ^>^ such tha t i t s 

values Q (£^£j) 2 p.; • have the property: X P •> j - ' 
J'' 

for each /•, I < c £ n . 

New Markov Chains From Old 

The conditions (ii) aid (iii) of the definition endow a Markov 

chain with a useful regenerative property in the following sense. 

*• For a simple exposition of the notion of a Markov chain, see reference 7. 

•>"-* We shall not need to consider infinite gets in this work. 
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Let flt - X Z2-'/ Pyx t and / 2 / / = X&•* £,<,- . Then the functions p ' 

and ( / these re la t ions define, have the property that ^/2c —f 

and J£ ^•< -/ i±j±n, so tha t the ordered t r i p l e (<f, &';(?*) i s a 

Markov chain. 

In general, by induction, the ordered t r i p l e (ft P"j (Pn*'J i s a 

Markov chain, where, symbolically 

n _ n -1 

and 

p = P""' • <p 

<?*"" = < ? " • <P , 

or spec i f ica l ly , 

>J = E tj*"*U , \*'*n ( l ) 

A 

/^y ' 2 ^ > *-< > I**,* *• n 
(2) 

* • = • ' 

With these preliminaries in mind, we now may consider the details of 

establishing the connections between the local interaction principle 

and Markov chains. 
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PRELIMINARY CONNECTION 

g 

In an earlier work7 a study was made of the mathematical 

foundations of radiative transfer which automatically subsumed both the 

continuous and discrete-space contexts. The radiative, and radiative 

transfer processes postulated in that study were related on a very 

general level to the notions of stochastic processes. It follows that 

the present results are in principle subsumed by the earlier analysis. 

However, for the explicit \case of . discrete carrier spaces such as 

those considered in the current series of investigations, it is an 

instructive and non trivial task to draw these connections in some detail. 

We can give the reader a quick, preliminary insight into the nature 

of the connection between Markov chains and radiative transfer theory 

by using the point of view adopted in reference 1, There it was 

observed that radiative transfer theory is essentially the study of the 

ordered^triple (X, N̂ 7")> where X is a space, l\/ is the radiance 

function defined on )( , and T is an operator (equation of transfer 

or local interaction principle) defined on |\/ . We can now make the 

following pairing of concepts to establish the first, tentative, 

connection: 

file:///case
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MARKOV CHAIN RADIATIVE TRANSFER PROCESS 

( £, P°;(?) ( V , N , T ) 

£ X 

(p < 5»* -y 

Thus if we replace the Mexican jumping bean by a photon, and the 

checkerboard £ with an optical medium X (tn© phase space) then P ° 

the initial probability function pairs off with the initial radiance 

function t\} , and the transition probability function (P pairs off 

with the transfer equation ~J~ „ 

The exact details of this pairing will now be examined for the 

case of an arbitrary discrete space to which the local interaction 

principle is applicable. 
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LOCAL CONNECTIONS 

We begin the discussion by considering the i n i t i a l local 

sca t te r ing function 2 °(xi ; • ; • ) , and the i n i t i a l local radiance 

vector N° CXi) associated with an a rb i t ra ry fixed point OCi in 

a given d iscre te space Xn to which the local in te rac t ion pr incip le i s 

applicable. Let 3 ; * { f r i >• ••> hn\ b e t h e l o c a l d i r e c t i o n s P a c e a t 

X - .-.nd l e t 3 °/ ~ n ° la. i 1 b e t h e l o c a l source d i rec t ion space 

a t X; . Let £^ - Z: ^ U "ZL ;. . Then ^ w i l l be the event space 

for the Markov chain we are constructing. The function AT°C^i\ ' 3 * ) 

i s the candidate for the t r ans i t i on probabi l i ty function (? and the 

source radiance vector NJ0O t-) — ) K/'/ , - - • ; ^A^l J i s t h e 

candidate for the i n i t i a l probabi l i ty function P . Thus we consider 

the se t of ordered t r i p l e s ( £ ; ; N 7 ^ ^ , T 0t*i j ' j 'l), / - •̂ S- " 

for possible membership in the family of a l l Markov chains. 

