
UC Berkeley
UC Berkeley Previously Published Works

Title
Estimation of coalescence probabilities and population divergence times from SNP data

Permalink
https://escholarship.org/uc/item/3ws597bh

Journal
Heredity, 127(1)

ISSN
0018-067X

Authors
Mualim, Kristy
Theunert, Christoph
Slatkin, Montgomery

Publication Date
2021-07-01

DOI
10.1038/s41437-021-00435-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ws597bh
https://escholarship.org
http://www.cdlib.org/


Heredity (2021) 127:1–9
https://doi.org/10.1038/s41437-021-00435-8

ARTICLE

Estimation of coalescence probabilities and population divergence
times from SNP data

Kristy Mualim1
● Christoph Theunert2,3 ● Montgomery Slatkin 2

Received: 6 October 2020 / Revised: 7 April 2021 / Accepted: 8 April 2021 / Published online: 1 May 2021
© The Author(s) 2021. This article is published with open access

Abstract
We present a method called the G(A|B) method for estimating coalescence probabilities within population lineages from
genome sequences when one individual is sampled from each population. Population divergence times can be estimated
from these coalescence probabilities if additional assumptions about the history of population sizes are made. Our method is
based on a method presented by Rasmussen et al. (2014) to test whether an archaic genome is from a population directly
ancestral to a present-day population. The G(A|B) method does not require distinguishing ancestral from derived alleles or
assumptions about demographic history before population divergence. We discuss the relationship of our method to two
similar methods, one introduced by Green et al. (2010) and called the F(A|B) method and the other introduced by Schlebusch
et al. (2017) and called the TT method. When our method is applied to individuals from three or more populations, it
provides a test of whether the population history is treelike because coalescence probabilities are additive on a tree. We
illustrate the use of our method by applying it to three high-coverage archaic genomes, two Neanderthals (Vindija and Altai)
and a Denisovan.

One of the goals of population genetics is to estimate the
divergence time of isolated populations. We will review
several methods that have been proposed and present a new
method that is closely related to two existing methods. We
will emphasize the assumptions made when using different
methods. It will be useful to make the distinction between
estimating coalescence probabilities within populations and
estimating population divergence times. We will also
introduce a test for a treelike population history based on
our method.

For distantly related populations, the numbers of muta-
tional differences between sequences indicate relative times
of divergence. Relative times are converted to absolute

times by assuming a mutation rate. This method traces to
Zuckerkandl and Pauling (1962, 1965) and has been used
and refined extensively. This class of methods estimates
genomic divergence times. Using it to estimate population
or species divergence times assumes that those times are so
large that the difference between them can be ignored.

For recently diverged populations, the numbers of
mutational differences probably do not provide a reliable
estimate of population divergence times both because there
may be too few mutations that differentiate populations and
because the difference between the genomic and population
divergence times may be substantial. To overcome this
problem, Green et al. (2010) (in Supplement 14) introduced
a method that accounts for the difference between genomic
and population divergence. This method was used in later
papers from the same group (Meyer et al. 2012; Prüfer et al.
2014, 2017).

The Green et al. (2010) method is applicable when one
genome is sampled from each of two populations. It
depends on the statistic F(A|B), which is the fraction of sites
in population A that carry the derived allele when that site is
heterozygous in population B. Green et al. (2010) showed
by simulation that the expectation of F(A|B) decreases
roughly exponentially with the separation time of A and B.
The rate of decrease depends on the history of population
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sizes both in B and in the population ancestral to A and B.
Green et al. (2010) estimated population divergence times
by interpolating their simulation results.

More recently, Schlebusch et al. (2017), in Section 9.1 of
their supplementary materials, introduced a similar method,
called the TT method. Their method is based on analytic
expressions for the configuration probabilities of SNPs that
are polymorphic in the two populations. The TT method
assumes that ancestral and derived alleles can be dis-
tinguished and the population before divergence was of
constant size. The TT method is developed and elaborated
on by Sjödin et al. (2020).

