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Abstract

Operational Control and Survivability Enhancement of Asymmetric
Wave-Energy Converters

by

Farshad Madhi

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ronald W. Yeung, Chair

The aim of this research is to study the operational and survivability modes of asymmetric
wave-energy converters (AWEC). “The Berkeley Wedge” (TBW), a one-degree-of-freedom,
asymmetrical, energy-capturing, floating breakwater, which is relatively free from viscosity
effects, is used as a canonical problem of study.

For the operational mode, the focus of the analysis is to optimize the power-to-load ratio
of TBW. Linear hydrodynamic theory was used to calculate bounds on the expected time-
averaged power (TAP), the corresponding surge restraining force, pitch restraining torque,
and power take-off (PTO) control force. This thesis formulates the optimal control problem
to incorporate metrics that provide a measure of the surge restraining force, pitch restraining
torque, and PTO control force. The controller handles an objective function with competing
terms, so as to maximize power capture while minimizing structural and actuator loads. In
achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in
structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results
in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch
restraining torque, and PTO control force are shown for TBW example.

To provide guidance for improving the survivability of the AWECs, analysis of the ex-
treme forces they experience in deep-water breaking waves was conducted. The forces were
obtained by computation using the Weakly Compressible Smoothed Particle Hydrodynamics
(WCSPH) method and also by model-scaled experiments (conducted at the RFS Model Test-
ing Facility of the University of California at Berkeley). Breaking waves were first generated
for both physical and computational modeling by developing appropriate time histories of
the wavemaker, using potential-flow theory. Plunging breakers and wave forces at two target
locations by computations were verified by experiments. The effects of different drafts of
TBW on the force reduction were studied. To increase the survivability while maintaining
the operational draft of the TBW, pressure-relief channel (PRC), a new scheme that al-
lows water to flow through TBW was implemented. The PRC effectiveness in reducing the
extreme wave forces was demonstrated computationally. With guidance from these compu-
tations, a design is proposed to illustrate an effective way to install and operate the PRCs
so as to increase the survivability of TBW and similar devices in extreme sea states.
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To my wife Sahba and my parents Rouhollah & Farangis for all of their love, kindnesses,
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Chapter 1

Introduction

The negative effects of fossil fuel consumptions on the environment and our daily lives
are becoming more and more apparent. Parallel to this, many movements and research
projects have been initiated to increase the efficiency and reliability of the means of
harnessing renewable energy resources [1]. Renewable energy resources, such as solar, wind,
geothermal, ocean waves, etc., are abundant and can be used in combinations to overcome
the energy crisis [2] and to reduce fossil fuel consumption. One of the resources with high
potential, availability, and predictability is ocean waves [3, 4]. Many devices are proposed
or implemented for harvesting wave energy [5, 6]. The ocean is an unforgiving environment
and wave energy converters (WEC) face multiple destructive forces such as corrosion,
fatigue, large forces by extreme waves, etc. Even after the proof of concept and laboratory
testing of WECs, many challenges remain in terms of installation cost, maintenance, and
survivability of the devices. Most of the proposed WEC designs are highly complicated and
consist of many parts. Thus, many of the WECs eventually fail under fatigue stress even
before encountering severe weather.

The performance conditions of WECs can be categorized into operational and survival
modes [7]. In the design process of WECs, it is also crucial to obtain a clear understanding
of the range of peak periods and wave heights that lead to the best energy absorption to
load ratios. In the operational mode, it is required to develop control strategies that can
adapt device performance to maximize energy generation while mitigating hydrodynamic
loads so as to reduce the structural mass and overall cost [8]. Balancing these objectives
offers an interesting design and control challenge. For example, they are in contrast to
previous works that solved the optimal control problem with the sole focus on maximizing
the time-averaged power (TAP). The application of state-constrained optimization [9–11]
to WEC control has gained significant traction recently as it provides the ability to include
linear and nonlinear constraints. This optimization has been pursued using calculus of
variations [9], model predictive control [12–14], and pseudo-spectral methods [15–17]. If
the PTO and structural loads are not considered, the optimum WEC trajectory follows
that of complex conjugate control [18], which is known to require a substantial amount of
reactive power when moving away from the resonance frequency. Suboptimal strategies that
eliminate reactive power, notably latching [19] and declutching [20], have been proposed,
yet still do not include a load metric in the optimization. It can be expected that as the
controller works to maximize the absorbed mechanical energy, the growth rate in structural
loads may exceed the growth in TAP. To address this concern, this work incorporates the
restraining loads in the objective function of the optimization routine. As a result, the
optimizer must now balance the opposing contributions in an attempt to obtain the largest
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CHAPTER 1. INTRODUCTION

power-to-load ratio.
One of the biggest challenges facing the wave energy technology is to increase the

survivability of WECs in extreme waves. Until recently, the main focus of the design of
WECs was to increase their efficiency. However, it is evident that the survivability of the
WECs is as important, if not more so, as their efficiency. The importance of including
extreme wave load measurements in the design process of WECs is emphasized in recent
studies [21]. One of the solutions proposed to decrease extreme forces on the floating
objects is to fully submerge them [22]. With this approach the slamming forces on the
bodies decrease. For the surface-piercing floaters, such as Salter’s duck (an asymmetric
WEC, AWEC), a study [23] suggests maintaining undamped motion of the floater when
it encounters breaking waves. In this scenario, such devices capsize but the total forces
they experience are reduced [24]. Another study suggests that adding a power-take-off
system (PTO) to the point absorbers reduces the magnitude of the forces they experience
[25]. It is cumbersome to fully submerge a WEC that has its PTO installed above the
water line. Also, extreme waves cause point absorbers to undergo large displacements. The
undamped motion causes damage to the floater or the mounting structure. Also, damping
the large displacement of a floater by a PTO requires a large energy input to the system
and introduces much stress to the PTO.

In order to gain an understanding on the behavior of WECs under extreme waves,
one can adopt different techniques, such as theoretical, computational, and experimental
methods. Computational Fluid Mechanics methods in the Lagrangian description such as
Smoothed Particle Hydrodynamics (SPH) are effective ways to model the wave structure
interaction. Specifically, SPH method can be used to model different types of surface waves
[26–30]. Also, SPH has been used to accurately measure the impact forces on structures by
extreme waves [31–36]. Thus, SPH would be an effective method to predict the extreme
forces on WECs to help us better predict the survivability of similar devices.

The “Berkeley Wedge” (TBW) [5] is an asymmetric wave energy converter (AWEC)
and breakwater. It consists of an asymmetric floater, a power take-off (PTO) system, and a
support structure. The particular shape of the floater, depicted in Fig. 2.1, was designed to
experience minimal effects from viscosity in heave motion. The mounting structure limits
the motion of the floater to heave only. The PTO system implemented in the design is a
linear permanent magnet generator (LPMG) [37–40]. When the damping of the LPMG
is matched with the heave radiation damping of the floater at resonance, there will be
almost no reflected or transmitted waves and almost all of the incident wave energy will be
absorbed by the damping of the LPMG. TBW can be used near shore to provide electricity
for local communities and act as a breakwater (concurrently) to protect the harbor with
minimal environmental impact. It can also be attached to offshore structures and floating
platforms to provide electricity and protect the structure. In a recent study [41], the
particular asymmetric shape of TBW was implemented in a coaxial wave energy converter
(consisting of a fixed inner cylinder and moving outer cylinder) to reduce the viscous effects
on the heave motion of the outer cylinder. The experimental testing revealed that the shape
of TBW reduced the viscous damping on the heave displacement of the outer cylinder by
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CHAPTER 1. INTRODUCTION

70%, resulting in an increase in the heave displacement of the outer cylinder by more than
300%.

The first part of this thesis begins by describing TBW device concept. This is followed
by construction of the heave time-domain equation of motion to provide the preliminaries
for extension into its spectral representation. The upper and lower bounds on the TAP,
surge-restraining force, pitch-restraining torque, and PTO actuator force are calculated
while assuming that the WEC motion was constrained but remains sinusoidal. The upper
bound was calculated assuming an optimum phase between the heave wave-exciting force
and heave velocity while the lower bound assumes that the PTO system consists only of
a linear resistive damper, and in both cases the PTO force coefficients are constant and
continuous throughout the wave cycle. Next, pseudo-spectral control theory is reviewed
followed by incorporating the surge-restraining force, pitch-restraining torque, and PTO
actuator force into the optimization problem. A penalty weight is placed on the contribu-
tions to the objective function from the restraining and PTO loads to allow the desired
performance to be achieved. The effect of including the restraining loads on balancing power
absorption and load shedding is first explored by varying the penalty weight magnitudes
and comparing against the known performance bounds. The time history of WEC motion
and PTO control force are presented to illustrate how per-unit increases in TAP can exceed
the per-unit increase in restraining and PTO loads while having a minimal reactive power
requirement.

The second part of this thesis analyzes the survivability of TBW. We establish a
computational technique to produce the deep-water plunging breakers. Then, we conduct
computations and experiments to analyze the wave exciting forces on TBW. Finally, by
comparing the experimental findings with the computational predictions, we introduce
minimal design changes (without altering the efficiency) for improving the survivability of
these kinds of devices in breaking waves.

3



Chapter 2

Time-Domain Solution in Regular Waves

2.1 Asymmetric Point Absorbers

For the canonical problem of study we examine TBW, an asymmetric wave energy converter
(WEC) and breakwater. The idea of a needle shape AWEC with high efficiency that can con-
currently act as a breakwater was originally introduced in 1983 [42]. Then, the concept was
experimentally tested in 2012 [5]. The system that is called TBW, consists of an asymmetric
floater (AF), a power take-off (PTO) system, and a support structure. The particular shape
of the AF, depicted in Fig. 2.1, was designed to experience minimal effects from viscosity
in heave motion. The mounting structure limits the motion of the AF to heave only. The
PTO system implemented in the design is a linear permanent magnet generator (LPMG)
that requires no gearing system. When the damping of the LPMG is matched with the heave
radiation damping of the AF at resonance, almost all of the incident wave energy will be
absorbed by the damping of the LPMG.

The physical dimensions of the AF were chosen to fit the model testing facility at the
University of California at Berkeley. A detailed theoretical and experimental study [5] con-
firmed the effectiveness of the design in reducing the viscous effect on the motion of the
device, thereby capturing almost all of the incident wave energy and providing a calm water
surface leeward of the AF.

In this chapter we examined TBW with the design dimensions of the AF shown in Ta-
ble 2.1 and in the next chapter, other beam and drafts of the AF were adopted. The
particular shape of the AF (Fig. 2.1) can be obtained from

F (ȳ)=0.05926(ȳ+1)2+3.88147(ȳ+1)3−2.94074(ȳ+1)4 (2.1)

In Eqn. (2.1), x̄ = F (ȳ) is a shaping function, and x̄ = x/b and ȳ = y/d are nondimensional
scales. In this equation, ȳ can be shifted to obtain different drafts. The hydrodynamics
coefficients for the AF were obtained from the two-dimensional (2D) potential-flow code
RWYADMXA [43] and all shown in nondimensional form in Fig. 2.2.

In order to analyze the optimal energy extraction efficiency of TBW, the relation between
heave wave exciting force, heave radiated damping, and far-field radiated wave amplitudes
will be discussed. Far-field radiated waves are generated as result of heave displacement of
the AF. They propagate away from the AF (Fig. 2.1) facing positive (A+

j e
−ikx) and negative

(A−
j e

ikx) x-coordinate. The heave wave exciting force can be obtained from far-field radiated
wave amplitudes in deep water by using the Haskind Relation (see Appendix A for the

4



CHAPTER 2. TIME-DOMAIN SOLUTION IN REGULAR WAVES

Table 2.1: Geometric values of the AF.

Water Depth, h, 1.5 m Draft, d, 0.7 m
Beam, b, 0.212 m Area, S, 0.067 m2

Center of Gravity, xg, -0.0848 m Resonance, Tres, 1.25 s

derivation).

Xj

A
= −ρg

2

σ2
A−

j (2.2)

We can denote the geometry-hydrodynamic factor, γ, to the ratio of left (A−
j ) and right (A+

j )
far-field radiated wave amplitudes.

γ =
∣

∣

∣

A+
j

A−
j

∣

∣

∣
(2.3)

At this point if we equate the work done by an oscillator on the fluid and the energy propa-
gation associated with the far-field wave amplitudes, we obtain the following expression (see
Appendix B for details).

|X2|2 =
2ρg2

σ

λ22
1 + γ2

(2.4)

With having the above expression we can obtain the optimal energy extraction efficiency for
TBW which will be discussed in latter sections.

