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Hot, cold, or just right? An infrared biometric sensor to improve occupant 
comfort and reduce overcooling in buildings via closed-loop control 
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A B S T R A C T   

To improve occupant comfort and save energy in buildings, we have developed a closed-loop air conditioning 
(AC) sensor-controller that predicts occupant thermal sensation from the thermographic measurement of skin 
temperature distribution, then uses this information to reduce overcooling (cooling-energy overuse that dis-
comforts occupants) by regulating AC output. Taking measures to protect privacy, it combines thermal-infrared 
(TIR) and color (visible spectrum) cameras with machine vision to measure the skin-surface temperature profile. 
Since the human thermoregulation system uses skin blood flow to maintain thermoneutrality, the distribution of 
skin temperature can be used to predict warm, neutral, and cool thermal states. We conducted a series of human- 
subject thermal-sensation trials in cold-to-hot environments, measuring skin temperatures and recording thermal 
sensation votes. We then trained random-forest classification machine-learning models (classifiers) to estimate 
thermal sensation from skin temperatures or skin-temperature differences. The estimated thermal sensation was 
input to a proportional integral (PI) control algorithm for the AC, targeting a sensation level between neutral and 
warm. Our sensor-controller includes a sensor assembly, server software, and client software. The server software 
orients the cameras and transmits images to the client software, which in turn assesses occupant skin temperature 
distribution, estimates occupant thermal sensation, and controls AC operation. A demonstration conducted in a 
conference room in an office building near Houston, TX showed that our system reduced overcooling, decreasing 
AC load by 42% when the room was occupied while improving occupant comfort (fraction of “comfortable” 
votes) by 15 percentage points.   

1. Introduction 

Delivering a thermally comfortable indoor environment is a primary 
goal of building heating, ventilation, and air conditioning (HVAC) sys-
tems. Most HVAC control systems regulate indoor air temperature and 
humidity to setpoints obtained from industry standards or operators’ 
empirical judgments. However, environmental parameters, such as air 
movement and radiation, and personal factors, such as clothing, activity 
level, and thermal adaptation over various timescales substantially in-
fluence the optimum thermostat setpoint for an occupant. Controlling to 
a fixed temperature setpoint rather than to a measurement of occupants’ 
actual comfort is a longstanding shortcoming that causes large fractions 

of commercial building occupants to find their thermal environment 
uncomfortable [1,2]. 

HVAC operation often produces overheating in winter and over-
cooling in summer [3–6]; our current study pertains to the latter. 
Overcooling is highly energy-intensive, and correcting it offers sub-
stantial savings. Across a range of climates in the United States, raising 
an excessively low thermostat cooling setpoint by 1 ◦C reduces annual 
HVAC energy use by an average of 10 % [7]. Overcooling is also a 
worldwide phenomenon, now widespread in hot and humid climates of 
Asia [8,9]. 

The U.S. Energy Information Administration projects that by 2030, 
the United States will consume 1.4 Quad/y [1.5 EJ/y] of primary energy 
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to cool commercial buildings and another 2.4 Quad/y [2.5 EJ/y] to cool 
homes [10]. Eliminating overcooling could reduce cooling energy use in 
the U.S. commercial building sector by 35 %, saving 0.5 Quad/y [0.53 
EJ/y] [11], and may save a comparable amount of energy in U.S. homes. 

There are several causes for such overcooling, all based on HVAC 
design and operation assumptions that are more conservative than 
necessary [5–9]. Overcooling could be caught and corrected by the 
HVAC control system if it could detect the occupants’ thermal comfort, 
as well as the number of occupants in each thermal zone. Knowing these 
would allow the building to be controlled responsibly at lower supply air 
flows and seasonally appropriate indoor temperatures. 

Thermal comfort is traditionally assessed by surveying occupants, 
but it can be predicted from measured physiological variables such as a 
person’s skin temperature [12,13]. Commercially available or prototype 
solutions for addressing personal comfort include smartphone applica-
tions that ask occupants to rate their comfort [14]; networked personal 
hardware, such as wearable wireless sensors that measure core and skin 
temperatures [15]; or these techniques combined with occupant 
counting [16]. However, these solutions require occupant participation, 
may not be effective in transiently populated public spaces, and do not 
detail the spatial temperature distribution needed for holistic assess-
ment of room heat balance [17]. Available passive (non-participatory) 
systems use occupant count to control the HVAC equipment, yielding 
open-loop comfort control—that is, HVAC regulation without assessment 
of occupant comfort. Currently, no passive systems provide the occupant 
comfort feedback required for closed-loop comfort control. 

Closed-loop control systems with application-appropriate sensors 
have been demonstrated to substantially reduce cooling loads in build-
ings. For example, Bell et al. [18] found that the energy consumed to 
cool computer server rooms could be reduced by 30–40 % if air condi-
tioning (AC) operation was regulated using air temperatures measured 
at server fan inlets—the locations that matter—rather than at the ceiling 
return. 

We seek to improve occupant comfort and save cooling energy by 
implementing a closed-loop air conditioning sensor/controller that 
radiatively detects occupants and their thermal sensations, then uses this 
information to reduce overcooling (cooling-energy overuse that dis-
comforts occupants) by regulating AC output. Note that we use the term 
“air conditioning” to refer only to space cooling, by which we mean 
mechanical removal of heat from the occupied space. This scheme will 
supplement conventional wall-mounted room air temperature sensors 
with a wall- or ceiling-mounted, wide-angle sensor that views the oc-
cupants. It combines thermal-infrared (TIR) and color (visible spectrum) 
cameras with machine vision to determine the location, skin-surface 
(hereinafter, simply “skin”) temperature profile, and thermal sensation 
of each observable occupant and can evaluate the collective sensation of 
the occupants. 