In the present paper, we present a new method that is
closely related to the F(A|B) and TT methods. We call it the
G(A|B) method to emphasize its similarity to F(A|B). Our
method is based on a method presented by Rasmussen et al.
(2014) to test whether an ancient DNA sequence is from a
population directly ancestral to a present-day population.
We will show that our method provides a way to test
whether the history of three or more populations is accu-
rately represented by a population tree even if the demo-
graphic histories of those populations are not known.

Analytic theory of F(A|B)

Two populations A and B diverged at time T in the past
and remained isolated since. Two chromosomes are
sampled from population B and one from A. Let N(t)
denote the population size t generations before the present
(t= 0). Between 0 and T, N(t) is the effective size of
population B. Before T, it is the effective size of the
ancestral population. Because only one chromosome is
sampled from A, the effective size of A between 0 and T
does not matter. If there is no recurrent mutation, A carries
the derived allele only if one of the two B lineages coa-
lesced with the A lineage and there was a mutation on the
internal branch of the gene tree, as illustrated in Fig. 1.
We calculate the probability of those two events using
standard coalescent theory.

The probability of the gene tree shown in Fig. 1 is 2(1 –
c)/3 where c is the probability that the two B lineages
coalesce between 0 and T. The 2/3 reflects the fact that in
the ancestral population each pair of lineages is equally
likely to coalesce first. The probability that there is coa-
lescence between 0 and T is

c ¼ 1�
YT�1

t¼0

1� 1
2N tð Þ

� �
� 1� exp

Z T

0

dt

2N tð Þ
� �

ð1Þ

where the approximation is accurate when N(t) is large. If
N is constant, c ≈ 1 – e−T/(2N).

We denote the expected length of the internal branch of
the gene tree shown in Fig. 1 by u. In general u depends on
N(t) in a complicated way but if N is constant, u= 2N
(Wakeley 2009). The probability that a mutation occurs on
the internal branch is µu where µ is the per-site
mutation rate.

The probability that the two B lineages carry different
alleles is 2μt, where

t ¼
Z 1

0

1
2N tð Þexp �

Z t

0

dt0

2N t0ð Þ
� �

ð2Þ

Fig. 1 Illustration of the notation used in this paper. Populations A
and B are assumed to have diverged from a common ancestor T
generations in the past. Two chromosomes from B and one from A are
sampled. A mutation from the ancestral to derived allele at a SNP is
assumed to have occurred on the gene tree as shown by the arrow.
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is the average coalescence time. Note that t does not
depend on T. When N is constant t ¼ 2N.

We denote the probability that A carries the derived allele
given that the two B lineages carry different alleles by P(A|
B). We distinguish this probability from the statistic F(A|B)
computed from the data. From the rules of conditional
probability we obtain

P AjBð Þ ¼ 2 1� cð Þ
3

μu

2μt
¼ 1� cð Þu

3t
ð3Þ

which reduces to P(A|B)= e−T/(2N)/3 when N is constant.
If N varies with time, an analytic expression for P(A|B) can
be obtained for some functional forms of N(t), but in
practice it may be easier to determine the dependence on T
by simulation, as was done by Green et al. (2010) and in
later papers.

Green et al. (2010) estimated the decrease in P(A|B) with
time for several demographic models and then estimated T
by finding the intersection point with the observed value of
F(A|B) with each simulated curve. In Eq. (3), P(A|B)
depends on N(t) both before and after T because u does.