.

2.2 Time-Domain-Heave Equation of Motion

The one-degree-of-freedom time-domain-heave equation of motion is given by

mζ̈2 (t) = fe2 (t) + fr22 (t) + fh (t) + fd (t) + fm (t) (2.5)

where t is time, m is the mass of the WEC, ζ̈2 is the heave acceleration, fe2 is the wave-
exciting heave force caused by the incident waves, fr22 is the wave radiation force caused by
heave motion, fh is the hydrostatic restoring force, fd is the drag force caused by viscous
effects, and fm is the mechanical force applied by the PTO system.

The heave hydrostatic restoring force is given by

fh(t) = −C22ζ2 (t) , with C22 = ρgb (2.6)

1σ̄ = σ
√

b/g, µ̄22 = µ22/ρb
2, λ̄22 = λ22/ρb

2σ, X̄2 = X2/ρgb, φ̄2 = φ2/π, µ̄12 = µ12/ρb
2, λ̄12 =

λ12/ρb
2, X̄1 = X1/ρgb, φ̄1 = φ1/π, µ̄32 = µ32/ρb

3, λ̄32 = λ32/ρb
3σ, X̄3 = X3/ρgb

2, φ̄3 = φ3/π
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A  e
j
- +ikx

A  e
j
+ -ikx

D

Figure 2.1: 2D shape of the AF with the beam b = 0.212 m and draft D = 0.7 m.
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Figure 2.2: Nondimensional 2D hydrodynamic radiation and wave-exciting coefficients1.
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where ρ is the fluid density, g is the gravitational acceleration, b is the device beam length
at the calm water line, and ζ2 is the time-varying heave displacement.

The linear hydrodynamic wave-radiation heave force will be represented in the time
domain using the Cummins equation [44] and is written as follows

fr22(t) = −µ22 (∞) ζ̈2 (t)−
t

∫

−∞

Kr22 (t− τ) ζ̇2 (τ) (2.7)

where µ22 (∞) is the heave-added mass at infinite frequency, and Kr22 is the heave radiation
impulse response function, also known as the memory function because it represents the wave
radiation memory effect caused by past WEC motions. The relations between the time- and
frequency-domain radiation coefficients were derived in [45]

Kr22 (t) =
2

π

∞
∫

0

λ22 (σ) cos (σt) dσ (2.8)

Kr22 (t) = − 2

π

∞
∫

0

σ [µ22 (σ)− µ22 (∞)] sin (σt) dσ (2.9)

where µ22 (σ) and λ22 (σ) are the frequency-dependent hydrodynamic radiation coefficients
commonly known as the added mass and wave radiation damping.

The wave-exciting heave force can be written in the time domain as follows

fe2(t) =

∞
∫

−∞

Ke2 (t− τ) η (τ) dτ (2.10)

whereKe2 is the heave wave-excitation kernel, which is noncausal, and η is the wave elevation.
The relationship between the time- and frequency-domain excitation coefficients is given by

Ke2 (t) =
1

π

∞
∫

0

[ℜ{X2 (σ)} cos (σt)−ℑ{X2 (σ)} sin (σt)] dσ (2.11)

where X2 is the frequency-dependent complex wave-exciting heave-force coefficient, ℜ is the
real component, and ℑ is the imaginary component.

The drag force is represented by either of the following

fd (t) =

{

−λvlζ̇2 (t)
−λvnζ̇2 (t)

∣

∣

∣
ζ̇2 (t)

∣

∣

∣

(2.12)

where λvl is the linear-drag coefficient caused by the presence of viscosity, and λvn is the
quadratic-drag coefficient, assuming they are not negligible. The final one-degree-of-freedom
heave equation of motion can now be written as
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(m+ µ22 (∞)) ζ̈2 (t) = −C22ζ2 (t)− λvlζ̇2 (t)

−
t

∫

−∞

Kr22 (t− τ) ζ̇2 (τ) dτ +

∞
∫

−∞

Ke2 (t− τ) η (τ) dτ + fm (t)
(2.13)

where the linear form of the drag force has been used.

2.2.1 Regular Wave Analysis

It is common practice to begin analysis under regular wave excitation in which the incident
wave elevation is described by

η (x, t) = ℜ
{

−1

g

∂φ0

∂t

∣

∣

∣

∣

z=h

}

= ℜ
{

Aei(σt−kx)
}

= A cos (σt− kx) (2.14)

where η is the wave elevation, φ0 is the incident wave potential, A is the wave amplitude, σ
is the wave angular frequency, k is the wave number, and i =

√
−1 is the imaginary unit.

The time-harmonic heave response is then given by

ζ2 (t) = ℜ
{

ξ2e
iσt
}

(2.15)

where ξ2 is the complex amplitude of pitch displacement.
Under regular wave excitation, the radiation-convolution integral can be simplified to

fr22 (t) = −ℜ
{[

−σ2µ22 (σ) + iσλ22
]

ξ2e
iσt
}

(2.16)

The wave-excitation-convolution integral can be written as

fe2 (t) = ℜ
{

AX2 (σ) e
iσt
}

(2.17)

For the time being, the mechanical force from the PTO system will be described by the
following

fm (t) = −ℜ
{(

Cg − σ2µg + iσBg

)

ξ2e
iσt
}

(2.18)

where Cg is the linear PTO-restoring coefficient, Bg is the PTO linear-damping coefficient,
and µg is the additional PTO inertia. The frequency-domain expressions can be inserted
into Eqn. (2.13), leading to the heave-displacement response amplitude operator as

ξ2
A

=
X2

[C22 − σ2 (m+ µ22) + Cg − σ2µg] + iσ [λ22 + Bg]
(2.19)

where λvl has been set to zero since results as [5] saw minimal effects from viscosity.
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2.2.1.1 PTO Absorbed Power

The TAP absorbed by the PTO is calculated from

PT

A2
=

1

2
Bgσ

2

∣

∣

∣

∣

ξ2
A

∣

∣

∣

∣

2

(2.20)

Equation (2.19) can be inserted into Eqn. (2.20) to calculate the optimal PTO damping at
each wave frequency. The optimal, unconstrained, time-averaged absorbed power and PTO
damping at each wave frequency is given by

PT

A2

∣

∣

∣

∣

p

=
1

4

|X2|2
λ22

1

1 +

√

1 +
(

C22+Cg−σ2(m+µ22+µg)

σλ22

)2
(2.21)

Bg|p = λ22

√

1 +

(

C22 + Cg − σ2 (m+ µ22 + µg)

σλ22

)2

(2.22)

where PT is frequency dependent and at resonance Bg = λ22, leading to the maximum time-
averaged absorbed power [46]. Because these expressions do not consider motion constraints,
it may be necessary to increase the PTO damping to remain under a given limit. The required
PTO damping is given by

Bg|pc =
{

(

A|X2|
σ|ξ2|max

)2

−
[

C22 + Cg

σ
− σ (m+ µ22 + µg)

]2
}1/2

− λ22 (2.23)

where |ξ2|max is the maximum amplitude of heave displacement [47].
To provide a measure of efficiency for a given device, the TAP contained within a prop-

agating wave must be known. The time-averaged wave power per-unit width, Pw, can be
obtained from

Pw =
1

4
ρgA2

√

g

k
tanh kh

[

1 +
2kh

sinh kh

]

≈ 1

4

ρg2A2

σ

∣

∣

∣

∣

kh→∞

(2.24)

where h is the water depth.
We denote ηe as the ratio of TAP absorbed by the PTO per the incident wave energy

flux. Substituting the expression of heave wave exciting force, Eqn. (2.4), into the modulus
of the expression for the heave-displacement response amplitude operator, Eqn. (2.19), and
using the maximum TAP condition, Bg = λ22, the expression for optimal energy extraction
efficiency as a function of geometry-hydrodynamics factor, γ, is obtained.

ηe|opt =
1

1 + γ2
(2.25)

To obtain maximum extraction efficiency (ηe = 1), γ needs to be equal to 0. This is possible
by having the right far-field radiated wave amplitude equal to zero (A+

j = 0) and the left

9
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far-field radiated wave amplitude be finite (A−
j 6= 0). For symmetric floaters both right and

left far-field wave amplitudes will be equal (A−
j = A+

j ), so γ = 1, which results in ηe|opt = 0.5
if the maximum time-averaged absorbed power condition is satisfied. The graph of ηe|opt for
TBW is shown in Fig. 2.2.

2.2.1.2 Maximum Power Under Constrained Motion

The maximum power absorption under motion constraints, while assuming sinusoidal motion,
was explored in [48] which led to the following expression

PT

A2

∣

∣

∣

∣

mc

=
1

8

|X2|2
λ22

[

1−H (1− δ) (1− δ)2
]

(2.26)

where H(x) is the Heaviside step function, and δ is the ratio between the constrained-to-
optimal heave velocity given by

δ =
σ|ξ2|max

A

2λ22
|X2|

(2.27)

Equation (2.26) can be expanded to show the trends in time-averaged absorbed power
for the ranges of δ.

PT |mc =

{

1
8
A2|X2|2/λ22 δ > 1

1
2
A|X2|σ|ξ2|max − λ22σ

2|ξ2|2max δ < 1
(2.28)

The capture width, defined as the ratio between the TAP absorbed by the PTO and the
incident wave power per-unit width and is a metric used to evaluate the absorption efficiency
of the device. The incident wave power is proportional to the incident wave amplitude
squared, see Eqn. (2.24). For unconstrained motion, which may also correspond to a very
small incident wave amplitude, the capture width will be invariant to the incident wave
height; whereas for a strongly constrained motion, which may also correspond to a very large
incident wave amplitude, the capture width will be inversely proportional to the incident
wave height and become less efficient.

The associated PTO linear-damping coefficient to observe the motion constraint is given
by

Bg|mc = λ22

[

1 +
2 (1− δ)

δ
H (1− δ)

]

=

{

λ22 δ > 1
A|X2|

σ|ξ2|max
− λ22 δ < 1

(2.29)

where the PTO spring and inertia coefficients cancel the dynamic force contribution from
the natural body-restoring coefficient, mass, and hydrodynamic added mass

Cg − σ2µg = −
[

C22 − σ2 (m+ µ22)
]

(2.30)
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which is the basis of complex conjugate control [18]. Often in power quality management
it is desirable to have the peak-to-average power ratio as close as possible to eliminate the
need for advanced signal conditioning. Under complex conjugate control the peak-to-average
power ratio, P±, is given by [47] (see Appendix C)

P± = 1±

√

1 +

[

C22 − σ2 (m+ µ22)

σBg

]2

(2.31)

When there is no reactive power, Xg = σµg − Cg/σ = 0, the peak-to-average power ratio
is 2 and the instantaneous power oscillates between 0 and 2PT . The reactive component is
eliminated at the resonance frequency of the isolated floating body and the peak-to-average
power ratio is minimized at 2; however, when away from the resonant frequency, the peak-
to-average power ratio quickly increases, resulting in large swings in the bidirectional energy
flow.

2.2.2 Foundation Reaction Force and Moment

The structural foundation must handle the reaction force and torque needed to restrain the
WEC to heave motion. The reaction force in the surge, Xr1, and pitch, Xr3, modes of motion
are given by

A (Xr1 +X1) = [−σ2µ12 + iσλ12] ξ2 (2.32)

A (Xr3 +X3) = [−σ2 (xgm+ µ32) + iσλ32] ξ2 (2.33)

where X1 and X3 are the complex surge wave-exciting force and pitch wave-exciting torque
coefficients per unit wave amplitude, µ12 is the surge-heave added mass, and λ12 is the
surge-heave wave radiation damping, µ32 is the pitch-heave added mass, λ32 is the pitch-
heave wave radiation damping, and xg is the horizontal center of gravity. The surge and
pitch foundation reaction force and torque are affected by the heave motion of the WEC,
which can be controlled by the PTO. The time-domain corollary of Eqns. (2.32) and (2.33)
is given by

fr1 (t) = −
∞
∫

−∞

Ke1 (t− τ) η (τ) dτ + µ12 (∞) ζ̈2 (t) +

t
∫

−∞

Kr12 (t− τ) ζ̇2 (τ) dτ (2.34)

fr3 (t) = −
∞
∫

−∞

Ke3 (t− τ)η (τ) dτ + (xgm+ µ32 (∞)) ζ̈2 (t)+

t
∫

−∞

Kr32 (t− τ) ζ̇2 (τ) dτ

(2.35)
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2.2.3 Results from Fixed-PTO Coefficients

Maximizing the TAP, as described in previous sections, involves the PTO coefficients to be
fixed in time although adapted for a given wave amplitude and angular frequency. Perfor-
mance bounds can be set for the TAP, surge-restraining force amplitude, pitch-restraining
torque amplitude, and PTO control force amplitude, which have been plotted in Fig. 2.3.
A benefit of the current design can be observed in the bottom plot of Fig. 2.3, where the
heave amplitude and phase required for elimination of the surge-restraining force and pitch-
restraining torque are presented. The surge and pitch components require a very similar
amplitude and phase for elimination, which will lead to a reduction in both if only one
contribution is heavily penalized in the controller. It is expected that time-varying PTO co-
efficients can help optimize the time-averaged absorbed power while reducing loads, leading
to device performance that sits between the maximum constrained and passive curves.