To maintain privacy, the sensor does not identify individuals or share 
images, and discards images after using them to help locate heads and 
hands; no personally identifiable information (PII) is used or generated. 
Fully anonymous image analysis can also provide real-time occupancy 
counting that can be used by heating, lighting, and ventilation controls; 
that can provide data for scheduling services with machine learning; and 
that can support building security. This sensor could be installed in 
either commercial or residential buildings and would be especially 
valuable for public spaces with transient populations, such as meeting 
rooms, auditoriums, restaurants, and stores, in which occupants have 
little control over their comfort. 

Our approach combines two recent innovations to assess occupant 
skin temperature distribution: (1) low-cost (≤US$165 as of July 2023), 
medium resolution (160 × 120 pixel), uncooled TIR camera detectors 
(microbolometers) which can be coupled with very-low cost (≤US$10), 
megapixel-resolution color camera detectors; and (2) open-source 
computer vision image recognition software that can quickly locate 
body parts of interest, such as the face, nose, and hands. 

This article proceeds in seven steps:  

• Physiology. We review how skin blood flow and temperature 
respond to thermal stress.  

• Sensing. We describe the development and testing of the radiometric 
sensing hardware and software needed for skin temperature distri-
bution thermography, including color and thermal cameras, tem-
perature references, and machine-vision code.  

• Sensation. We summarize the relationship between thermographic 
skin temperature distribution and thermal sensation developed in a 
series of human-subject trials. 

• Control. We elaborate the incorporation of thermal sensation esti-
mated from skin-temperature distribution as input to an AC control 
algorithm that seeks to minimize cooling energy use while main-
taining occupant comfort.  

• Integration. We describe the development of our sensor-controller 
that incorporates the radiometric sensor, thermal sensation model, 
and control algorithm to minimize overcooling.  

• Demonstration. We summarize the performance of our sensor- 
controller assessed through trials in an office space.  

• Future development. We present plans to upgrade our device. 

2. Skin blood flow and temperature responses to thermal stress 

Controlling skin blood flow is one of the primary mechanisms by 
which the human thermoregulatory system maintains thermoneutrality 
(a body core temperature of approximately 37 ◦C). Under warm condi-
tions, thermoregulatory vasodilation can boost skin blood flow to 6− 8 
L/min [19], representing as much as 60 % of total cardiac output [20]. 
In cold conditions, thermoregulatory vasoconstriction can limit the skin 
blood flow to nearly zero. Slight changes in skin blood flow can result in 
large changes in heat transfer to the environment; an 8 % increase in 
skin blood flow over the entire body doubles the body’s heat transfer to 
the environment. During cold stress the vasoconstrictor system quickly 
activates and reduces blood flow. After removal of the cold stress, the 
skin blood flow quickly returns to the normothermia conditions. Vaso-
dilation begins when the body core temperature rises above a temper-
ature threshold. Blood flow rates to different areas of the skin differ 
under vasoconstriction or vasodilation. Such behavior can be explained 
by the cardiovascular territories (i.e., regions supplied by specific ar-
teries) supplying blood. In addition, the distribution of cutaneous vessels 
is not uniform across the body. 

Changes in skin blood flow cause skin temperature to vary, especially 
in exposed parts of the body. Areas with higher density of vessels enable 
higher blood circulation, resulting in larger temporal variation in skin 
temperature. Capturing accurate skin temperatures from different car-
diovascular territories allows us to characterize the thermoregulatory 
response to heat and cold stresses. We then use the time-series of tem-
perature measurements to infer the thermoregulation state and estimate 
thermal comfort. Past research relating thermal sensations to skin tem-
peratures and skin temperature differences indicates that head (fore-
head, cheek, or nose) and hand skin temperatures can be used to predict 
both “warm” and “cool” thermal states with over 90 % accuracy 
[12,21,22]. 

3. Development of the radiometric sensing hardware and 
software 

We began by assessing the accuracy with which TIR cameras can 
measure occupant surface temperatures within a narrow field of view, 
then evaluated techniques to measure surface temperature distribution 
over a wide field of view with such cameras. We explored options for 
machine-vision software to identify body parts of interest—e.g., face, 
nose, and hands—in a color image, then developed and tested a series of 
hardware-software systems for the radiometric measurement of face, 
nose, and/or hand skin temperatures. 
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3.1. Thermographic measurement accuracy 

To assess the accuracy of absolute and differential TIR skin temper-
ature measurements, we performed a suite of experiments in an office 
setting that examined major possible sources of error, including dis-
tance, viewing angle, temporal drift in camera response, and ambient 
thermal reflections. We assessed accuracy primarily by comparing 
radiatively sensed temperatures to an active temperature reference 
(ATR—a surface of known thermal emittance whose temperature is 
measured with a contact thermometer, and controlled with an electric 
heating circuit). We also performed some measurements with a passive 
temperature reference (PTR—a surface of known thermal emittance 
whose temperature is measured with a contact thermometer, but is not 
regulated). 

Trials were conducted with two uncooled-microbolometer thermal 
cameras: a high-resolution FLIR SC660 with a 45◦ wide-angle lens (640 
by 480 pixels; spectrum 7.5–13 µm; absolute accuracy ± 1 ◦C or 1 % of 
range; differential accuracy 45 mK @ 30 ◦C; field of view 45◦ × 34◦) and 
a medium-resolution FLIR A315 with a 45◦ lens adapter (320 by 240 
pixels; spectrum 7.5–13 µm; absolute accuracy ± 2 ◦C or 2 % of range; 
differential accuracy 50 mK @ 30 ◦C; field of view 45◦ × 34◦). The FLIR 
SC660 was used to radiometrically measure the temperature of a CI 
Systems SR-80-4A Infrared Blackbody ATR (10 cm × 10 cm; thermal 
emittance 0.95 ± 0.02; temperature accuracy ± 0.05 ◦C; spatial uni-
formity ± 0.01 ◦C) set to 35 ◦C, while the FLIR A315 was used to 
radiometrically measure the temperature of a Thermoworks IR-500 
Portable Infrared Calibrator/Blackbody ATR (diameter 58 mm; ther-
mal emittance 0.95; temperature accuracy ± 0.8 ◦C; temperature sta-
bility ± 0.1 ◦C) set to 55 ◦C. 