Schlebusch et al. (2017) TT method

Another method for estimating population divergence times
was presented by Schlebusch et al. (2017) in part 9 of their
supplemental materials (pp. 21–23). They call this method
the TT method and note that it is related to the concordance
methods previously used by Schlebusch et al. (2012) and
Skoglund et al. (2011). Schlebusch et al. (2017) assume that
two chromosomes are sampled from each population and
distinguish nine configurations of the data at each site: O0
(0/0), O1 (1/0), O2 (0/1), O3 (2/0), O4 (0/2), O5 (1/1) O6
(2/1), O7 (1/2), and O8 (2/2), where the numbers before and
after the slash are the numbers of derived alleles in the first
and second populations respectively. Schlebusch et al.
derived the probabilities of each configuration under the
infinite sites model with constant mutation rate, arbitrary
population size changes after population separation, and
constant population size in the ancestral population. These
probabilities depend on several parameters: the probabilities
of coalescence in the two daughter populations, here called
c1 and c2 to be consistent with the notation in the previous
section, T1 and T2 (the population split times for each
population scaled by the effective population sizes), V1 and
V2 (the expected times to coalescence in the two popula-
tions, given that they coalesce before the populations split),
and θ, (the effective size of the ancestral population scaled
by the mutation rate). They assume that the numbers of sites
in each configuration take their expected values, and they
derived expressions for each of the parameters. In parti-
cular, they showed that the two coalescence probabilities

are given by

c1 ¼ 2m5

2m5 þ m6
ð4Þ

c2 ¼ 2m5

2m5 þ m7
ð5Þ

where mi is the observed numbers of sites in configura-
tion Oi.

Recently, Sjödin et al. (2020) presented a more complete
derivation of the TT method and introduced a modification
of that method that is similar to the G(A|B) method described
below. The new version of the TT method, called the TTo
method, assumes that there was an outgroup that diverged
from the ancestor of the two populations whose divergence
time is being estimated. By restricting the analysis to sites
that are polymorphic in the outgroup, the mutation rate is no
longer needed. For those sites, Sjödin et al. (2020) derive
expressions for the probabilities of coalescence in each of
the two populations after they diverge. They also present a
test of the hypothesis that the three populations have a his-
tory represented by a bifurcating tree. That test is somewhat
different from the test of treeness that we present below.

Rasmussen et al. method

Rasmussen et al. (2014) (Supplement 17) considered the
problem of whether an archaic genome was from a popu-
lation directly ancestral to a present-day population. Like
the TT method, two chromosomes are sampled from each
population. The two populations A and B were assumed to
have separated at some time in the past. To eliminate
mutation as a force, they restricted their analysis to sites that
were ascertained to be polymorphic in an outgroup, as is
assumed in the TTo method of Sjödin et al. (2020). In fact,
the two methods are equivalent but Rasmussen et al. (2014)
restricted themselves to the specific question of direct
ancestry.

We call the two alleles by S and s. Without distin-
guishing ancestral and derived states, there are five con-
figurations of the data at each site: (1) SS/SS or ss/ss, (2)
SS/Ss or ss/Ss, (3) SS/ss or ss/SS, (4) Ss/SS or Ss/ss, and (5)
Ss/Ss, where the first genotype is from population A and the
second is from B. Rasmussen et al. (2014) showed that, in
the absence of mutations, the probabilities of the five con-
figurations depend on five parameters, c1, the probability
that the two lineages from A coalesce after the populations
diverge, c2, the probability that the two lineages from B
coalesce after the populations diverge, and k0, k1, and k2, the
elements of the normalized folded site-frequency spectrum
in a sample of size 4 immediately before the populations
diverged: k0 is the probability of SSSS or ssss, k1 is the

Estimation of coalescence probabilities and population divergence times from SNP data 3



probability of SSSs or Ssss, and k2 is the probability of
SSss, where the ordering of S and s does not matter.

The data consist of the numbers of sites ni with each
configuration. Rasmussen et al. (2014) assumed that the
data had a multinomial distribution with probabilities pi.
They used standard numerical methods to estimate the five
parameters from the data. As with the F(A|B) and TT
methods, this is a composite likelihood method because it
assumes independence of sites that may be correlated
because of linkage disequilibrium.

Rasmussen et al. (2014) applied their method to an
archaic sample from Montana, which in this notation is
population B, and several present-day Native American
individuals, each of which in turn was population A. Ras-
mussen et al. restricted their analysis to sites that are
polymorphic in a panel of African individuals. Rasmussen
et al. used a likelihood ratio test of the hypothesis that c2=
0. If c2= 0, the branch to B from the population ancestral to
A and B was so short that no coalescence events occurred,
which implies that B is directly ancestral to A or nearly so.
In doing this analysis, Rasmussen et al. (2014) needed no
assumptions about the history of population sizes either
before or after T. They did not estimate divergence times,
only coalescence probabilities.