2.3 Pseudo-Spectral Control

The discretization of the control problem is completed by approximating the heave velocity
and PTO force with a linear combination of basis functions [16, 49]. The heave velocity, ζ̇2,
and PTO force, fm, are approximated by a zero-mean truncated Fourier series with N terms
as follows

ζ̇2 (t) ≈
N/2
∑

j=1

ψc
j cos (jσ0t) + ψs

j sin (jσ0t) = Φ (t) ψ̂ (2.36)

fm (t) ≈
N/2
∑

j=1

τ cj cos (jσ0t) + τ sj sin (jσ0t) = Φ (t) τ̂ (2.37)

where

ψ̂ =
[

ψc
1, ψ

s
1, . . . , ψ

c
N
2

, ψs
N
2

]⊤

, τ̂ =
[

τ c1 , τ
s
1 , . . . , τ

c
N
2

, τ sN
2

]⊤

(2.38)

Φ (t) = [φ1 (t) , φ2 (t) , . . . , φN−1 (t) , φN (t)] (2.39)

=

[

cos (σ0t) , sin (σ0t) , . . . , cos

(

N

2
σ0t

)

, sin

(

N

2
σ0t

)]

with the fundamental frequency given by σ0 = 2π/T and T is the chosen time duration. The
heave equation of motion can be described as follows

M22ψ̂ = τ̂ + ê2 (2.40)
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Figure 2.3: Performance bounds under a heave-displacement amplitude constraint of 0.1 m
and a wave amplitude of 0.02 m. The subscript p denotes passive performance as given
by Eqns. (2.20)–(2.23). The subscript mc denotes maximum constrained performance as
given by Eqns. (2.26)–(2.30). The subscript n denotes the natural heave motion (no PTO),
whereas fr1 = 0 and fr3 = 0 denote heave motion required to eliminate the surge-restraining
force and pitch-restraining torque. The nondimensional force and torque values are given
by: f̄m = fm/ρgbA, f̄r1 = fr1/ρgbA, and f̄r3 = fr3/ρgb

2A.
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where ê2 is the Fourier coefficient vector of the heave wave-exciting force. The matrix
M22 ∈ R

N×N is block diagonal with the following structure

M j
22 =

[

λ22 (jσ0) α (jσ0)
−α (jσ0) λ22 (jσ0)

]

for j = 1, 2, . . . , N/2

α (jσ0) = jσ0 (m+ µ22 (jσ0))− C22/ (jσ0) (2.41)

The heave velocity coefficients can then be determined explicitly from the control and heave
wave-exciting force Fourier coefficients. This representation allows the total absorbed energy,
E, to be written as

E = −
∫ T

0

ζ̇2 (t) fm (t) dt = −T
2
ψ̂⊤τ̂ = −T

2

[

τ̂⊤
(

M−1
22

)⊤
τ̂ + ê⊤2

(

M−1
22

)⊤
τ̂
]

(2.42)

which is in the form of a traditional quadratic problem.

2.3.1 Penalty Terms

2.3.1.1 Surge Foundation Force

Load reduction will consist of limiting the forces on the WEC structure that are required
to maintain the heave-only constraint. This force has two contributions that arise from the
surge wave-exciting force and WEC motion. The equation for the surge foundation force can
be written in a matrix form, similar to Eqn. (2.40), as follows

Φ (t) f̂r1 = −Φ (t) ê1 + µ12 (∞) Γψ̂ + Φ(t) (G12 − µ12 (∞) Γ) ψ̂

f̂r1 = −ê1 +G12ψ̂ = −ê1 +G12M
−1
22 τ̂ +G12M

−1
22 ê2 (2.43)

where ê1 is the Fourier coefficients of the surge wave-exciting force, G12 and Γ are block
matrices given in the Appendix C and Eqn. (2.40) has been substituted in the last expression.
To maintain the convexity of the quadratic problem, the squared ℓ2-norm of the surge-
foundation force vector was added to the objective function. The objective function is given
by

γ1|fr1|2 = γ1

∫ T

0

f̂⊤
r1Φ (t)⊤ Φ (t) f̂r1dt =

T

2
f̂⊤
r1f̂r1

≈ γ1
T

2

(

2
[

ê⊤1 G12M
−1
22 − ê⊤2

(

M−1
22

)⊤
G⊤

12G12M
−1
22

]

τ̂

−τ̂⊤
(

M−1
22

)⊤
G⊤

12G12M
−1
22 τ̂

)

(2.44)

where γ1 is a penalty weight applied to the surge foundation force. In the final expression
for the surge-foundation force contribution, there are three constant terms independent of
the PTO control force, which are left out of the optimization See [17] for the full expression.
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2.3.1.2 Pitch Foundation Torque

Similar to the surge-restraining force, the pitch-restraining torque has two contributions
that arise from the pitch wave-exciting torque and WEC motion. The matrix form of the
pitch-restraining torque can be written as

f̂r3 = −ê3 +G32ψ̂ = −ê3 +G32M
−1
22 τ̂ +G32M

−1
22 ê2 (2.45)

where ê3 represents the Fourier coefficients of the pitch wave-exciting torque. As with the
surge-restraining force, the squared ℓ2-norm of the pitch-restraining torque vector was added
to the objective function. The foundation torque measure is given by

γ3|fr3|2 = γ3

∫ T

0

f̂⊤
r3Φ (t)⊤ Φ (t) f̂r3dt =

T

2
f̂⊤
r3f̂r3

≈ γ3
T

2

(

2
[

ê⊤3 G32M
−1
22 − ê⊤2

(

M−1
22

)⊤
G⊤

32G32M
−1
22

]

τ̂

−τ̂⊤
(

M−1
22

)⊤
G⊤

32G32M
−1
22 τ̂

)

(2.46)

where γ3 is a penalty weight applied to the pitch foundation torque.

2.3.1.3 PTO Control Force Magnitude

The PTO force is the only control actuation, and in an effort to reduce computational time
and force spikes, a penalty weight was placed on the squared ℓ2-norm of the PTO force
magnitude [12].

βm|τm|2 =
∫ T

0

βmτm(t)τm(t)dt =
T

2
τ̂⊤βmIN τ̂ (2.47)

where βm is a penalty weight associated with the control force magnitude, and IN is the
identity matrix of size N .

2.3.1.4 Final Objective Function

The objective function will be the sum of the time-averaged absorbed power, the squared
ℓ2-norm of the surge-restraining force, pitch-restraining torque, and control force magnitude.
The four contributions to the objective function are not of the same units, and the interre-
lationship between them is complex. Therefore, the final objective function will consist of
the following nondimensional quantities

J =
E

PwT
+ γ1

∣

∣

∣

∣

fr1
ρgbA

∣

∣

∣

∣

2

+ βm

∣

∣

∣

∣

fm
ρgbA

∣

∣

∣

∣

2

+ γ3

∣

∣

∣

∣

fr3
ρgb2A

∣

∣

∣

∣

2

(2.48)
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2.4 Pseudo-Spectral Results

2.4.1 Effect of Penalty Terms

Figure 2.4 verifies that the pseudo-spectral controller is achieving the desired results when
considering the extremes of the tested penalty weights. As the control force penalty weight,
βm, is increased the magnitude of the PTO control force and reactive power is reduced.
As shown for the lowest values of γ1 and βm, the highest TAP is achieved; however, a
larger reactive power component is required. Whereas for the largest values of γ1 and βm,
reduction in the surge-restraining force and pitch-restraining torque is counterbalanced by an
increase in the PTO control torque. The increase in PTO torque is a result of the amplitude
and phase difference between the unforced (no PTO) and zero surge-restraining force heave
motion (refer to the bottom plot of Fig. 2.3). It can be observed that both above and
below the resonance frequency the unforced heave amplitude of motion is lower than what
is required for elimination of the surge-restraining force. As more emphasis is placed on
reducing the surge-restraining force, greater control forces and reactive power are required,
which implies that complete elimination of the restraining loads may not be desirable.

In Fig. 2.4, the region bounded by βm ≥ 0.8 and γ1 ≤ 0.4 is the most favorable as the
capture efficiency can be increased between 20%–80% with a reactive power contribution
comprising only 1/10th of the TAP. Furthermore, the surge-restraining force (fr1), pitch-
restraining moment (fr3), and PTO control torque can be reduced between 10%–30% with
respect to the passive values; however, it is evident that the contours will vary depending
on the incident wave frequency and most likely on the heave amplitude constraint. The
left column of Fig. 2.4 plots a set of results for a wave frequency below resonance. In this
frequency range the contours follow nearly straight lines when viewing the γ1 and βm space.
Here the greatest difference in the heave motion amplitude and phase occurs, requiring a
proportionate increase in the PTO control torque to decrease restraining loads. Just below
resonance the TAP curve decreases slower than above resonance; however, a greater control
effort will be needed to reduce restraining loads. These contour plots provide a clear design
space that can be used to optimize power production, decrease structural loads, or achieve
many combinations in between.

2.4.2 Time History of WEC and PTO

Figure 2.5 plots the time history of the four points marked in the plots along the right
column of Fig. 2.4. In region 1 the maximum power absorption is nearly recovered, in
region 2 there is roughly a 50% reduction for all performance metrics compared to maximum
absorption, in region 3 the surge-restraining force is prioritized at the expense of larger PTO
forces and reactive power, and in region 4 the controller attempts to maximize TAP with
reduced PTO forces at the expense of larger restraint loads. As the penalty weights are
reduced, the PTO control torque moves the heave velocity closer in phase with the heave
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Figure 2.4: Sensitivity of performance metrics to penalty weights under a heave-displacement
amplitude constraint of 0.1 m and wave amplitude of 0.02 m. The left column plots results
for a wave period of 1.5 s (σ̄ = 0.62) and the right column for a wave period of 1 s (σ̄ = 0.92).
The subscript p denotes passive performance as given by Eqns. (2.20)–(2.23).
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wave-exciting force. This phase shift is accompanied by the greatest amplitudes in PTO
control torque, surge-restraining force and pitch-restraining torque, but not reactive power.
Marker 3 has the greatest reactive power requirement as the amplitude of motion to eliminate
the surge-restraining force is greater than the maximum constrained heave profile. As the
surge-restraint and PTO force penalty weights are increased, the controller will first maintain
a near optimum phase while reducing the amplitude of motion; however, eventually a greater
phase shift is introduced by the controller to eliminate a greater proportion of the surge-
foundation force; refer to Eqn. (2.32). Further reduction in the restraint loads will then see
an increase in the heave amplitude of motion and a corresponding increase in PTO control
torque and reactive power. The larger reduction in restraint loads and PTO force can be
achieved because of the ability of the controller to induce a phase shift in the heave velocity
at the expense of bidirectional energy flow, which can be greatly affected by PTO efficiency
[50].