3.1.1. Distance error 
Distance trials with the high-resolution camera viewing the 100 cm2, 

35 ◦C ATR at distances 1–34 m and with the medium-resolution camera 
viewing the 26 cm2, 55 ◦C ATR at distances 1–4 m, both at normal 
incidence to the ATR surface, found that increasing distance induced an 
almost linear decrease in the thermographic measurement of ATR 
temperature, reaching an underreporting of 1 ◦C at 10 m for the former 
and at 3 m for the latter. We attribute this to reduced atmospheric 
transmittance (scattering and absorption of the thermal infrared radia-
tion) and effective loss of resolution at large distances. 

3.1.2. Angle error 
Angle trials with the high-resolution camera viewing its ATR at 1 m 

and with the medium-resolution camera viewing its ATR at 2 m, both 
conducted at incidence angles 0–75◦, showed a decrease in thermo-
graphic measurement of ATR temperature when the incidence angle 
(that between the ATR surface normal and the camera-surface line) 
increased. Underestimates were minor (i.e., within a few tenths of a 
Kelvin) at angles < 40◦ but grew rapidly at larger angles. For example, at 
an extreme incidence angle of 75◦, the underestimate reached 1 ◦C for 
the high-resolution camera and 11 ◦C for the medium-resolution cam-
era. We attribute these discrepancies to the directional nature of emit-
tance and the effective loss of resolution at oblique angles. 

3.1.3. Temporal drift 
Stray heat within an uncooled microbolometer (an array of pixels 

whose resistances are altered by absorption of incident thermal radia-
tion) induces drift in radiometric temperature measurement. To 
compensate, the camera periodically initiates a non-uniformity correc-
tion (NUC) operation in which a metal shutter or “flag” of known tem-
perature and thermal emittance is moved in front of the sensor. To 
explore the effects of sensor drift on TIR measurement accuracy, we used 
the high-resolution camera to collect time series of images of the 35 ◦C 
ATR temperature with NUC suppressed and with NUC active. Immedi-
ately after the camera was turned on, TIR measurements of the ATR 
drifted 0.6 ◦C without NUC and 0.4 ◦C with NUC over 15 min. After 

warming up for 1 h, drift was <0.13 ◦C without or with NUC. We found 
the most effective tool for mitigating the effect of sensor drift to be a 
post-processing image-wide offset correction via an external tempera-
ture reference. The key takeaway from this suite of experiments, how-
ever, was that regardless of how much the absolute TIR measurements 
were influenced by uncontrollable sensor drift, differential TIR mea-
surements remained steadfastly stable (<0.1 ◦C) and largely immune to 
drift. 

3.1.4. Motion blur 
The planned TIR camera application requires wide-view real-time 

assessment of temperature signals in an indoor environment. The field- 
of-view (FOV) angle desired could be well north of the 40–50◦ offered 
today by affordable TIR camera packages. Several approaches could 
yield FOVs exceeding 90◦ (semi-hemispherical) or perhaps even 180◦

(hemispherical):  

1. A single stationary TIR sensor outfitted with wide-angle optics that 
provide the desired FOV  

2. A stationary system of multiple sensors and optics that collectively 
cover the desired FOV  

3. A single TIR camera (of modest FOV) capable of rotation over the 
desired FOV via a pan-and-tilt mount 

Geometric distortion would make Approach 1 difficult and compo-
nent cost rules out Approach 2, at least in the current market where a 
low-resolution TIR camera (160 by 120 pixels) costs about US$165. To 
evaluate Approach 3, we assessed the effects of camera motion on 
thermography to determine whether a thermal camera must be sta-
tionary to take an accurate image. 

The long time constant of an uncooled microbolometer sensor—on 
the order of tens of milliseconds [23,24]—makes its output subject to 
blurring when either the camera or the subject moves. This, combined 
with the fact that individual pixel outputs from the microbolometer 
focal plane array are read out sequentially rather than instantaneously 
[23], results in TIR motion blur presenting as multiple layers of distor-
tion: first, spreading and blending of temperature signals over adjacent 
pixels; and second, geometric skewing of the subject based on the 
intersection of pixel readout direction and frame movement. Also, the 
United States limits the export of thermal cameras with frame rates 
exceeding 9 Hz [25]. 

We evaluated motion-based distortion by placing the medium- 
resolution camera on a rotating tripod roughly 1 m away from the 10 
cm × 10 cm CI Systems SR-80-4A Infrared Blackbody ATR set to 35 ◦C. 
With the TIR camera recording at a frame rate of 9 Hz, we rotated the 
assembly from right to left around the pivot point of the tripod mount at 
five different rotational speeds between 1 and 16 revolutions per minute 
(RPM). We extracted the frames centered on the ATR plate and 
compared their likenesses to that of a still TIR image. The average pixel 
readouts within equivalently sized square selections were calculated to 
serve as a measure of TIR temperature errors introduced by motion blur. 

As expected, the degree of blur increases with increasing rotational 
speed. At 1 RPM, the extracted frame shows no geometric distortions, 
insignificant motion blur, and the apparent TIR reference plate tem-
perature is equivalent to that of the still image. At the highest rotational 
speed tested (16 RPM), the extracted frame instead shows significant 
signal blurring along the direction of movement as well as noticeable 
geometric distortion in the shape of the subject, making the square 
reference emitter plate resemble a rhombus. The apparent TIR temper-
ature of the plate under these circumstances falls nearly 1.5 ◦C below the 
known setpoint value. 

3.2. Machine vision 

It is difficult to outline the face, nose, and hands—hereinafter, “body 
parts”—in a thermal image without supporting data from a 
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contemporaneous color image because (a) images from thermal cameras 
typically have far fewer pixels than those from color cameras; (b) the 
temperature-based edges in a thermal image are typically fuzzier than 
the color-based edges in a color image; and (c) it can be difficult to 
distinguish warm body surfaces from adjacent non-human warm sur-
faces in a thermal image. 