According to condition (ii) of the Markov definition, we require 

of the vector K) "(•*;) the property that 2-~ bJ.°, * =• / , which 
j-' if-

of course can be endowed by fiat. However, the remaining condition 

(iii) on the transition function requires that : 

for each ? o ,. — o ' <? . This condition is not generally satisfied 
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in non-conservative spaces. Or, putt ing i t pos i t ive ly : ( i i i ) i s 

sa t i s f ied in conservative spaces only. This shortcoming on the pa r t of 

•^ (••*• i j " j ' ) can be remedied by steering the following course: 

Recall f i r s t tha t the loca l conservation property-1- s t a t e s : 

Ey defining i " ' u 4 - j J e ; J J s A c* • T ° ) , J ° f E t ° U) 

and formally adjoining to ' ' r ^ y t n e clement J ^ , and to 

N C%i) the corresponding formal component Kiuii= & , we have: 

where .r.^ i s the augmented local d i rec t ion space,^ and where we have 

set 1 °(x;; $u ', lu,) ~ 0 by convention. Hence ZT°( •*, > • ] •) on £ •>• ? • 

s a t i s f i e s condition ( i i i ) and we have established tha t the ordered 

t r i p l e ( €i j tJ °(z/) } X °(xrr > •)) i s a Markov cL&An *or each xl, \^. i^.r\ . 
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GLOBAL CONNECTION 

The global connection is established by welding together, in 

matrix form, the local connections established in the preceding 

section. The only change needed besides the assembling of larger 

. o 
vectors and matrices, is the renormalization of the components of N . 

That is, \^°= T M°(x,) , • • . , M̂ 3f»>\]is required to have its J2T A, ji 

components add up to unity (see reference 1). Thus if we set 

£ ^ (Sty.., £/») then the triple (?> N °, ZT ° ) is a Markov chain 

where ^ and ̂ T are given in their global forms established in 

reference 1. 

\le may verify tha t the ordered t r i p l e (<?, M ° ., M 2 / is a 

Markov chain where Nl + = N^-S" 0 , M i s a permutation matrix, and 

2 i s the sca t te r ing matrix for )(f\ augmented j u s t as 2T "was to include 

the local absorption function in i t s rows and columns. The domains of 

def ini t ion of i t s elements are Cartesian products of the form 

(- : • ) ^ f 3 •) > where the prime denotes the augmented space. 

The regenerative propert ies of a Markov chain ( i . e . , propert ies (1) and 

(2) above) allow the conclusion tha t (<£*, K)+ , ( MZ) / i s a lso a 

Markov chain, where fj + - W ° ( M Z ) • 
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CONNECTION VIA TRANSPECTRAL SCATTERING 

At one stage (equation (U) ) in establ ishing the local connections, 

a seemingly a r t i f i c i a l step waa taken to rea l ize condition ( i i ) of the 

Markov chain def in i t ion . The p r t i f i c i a l i t y is removed by sui tably 

extending the concept of the local sca t ter ing function. As i t stands 

now, Z (X ; i ' j ') i s defined on (- !r"v ) ^ ("=•/) or on 

~r L > "H i in "the case of .?" "'(xt, • ; - ) . Thus <r describes the 

radiometric ac t iv i ty only i.. t"!.e local d i rec t ion space a t JC4 . The 

function /U-X;^) takes into -iccov.nt the remainder of the radiometric 

ac t iv i ty a t OC; , namely sca t te r ing without change in wavelength to 

direct ions outside of ~ / j sca t te r ing with change in wavelength a t 

X^.ard general absorption brought about by the conversion of radiant 

to non radiant energy. 