2.4.3 Power-to-Load Ratio

In order to compare the results from pseudo-spectral control over a wider range of wave
angular frequencies, a power-to-load ratio was calculated as follows:

PL =
PT/A

2

√

(fr1/A)
2 + (fm/A)

2
(2.49)

The TAP was scaled by a factor of A2, as per Eqn. (2.20), while the surge-restraining force
was scaled by a factor of A, as per Eqn. (2.32). For each wave angular frequency the power-
to-load ratio was calculated for all penalty weight combinations considered. The maximum
contour was taken and plotted against results obtained at different wave angular frequencies,
see the top plot of Fig. 2.6. As seen from the plot, there are several combinations of γ1 and
βm that provide the same power-to-load ratio with the range increasing as the wave frequency
moves closer to resonance. As the wave frequency moves away from resonance, the optimum
contours shrink and converge towards γ1 → 0 and βm → 0. However, the power-to-load ratio
does not consider the reactive power requirement. The contours in the center plot of Fig. 2.6
indicate when the TAP is 10 times greater than the time-averaged reactive power and above
these contours the TAP-to-reactive power ratio decreases. All of the optimum power-to-load
contours, except for σ̄ = 0.77, sit above the TAP-to-reactive power contours. As seen in
Fig. 2.4, this ratio can decrease very quickly as γ1 increases and βm decreases resulting in
a large reactive power requirement to achieve the optimum power-to-load ratios. A greater
reactive power requirement and peak-to-average power ratio may lead to an increase in the
levelized cost of energy because of the need for larger accumulators to smooth the power
output and meet the required power capacity. The bottom plot in Fig. 2.6 compares the
power-to-load ratio obtained from pseudo-spectral control to the maximum constrained and
passive strategies. Pseudo-spectral control is successful at providing power-to-load ratios
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Figure 2.5: Time history of WEC motion, PTO control force, PTO power, restraining force,
and restraining torque. Results from applying pseudo-spectral control with T = 1 s, A = 2
cm, and varying penalty weights. The numbers 1, 2, 3, and 4 in the legend refer to the four
markers in the top plot of Fig. 2.4. The subscript p denotes passive performance as given by
Eqns. (2.20)–(2.23). The subscript mc denotes maximum constrained performance as given
by Eqns. (2.26)–(2.30). A heave-displacement amplitude limit of 0.1 m was used while the
number of fourier coefficients was set at N = 100. Ew is the cumulative absorbed energy
when assuming perfect absorption.
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that are equal to or greater than the maximum constrained values with the largest gains
occurring about resonance.
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Figure 2.6: Variation of the optimum power-to-load ratio with wave angular frequency. The
legend in top two plots denote σ̄. Top plot displays the contours of the maximum power-
to-load ratio at select wave angular frequencies. Center plot displays the contour of the
ratio between the TAP and reactive power corresponding to a value of 10. Bottom plot
compares the optimum power-to-load ratio obtained from pseudo-spectral control against
the maximum constrained and passive results.
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Chapter 3

Breaking Waves Modeling and Survivability Condition

3.1 Numerical Method

3.1.1 Lagrangian Frameworks

To analyze the forces of the deep-water plunging breakers on the AF, we used the Lagrangian
formulations of the fluid, more specifically the Weakly-Compressible Smooth Particle Hy-
drodynamics (WCSPH). Studies have shown that breaking waves can be modeled accurately
with this formulation [26, 29]. Here we briefly mention the basic equations of the WCSPH
scheme. We start with the conservation equations of fluid mechanics and equation of state.
The continuity equation is given by

dρ

dt
= −ρ ∇ · v (3.1)

and the momentum equation by

ρ
dv

dt
= −∇p+ f+ ρg (3.2)

where t, ρ, v, p, f, and g denote time, density, velocity, pressure, viscous force, and acceler-
ation of gravity respectively. In the weakly-compressive formulation, the equation of state
that relates the pressure to density is given by [51,52]

p(ρ) = p0

[

(
ρ

ρ0
)γ − 1

]

+ χ (3.3)

where the exponent γ takes a value between 1 − 7. The value of γ = 7 results in a strong
pressure response to density variation [53]. The background pressure χ is set to 0 for free
surface flows. Also, p0 = ρ0c

2
0/γ is the reference pressure, c0 is the speed of sound, and ρ0 is

the reference density.

3.1.2 WCSPH Scheme

WCSPH is a mesh free scheme to approximate Eqns. (3.1) and (3.2). A smoothing interpola-
tion kernel (W ) is used to approximate fluid field variables (density, pressure, and velocity),
and in each time step the flow variables are stored in the particles. The smoothing kernel
must satisfy the following properties:

∫

W (r, ha)dr = 1, positive definiteness W (r, ha) ≥ 0,
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and needs to be even W (r, ha) = W (−r, ha). Many kernels have been proposed with dif-
ferent degrees of accuracy and time efficiency [51, 54, 55]. We used the quintic spline for
computational accuracy [53]. The continuity equation (Eqn. (3.1)) can be approximated by
using the smoothing kernel [56] (density of particle a) as

dρa
dt

= ρa
∑

b

mb

ρb
vab · ∇aWab (3.4)

where ∇a is the gradient of the smoothing kernel with respect to the particle a coordinates
and mb = ρaVa is the mass of particle a (the mass of all the particles is kept constant during
the computations). The volume of each particle is Va = ∆xd where d is the spacial dimension
of the computational domain. Then, the pressure gradient that results in the acceleration of
particle a can be approximated by [52]

dva

dt
= − 1

ma

∑

b

(Va
2 + Vb

2)
ρbpa + ρapb
ρa + ρb

∇aWab (3.5)

The artificial viscosity term can be added to the momentum equation to produce bulk and
shear viscosity and also to stabilize the scheme as follows

dva

dt
= −

∑

b

mbαhabcab
vab · rab

ρab (|rab|2 + ǫ)
∇aWab (3.6)

where rab = |ra − rb|. Also, hab and cab are the average smoothing length and average speed
of sound respectively. The value of ǫ = 0.01 is chosen to prevent the zero denominator and
the value of α is kept constant for the wave generation computations [29]. The effective
viscous coefficient can be obtained by the following relation.

ν =
1

2(d+ 2)
αhabcab (3.7)

To reduce the jump in initial pressures and accelerations between the particles, the initial
acceleration is damped for a period of tdamp by the following factor [52].

ζ(t) = 0.5

[

sin((−0.5 +
t

tdamp

)π) + 1

]

, t ≤ tdamp (3.8)

3.1.3 Solid Wall Boundary Condition

For the particles representing the wall, wavemaker, and AF, we used the generalized bound-
ary condition that was formulated for the cases with moving boundaries [52]. In this method
the fixed ghost particles represent the boundaries. The ghost particles are included in the
continuity and momentum equations. Thus, when the fluid particles approach the ghost
particles, their pressures increase thus, creating a high repellent force between them. This
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prevents the fluid particles to penetrate into the boundaries.
The slip condition is satisfied by avoiding the viscous interaction of the fluid and ghost

particles. For the no-slip condition, the velocity of the ghost particles is used for the viscous
interactions. The velocity of the fluid is extrapolated to the ghost particle.

ṽa =

∑

b vbWab
∑

bWab

(3.9)

Then, in the viscous interaction Eqn. (3.6), the velocity of

vb = 2vw − ṽa (3.10)

is assigned to the ghost particle where, vw is the prescribed velocity of the wall particle.
Fig. 3.1 shows the initial orientation of the wave tank wall, wavemaker, and fluid particles.
The particle distancing shown is used for generating breaking waves at 11 m from the wave-
maker in latter sections.

The pressure of a boundary particle surrounded by fluid particles is obtained from the
following

pw =

∑

f pfWwf + (g− aw) ·
∑

f ρfrwfWwf
∑

f Wwf

(3.11)

where f and w represent fluid and boundary particles respectively. The acceleration of wall
particles is included as aw. The density of wall particles is obtained from the pressure pw as

ρw = ρ0

(

pw − χ

p0
+ 1

)
1

γ

(3.12)

where ρ0 and p0 are reference density and pressure, defined in section 3.1.1.

3.1.4 Time-integration scheme

We used a velocity-Verlet scheme for stepping forward in time [52,57].

v
n+ 1

2
a = vn

a +
∆t

2

(

dva

dt

)n

(3.13)

r
n+ 1

2
a = rna +

∆t

2
v
n+ 1

2
a (3.14)

ρn+
1

2 = ρn +∆t
dρ

dt

n+ 1

2

(3.15)

rn+1
a = r

n+ 1

2
a +

∆t

2
v
n+ 1

2
a (3.16)
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Figure 3.1: Initial particle placement in the computational wave tank. The circles shown
with • represent fluid particles, • represent piston-type wavemaker (ghost particles), and •
represent wave tank wall (ghost particles). This inter-particle distance was used to generate
the breaking waves at 11 m from the wavemaker.

vn+1
a = v

n+ 1

2
a +

∆t

2

(

dva

dt

)n+1

(3.17)

The minimum step size is based on the CFL-condition.



































∆tsp ≤ 0.25 h0

c0+|vmax|

∆tvis ≤ 0.125
h2
0

ν

∆tfr ≤ 0.25
(

h0

|g|

)0.5

(3.18)

Then, the global time step ∆t can be chosen as

∆t = min(∆tsp, ∆tvis, ∆tfr) (3.19)

In Eqn. (3.18) the smoothing length h0 = hdx∆x where hdx = 1.2 was chosen for the
simulations. The initial speed of sound was chosen as c0 = 10|vmax|, where |vmax| = (gh)0.5

and h is the water depth. In this thesis, simulations were based on the extension of PySPH
frameworks [58].
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3.1.5 Modifications

There are several corrections to the SPH scheme that make the numerical scheme more
robust. One is a correction proposed to be applied to the equation of state Eqn. (3.3) [59].

ρa =

{

ρa ρa ≥ ρ0

ρ0 ρa < ρ0
(3.20)

The above equation is used to prevent the particles from sticking to the boundary. This
equation imposes ρ0 (the initial density value) to the boundary particles. Next, is the XSPH
correction [60] that was used to advect particles. This condition imposes movement of a
particle close to the average velocity of neighboring particles.

dra
dt

= va − ǫx
∑

b

mb
vab

ρab
Wab (3.21)

Finally, to update the smoothing length ha we take on the following [61].

ha =
h0
∆x

(

ma

ρa

)
1

d

(3.22)

This equation requires the recalculation of neighboring particles and should be used as the
last equation in the numerical scheme.

3.2 Hydrostatic Pressure and Linear Waves

Achieving a stable linear hydrostatic pressure and the regular-wave generation are among
the first steps to test the stability of the scheme before realizing our objective of studying
the breaking wave environment. In order to generate linear waves, we briefly touch upon the
linear potential-flow theory to relate the stroke length of the wavemaker to the amplitude
of the generated linear harmonic waves. Based on the linear potential-flow theory with
linearized boundary conditions, the general solution of potential for linear propagating and
standing waves is as follows [42,62].

φ =C0 cosh k0(y + h) sin(k0x− ωt)

+
∞
∑

n=1

Cne
−knx cos [kn(y + h)] cos(ωt)

(3.23)

In Eqn. (3.23), the first part represents progressive waves and the second part decaying
waves. The terms k0 and kn can be obtained from the well known dispersion relations.

ω2 = gk0 tanh k0h, and

ω2 = −gkn tan knh, n = 1, 2, ..
(3.24)
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Figure 3.2: Schematics of the problem with the AF present.

By applying the proper boundary condition on the wavemaker and using orthogonality of
the vertical functions of y the coefficients C0 and Cn can be determined. Subsequently, the
dynamic free-surface boundary condition enables the relation between the amplitude of the
progressive waves and the potential

η(x, t) =
C0ω

g
cosh k0h cos(k0x− ωt)

= Af cos(k0x− ωt), for x≫ h

(3.25)

where η and Af are free-surface elevation and wave amplitude respectively. At this point
we can relate the stroke length of the wavemaker to the wave amplitude. For flap-type
wavemaker this relation can be obtain from the following equation.

(

Af

S0

)

flap

= 4

(

sinh k0h

k0h

)

k0h sinh k0h− cosh k0h+ 1

sinh 2k0h+ 2k0h
(3.26)

Also, one can drive the expression for piston-type wavemaker stroke length to the wave
amplitude as follows.

(

Af

S0

)

piston

=
2(cosh 2k0h− 1)

sinh 2k0h+ 2k0h
(3.27)

Eqns. (3.26) and (3.27) can be used to estimate the wave elevation to the stroke length of
the flap-type or piston-type wavemaker respectively.

In the WCSPH code, we created a computational wave tank (CWT) with a stabilized
pressure field. The parameters used in the scheme were; h = 1.53 m, L = 10 m, c0 = 39 m/s,
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Figure 3.3: Ratio of wave amplitude generated by piston and flap-type wavemaker to stroke
as a function of k0h

ρ0 = 1000 kg/m3, γ = 7, α = 0.05, h/∆x = 123, and dt = 6.58e − 5 s. At t = 0 the initial
density of the particles were the reference density, therefore, their pressure was zero. Also,
the initial accelerations of the particles were 0. Later, for t > 0 their accelerations smoothly
increased by the ζ(t) (Eqn. (3.8)) to −g. Thus, the pressures of the wall particles gradually
increased. As t→ tdamp, we observed a linear profile of the hydrostatic pressure of the fluid
particles along the depth of the tank. Figure. 3.4a shows, the pressure field reaches a steady
state for t > tdamp = 1 s. The linear profile of the pressure for the particles located at
x = L/2 m along the wave tank depth (multi-processor implementation of WCSPH scheme)
is shown in Fig. 3.4b. The theoretical hydrostatic pressure is also plotted for comparison.
The linear profile of the pressure indicates the stability of the WCSPH scheme.