A typical complementary metal–oxide–semiconductor (CMOS) color 
image sensor (say, 2,500 × 2,000 pixels) offers about 250 times the 
spatial resolution of a low-resolution microbolometer thermal image 
sensor (160 × 120 pixels) at about one-tenth the cost. Therefore, we 
sought to (a) recognize body parts of interest such as the face, nose, and 
hands, in a color image of the human subject; (b) register (align) the 
color image with a thermal image of the same subject; and (c) overlay 
the color-image feature outlines onto the thermal image to locate the 
body parts in the latter. 

3.2.1. Feature recognition in color image 
In a companion study that considered only facial feature recognition 

[26], some of the current authors compared the accuracy and speed of 
three open-source machine-vision algorithms—Bulat’s Face Alignment 
[27,28], InsightFace [29,30], and FaceNet [31,32]—to find in a color 
image the facial landmarks needed to infer the locations of the subject’s 
nose, cheeks, and forehead. They selected Bulat’s Face Alignment 
because it was twice as fast as InsightFace and much more accurate than 
FaceNet. 

To locate facial features and hands in a color image, we tested three 
machine-vision algorithms in the current study: the 2D Face Alignment 
Network (2D-FAN) [33], an open-source, face-only algorithm scheme 
closely related to Bulat’s Face Alignment [27,28] that we would 
augment with a hand-segmentation (recognition) model trained with 
the EgoHands dataset [34,35]; OpenPose (face, hands, and body pose; 
70 facial, 2 × 21 hand, and 25 pose keypoints; one or more subjects; free 
for non-commercial use only) [36,37]; and MediaPipe Holistic (face, 
hands, and pose; 468 facial, 2 × 21 hand, and 33 pose keypoints; one 
subject; open source) [38,39]. 

2D-FAN was fast and accurate (as expected from our experience with 
Bulat’s Face Alignment) but our hand recognition model based on 
EgoHands was not successful. OpenPose was slower than 2D-FAN but 
could accurately locate facial, hand, and pose keypoints even with 
multiple subjects in the image. MediaPipe Holistic quickly and accu-
rately located facial, hand, and pose keypoints. We did not quantitively 
compare the performance of MediaPipe to that of OpenPose because our 
goal was to identify and explore, rather than score, machine-vision tools 
that could locate a subject’s nose, face, and hands in a color image. 
However, other researchers have quantitatively compared the speed and 
accuracy of these two algorithms [40–42]. 

Using keypoints returned by MediaPipe Holistic, we connect 36 
facial keypoints to outline the face, 26 facial keypoints to outline the 
nose, 12 hand keypoints (each) to outline the left and right hands, and 7 
hand keypoints (each) to outline the left and right palms. We also con-
nect facial keypoints to outline other regions that might be of interest, 
including the left and right eyes (17 keypoints each) and the portion of 
the face that could be obscured if the subject wears eyeglasses (36 
keypoints). 

3.2.2. Transformation of feature shapes from color image to thermal image 
Substantial attention has been paid to aligning color and thermal 

images [43–46] within the mature field of image registration [47–49]. 
We explored two techniques for mapping the body feature shapes, such 
as face, nose, and hand outlines, from the color image into the thermal 
image. 

Edge alignment. Prior work by some of the authors [26] cropped 
and downscaled the color image to the resolution of the thermal image 
(160 × 120 pixels), used Canny edge detection [50] to find edges in the 
color and thermal images, applied phase correlation [51] to identify the 
pixel shift (characteristic x and y offsets) between these edges, and then 

used this shift to translate feature keypoints from the color image to the 
thermal image. When in the current study we applied this technique to 
color and thermal images of a human subject in an office, we found that 
the phase correlation would occasionally yield poor registration (an 
inaccurate shift) if the dominant edges were located in the subject’s 
background rather than on or around the subject’s body. This was most 
likely to occur in spaces with poor lighting or strong background re-
flections, such as those from glass walls. It may be possible to detect and 
ignore instances of inaccurate edge-based registration by eliminating 
shifts that lie outside of an acceptable range determined by manual 
calibration. 

Pose keypoint mapping. We determined that MediaPipe Holistic 
could locate pose keypoints in a thermal image. After lengthy experi-
mentation with different sets of pose keypoints, we chose to create two 
least-squares homographies (planar transformation matrices) with the 
OpenCV [52] function findHomography(): 

• An eye-ear-shoulder homography based on six eye keypoints (left_-
eye_inner, left_eye, left_eye_outer, right_eye_inner, right_eye, right_-
eye_outer), two ear keypoints (left_ear, right_ear), and two shoulder 
keypoints (left_shoulder, right_shoulder) in the color image and in a 
thermal image upscaled to the height of the color image  

• A hand homography based on eight hand keypoints (left_wrist, 
left_pinky, left_index, left_thumb, right_wrist, right_pinky, right_-
index, right_thumb) in the image pair 

We then use the OpenCV function perspectiveTransform() to apply 
the eye-ear-shoulder homography to the face, nose, eye, and eyeglasses 
outlines, and to apply the hand homography to the left and right hand 
and palm outlines. 

We found that this scheme will occasionally fail (inaccurately 
transform the outlines of the face, nose, or hands) if MediaPipe has low 
confidence in its detection of pose landmarks in the thermal image, or if 
the transformation matrix is ill-conditioned—i.e., exhibits a high con-
dition number indicating a large change in output for a small change in 
input. Therefore, we manually reviewed a large set of color-thermal 
image pairs to identify for each homography (eye-ear-shoulder, hand) 
thresholds for (a) the minimum detection confidence of the thermal 
image pose and (b) the maximum transformation condition number, 
that together yield high (e.g., 90 % or 95 %) confidence that the 
transformation is accurate. Our quality-assurance process rejects any 
transformation if the detection confidence of the thermal image pose is 
too low or if the condition number of the transformation matrix is too 
high. 