G(A|B) method

In this paper, we simplify the Rasmussen et al. (2014)
method and assume that only one chromosome is sampled
from population A, as in the F(A|B) method. To emphasize
the similarity to the F(A|B) method, we call our method the
G(A|B) method. There is no need to assume that A is a
present-day population or even that it was from a more
recent time than B. The goal is to estimate the coalescence
probability in B before A and B had a common ancestor.
From that coalescence probability and assumptions about
population size changes in B, we can estimate T, the time
since B separated from the common ancestor.

With only one chromosome sampled from A, there are
three configurations of the data: (1) S/SS or s/ss, (2) S/Ss or
s/Ss, and (3) S/ss or s/SS, where the allele carried by the
chromosome from A is before the slash. There are only
three parameters of the model, c, the probability of coa-
lescence in B, and k0 and k1, the elements of the normalized
folded site-frequency spectrum in a sample of size 3 at T: k0
is the probability of SSS or sss and k1 is the probability of
SSs or Sss. There are only two free parameters because
k0+ k1= 1. By analogy with the derivation in Rasmussen
et al. (2014):

p1 ¼ k0 þ ck1
3

p2 ¼ 2 1� cð Þk1
3

ð6Þ

p3 ¼ 2 1þ cð Þk1
3

where the pi are the configuration probabilities. Given the
data, ni for i= 1, 2, 3, the three parameters can be estimated
by assuming a multivariate normal distribution of the data.

The estimated value of c does not require any assump-
tions about population size but also provides no information
about the divergence time. From ĉ, the estimate of T (T̂) is
obtained solving the equation

ĉ ¼ 1� exp �
Z T̂

0

dt

2N tð Þ

" #
ð7Þ

for T̂ once an assumption is made about N(t). If N is
constant T̂ ¼ �2Nln 1� ĉð Þ. In our application of this
method, we used inferences about N(t) obtained from
PSMC (Li and Durbin 2011) but other methods including
historical data could be used instead. Differences among
inferred historical population sizes will result in differences
in estimated divergences times.

Comparison of G(A|B) with other methods

We can understand the relationship to F(A|B) by assuming
the sample sizes are large enough that the numbers of each
configuration take their expected values. In that case, the
parameter estimates for the G(A|B) method are

ĉ ¼ 2n3 � n2
2n3 þ n2

ð8Þ

k̂1 ¼ 3
4
2n3 þ n2

n
ð9Þ

where n= n1+ n2+ n3.
The F(A|B) method is similar. To apply it, ancestral and

derived alleles must be distinguished. Let S be the derived
allele. There are six configurations of the data (1) S/SS, (2) S/
Ss, (3) S/ss, (4) s/SS, (5) s/Ss, and (6) s/ss. Let vi be the
observed numbers of sites in each configuration. By definition,

F AjBð Þ ¼ v2
v2 þ v5

ð10Þ

When ancestral and derived alleles are not distinguished,
n1= v1+ v6, n2= v2+ v5, and n3= v3+ v4. Hence, from
(8),

ĉ ¼ 2 v3 þ v4ð Þ � v2 � v5
2 v3 þ v4ð Þ þ v2 þ v5

ð11Þ

4 K. Mualim et al.



There are several differences between the two methods.
First, the two methods use different subsets of sites. F(A|B)
uses all sites that are heterozygous in B while our method
uses all sites that are polymorphic in an outgroup. Second,
the F(A|B) method estimates T directly from simulations,
while our method first estimates c and from that value
estimates T. Given the assumptions about demography, c is
an analytic function of T and the estimate of T is found
analytically or numerically. No simulations are needed.
Third, the estimate of T from our method does not depend
on the history of population size in the ancestral population.
That history determines k1 that is estimated from the data.