Next, the stroke length for the desired wave amplitude and period was obtained by using
Eqns. (3.24) and (3.27). Then, the wavemaker was set in motion. The acceleration, velocity,
and position of the wavemaker particles were the initial input to the WCSPH scheme. Also,
the initial displacement of the wavemaker was multiplied by the following function

S = S0e
−(t−6T )2/2T 2

for t > 6T (3.28)

where T is the wave period. This ensured the smooth start of the wavemaker for t > 1 and
prevented any splashing. Wave profiles for two locations along the wave tank (x = λ and
x = 2λ) are shown in Fig. 3.4c. In this figure, the ramp-up, linear, and ramp-down sections
of the wave are shown. At the end of the wave tank a beach with a tanh function was
implemented to prevent excessive reflected waves from the end of the tank. The effectiveness
of this scheme is verified by tuning the factor 1/6. The viscous interaction between the fluid
and boundary particles dissipates the energy of the waves over the long length of the beach.

yb = h tanh
x− L

6
for x > L (3.29)
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Figure 3.4: a) Pressure of the fluid particles located at h1 = 0, h2 = −0.82, and h3 = −1.53
m, for x = L/2 m. b) Comparison of the theoretical hydrostatic pressure (ρgy) and the
pressure of the fluid particles at x = L/2 m. c) Linear free surface profiles, T = 1.5 s.

The starting point of the beach was located at x = L. The total area of the beach with
the length of 20 m was ∼ 6.2 m2. The area and number of particles needed to obtain the
computational beach were equivalent to adding a 4 m damping layer (a technique to damp
the velocity of the particles and to reduce the reflected waves).
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3.3 Dam Break

In order to further test the scheme we analyzed the collapse of a water column under the
gravity. This example have many aspects such as jet-flow impact and water re-entry that
are useful in analyzing the plunging breaker impact force on TBW. The geometry of the
problem is shown Fig. 3.5. We examined two cases of a square bd/hd = 1 and a rectangular
bd/hd = 2 water columns. Then, we compared the results obtained from the computations
to the ones reported in the literature [52, 63–65].

hd

Hd

Ld

bd

x

y

Figure 3.5: Schematics of the dam break.

3.3.1 Case of Square Water Column

The first example we consider was the collapse of a square water column bd/hd = 1 under
the gravity. The length of Ld/hd = 5.366 and hight of Hd/hd = 3 were chosen for the tank
geometry. In the scheme the viscous interaction between the fluid and wall particles were
omitted to mimic the inviscid flow behavior. Different particle distancing ∆x and factor α
(Eqn. (3.6)) were adopted in the scheme to analyze how they affected the flow behavior. In
this example Eqns. (3.21) and (3.22) were adopted in the numerical scheme. The following
values were implemented in the computations; hdx = 1.2, c0 = 10|vmax|, |vmax| = (ghd)

0.5, g
= 9.81m/s2, ǫx = 0.5, α = 0.02, 0.1, 0.2, 0.4, and ∆x/hd = 0.02, 0.04. Initially the density
of the particles were chosen as the reference density ρ/ρ0 = 1 thus, the initial pressure of the
particles was zero. The Fig. 3.6a shows the water column front location at y = 0 vs time.
The current computations (∆x = 0.02, α = 0.4) is compared to the results reported in the
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literature. The front location obtained from the current computations are in good agreement
with SPH, BEM, and level set methods reported in the [52, 65]. The comparisons revealed
the computations over predicted the water column’s front location. This over prediction
compared to experiment as discussed in [52,65], might be caused by surface roughness or the
viscous effects between fluid and the bottom surface. Different values of particle distancing
(∆x) and factor α were studied to analyze their affects on the movement of the water
column front location and stability of the scheme. The Fig. 3.6b shows these comparisons.
The location of the front of the water column is not altered with different values of ∆x and
α.

The top position of the water column at (x = 0) vs time is shown in Fig. 3.6c. The
current SPH computations, the ones reported in [52], and experiments agree well.

3.3.2 Case of Rectangular Water Column

For the second example we changed the geometry of the water column by choosing
the bd/hd = 2. Other dimensions of the problem stayed the same as section 3.3.1. In
this example we looked at the release of the water particles under the effect of gravity.
The comparison between the flow behavior and pressure field obtained from the current
computations (∆x/hd = 0.005 and α = 0.5) and plots extracted from [52, 65] are shown
in Fig. 3.7. The left column shows the current computations, the middle column result
extracted from [52], and the right column from [65]. The current results of the free surface
profile and cavity location are in good agreement with both cited examples. Also, the
pressure field is in good agreement with [52]. The pressure field observed is different from
the linear hydrostatic pressure profile reported in [65]. The weakly compressible nature
of the scheme creates a dynamic pressure fluctuations. This is caused by weakly damped
sound waves as a results of small viscous effects. For analyzing the effects of different α
values on the pressure fluctuations, we incorporated α = 0.5, 0.4, 0.2 in the computations.
The results presented in Fig. 3.8. As the flow impacts the right tank wall, it creates a
pressure shock. For the larger α value we observe less fluctuations in the pressure filed.
Additionally, we hold the water particles by a barrier so a stable hydrostatic pressure of the
fluid was achieved. Then, we removed the barrier. Less fluctuation of the pressure after the
impact of the water jet to the right tank wall was observed.
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Figure 3.6: Comparison of front x|y=0 and top y|x=0 of the water column vs time.
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Figure 3.7: Dam break at different time windows, right column is the current computations,
the middle column is extracted from [52] and the right column from [65].
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Figure 3.8: Dam break different α values. From left to right α = 0.5, 0.4, 0.2.
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Figure 3.9: Pressure on the right side wall at y/hd = 0.2.

Finally, we compared the pressure on the right wall at y/hd = 0.2 that was obtained by
Eqn. 3.11. The comparison between the pressure obtained from the current computations
(∆x = 0.005 and α = 0.5) and the ones reported in [52, 64, 65] is shown in Fig. 3.9. As
expected and also reported by [52], we observed high frequency oscillation of the pressure
but the main pressure profile was captured. In the latter sections, we allowed fluid to reach a
hydrostatic stability before initiating the wavemaker. This reduced the pressure fluctuations
in the flow and boundaries.

3.4 Breaking Waves

In order to achieve deep-water breaking waves in a tank, an input spectrum for the wavemaker
is needed to generate waves that group together at a desired time and location. When several
waves with correct phases, amplitudes, and frequencies group in a location, a high amplitude
crest is produced that results in a plunging breaker. In a study [66], the relation between
target wave profile before breaking to the input spectrum of the wavemaker is examined.
This analysis is based on steady-state waves. Therefore, if at a specific location and time, the
phase angles of the waves are known, all other phase angles can be found at other locations.
Let us look at the collocation of M waves around a fundamental wave number, kc, and
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frequency, ωc.

η(x, t) =
M
∑

i=1

Ai cos(kix− ωit+ θi)

=
M
∑

i=1

Ai cos(kcx− ωct+∆θi)

(3.30)

The ∆θi is the relative phase between the fundamental and ith wave as

∆θi = (ki − kc)x− (ωi − ωc)t+ (θi − θc) (3.31)

where θc represents the fundamental phase angle at (x, t) = (0, 0). A displacement of the
piston-type wavemaker for generating deep-water plunging breakers can be developed by a
summation of M waves [67].

sp(t) =
M
∑

i=1

xi sin(ωit− θi) (3.32)

The input displacement for the piston-type wavemaker to generate plunging breakers at the
location and time of (x∗, t∗), where ∆θi is given, can be obtained from Eqns. (3.32), (3.27),
and (3.31). If we arrange 52 waves with the fundamental wave frequency of ωc(h/g)

0.5 = 1.54
to obtain a high crest wave at the location and time of (x∗/h, t∗(g/h)0.5) = (7.44, 45.38), we
obtain the time history of the piston-type wavemaker displacement shown in Fig. 3.10a. In
Table D.1 the 52 coefficients of xi, ωi, and θi are given to obtain the piston-type wavemaker
displacement.

Next, the displacements (Fig. 3.10a) was implemented in the CWT’s piston-type wave-
maker. We constructed the CWT with the dimensions of L = 13 m and h = 1.53 m.
In the WCSPH scheme the following values were adopted; h/∆x = 226, c0 = 39 m/s,
γ = 7, dt = 3.56e − 5 s, ǫx = 0.5, and α = 0.05. The wavemaker’s displacement started at
t = 2 s to allow the inter-particle forces to equalize. Figs. 3.11b-3.11e show the comparison
between the free surface profiles obtained from the linear potential-flow theory and compu-
tations. As we move forward in time the non-linearity of the surface profile and differences
between the linear theory and computations become apparent. The actual location, where
the wave resulted from the grouping of 52 waves reached its steepest peak before breaking,
was observed (in CWT) at (x/h, t(g/h)0.5) = (7.24, 40.41). Water re-entry took place at
(x/h, t(g/h)0.5) = (7.62, 40.99). The linear potential-flow theory was shown to be a fast way
to predict the approximate location and time of the steepest crest wave.

Afterward, the displacement which was obtained by the linear potential-flow and con-
firmed by the computations, was adjusted to be used in the physical wave tank’s (PWT) flap-
type wavemaker. We obtained the new profile by changing the xi coefficients (in Table D.1)
according to Eqn. (3.26) and physical characteristics of the wavemaker. The breaking wave
that was obtained in the PWT is shown in the left column of Fig. 3.13. The experimental
and computational free-surface profiles for different locations along the wave tanks are shown
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in the left column of Fig. 3.12. As shown in this figure, there is a satisfactory agreement
between the experiment and computation.

The location of the PWT’s visual window starts at approximately 20 m from the wave-
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Figure 3.10: Displacement profiles of the piston-type and flap-type wavemakers to achieve
deep-water plunging breakers.

maker. The ease of visualization required that the breaking waves be transferred to that
section. For achieving this purpose we could adopt different techniques such as frequency-
scaling. In this method the Froude scaling is used to change the fundamental wave compo-
nents by a factor r. We can apply the geometric similarities to obtain the new components.
For instance; x̂∗ = x∗r−2, ω̂c = ωcr, k̂c = kcr

2, t̂∗ = t∗r−1, etc., where the hat variables
represent the new scaled components. The frequency-scaling method (for r < 1) results in a
displacement profile that induces stress on the wavemaker as it requires a very large stroke
of the flapper.

The “Packet Translation” is an another method to transfer the plunging breakers while
maintaining the same ωi. By defining a new θi in Eqn. (3.30) we can arrange the components
of the wave to converge in a new location and time (x∗, t

∗
).

x∗ = x∗ +X and t
∗
= t∗ + τ (3.33)
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X and τ are the linear transformations in space and time. They are related by the group
velocity of the fundamental wave as τ = X/cg where cg = 0.5ωc/kc. By substituting the
newly defined variables (x∗, t

∗
) into Eqn. (3.30) we obtain the new equation for the new

wave profile.

η(x∗, t
∗
) =

M
∑

i=1

Ai cos(kix
∗ − ωt

∗
+ θi)

=
M
∑

i=1

Ai cos{kix∗ − ωit
∗ + θi

+ [θi − θi + ki∆x− ωi∆t]}

(3.34)

For obtaining the identical wave profile as specified in Eqn. (3.30), the bracketed term in
Eqn. (3.34) vanishes and θi can be found.

θi = θi − ki∆x+ ωi∆t (3.35)

The new packet-translated piston-type wavemaker displacement profile with ωc(h/g)
0.5 =

1.54 is shown in Fig. 3.10b. The location, and time of the targeted free-surface profile is
shown in Fig. 3.11f. The predicted free-surface profile by the linear potential-flow theory
was observed at (x∗/h, t∗(g/h)0.5) = (13.80, 71.66). The 72 components to obtain the new
wavemaker profile are given in Table D.2.

The new displacement profile was implemented in the CWT’s piston-type wavemaker.
In the WCSPH scheme we espoused the same parameters as for the previous profile except,
the length of the wave tank was increased to L = 23 m. A delay of t = 1.8 s was chosen
before the initiation of the wavemaker’s motion. Comparisons between the linear potential-
flow theory and WCSPH predictions of the surface profiles for different time instances are
shown in Figs. 3.11g-3.11j. The free-surface profile with the highest peak was observed
at (x/h, t(g/h)0.5) = (13.72, 66.57) in CWT. Also, the wave re-enters the water surface at
(x/h, t(g/h)0.5) = (14.10, 67.21).