3.3. Radiometric sensing hardware 

Our sensor assembly includes a pair of “tracking” narrow-view 
camera sensors, one color and one TIR, on a movable platform; a 
wide-view stationary color camera; an onboard passive temperature 
reference; a laser pointer; and a server computer (Fig. 1). This small unit 
(25 cm L × 10 cm W × 12 cm H) can be mounted on a tripod to view a 
single occupant, or on a wall or ceiling to view multiple occupants (one 
at a time). 

• Platform—a two-axis computer-controlled motorized pan-tilt plat-
form (Pimoroni Pan-Tilt HAT) whose surface normal can span at 
least a full hemisphere. 

• Tracking cameras—a pair of platform-mounted, minimally sepa-
rated narrow-view cameras, comprising a CMOS color camera sensor 
(OmniVision OV5647; 2,592 × 1,944 pixels; 54◦ × 41◦ FOV)1 and a 

1 A lower-resolution color camera would be fine since we operate it at only 
960 × 720 pixels. 
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microbolometer TIR sensor (FLIR Lepton 3.5; 160 × 120 pixels; 51◦

× 49◦ FOV).  
• Stationary camera—a stationary fisheye color camera (Sony 

IMX291; 1,945 × 1,109 pixels, 175◦ FOV) near the platform that 
provides a wide overhead view of the room and its occupants when 
the assembly is installed high in the room, facing downward.  

• Onboard passive temperature reference (PTR)—an insulated 
high-thermal-conductance metal plate near the platform with both 
high thermal emittance (TE) and low TE surfaces whose contact 
temperature is continuously measured with a rear-mounted digital 
thermistor (Microchip Technology MCP9808). The PTR is used to 
calibrate temperatures measured with the TIR camera.  

• Laser diode pointer—a low-power color laser mounted on the 
platform, adjacent to the tracking cameras, that when activated 
shows in the stationary camera’s image the approximate center of 
the tracking cameras’ field of view.  

• Server computer—a single-board computer (Raspberry Pi 3) 
running the server software detailed in Section 3.4.1. 

Note that our sensor assembly neither requires nor incorporates the 
FLIR SC660 and FLIR A315 thermal cameras used in our initial explo-
ration of thermographic measurement techniques. 

We also place a second, larger PTR (Fig. 2) near the subject rather 
than on the sensor assembly. It includes a heated wire around its 
perimeter to make it easier to find in the thermal image. This near- 
subject PTR may be removed in the next generation of our device. 

Our sensing hardware expands on that developed by some of the 
authors in a previous study [26] by adding the pan-tilt platform, on- 
board PTR, and laser diode pointer. It employs the same micro-
bolometer (FLIR Lepton 3.5) but different color sensors. 

3.4. Radiometric sensing software 

3.4.1. Server 
Our server software2 is a set of Python 3 scripts that orients the 

platform, tracking cameras, and laser pointer; captures images from the 
three cameras and contact temperatures from one or more PTRs; and 
transmits the platform orientation, images, and PTR temperatures to the 
client computer. On client request, it  

• points the tracking cameras in a specified direction using the pantilt- 
hat library;  

• captures a narrow-view color image from the tracking color camera 
using the imutils library;  

• captures a narrow-view thermal image from the tracking thermal 
camera using the purethermal1-uvc-capture library;  

• measures the temperatures of digital thermistors in the on-assembly 
PTRs and near-subject PTR using the adafruit_mcp9808 library; and  

• transmits the images and temperatures to the client using the 
imageZMQ library, employing socket communications to receive 
requests and confirm delivery. 

3.4.2. Client 
Our entirely new client software includes radiometric-sensing, 

thermal-sensation, and control elements. Its sensing component  

• requests from the server tracking-cameras images and near-subject 
PTR temperature for a single subject (occupant);  

• uses the PTR temperature to calibrate absolute temperatures in the 
thermal image;  

• employs MediaPipe Holistic to locate body parts of interest (e.g., 
face, nose, hands) in the color and thermal images as described in 
Section 3.2; 

Fig. 1. Sensor hardware assembly, including (clockwise from left) the stationary camera; the onboard PTR; the laser pointer, narrow-view TIR camera, and narrow- 
view color camera on the pan-tilt platform; and the server computer. Images inset at left and right help illustrate the hemispherical range of angles attainable for the 
cameras on the pan-tilt platform. 

Fig. 2. Near-subject PTR with heated wire around its perimeter.  

2 Our server software descends from what was called “client” software in the 
“iEye” system developed by one of the authors [26,53]. It has been refactored to 
act as the server rather than the client in the transmission of images and 
temperatures. 
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• computes rolling time-median skin temperature statistics within 
each body region of interest; and  

• calculates skin temperature differences of interest, such as (face_p90 
– nose_median) and (face_p90 – hand_max), where p90 denotes 90th 

percentile. 

4. Development of the thermal sensation model 

We conducted many human-subject thermal-sensation trials in cool, 
neutral, or warm environments, measuring skin temperatures and 
recording thermal sensation votes. We then trained random-forest 
classification machine-learning models—hereinafter, “classifiers”—to 
estimate thermal sensation from skin temperatures or skin-temperature 
differences. 