The TT method does not require assumptions about the
sizes of the daughter populations but it does rely on the
assumption that the ancestral population was of constant
size and had reached an equilibrium under mutation and
genetic drift.

The TTo method of Sjödin et al. (2020) is equivalent to
our method except that it assumes that two chromosomes
are sampled from each population. Their expressions for the
coalescence probabilities are, in terms of the notation used
here

ĉ1 ¼ 1� 2
m1;0 þ m1;2 þ m1;1

2 m1;0 þ 2m2;0 þ m2;1
� �þ m1;1

ĉ2 ¼ 1� 2
m0;1 þ m2;1 þ m1;1

2 m0;1 þ 2m0;2 þ m1;2

� �þ m1;1

where the mi,j are the number of sites with i-derived
alleles in population 1 and j-derived alleles in population 2.

Test for treeness in three or more
populations

When samples from three or more populations are available,
estimates of coalescence probabilities can be obtained from
all pairs. If the history of the populations is correctly
represented by a bifurcating population tree in which there
is no immigration either among the populations sampled or
from an external population, then the coalescence prob-
abilities are constrained because the probabilities on dif-
ferent branches of the population tree must be additive. As a
consequence, it is possible to use our method to test whether
the population history is treelike even when the history of
population sizes is unknown. Our test differs from the test
of treeness presented by Sjödin et al. (2020). Their test is of
the hypothesis that the outgroup and two populations are
correctly modeled by a bifurcating tree with no admixture.
Our test is a test of the hypothesis that three populations
form a bifurcating tree given that the sites are ascertained to
be polymorphic in a population that is an outgroup to all

three. Our test of treeness does not require assumptions
about population sizes because only the coalescence prob-
abilities are used.

We illustrate this idea with three populations, shown in
Fig. 2. The samples are from populations 1, 2, and 3, which
are not necessarily contemporaneous. The ancestral popu-
lations are 4 and 5. We distinguish coalescence probabilities
on each branch by the identities of the initial and final
populations, c(14), c(24), etc. We estimate each of these
probabilities using two populations, one from which two
chromosomes are sampled (population B) and the other
from which a single chromosome is sampled (population A).
We indicate the population used as population A in each
estimate. For example ĉ 14; 2ð Þ is the estimate of c(14) using
a single chromosome from population 2. One test of tree-
ness comes from the two ways of estimating c(35), namely
ĉ 35; 1ð Þ and ĉ 35; 2ð Þ. If there is no admixture, these two
estimates should be the same (Fig. 3). We define the test
statistic, Δ1 to be the difference:

Δ1 ¼ ĉ 35; 1ð Þ � ĉ 35; 2ð Þ ð12Þ

A second test of treeness comes from the fact that the
coalescence probability on the internal branch, c(45), can be
estimated two ways. A coalescence on branch 45 can occur

Fig. 2 Illustration of a tree of three populations, 1, 2 and 3, used in
the test of treeness described in the text. Population 4 is ancestral to
1 and 2, and population 5 is ancestral to all three populations.

Estimation of coalescence probabilities and population divergence times from SNP data 5



only if there is no coalescence on one of the terminal branches,
14 or 24, and a coalescence on branch 15 or 25. Therefore

c 45ð Þ ¼ c 15ð Þ � c 14ð Þ
1� c 14ð Þ ¼ c 25ð Þ � c 24ð Þ

1� c 24ð Þ ð13Þ

If the population history is treelike, the second test sta-
tistic

Δ2 ¼ ĉ 15; 3ð Þ � ĉ 14; 2ð Þ
1� ĉ 14; 2ð Þ � ĉ 25; 3ð Þ � ĉ 24; 1ð Þ

1� ĉ 24; 1ð Þ ð14Þ

will be 0.
A rough test of whether Δ1 and Δ2 differ significantly

from 0 is obtained by approximating their variances using
the variances in the values of ĉ. For example, the variance in
Δ1 is the sum of the variances of ĉ 35; 1ð Þ and ĉ 35; 2ð Þ,
provided errors in those two quantities are assumed to be
independently distributed. A slightly more elaborate
expression is needed to compute the variance of Δ2 because
of the denominators. From these variances, the hypothesis
that Δ1 and Δ2 differ from 0 is rejected if the estimates
values are more than two standard deviations from 0.