All these diverse radiometric a c t i v i t i e s at each point of Xocan 

be descri'bed by a s ingle function of the ^ - t y p e . The domain of 

def in i t ion of the local t ranspect ra l sca t ter ing function at 0Cj[ i s the 

product space ( - T ^ C ? , ; ) , where ^ • * {(f,\) : ? * ^ > X eA/) , 

-%9{(S>\) '. Jtt-Zj^tA/} > a n d A . - - { V / , , ,., , \ x y ^ 

i s the loca l spectrum at oc^ . The se t / L <' represents the d iscre te 

version of the usual continuous electromagnetic wavelength domain 

A = \ \ -, o^y^co}. 

In the interests of generality we will allow the possibility of a 

different local spectrum set at each point of Xn . For most practical 
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appl icat ions , however, we merely need /[./ = J[ , for a l l / , Each 

number \ ; - in A / i s associated with an actual wavelength in A » 

except for \ij>. • The l a t t e r denotes a radiant energy sink: The 

"place" where the radiant energy goes when i t no longer i s radiant 

energy as such (kinet ic energy of thermal motion, potent ia l energy 

levels of atoms and molecules, e t c . ) . 

The local t ranspectra l sca t ter inp function "Z. ( X; i ' ,' ' ) defined 

on ( - ? F ; ) W ? i : \ a t X; e y,« , with value 2 ^ x - , ^ ; ft , denotes 

the fractional amount of tlu. -Lieowing (or field) radiance h)(X/ tS' ) 

tha t is "scattered" into the s t a t e r at DC/ , where r - ( Si X) 

and ' / = ( X » . 

The t ranspectra l sca t ter ing function contains the monochromatic 

local sca t te r inf functions, impl ic i t ly defined for a fixed wavelength 

X £ A ; , as a special case: 

2(*i ; s'jS) - Z(*; (J'XJ^JiM) (6) 

Furthermore, the local absorption function, implicitly defined for a 

fixed wavelength \ £ A / > is now representable as: 

M ^ > J ) - £'z(* ; ; is,y)-;( f ' . V ) ) , (?) 

where ^ denotes summation over all 5 £ 3"/ , and over all 

\ ', A , - \ • Thus, the local conservation property becomes: 

1 Z.L*-;>+J') -I , *'•#, 
(8) 
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F inal ly , the t ranspect ra l form of the local in te rac t ion pr incip le 

becomes: 

%U-V:) x«eX„ 

(9) 

nn-V) 
where x^ is defined analogously to i t ' , except now we use '—.'*•» 

instead of -3 1 < . If we se t J ] U ^ t / , <fc ) = I , <5,— M ^ y W ^ ) 

then the t r i p l e (6^ )^°} 2. °) i s once again a Markov chain, which 

may lead to higher order and global forms of Markov chains in precise ly 

the manner shown in the preceding sect ion. 
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CONCLUSION AND PROSPECTUS 

We have shown how the study of radiative transfer processes on 

discrete spaces may legitimately be carried on as a subdiscipline of 

the theory of Markov chains by showing how the principle of local 

interaction can be cast into Markov chain form. As a consequence, 

the rich storehouse of results on Markov chains in general is now-

available for use in the study of old and new theoretical questions in 

radiative transfer. The possibility of combining the idea of nets of 

discrete spaces (reference 2) with the Markov chain formulation of 

radiative transfer theory opens a whole new field of exploration. 

Further, the study of asymptotic radiance distributions, time-

dependent problems, etc., can noxtf be formulated and viewed in novel 

perspectives by means of ergodic theory and recurrence phenomena; old 

random walk interpretations of radiative transfer phenomena take on 

greater depthj and the concept of radiative transfer processes finds 

its rightful place among the modern concepts of general stochastic 

processes. So once apain the conceptual barriers between the events 

of radiative transfer theory and those of the main stream of physics 

are further dissolved, and we begin to observe what Mach long ago had 

discerned, namely that: 

"Every event belongs, in a strict sense, to all the departments 

of physics, the latter being separated only by an artificial 

classification, which is partly conventional, partly physiological, 

and partly historical." 

The Science of Mechanics, Open Court 
Pub. Co.,TLa Salle, Ill.,19U2,9th Ed.) 
p. 597. 
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