In a series of trials detailed by some of the authors in Ref. [54], we 
exposed a total of 34 human subjects to cool, neutral, or warm environ-
ments while measuring their skin temperatures with a color-thermal 
camera system comprising the FLIR A315 medium-resolution TIR camera 
detailed in Section 3.1, a FLIR Blackfly S BFS-PGE-50S5C color camera 
(2,448 × 2,048 pixels), and a custom thermal imaging capture & analysis 
tool (TI-CAT) developed by the authors from MoviTHERM. We simplified 
thermal sensation votes reported on a nine-point scale (− 4 = very cold, − 3 
= cold, − 2 = cool, − 1 = slightly cool, 0 = neutral, +1 = slightly warm, +2 
= warm, +3 = hot, +4 = very hot) by classifying sensations lower than − 1 
as cool (simplified − 1), between − 1 and +1 (inclusive) as neutral 
(simplified 0), and higher than +1 as warm (simplified +1). We then 
trained each classifier to predict the most-probable value of simplified 
sensation (− 1, 0, or +1) based on one of the 16 temperatures or tempera-
ture differences involving nose, cheek_max, cheek_median, hand_max, 
and/or hand_median temperatures. 

We subsequently trained additional classifiers using skin tempera-
tures and skin-temperature differences measured with the current sys-
tem described in Section 3.3 and Section 3.4, most of which were 
recorded during the same human-subject trials reported in Ref. [54]. 
The new classifiers use time-median temperatures or temperature dif-
ferences based on face_p90, face_median, nose_median, hand_max, and/ 
or hand_median. 

The sensing component of our client software applies these new 
classifiers to predict both most-probable simplified sensation (− 1, 0, or +1) 
and probability-weighted simplified sensation (a continuous value 
between − 1 and +1 equal to − 1 × cool_probability + 0 × neutral_prob-
ability + 1 × warm_probability). Since a discrete (integer) value could 
result in undesired cycling, the probability-weighted simplified sensation is 
used to guide our AC-control algorithm. 

5. Development of the AC control algorithm 

We implemented a standard discrete-time proportional-integral (PI) 
control logic, using a 1 s sampling time, to close the loop between 
sensation detection and AC operation. The PI controller receives a 
tracking error defined as the absolute difference between the 10-second 
moving average of the predicted thermal sensation (probability- 
weighted simplified sensation) and the target sensation value, and 
calculates the thermostat setpoint using the PI control logic. After con-
ducting some tests, the proportional gain and integral time constant 
were set at 4 (◦F per unit change on the simplified sensation scale) and 
15 s, respectively, with a 1 s sampling time and a 10 s moving-average 
window. The controller also incorporates a standard anti-windup algo-
rithm, which resets the integral error when the calculated thermostat 
setpoint, serving as the control variable in our case, exceeds a certain 
threshold specified below. 

The adjustable target sensation value plays a crucial role in balancing 
energy consumption and thermal comfort. For our investigation, a target 
sensation value of 0.5 was selected to strike a balance between 
neutrality and warmth on a simplified 3-point sensation scale, as 
determined by a parametric study. 

To tailor the PI control logic, adjustments were made to increase the 
penalty for tracking errors and expedite responses in cases of room 
discomfort, such as excessive warmth or coolth. This adjustment 
involved amplifying the tracking error using a specified function. The 
output of the AC control, which is the room air temperature setpoint, is 
bounded by lower and upper thresholds, specifically 70 ◦F [21.1 ◦C] and 
78 ◦F [25.6 ◦C], respectively. If unable to detect skin temperature after 
10 min, we assume the room is unoccupied and revert to a predefined 
schedule of room temperature setpoints (either 76 ◦F [24.4 ◦C] or 80 ◦F 
[26.7 ◦C]) until the skin temperature is again detected. An anti-windup 
logic handles control saturation and mode transitions. 

Once the thermostat setpoint is established, whether from the AC 
control or the predefined schedule based on occupancy detection, it is 
transmitted to the AC system via the AC adapter. This adapter serves as 
an intermediary, conveying setpoint instructions from our client 
software to the AC system. The communication was established using 
the AC adapter’s Application Programming Interface (API), enabling the 
modification of the setpoint within the AC system via a “PUT” request. 

6. System integration 

Our complete system, named “Goldilocks”, integrates the sensing 
hardware and software (Section 3.3 and Section 3.4) with the thermal 
sensation classifiers (Section 4) and control algorithm and hardware 
(Section 5). It comprises the  

• sensor assembly (pan-tilt platform, color and thermal cameras, laser 
pointer, onboard PTR, and server computer);  

• external hardware (client computer, AC adapter, near-subject PTR, 
network switch for client–server communication, survey device for 
human subject trials, and air temperature & relative humidity sen-
sors for system performance trials);  

• server software (Python 3) that orients the tracking cameras and 
transmits images and PTR contact temperatures to the client; and  

• client software (Python 3) that assesses occupant skin temperature 
distribution, estimates occupant thermal sensation, and controls AC 
operation. 

The client software currently runs on a Windows 10 laptop PC (HP 
OMEN 15-dh1054nr) but could be ported to a single-board Linux com-
puter with GPU, such as the NVIDIA Jetson Nano. 

Fig. 3 illustrates Goldilocks in operation. In panel A (top left), 
MediaPipe Holistic locates 468 facial, 2 × 21 hand, and 33 pose key-
points in a color image containing the subject (one of the authors). In 
Panel B (bottom left), a subset of these keypoints is used to outline the 
subject’s face, nose, eyes, eyeglasses region, hands, and palms in that 
color image. In Panel C (top right), MediaPipe Holistic locates 33 pose 
keypoint in the corresponding thermal images, along with 21 keypoints 
in the subject’s left hand that we ignore. In Panel D (bottom right), the 
outlines from the color images are mapped into the thermal image using 
the planar transformations described in Section 3.2.2. Panel D also 
shows skin-temperature statistics derived from the thermal image, along 
with values of probability-weighted simplified thermal sensation pre-
dicted from various skin-temperature statistics (e.g., FN = face and nose 
temperatures; FNH = face, nose, and hand temperatures; FN_dif = dif-
ferences between face temperature and hand temperature; FNH_dif =
differences between face, nose, and hand temperatures). 