Application to Neanderthals and Denisovans

We illustrate the application of our methods to three high-
coverage archaic genomes, the Altai Neanderthal from the
Denisova Cave in central Siberia (Prüfer et al. 2014), the
Vindija Neanderthal from the Vindija Cave in Croatia
(Prüfer et al. 2017), and the Denisova genome (Meyer et al.

2012). All three genomes were sequenced to sufficient
depth that heterozygous sites can be called with confidence.
Hence, the effects of degradation of aDNA do not affect the
results.

In applications to lower coverage sequences, statistical
uncertainly about homozygous and heterozygous sites
would have to be taken into account by using genotype
likelihoods. However, because estimates of coalescence
probabilities depend on the difference between a relatively
small number of heterozygous and homozygous sites (cf.
Equation 8 and values of n2 and n3 in Table 1), substantial
uncertainty in the numbers of heterozygous and homo-
zygous sites in low coverage sequences would probably
result in unacceptably large errors in estimated coalescence
probabilities. As we will see in the present example, there is
considerable uncertainly in the estimates of coalescence
probabilities even when there is no uncertainty in the values
of n2 and n3.

We restricted our analysis to SNPs ascertained to be
polymorphic in a panel of 40 African genomes in the
Simons Genome Diversity Panel (Mallick et al. 2016). We
used an additional filtering step for the Altai genome. Prüfer
et al. (2014) showed that the Altai Neanderthal was inbred
with an estimated inbreeding coefficient of 1/8. For the
comparisons involving this individual, only sites not in runs
of homozygosity longer than 2 mb were analyzed.

With three populations, there are six possible compar-
isons using each population in turn as population A and B.
Table 1 shows the number of sites in each of the three
configurations for all combinations. In the table, one of two
alleles chosen at random from population A and two from
population B were counted. The estimated value of c is the
probability of coalescence in B after it diverged from the
ancestor of A and B. The confidence intervals for c and k1
were obtained from block-jackknife resampling with a
window size of 10 mb. The block-jackknife method is dis-
cussed by Green et al. (2010).

The two tests statistics defined in the previous section
can be computed. In this context, population 1 is the Vindija
Neanderthal, denoted by V, population 2 is the Altai
Neanderthal, denoted by A, and population 3 is the Deni-
sova genome, denoted by D. N denotes the common
ancestor of A and V (population 4) and H denotes the
common ancestor of all three populations (population 5).
Adapting the notation in the previous section

Δ1 ¼ ĉ DH;Vð Þ � ĉ DH;Að Þ ¼ 0:888� 0:907 ¼ �0:019
and

Δ2 ¼ ĉ VH;Dð Þ � ĉ VN;Að Þ
1� ĉ VN;Að Þ � ĉ AH;Dð Þ � ĉ AN;Vð Þ

1� ĉ AN;Vð Þ

¼ 0:910� 0:423
1� 0:423

� 0:846� 0:206
1� 0:206

¼ 0:038

Fig. 3 Application of the method described in the paper for esti-
mating the coalescent probability, c, on each branch of a popu-
lation tree of three archaic genomes. The six coalescence
probabilities that can be estimated are shown.

6 K. Mualim et al.



For both test statistics, the numbers are taken from the
last column of Table 1. Given the confidence intervals on
the values of ĉ, Δ1 and Δ2 are not significantly different
from 0.