Next, the displacement profile was adjusted (shown in Fig. 3.10b) and used for the PWT’s
flap-type wavemaker. The new breaking wave at the location of PWT’s visual window is
shown in Fig. 3.13 right column. The free-surface profiles at different locations of the CWT
and PWT are shown in the right column of Fig. 3.12. WCSPH computations predicted the
free surface profile well. All the results were shifted in time to account for the delayed start
of the wavemakers displacement.

The two wave profiles obtained from the wavemaker displacement profiles shown in Figs.
3.10a and 3.10b are compared in Figs. 3.14a-b and 3.14c-d. The similarities in the free
surface profiles, the velocity, and pressure fields are clearly presented. Also, the linearity of
the pressure field in both wave profiles can be seen.
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Figure 3.11: The linear potential-flow vs WCSPH computations, left column plots are free
surface profiles results obtained from wavemaker displacement profile shown in Fig. 3.10a
and the right column plots from Fig. 3.10b. Plots a) and f) are the targeted free-surface
profiles obtained by potential-flow theory.
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Figure 3.12: Comparison between experimental and computational wave elevations for dif-
ferent locations along the wave tanks. Left column obtained from Fig. 3.10a and the right
column from Fig. 3.10b.
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Figure 3.13: Breaking waves in PWT. Left column obtained from Fig. 3.10a and the right
column from Fig. 3.10b.
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Figure 3.14: Pressure and velocity fields of the plunging breakers. Left column obtained by
implementation of wavemaker displacement profile shown in Fig. 3.10a and the right column
from Fig. 3.10b into WCSPH scheme.

3.5 Breaking Waves and TBW

3.5.1 Experiments

Achieving similar plunging breakers at the two set locations in the CWT and PWT enabled
us to chose the PWT’s window location for conducting the experimental measurement of
the force and visually inspect the flow. The physical model of the AF was positioned in the
PWT further downstream from the water-entry location of the breaking waves to analyze
a jet-like-flow impact. The AF model has an approximate beam of b = 0.22 m, width of
w = 2.33 m, and height of H = 1.03 m. The width of the AF span across the wave tank and
leaves a very small gap between each side of the AF and wave tank walls. Water ballast was
used to acquire different drafts of the AF. For the operational condition in linear harmonic
waves the draft of the AF model was chosen to be 0.8 m. This draft ensured that the
resonance period of the AF was in the linear wave-making range of the wavemaker. Thus,
the vertical force on the AF was measured with this draft in the presence of the plunging
breakers (see Fig. 3.17). The vertical displacement of the AF is fixed by the means of force
blocks for the force measurements. The experiments repeated several times in order to check
the repeatability of the results.

Next, the AF was fully submerged (D = 1.03 m) as shown in Figs. 3.15 and 3.18. This
draft is the maximum allowable draft of the AF model as the electrical components of the
PTO are attached to the top of the AF above water line. This PTO location was chosen
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for the ease of operation, maintenance, electrical power transfer to girds, and to prevent
water damage to the electrical parts. The vertical force was measured in the presence of the
breaking waves.

Figure 3.15: Experimental setup of fully submerged AF (D = 1.03 m).

3.5.2 Computations

Lowering the computational cost demanded shifting the plunging breakers closer to the
wavemaker. As we decrease the length of the wave tank we lower the number of particles
required in the computations. In Sec. 3.4 it was confirmed that the plunging breakers,
resulted from the two displacement profiles shown in Fig. 3.10, were satisfactorily similar.
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Also, the experimental and computational wave profiles matched quite well as shown in
Fig. 3.12. The computational model of the AF was positioned at L = 12 m in the CWT.
This location is further downstream from the breaking waves water entry point (as it was
done in the experiments). We adopted a piston-type wavemaker in the CWT to lower the
computational cost. The displacement of the wavemaker is shown in Fig. 3.10a. Forces on
the AF, with the 0.8 m and fully submerged (D = 1.03 m) drafts, in the presence of the
plunging breakers were measured. In the computations the pressure on the AF was obtained
from Eqn. (3.11). The desired hydrostatic pressure was achieved on the AF about 1 s after
the simulations started as shown in Fig. 3.16. The wavemaker was set to motion at t = 2
s. In the WCSPH scheme the same parameters were used as mentioned in Section. 3.4. The
particle spacing of h/∆x = 230 was used in the computations.

The side by side comparisons of experiments and computations for the case of the AF
(0.8 m draft) encountering the plunging breakers, at different time windows, are shown in
Fig. 3.17. These comparisons indicated the largest pressure that the AF experienced upon
the breaking waves impact was at the area above the water line facing the waves. The initial
wave impact resulted in an impulsive repellent vertical (Fy > 0) and horizontal (Fx > 0)
forces. Later in time, when the trough of the plunging breakers reached the AF, the front
water level declined. This caused pressure build up on the leeward side close to the tip of
the AF. Therefore, there was a high flow velocity under the AF tip, from the leeward side
to the front side. This caused the AF to endure a secondary wide-band horizontal suction
force (Fx < 0) and vertical downward force (Fy < 0).

As shown in Fig. 3.18 submerging the AF caused the waves to pass over it. This resulted in
reducing the initial Fx peak that was present in the 0.8 m draft by 50%. On the other hand, a
less significant change in the second Fx peak was observed. Similar behaviors were observed
in the Fy. The comparison between the Fy obtained by experiment and computations is
shown in Fig. 3.20c.

3.5.3 Pressure-Relief Channels (PRCs)

As discussed in the previous section, submerging the AF led to a reduction of the forces
at the moment of the initial jet-flow impact. On the other hand, a negligible change in
the secondary peak values of the Fx or Fy were observed. It is more practical and efficient
to seek a solution to increase the survivability of TBW while maintaining its operational
draft. Thus, in the computations, the areas of the AF geometry that experienced maximum
pressure from the fluid were identified. These areas were; the portion of the AF geometry
above the water line facing the waves and also the area leeward of the AF close to the tip.
After, with considering the structural integrity of the AF, two places were singled out and
removed from the geometry of the AF (in computations). These removed areas we named
pressure-relief channels (PRCs).

The x-component of the fluid velocity as well as the pressure and the forces on the AF,
with one and two PRCs, that were obtained by the computations are displayed in Fig. 3.19.
The color-bars are shown in Fig. 3.17. As shown, the bottom PRC is effective in reducing
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Figure 3.16: The fluid pressure and extrapolated pressure on the AF boundary after t = 2 s
from the start of simulations.

the flow velocity near the tip of the AF, hence reducing the pressure build up in that region.
The implementation of both bottom and top PRCs dramatically decreased the pressure on
the surface of the AF by allowing the fluid flow through it.

The comparison between the four cases of experimental measurement of the vertical force
on the AF model, computational measurement of the vertical force on the AF with zero, one,
and two PRCs are presented in Fig. 3.20a (D = 0.8 m). The experimental and computational
values of the Fy agree well. Placing the bottom PRC on the 0.8 m draft AF reduced the Fx

by approximately 24% in the initial peak and by 50% in the secondary peak when compared
to the case of the AF with zero PRC. On the contrary, this had an insignificant effect on
reducing the peak values of the Fy. In addition to the bottom PRC a second one was
implemented on the AF above the water surface where it experienced high pressure upon
the initial impact. Placements of the top and bottom PRCs caused much reduction of both
the Fx and Fy peak values as shown in Figs. 3.20a and 3.20c. The values of the repellent and
suction portions of the Fy were reduced by more than 50%. More importantly, the repellent
part of the Fx was reduced by 80% and the suction part of the Fx was reduced by more than
50%. The vertical force (Fy) was an order of magnitude smaller than the horizontal force
(Fx) for the 0.8 m draft AF. Thus, reducing the Fx is the deciding factor in the survivability
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of TBW. Therefore, we demonstrated that implementing the PRCs, while fixing the motion
of the AF, is an effective solution for the survivability of TBW and similar structures.

3.6 Proposed Implementation Strategy for PRCs

Figure. 3.21 depicts a set of three drawings to demonstrate the operational and survivability
conditions of TBW. For the operational condition the AF has a smooth surface for maximum
performance of the system as shown in Fig. 3.21a. The side view of the AF with the PTO
location and its components are specified in Fig. 3.21b. As shown, the PTO is located above
the water line and inside a cover to prevent water damage to the electronics. In addition,
a proposed bottom mounting structure for TBW is illustrated. The mounting structure
provides stability to the AF and PTO while restricting the motion of the AF to heave only.

For the survivability condition, having in mind the integrity of the AF structure, several
locations are chosen for the PRCs as shown in Fig. 3.21c. After the installation of TBW
units at sea, wave sensor buoys are positioned in front of them to measure the amplitude
and frequency of the incident waves. The PRCs are closed during the operational condition.
They open when the sensors detect large extreme waves. The PRCs located near the tip
of the AF are filled with water in the operational mode. They are located below the calm
water line and do not have free-surfaces; therefore, they act as solid blocks. Thus, they do
not alter the performance of TBW. On the other hand, they reduce the need for additional
ballast. The top PRCs are empty in operational mode and when opened in extreme seas,
water rushes out and they stay empty as demonstrated in Fig. 3.19. Several of TBW units
(Fig. 3.21) can be positioned near shore to protect the harbor at the same time they provide
electricity to the local community.
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Figure 3.17: The AF (D = 0.8 m) encountering a plunging breaker, WCSPH computations
on the left and experiments on the right. The color-bars indicate the pressure on the AF
and x-component of fluid particle velocity.
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Figure 3.18: The fully submerged AF (D = 1.03 m) encountering a plunging breaker, WC-
SPH computations on the left and experiments on the right. The color-bars indicate the
pressure on the AF and x-component of fluid particle velocity.
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Figure 3.19: The Berkeley Wedge encountering a plunging breaker analyzed by WCSPH
method (D = 0.8 m). Two cases of the AF with one PRC (left column) and two PRCs
(right column) are presented side by side.
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Figure 3.20: Comparison of the heave wave exciting forces on the AF obtained from exper-
iments and computations for a) D = 0.8 m (operational condition draft) and b) D = 1.03
m (the fully submerged draft). c) The surge wave exciting forces obtained by computations
for the 0.8 m draft AF with zero, one, and two PRCs as well as the fully submerged draft.
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Figure 3.21: Schematic representations of a) operational (isometric view), b) operational
(side view), and c) survivability (isometric view) modes of TBW. For the cases a and b
(isometric and side views), the PRCs (imbedded on the AF) are closed and the AF has a
smooth surface. The power-take-off system shown is a linear permanent magnet generator
(LPMG) and was developed at the Berkeley Marine Mechanics Laboratory (BMML).
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3.7 Effects of Draft (D) on Wave Force

3.7.1 Experimental Setup

In addition to the operational (0.8 m) and fully submerged (1.03 m) drafts of the AF, other
drafts of the AF such as 0.6 m, 0.7 m, and 0.9 m were adopted. The extreme forces were
measured on the AF with these drafts to analyze the effects of these different drafts of the
AF on decreasing the extreme wave forces. Water ballast was used to obtain different drafts
of the AF as shown in Fig. 3.22.

Figure 3.22: Experimental setup for analyzing the heave wave exciting force under breaking
waves. Drafts shown are 0.6 m, 0.7 m, 0.8 m, 0.9 m, and 1.03 m.
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3.7.2 Experimental Measurement of Fy

The experimental setup and force measurement procedure are mentioned in details in Section.
3.5.1. The same procedure was carried out to to measure the force on the AF with different
drafts. For the AF with the drafts of 0.8 m, 0.7 m, 0.6 m as shown in Figs. 3.17, 3.24,
and 3.23, less over-toping flow behavior was observed when comparing to the AF with the
deeper drafts of 0.9 m and 1.03 m as demonstrated in Figs. 3.25 and 3.18. The experimental
measurements of the Fy on the AF with these five different drafts are presented in Fig. 3.26.
The vertical forces that were measured on the AF with 1.03 m and 0.9 m drafts, had three
peaks. The first peak (Fy > 0) was the result of the initial impact of the plunging breaker
with the AF. The second peak Fy < 0 was the result of slamming of the breaking waves on
the top of the AF. The third peak Fy < 0 was caused by the trough of the breaking waves.
As the trough reached the floater the water level near the floater declined which caused the
third peak in the Fy. The second peak in the Fy was not present in the cases of the AF with
0.8 m, 0.7 m, 0.6 m drafts. The frontal area of the AF facing the waves, when sufficiently
above the water level, this area absorbs most of the impact force and prevents water from
slamming on the top part of the AF. As we decreased the drafts of the AF, from 1.03 m to
0.6 m, we increased the frontal area of the AF that is above the water line. Thus, the initial
peak of the Fy increased. The small portion of the 0.9 m draft AF that was above the water
line absorbed some of the initial impact, thus reducing the slamming force on the top part
of the floater when comparing to the case of 1.03 m draft. The third peak value of the Fy,
that was the result of a drop in the water level, was the lowest for the case of 1.03 m draft
AF.