7. Demonstration 

7.1. Experiment 

We tested our system in a conference room in an office building near 
Houston, Texas from August 2022 to January 2023 [55]. Since the room 
was in the building’s interior zone (no exterior windows or walls) and 
the space outside the room was conditioned to 72 ◦F [22.2 ◦C], we 
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operated a 1,500 W electric resistance heater in the room during trial 
hours (weekdays 09:00–17:00) to simulate a summer heat load from 
conduction, infiltration, and solar heat gain through the building 
envelope. 

We implemented three control strategies in the room during trial 
hours:  

• Conventional Control: fixed setpoint of 72.0 ◦F [22.2 ◦C], equal to 
the setpoint throughout the office building during occupied hours  

• TIR A Control: thermostatic setpoint regulated by our system with 
an unoccupied (empty room) setpoint of 80 ◦F [26.7 ◦C] 

• TIR B Control: same as TIR A Control but with an unoccupied set-
point of 76 ◦F [24.4 ◦C] 

The room was occupied by at most one person at a time. Over the 
course of the five-month trial we had about 20 unique subjects, pre-
dominately male and mostly 20–50 years old. We did not choose the test 
subjects. The participants were the occupants of the office, and they used 
the room as a workspace or conference room as usual. Following a 
research protocol approved by the University of California at Berkeley 
Committee for the Protection of Human Subjects (IRB-2020–12-13922), 
each participant self-reported at will (a) time spent in the room (<5 min, 
5 min–1 h, >1 h), (b) thermal sensation (seven-point scale), and (c) 
comfort vote (yes/no). Participants were uncompensated and fully 
informed about the nature of the study. 

We collected occupation times, thermal sensation votes, and comfort 
votes with a survey tablet, and measured the AC’s air-cooling rate (rate 
of heat removal) as the product of the air mass flow rate (known from 

the unit’s speed setting) and the air’s enthalpy drop from inlet to outlet 
(based on inlet and outlet measurements of air temperature and 
humidity). 

To ensure that the camera correctly detected the face and hands of 
the occupant, the subject was asked to sit in a designated chair and work 
as usual. The camera was positioned so that the horizontal distance 
between the camera and the designated chair was about 2.0 m and the 
height of the camera was about 1.5 m above floor level (Fig. 4b). Fig. 5 
shows a representative color image and the feature outlines of a trial 
subject as captured by the sensor-controller. 

7.2. Results 

On the seven-point scale, 35 % of the sensation votes under Con-
ventional Control that set the room temperature to 72.0 ◦F (22.2 ◦C) 
were “Neutral” and the rest were either “Slightly cool”, “Cool”, or 
“Cold”, with no “Warm” or “Hot” votes (Fig. 6a). This indicates that the 
Conventional Control overcooled the occupants. 

TIR A Control made the occupants more thermally neutral than 
Conventional Control, reducing the mean air-cooling rate (rate of heat 
removal by the AC) by 18 % when the room was occupied (Fig. 7b) and 
by 62 % over the entire trial period (room occupied or unoccupied). The 
latter result indicates that our system worked as an occupant sensor and 
saved energy by raising the setpoint when the room appeared empty. 
However, some occupants complained that the room was hot and un-
comfortable, especially immediately after entering the room, because 
the conference room was substantially warmer than the rest of the office. 
Although the percentage of “Neutral” votes under TIR A Control was 

Fig. 3. Operation of the “Goldilocks” client software showing (A) face, hand, and pose landmarks in the color image; (B) facial pose landmarks, face outline, nose 
outline, eye outlines, eyeglasses outline, hand outlines, and palm outlines in the color image; (C) pose landmarks in the thermal image; and (D) face landmarks, hand 
landmarks, and transformed face, nose, eye, eyeglasses, and hand outlines in the thermal image. The near-subject PTR can be seen in panels A and B, and the 
resistance-heated border of the PTR can be seen in panels C and D. The black box in panels A and B and the corresponding bright patch in panels C and D is an ATR 
(high-emittance surface fixed at 35 ◦C) that is not integral to our system. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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higher than that under Conventional Control, those of “Warm” and 
“Hot” votes, which are considered outside the thermally comfortable 
range, were 6 % and 12 % respectively (Fig. 6a). There was no signifi-
cant difference in thermal comfort votes between Conventional Control 
and TIR A Control (Fig. 6b). The higher unoccupied setpoint tempera-
ture increased the time needed to cool the air to a comfortable tem-
perature, which could reduce thermal satisfaction. 

TIR B Control made the occupants more thermally neutral than 
Conventional Control, lowering the mean air-cooling rate by 42 % when 

the room was occupied (Fig. 7c) and by 18 % over the entire trial period. 
On a seven-point scale, 56 % of the occupants, the highest fractions 
among the three control strategies, responded “Neutral”, and over 90 % 
of the sensation votes were either “Slightly cool”, “Neutral”, or “Slightly 
warm”. TIR B Control also yielded 76 % “Comfortable” votes, higher 
than TIR A Control (62 %) and Conventional Control (61 %). 

7.3. Discussion 

The machine-learning model that we used in this field study to 
predict occupant thermal sensation was trained using skin temperatures 
and thermal sensation data obtained in cold environments (ambient air 
temperature ≤ 20 ◦C [68.0 ◦F]), neutral environments (around 24 ◦C 
[75.2 ◦F]), and hot environments (≥30 ◦C [86.0 ◦F]). However, the 
actual room air temperature was 22–26 ◦C [71.6–78.8 ◦F] and did not 
enter the cold or hot regimes (≤20 ◦C or ≥30 ◦C) employed in model 
training. This led to overprediction of the “Neutral” thermal sensation 
and resulted in a suboptimal prediction accuracy. Therefore, it is 
necessary to conduct additional sensation trials in warm and cool (rather 
than hot and cold) environments to retrain and improve the model. The 
sensation votes and skin-temperature measurements collected in the 
conference-room trial will provide the initial data for this effort, to be 
supplemented by the participation of a wider demographic. 