To determine whether these test statistics are sensitive to
deviations from a treelike population history, we conducted
a simulation study tailored to this application of our test of
treeness. We assumed that diploid sequences were sampled
from V, A, and D, and five diploid sequences from an
outgroup, denoted by H. We chose parameters to roughly
agree with what is known about the history of Neanderthals,
Denisovans, and modern humans, although we did not take
the estimated ages of the fossils into account. We used the
program scrm (Staab et al. 2015) to simulate SNP data
under the assumption that sites are unlinked and neutral. In
all results shown, we simulated ten replicates with
1,000,000 sites each. We set the time of the common
ancestor of Altai and Vindija (node N) to be 0.3, the time of

the common ancestor with the Denisovan (node H) to be 0.6
and the time of common ancestry with the outgroup to be 1,
with all times measured in units of 2N generations. We
allowed for admixture at time 0.1 at a rate f between various
pairs of populations. Some results are shown in Fig. 4.

We can see that our test statistics are not sensitive to
some kinds of admixture, supporting the idea that our
estimates of coalescence probabilities are robust to small
amounts of admixture. Admixture between Denisovan and
the outgroup, D→H and H→D, has little effect even if f=
0.3. Admixture into Vindija either from Denisovan D→V or
the outgroup H→V has a much larger effect, as does
admixture to the outgroup A→H. Even in those cases,
however, f has to be substantial for Δ1 and Δ2 to be strongly
affected. It is already known that there was some admixture
between Altai and Vindija and between a super-archaic
group and Denisova (Prüfer et al. 2014) but both rates are
low, on the order of 1%. Therefore, it is not surprising that

Table 1 Counts of SNPs in each
of the three configurations along
with estimates of k1 and c.

B A n1 n2 n3 k0 c

Altai Vindija 7,864,107 75,478 57,311 0.0178 ± 0.001 0.206 ± 0.040

Vindija Altai 7,874,698 54,704 67,494 0.0178 ± 0.001 0.423 ± 0.043

Vindija Denisova 8,980,266 52,108 553,786 0.091 ± 0.002 0.910 ± 0.014

Denisova Vindija 8,973,604 64,912 547,644 0.091 ± 0.003 0.888 ± 0.002

Altai Denisova 7,923,816 78,910 465,399 0.089 ± 0.007 0.846 ± 0.056

Denisova Altai 7,939,928 46,745 481,452 0.089 ± 0.002 0.907 ± 0.017

Both chromosomes are sampled from population B and one chromosome chosen at random is sampled from
population A. Sites were ascertained to be polymorphic in 40 African individuals in the Simons Genome
Diversity Panel (Mallick et al. 2016). n1, n2, and n3 are the numbers of sites in each of the three
configurations defined in the text. k0 and c are obtained by assuming the ni have a trinomial distribution with
probabilities given by Eq. (4) in the text and maximizing the likelihood. The confidence intervals we
obtained from a block-jackknife analysis using a window size of 10 mb.

Fig. 4 Results of simulations testing the sensitivity of the test for
treeness to different types of introgression. In each part, the type of
introgression is indicated. The simulation model assumed that the
divergence of the two Neanderthal populations (node N) occurred
0.3 scaled time units ago, the divergence of Neanderthals and Deni-
sovans (node H) occurred 0.6 scaled time units ago, and the divergence
of humans with the ancestors of Neanderthals and Denisovans

occurred 1 time unit ago. The solid lines indicate the averages of both
test statistics (Δ1, black lines, and Δ2, blue lines) over ten replicates
with 1,000,000 SNPs simulated. The dashed black and blue lines
indicate the averages plus and minus two standard deviations across
replicates. We assumed that a pulse of admixture occurred 0.1 scaled
time units in the past. The parameter f is the fraction of the recipient
population replaced by immigrants from the donor population.
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the values of Δ1 and Δ2 are not large enough to indicate that
the history of these three groups is not treelike. We have to
conclude that our test of a treelike ancestry is not very
powerful for detecting small amounts of admixture when
only three populations are sampled. If our test does show
deviations from a treelike history, however, the admixture
levels required must be substantial or the wrong population
tree is being assumed.