In the case of extreme waves, reducing the draft of the AF or completely lifting it out
of the water increases the frontal area of the floater and causes larger forces on it. Also,
in the presence of extreme waves, the areas of the AF with lower structural support (tip of
the AF) is exposed to high stress. Additionally, lifting the floater requires change in ballast
and detachment of the PTO. Thus, raising the floater is an impractical solution for the
survivability of TBW and similar floaters.
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Figure 3.23: The AF with 0.6 m draft encountering breaking waves.

53



CHAPTER 3. BREAKING WAVES MODELING AND SURVIVABILITY CONDITION

Figure 3.24: The AF with 0.7 m draft encountering breaking waves.
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Figure 3.25: The AF with 0.9 m draft encountering breaking waves.
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Chapter 4

Summary, Discussions, and Conclusions

In this thesis, we analyzed the operational and survivability conditions of the AWECs by
employing a novel AWEC/breakwater, TBW as an example. In the operational condition
we described how pseudo-spectral optimal control was used to optimize the performance of
TBW. The analysis revealed that the power capture efficiency increases by 50% for lower
frequencies (σ̄ < 0.74) compared to results obtained from a passive PTO with a constant
linear damper. For frequencies greater than σ̄ > 0.74, a capture efficiency of unity can be
achieved which is remarkable; however, as the wave frequency moves away from resonance
a greater reactive power component is required. Though the maximum capture efficiency is
lower when frequency is below resonance, the surge-restraining force and pitch-restraining
torque are also lower, in the range of 0.5 ≤ σ̄ ≤ 0.7, for the maximum constrained heave mo-
tion than with passive control. Thus, when operating slightly below the resonance frequency
with a PTO that allows for bidirectional energy flow, lower restraint forces and torques will
be observed, thereby leading to favorable power-to-load ratios. The magnitude and phase
of heave motion required to cancel the surge-restraining force and pitch-restraining torque
were calculated to show that greater PTO control forces and reactive power is required for
achieving such performance.

The pseudo-spectral optimal control problem was improved by including the squared
ℓ2-norm of the surge-restraining force, pitch-restraining torque, and PTO actuator force in
the objective function. The optimizer performance was found to be adjustable based on
the values chosen for the separate penalty weights (γ1 and βm are penalty weights applied
to the surge foundation force and the control force magnitude, respectively) placed on the
three load contributions; however, it was found that because of WEC dynamics, reducing
either the surge-restraint force or pitch-restraint torque would lead to a reduction in the
other. Thus, penalizing one of the contributions in the objective function was sufficient to
explore the power-to-load ratios. Two incident wave periods above and below the resonance
frequency, with a wave amplitude of 0.02 m and maximum allowable heave displacement of
0.1 m, were used to analyze the pseudo-spectral controller. When the penalty weights γ1 → 0
and βm → 0, maximum power capture was recovered with minimal reduction in system loads.
The case of γ1 → ∞ and βm → ∞ would significantly reduce restraint loads; however, at
the expense of greater PTO forces and reactive power requirements. If the penalty weights
are kept with the range of βm ≥ 0.8 and γ1 ≤ 0.4, an increase in capture efficiency of 20% to
80% is obtainable with the reactive power comprising no more than 1/10th of the TAP. In
the same region, where the surge-restraining force and pitch-restraining torque were reduced
between 20%–30% with little to no increase in PTO force. This work has highlighted some
of the issues that arise when WEC control focuses solely on maximizing power absorption as
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it is accompanied by proportionately greater structural and PTO loads that lead to a higher
level cost of energy. In the future, pursuit of moderate gains in TAP from control strate-
gies may be more favorable as the increase in power absorption may outpace the growth in
structural loads.

Furthermore, we have investigated the wave exciting forces on the AWECs when encoun-
tering the deep-water breaking waves and proposed solutions to improve their survivability.
For generating deep-water breaking waves at the two intended locations of 11 m and 21 from
the wavemaker, we obtained two time-histories of the wavemakers displacements by means of
the linear potential-flow theory. It was demonstrated that the generated deep-water break-
ing waves at the two locations in the CWT matched with the ones obtained in the PWT.
These confirming results allowed the measurements of the force to be done at 22 m in PWT
(location of PWT’s visual window) and at 12 m in CWT (to reduce computational costs).
The physical and numerical models of the AF were positioned further downstream from the
waves water-entry to analyze a jet-like-flow impact.

Two drafts were chosen for the force measurements; 0.8 m (operational mode) and 1.03
m (fully submerged for survival mode). The initial jet-flow impact, effected an impulsive
repellent vertical (Fy > 0) and horizontal (Fx > 0) forces on the 0.8 m draft AF. Later in
time, the trough of the plunging breaker declined the water level in front of the AF thus,
inducing a wide-band suction (Fx < 0) and downward (Fy < 0) forces. The Fy peak values
were an order of magnitude smaller than the Fx. Submerging the AF resulted in a reduction
in the Fy peak at the initial impact. On the other hand, there was no dramatic change in the
secondary peak of the Fy. Similar behaviors were seen in the Fx values that were obtained
by computations.

Additionally, the effects of the drafts of the AF on the Fy were analyzed experimentally.
It was shown that decreasing the draft of the AF, from 1.03 m to 0.6 m, increases the Fy

experienced by the floater. Lowering the draft of the AF exposes its tip (that has low struc-
tural stiffness) to extreme waves. Also, lifting the floater requires reducing the ballast and
PTO detachment. Thus, raising the AF out of water is not a practical or efficient method
for the survivability of TBW.

To mitigate the effects of the extreme waves on the AF while maintaining its operational
draft, a novel design concept of using Pressure-Relief Channel (PRC), allowing water to flow
through the AF, was presented and computationally tested. Placing the bottom PRC at the
0.8 m draft AF reduced the Fx by approximately 24% in the initial peak and by 50% in the
secondary peak. On the contrary, this had an insignificant effect on reducing the peak values
of the Fy. Placement of the top PRC in addition to the bottom one, reduced the repellent
and suction parts of the Fy by more than 50%. More importantly, the repellent peak of the
Fx was almost eliminated and the suction peak of the Fx was decreased by more than 50%.
Therefore, we proved that implementing the PRCs, while fixing the motion of the AF, is an
effective solution for the survivability of TBW.

Finally, we proposed a design for the implementation of the PRCs and demonstrated the
operational and survivability layouts of TBW as displayed in Fig. 3.21. For the operational
mode, the PRCs are closed; the top PRCs are empty and the bottom PRCs are filled with
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water. When large waves beyond the tolerance of TBW are sensed, the motion of the AF is
fixed and the PRCs open up while maintaining the operational mode draft. After extreme
waves have passed, the PRCs are closed, the AF is released, and its operational condition
resumes. Similarly, this research finding provides a very practical and effective method to
improve the survivability of the offshore and nearshore structures in extreme waves.

To further expand the present study, it is of importance to extend the pseudo-spectral
control in the irregular waves to analyze the effectiveness of the control methodology in re-
ducing the fatigue load on the system. In addition, more analysis is needed to study the
non-ideal PTO effect on the global power-to-load ratio of the system. More work can be
done to analyze the 3D effects of the PRCs on the overall forces that TBW experiences in
breaking waves. Also, it is of great interest to study the effect of oblique extreme waves on
TBW, with and without the PRCs.
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Appendix A

Wave Exciting Force and Far-field Radiated Waves

In order to obtain a relation between the wave exciting force and far-field radiated wave
amplitudes (shown in Fig. 2.1 as A±

j ) we examine the fluid domain shown in Fig. A.1 [42]. In

x

y

n

n

n

n
h

Σf

Σ-Σ+

Σh

Figure A.1: Fluid domain boundaries and coordinate system.

this figure B, D, n, Σf , Σh, Σ−, Σ+, denote the body boundary, fluid domain, normal vector,
free-surface boundary, bottom boundary, far-field left and right boundaries respectively. We
begin with considering an incident wave form given in Eqn. (2.14).

η (x, t) = ℜ
{

−1

g

∂φ0

∂t

∣

∣

∣

∣

z=h

}

= ℜ
{

Aei(σt−kx)
}

= A cos (σt− kx) (A.1)

The total velocity potential that describes the fluid can be decomposed to time harmonic
and spatial components as follows.

Φ(x, y, t) = ℜ[φ(x, y)eiσt] (A.2)

By the assumptions of small body motion and linearized water-wave theory, the velocity
potential can be decomposed to incident, diffraction, and j-th mode radiation potentials; Φ0,
Φ7, and Φj respectively. With αj(t) = aje

iσt denoting the displacement of the body, the
total potential can be written as the following.

Φ(x, y, t) = A[φ0(x, y) + φ7(x, y)]e
iσt +

3
∑

j=1

φj(x, y)[iσaje
iσt] (A.3)
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The incident wave potential can be obtained by using the linearized dynamics free-surface
boundary condition.

∂Φ0

∂t

∣

∣

∣

∣

y=0

= −gη (A.4)

Thus, by substituting the incident wave (Eqn. (2.14)) in Eqn. (A.4), incident wave potential
can be found

Φ0 = ℜ{igA
σ
f(y)ei(σt−kx)} (A.5)

where f(y) describes the variation of the potential along the depth and is given by the
following.

f(y) =
cosh k(y + h)

cosh kh
(A.6)

Now the incident wave velocity potential can be written as

Φ0 = ℜ{igA
σ

cosh k(y + h)

cosh kh
ei(σt−kx)} (A.7)

Then, with the no flux through the body condition

∂φ7

∂n

∣

∣

∣

∣

B

= −∂φ0

∂n

∣

∣

∣

∣

B

(A.8)

the diffraction potential beyond Σ− & Σ+ can be obtained [43],

φ7 = D±f(y)e∓ikx, x→+∞
x→−∞ (A.9)

Equation (A.9) clearly shows that φ7 behaves like two propagating waves, where D± are
unknown coefficients. In the radiation problem the φj represents the disturbances caused by
the forced oscillation of the body in surge, heave and pitch; φ1, φ2, φ3. Φj has to satisfy the
linearized dynamics free-surface boundary condition

∂Φj

∂t

∣

∣

∣

∣

y=0

= −gη (A.10)

where ∂Φj/∂t = −σ2ajφje
iσt. We obtain boundary conditions on the body surface B by

equating the normal derivative of Eqn. (A.3) to the normal component of the vector on the
body surface. These boundary conditions are

∂φj

∂n
= nj , j = 1, 2 (A.11)

and
∂φ3

∂n
= (r× n)3 (A.12)
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where n and r are the unit normal and position vectors. To ensure the uniqueness of the
boundary value problem we include the radiation condition that states waves generated from
the forced oscillation of the body should radiate away from the body. These result in a well
defined solution of the φj and can be found from the following.

φj = − ig

σ2
f(y)A±

j e
∓kx, x→+∞

x→−∞ (A.13)

For a fixed body the wave exciting force can be obtained from the diffraction problem [68].

Xj = iρσ

∫

B

(φ0 + φ7)njdS (A.14)

By applying the boundary condition Eqn. (A.11) to Eqn. (A.14) we have

Xj = iρσ

∫

B

(φ0 + φ7)
∂φj

∂n
dS (A.15)

For any scalar function pair, φ and ψ, Green’s Second Identity states
∫∫

∂ν

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)dS =

∫∫∫

ν

(φ∇2ψ − ψ∇2φ)dv = 0 (A.16)

Let φ → φj and ψ → φ7, be the radiation and diffraction potentials. The radiation and
diffraction potentials as discussed must satisfy the radiated outgoing waves condition and
vanish for the case of infinite depth fluid. Also, the linearized free surface boundary condition
must be satisfied by all the potentials then, Eqn. (A.17) follows from the Green’s theorem.

∫∫

B

(φj
∂φ7

∂n
− φ7

∂φj

∂n
)dS = 0 (A.17)

At this point by applying Eqns. (A.17) and (A.8) to Eqn. (A.15) we obtain the following
expression for the wave exciting force.