There may be cultural expectations for overcooling from building 
designers, operators, and occupants. Without access to real-time feed-
back, designers and engineers assume that a low ambient temperature is 
comfortable for occupants. For occupants, long-term exposure to over-
cooling may create expectations for overcooling, because people adapt 
to their environments physiologically and psychologically [56]. With 
feedback-providing devices like that described in our study, building 
designers and operators can set the ambient temperature based on 

Fig. 4. Demonstration configuration, showing photos of (a) the electric space heater used to simulate a summer heat load; (b) the conference room (about 4.3 m L ×
4.3 m W × 3.7 m H), in which the subject’s chair is marked with an asterisk; (c) a close-up of the sensor-controller mounted on a tripod; (d) the survey tablet used to 
collect thermal sensation and comfort votes; and (e) a temperature/relative humidity logger mounted above the room’s conventional thermostat. 

Fig. 5. Color image and feature outlines of a trial subject (one of the authors) in 
the conference room as captured by our sensor-controller. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 6. Distributions of (a) thermal sensation votes and (b) thermal comfort votes under each control algorithm. N represents the total number of votes.  
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occupant response rather than assumptions. We posit that occupant 
satisfaction will be improved, and that expectations for overcooling can 
be reduced. For example, a large-scale study by two of the authors cut 
occupant overcooling discomfort complaints in office buildings by 50 % 
through feedback-enabled control of supply airflow rates [5,6]. 

8. Future development 

We plan to upgrade our system to detect and act upon the thermal 
sensations of multiple occupants, and to improve the assessment of the 
thermal sensations of individual occupants. 

The upgraded server software will locate anonymous occupants in 
the wide-view image and aim the tracking cameras at each occupant in 
turn. The upgraded client software will improve skin-temperature 
sensing, thermal sensation prediction, and AC control. Specifically, it 
will 

• calculate the rolling time-median time derivatives of skin tempera-
tures and skin-temperature differences to assess how skin tempera-
tures are evolving;  

• train new classifiers or dynamic models using both rolling time- 
median temperatures or temperature differences and their time 
derivatives;  

• train new classifiers or dynamic models for a large and more diverse 
set of human subjects under milder thermal conditions more repre-
sentative of offices or other indoor public spaces;  

• provide an option to generate locally trained classifiers by using the 
survey device to record occupant thermal sensation votes while the 
invention is operating using pre-trained classifiers;  

• direct the server software to locate multiple occupants in the space 
and apply a modified sensing algorithm (same as above but using the 
onboard PTR for thermographic calibration) to assess the thermal 
sensation of each occupant;  

• calculate ensemble (multi-occupant) thermal sensation metrics 
based on the thermal sensations of individual occupants—e.g., 
minimum, maximum, mean, and median;  

• use one or more of the ensemble sensation metrics to regulate the AC 
control; 

• automatically learn the site-specific occupancy schedule via a sta-
tistical learning technique and incorporate it into the AC control for 
better savings and comfort; and  

• investigate sensitivities of the optimal control parameters (such as P 
and I gains, default thermostat set point for the non-presence mode) 
for other sites. 

We may also explore the application of our system to the prevention 
of overheating in winter. 

9. Summary 

The human thermoregulation system uses skin blood flow to adjust 
its heat balance with the thermal environment to maintain thermo-
neutrality at the brain and the body core. This causes skin temperature 
to vary, especially in exposed parts of the body. The distribution of skin 
temperature can be used to predict warm, neutral, and cool thermal 
states. 

To improve occupant comfort and save energy in buildings, we have 
developed “Goldilocks”, a closed-loop AC sensor-controller that predicts 
occupant thermal sensation from the thermographic measurement of 
skin temperature distribution, then uses this information to reduce 
overcooling (cooling-energy overuse that discomforts occupants) by 
regulating AC output. Taking measures to protect privacy, it combines 
TIR and color cameras with machine vision to measure the skin-surface 
temperature profile. 

We began by assessing the accuracy with which TIR cameras can 
measure surface temperatures within a narrow field of view, then 
evaluated techniques to measure surface temperature distribution over a 
wide field of view with such cameras. We explored options for machine- 
vision software to identify body parts of interest—e.g., face, nose, and 
hands—in a color image, then developed and tested a series of 
hardware-software systems for the radiometric measurement of face, 
nose, and/or hand skin temperatures. 

We conducted a series of human-subject thermal-sensation trials in 
cold-to-hot environments, measuring skin temperatures and recording 
thermal sensation votes. We then trained random-forest classification 
machine-learning models to estimate thermal sensation from skin tem-
peratures or skin-temperature differences. To avoid overcooling and 
save energy, we created a PI control algorithm for the air conditioner 
that targets an estimated thermal sensation between neutral and warm 
on a simplified three-point scale (cool, neutral, or warm). 

Our sensor-controller includes a sensor assembly (pan-tilt platform, 
color and thermal cameras, laser pointer, integrated PTR, and server 
computer); external hardware (client computer, network router, AC 
adapter, near-subject passive temperature reference, survey device, and 
air temperature & relative humidity sensors); server software; and client 
software. The server software orients the tracking cameras and transmits 
images and PTR contact temperatures to the client. The client software 
assesses occupant skin temperature distribution, estimates occupant 
thermal sensation, and controls AC operation. 

(a) (b) (c)
Fig. 7. Distributions of the air-cooling rate (rate of heat removal by the AC) when the conference room was occupied under (a) Conventional Control, (b) TIR A 
Control, or (c) TIR B Control. TIR A Control and TIR B Control reduced the mean air-cooling rate by 18% and 42%, respectively compared to Conventional Control. 
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A demonstration in an office building near Houston, TX showed that 
our system reduced overcooling. It improved occupant comfort (fraction 
of comfortable votes) by 15 percentage points and decreased the need 
for air conditioning, lowering the cooling load by 42 % when the room 
was occupied. 

We plan to upgrade our system to detect and act upon the thermal 
sensations of multiple occupants, and to improve assessment of the 
thermal sensation of each individual occupant. 
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