Estimating divergence time from the
coalescence probability

To convert the estimates of c to estimates of T, we need to
solve Eq. (5) numerically after assuming something about
the history of population sizes. We used the size estimates
obtained by Prüfer et al. (2017) from applying PSMC (Li
and Durbin 2011) to each genome. PSMC returns piecewise
constant estimates, with size Ni in time interval (ti,ti+1) with
t0= 0. We used the time intervals and sizes reported in
Figure S7.5 in Supplement 7 of Prüfer et al. (2017). We
note that PSMC estimates an effective population size that
includes the effects of admixture if there was any.

For piecewise constant population sizes, Eq. (5) reduces
to

Pr cjTð Þ ¼ 1� e T�tjð Þ= 2Njð ÞYj�1

0

e tiþ1�tið Þ= 2Nið Þ ð15Þ

where j is chosen so that tj < T≤tj+1. Solving Eq. (15)
yields an estimate of T/(2N0), where N0 is different for
different populations. For the Vindija and Altai branches,
we obtained TVN

TAN
¼ 3:041. This ratio is smaller than the ratio

of 4 estimated by Prüfer et al. (2017). It is difficult to
determine the cause of this difference.

The estimates of coalescence probabilities shown in
Table 1 do not depend on assumptions of population history
but the inferred divergence times do. That is a weakness of
our method that is shared with the F(A/B) and TT methods.
Different methods of inferring the history of population
sizes will produce different estimates of N(t) in population
B, which could then be used to assess the effects of different
methods of inference.

Discussion and conclusions

We present a simple method to estimate coalescence
probabilities within population lineages and the divergence
time of populations when single genomes are sampled from
each population. Our method is a minor modification of a
method introduced by Rasmussen et al. (2014). We com-
pare the theoretical basis of our method with that of other

methods, the F(A/B) method (Green et al. 2010) and the TT
and TTo methods (Schlebusch et al. 2017; Sjödin et al.
2020). The three methods are similar in using SNP data
from diploid genomes sampled from each population. They
all analyze polymorphic SNPs as if they are unlinked. And
they all assume a model in which two populations diverged
from one another instantaneously at some time in the past
and remained isolated until the genomic samples were taken.
None of the methods assumes that the samples are taken at
the same time and hence are all applicable to ancient DNA if
it is of sufficient quality that heterozygous sites can be called
accurately. To obtain estimates of divergence times they all
require estimates of the per-site mutation rate.

The three methods differ slightly in the assumptions they
make. The F(A/B) and TT methods assume that ancestral
and derived alleles can be distinguished. Our method does
not. The F(A/B) method and implicitly the TT method both
require assumptions about the size of the ancestral popu-
lation and the TT method assumes that the ancestral
population was of constant size. The F(A/B) method
assumes a history of population sizes inferred from PSMC
(Li and Durbin 2011). The G(A|B) makes no assumption
about the size of the ancestral population. The demography
of the ancestral population is captured in the parameter k1
that characterizes the folded site-frequency spectrum at the
time of population separation.

The three methods differ in which sites are analyzed. The
F(A/B) method uses all sites that are heterozygous in one
population (population B). The G(A|B) and TTo methods
analyze all sites that are polymorphic in an outgroup. The TT
method analyzes all sites polymorphic in the two genomes.

The three methods differ in how they estimate diver-
gence times. Both the F(A/B) and TT methods estimate the
divergence times scaled by the mutation rate. The G(A|B)
method and implicitly the TTo method first estimate the
coalescence probability in each population and then esti-
mate the divergence time from assumptions about the his-
tory of population size after the populations diverged. In
practice, the history of population sizes is inferred from
PSMC or similar programs that assume a mutation rate.
Therefore, all methods depend on an assumed mutation rate.
None of the methods take account of variation in mutation
rate across sites.

One goal of our paper is to call attention to several
methods for estimating population divergence times using
SNP data from pairs of genomes and to examine the rela-
tionship among them. These methods have a similar theo-
retical basis. The differences between them are relatively
minor. Most important to the accuracy of results obtained
using any of them is the assumption of complete isolation of
the populations after they diverged from a common ancestor
and the accuracy of the mutation rate and demographic
history assumed.
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