Xj = iρσ

∫∫

B

(φ0
∂φj

∂n
− φj

∂φ0

∂n
)dS (A.18)

It was shown that wave exciting force only depends on the radiation potential and is in-
dependent of diffraction potential. Since, φ0 and φj both satisfy the free surface boundary
condition it follows from Green’s theorem that

∫∫

B∪Σf∪Σh∪Σ−
∪Σ+

(φ0
∂φj

∂n
− φj

∂φ0

∂n
)dS = 0 (A.19)

Then, wave exciting force can be evaluated from the infinite surface integral.

Xj = iρσ

∫∫

Σf∪Σh∪Σ−
∪Σ+

(φ0
∂φj

∂n
− φj

∂φ0

∂n
)dS (A.20)
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Finally, for the two dimensional case shown in Fig. A.1, the surface integral Eqn. (A.20) can
be written as a line integral. Also, the ∂

∂n
= − ∂

∂x
for x >> 0 (Σ+) and

∂
∂n

= ∂
∂x

for x << 0
(Σ−).

Xj = iρσ

∫ 0

−h

(φ0
∂φj

∂x
− φj

∂φ0

∂x
)

∣

∣

∣

∣

x=+∞

x=−∞

dy (A.21)

At this point, with substituting Eqns. (A.7) and (A.13) in Eqn. (A.21) we obtain

Xj

iρσ
=

2ikg2A

σ3

{
∫ 0

−h

cosh2 k(y + h)

cosh2 kh
A+

j e
−2ikx

∣

∣

∣

∣

x=+∞

dy

+

∫ 0

−h

cosh2 k(y + h)

cosh2 kh
A−

j e
−ikxeikx

∣

∣

∣

∣

x=−∞

dy

}
(A.22)

which simplifies to
Xj

iρσ
=

2ikg2A

σ3

∫ 0

−h

cosh2 k(y + h)

cosh2 kh
A−

j dy (A.23)

With denoting q(σ, h) = 2k
∫ 0

−h
cosh2k(y+h)

cosh2kh
dy that equates to 1 as h → ∞, the expression of

the wave exciting force becomes more simplified.

Xj

A
= −ρg

2

σ2
A−

j (A.24)

This relation is known as the Haskind relation for this problem, which relates the wave
exciting force to the left far-field wave amplitude. Thus, with the forced oscillation of the
body in calm water we can obtain the wave exciting force on the body in the presence of
incident waves. For a different incident wave such as η(x, t) = A sin(kx− σt) one can follow
the same analysis which lead to the following expression for the wave exciting force.

Xj

A
= − iρg

2

σ2
A−

j (A.25)
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Wave Exciting Force and Radiation Damping

As shown in Eqn. (A.24) the wave exciting force (Xj) is related to the left far-field radiated
wave amplitude (A−

j , shown in Fig. 2.1) which indicates wave exciting force can also be
related to the radiation damping of the body. With looking at the second mode of motion
(heave), the radiation force has the following form

F2(t) = −µ22α̈2(t)− λ22α̇2(t) (B.1)

where µ22 is the heave added mass, λ22 is the radiation damping, and α2(t) = a2e
iσt is the

heave displacement of the body. Then, the time average work done on the fluid by the body
can be found by

Ẇ =
1

T

∫ T

0

−F2(t)α̇2(t) dt (B.2)

where because of the orthogonality of the µ22 and α̇2(t), only λ22 contributes to the work.

Ẇ = λ22 | a2 |2 σ2 1

T

∫ T

0

sin2 σt dt =
λ22 | a2 |2 σ2

2
(B.3)

Energy flux of the linear harmonic wave per unit wave front is Ė = 1/2ρgA2Vg where
Vg = g/2σ. Then, the energy flux associated with the propagating far-filed wave amplitudes
(A±

j ) can be found next.

Ė =
1

2
ρgA+

j Ā
+
j | a2 |2

g

2σ
+

1

2
ρgA−

j Ā
−
j | a2 |2

g

2σ
=

1

2
ρg | a2 |2

(

| A+
j |2 + | A−

j |2
)

(B.4)

At this point by equating Eqns. (B.3) and (B.4) the relation between the radiation damping
and far-filed wave amplitudes can be realized.

λ22 =
ρg2

2σ3

(

| A+
j |2 + | A−

j |2
)

(B.5)

By denoting γ =| A+
j /A

−
j | the geometry-hydrodynamic factor and substituting this factor

in Eqn. (B.5) and using the Haskind relation Eqn. (A.24), the relation between the wave
exciting force and radiation damping can be stablished.

| X2 |2=
2ρg2

σ

λ22
(1 + γ2)

(B.6)
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Appendix C

Peak-to-Average Power and Matrix Expressions

When the motion of the floater is limited to a maximum allowable displacement (ξ2|max),
the PTO force can be applied to ensure the displacement does not exceed this limit. The
damping of the PTO can be obtained from Eqn. (2.19) by setting ξ2 = ξ2|max and solving
for the damping (Bg) as

Bg|pc =
{

(

A|X2|
σ|ξ2|max

)2

−
[

C22 + Cg

σ
− σ (m+ µ22 + µg)

]2
}1/2

− λ22 (C.1)

Next, the instantaneous power passing through an ideal power-take-off unit can be calculated
from

P (t) =
1

2

[

Bg|iσξ2|2 + |iσξ2|2|Bg − iCg/σ| cos (2 (ωt+ ϕ) + ν)
]

(C.2)

where ϕ is the argument of iσξ2, ν is the argument of Bg − iCg/σ [47]. Then, from TAP
absorbed by the PTO (recall Eqn. (2.20)) and Eqn. (C.2) the P± is peak-to-average power
ratio can be obtained as follows

P± = 1±

√

1 +

[

C22 − σ2 (m+ µ22)

σBg

]2

(C.3)

The time-derivative matrix, Γ ∈ R
N×N , is block diagonal with the following block structure

Γj =

[

0 jσ0
−jσ0 0

]

for j = 1, 2, . . . , N/2 (C.4)

Using a change of variables, the surge-pitch radiation convolution integral can be represented
in matrix form as follows

fr12 (t) =

t
∫

−∞

Kr12 (t− τ) ζ̇2 (τ) dτ = Φ(t) (G12 − µ12 (∞) Γ) ψ̂ (C.5)

where G12 ∈ R
N×N is block diagonal with the following structure

Gj
12 =

[

λ12 (jσ0) σµ12 (jσ0)
−jσ0µ12 (jσ0) λ12 (jσ0)

]

for j = 1, 2, . . . , N/2 (C.6)
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Appendix D

Displacement of Wavemaker

The Fourier coefficients for obtaining the time histories of the wavemaker displacements to
obtain deep-water plunging breakers are included in the following tables. The Tables D.1
and D.2 data can be used for the piston-type wavemaker.

Table D.1: Fourier Series input for wavemaker displacement profile resulting in a plunging
breaker at 11 m.

n ωn xn θn n ωn xn θn n ωn xn θn
1 0.000 -6.114e-04 -1.571 2 0.313 2.381e-04 -0.257 3 0.625 7.149e-04 -2.315
4 0.938 8.266e-04 -3.223 5 1.250 7.611e-04 -4.175 6 1.563 8.418e-04 0.987
7 1.876 1.193e-03 -0.171 8 2.188 1.846e-03 -1.003 9 2.501 3.319e-03 -1.595
10 2.813 1.401e-02 -4.139 11 3.126 1.545e-02 -0.414 12 3.439 1.674e-02 -2.978
13 3.751 1.422e-02 0.334 14 4.064 1.495e-02 -2.999 15 4.376 1.379e-02 -0.337
16 4.689 1.345e-02 -4.214 17 5.002 1.390e-02 -2.215 18 5.314 1.221e-02 -0.596
19 5.627 5.859e-03 1.341 20 5.939 1.230e-03 0.953 21 6.252 4.294e-04 0.941
22 6.565 1.990e-04 -4.555 23 6.877 2.523e-04 -4.263 24 7.190 3.263e-04 -4.587
25 7.502 2.692e-04 1.382 26 7.815 1.678e-04 0.910 27 8.128 6.221e-05 0.567
28 8.440 7.889e-05 -3.757 29 8.753 1.368e-04 -4.288 30 9.065 1.251e-04 1.464
31 9.378 3.906e-05 -4.666 32 9.690 1.099e-04 1.046 33 10.003 3.401e-05 -1.937
34 10.316 9.712e-05 -4.264 35 10.628 1.893e-05 1.033 36 10.941 1.432e-04 -4.598
37 11.253 4.304e-05 -1.345 38 11.566 6.128e-05 1.512 39 11.879 5.026e-05 -3.090
40 12.191 3.610e-05 1.014 41 12.504 6.492e-05 -3.795 42 12.816 5.279e-05 0.446
43 13.129 4.528e-05 -3.556 44 13.442 3.627e-05 -1.072 45 13.754 7.736e-05 -4.596
46 14.067 4.639e-05 -2.989 47 14.379 5.289e-05 0.115 48 14.692 6.801e-05 -4.156
49 15.005 4.894e-05 -2.199 50 15.317 3.754e-05 0.222 51 15.630 4.738e-05 -4.290
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Table D.2: Fourier Series input for wavemaker displacement profile resulting in a plunging
breaker at 21 m.

n ωn xn θn n ωn xn θn n ωn xn θn
1 0.000 -1.426e-03 -1.571 2 0.260 4.875e-04 0.534 3 0.519 1.093e-03 0.295
4 0.779 5.426e-04 0.633 5 1.039 5.514e-04 0.469 6 1.299 9.290e-04 0.393
7 1.558 6.756e-04 0.807 8 1.818 1.046e-03 0.173 9 2.078 1.522e-03 0.278
10 2.338 1.765e-03 -0.461 11 2.597 4.908e-03 0.024 12 2.857 1.320e-02 -1.848
13 3.117 1.402e-02 -3.738 14 3.377 1.555e-02 0.636 15 3.636 1.390e-02 -1.829
16 3.896 1.153e-02 -4.579 17 4.156 1.107e-02 -1.531 18 4.415 1.038e-02 1.293
19 4.675 1.149e-02 -2.576 20 4.935 1.168e-02 -0.681 21 5.195 9.179e-03 0.880
22 5.454 6.535e-03 -3.910 23 5.714 2.371e-03 -1.657 24 5.974 1.234e-03 -3.597
25 6.234 1.340e-03 -3.954 26 6.493 1.883e-03 -0.849 27 6.753 1.500e-03 -2.778
28 7.013 1.178e-03 0.862 29 7.272 1.177e-03 -1.547 30 7.532 7.510e-04 -4.065
31 7.792 1.226e-03 -0.546 32 8.052 1.016e-03 -3.793 33 8.311 1.116e-03 -1.147
34 8.571 9.840e-04 -4.604 35 8.831 1.050e-03 -1.598 36 9.091 6.874e-04 1.038
37 9.350 7.645e-04 -3.487 38 9.610 1.027e-03 -1.132 39 9.870 1.320e-03 1.029
40 10.130 1.183e-03 -3.534 41 10.389 1.064e-03 -1.680 42 10.649 5.545e-04 0.494
43 10.909 2.152e-04 -3.936 44 11.168 2.094e-04 -2.166 45 11.428 2.518e-04 0.251
46 11.688 1.099e-04 -2.393 47 11.948 1.023e-04 1.154 48 12.207 2.186e-04 -2.579
49 12.467 2.717e-04 0.440 50 12.727 2.833e-04 -3.275 51 12.987 1.011e-04 -0.803
52 13.246 1.199e-04 -1.467 53 13.506 5.270e-05 -4.315 54 13.766 8.823e-05 -4.561
55 14.025 7.097e-05 -3.021 56 14.285 1.339e-04 0.313 57 14.545 4.467e-05 -4.341
58 14.805 2.181e-04 -2.729 59 15.064 2.174e-04 -0.484 60 15.324 9.449e-05 -4.403
61 15.584 7.303e-05 -4.054 62 15.844 7.245e-05 -0.443 63 16.103 1.367e-05 1.047
64 16.363 6.298e-05 -2.515 65 16.623 9.789e-05 1.189 66 16.883 3.880e-05 -2.696
67 17.142 2.837e-05 -4.590 68 17.402 6.316e-05 -1.029 69 17.662 1.058e-04 -4.628
70 17.921 9.009e-05 -2.233 71 18.181 3.635e-05 -0.757 72 18.441 2.791e-05 -4.607
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