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Abstract

Computational Grids lend themselves well to parame-

ter sweep applications, which consist of independent tasks,

each of which calculates results for a separate point in pa-

rameter space. However, it is possible for a parameter

space to become so large as to pose prohibitive system re-

quirements. In these cases, user-directed steering promises

to reduce overall computation time. In this paper, we ad-

dress an interesting challenge posed by these user-directed

searches: how should compute resources be allocated to ap-

plication tasks as the overall computation is being steered

by the user? We present a model for user-directed searches,

and then propose a number of resource allocation strategies

and evaluate them in simulation. We find that prioritizing

the assignments of tasks to compute resources throughout

the search can lead to substantial performance improve-

ments. We present experimental results obtained with soft-

ware developed as part of the Virtual Instrument project,

and discuss the impact of our findings on future Virtual In-

strument implementations.

1 Introduction

An increasingly common class of scientific applications

is that of Parameter Sweep Applications: applications that

consist of large sets of independent computational tasks.

Each task typically evaluates a multi-dimensional objec-

tive function at a point in a multi-dimensional parameter

space. Parameter Sweep Applications arise in many fields,

This work was supported by the National Science Foundation under

Award ACI-0086092.

e.g. Computational Fluid Dynamics [32], Bioinformat-

ics [3, 16], Particle Physics [23], Protein Folding [28], etc.

From a parallel computing perspective, these applications

present many advantages due to their simple structure. They

can tolerate high network latencies due to the lack of inter-

task communications. They can benefit from simple fault-

detection/restart mechanisms due to the lack of hard task

synchronization requirements. Therefore, they are ideally

suited to emerging Computational Grids where resources

are widely distributed and loosely coupled. Nevertheless

they pose interesting challenges in terms of scheduling and

deployment, some of which we have addressed in our pre-

vious work [11, 12]. That work resulted in the APST soft-

ware [4], which is currently being used in production for

several parameter sweep applications.

Based on our experience, we have seen that in many

cases parameter spaces can become too large to be entirely

computed even on large-scale platforms. This is due both

to extensive parameter value ranges, and to high dimen-

sionality of the parameter space itself. Furthermore, even

though exhaustively computing values over an entire pa-

rameter space would be ideal, users are often mostly inter-

ested in finding certain patterns in a parameter space (e.g.

a set of parameter values that leads to certain values of the

objective function). Therefore, an appealing approach is to

search the parameter space for these patterns, in order to

save both time and compute resources. We denote such ap-

plications as Parameter Search Applications. A large num-

ber of algorithms have been developed and used success-

fully for such searches [13, 37, 5, 15, 6, 7, 18, 21, 26]. These

algorithms, often called guided-search algorithms, can be

very effective when the user’s objectives are clearly speci-

fied (e.g. minimize a function).



In this work we focus on scenarios in which the user in-

teractively steers the search. In many real-world applica-

tions, the user’s objectives cannot be precisely specified, or

are not even known at the onset of the search (e.g. users

are looking for something “interesting”). This subjectiv-

ity makes it impossible to automate the search process,

and it is necessary to involve the user directly. For in-

stance, one can let the user periodically indicate which re-

gions of the parameter space seem more or less likely to

contain solutions or features of interest, so that the search

can concentrate on promising regions. We denote such

search scenarios as user-directed searches. In this paper

we make the following contribution. We propose and eval-

uate a scheduling approach that improves the performance

of user-directed parallel parameter space searches on dis-

tributed computing platforms. Our goal is not to develop

novel search/optimization algorithms, but rather to investi-

gate techniques to allocate appropriate computing resources

to tasks of a user-directed search.

Our work is in the context of the Virtual Instrument (VI)

project [9, 40], which focuses on a computational biology

application: MCell [25]. MCell is a simulation framework

that is currently used by neuroscientists to explore poten-

tially large parameter spaces for subjectively “interesting

features”. The exploration of very large parameter spaces

is one of a number of challenges that must be overcome

in order to deploy large-scale MCell simulations on Com-

putational Grid platforms [10]. This paper explores user-

directed steering and resource allocation methods that will

have a direct impact on the VI project, enabling new classes

of MCell simulations.

This paper is organized as follows. In Section 2

we present our experimental methodology, discuss user-

directed searches, and state our assumptions. Section 3 in-

troduces the Virtual Instrument project, describes its cur-

rent scheduling strategy, and discusses experimental results.

Section 4 presents a resource allocation strategy that imple-

ments task priorities, along with results of simulations built

to evaluate the strategy. We discuss related work in Sec-

tion 5 and future work in Section 6.

2 Background

2.1 Methodology

Evaluation of scheduling strategies for user-directed

searches faces an inherent difficulty: specific behaviors are

unknown until users have access to production software.

Steering in the VI will be based on iterative feedback from

the user. The user will begin running the application with a

small set of parameter space points. As the application runs

and results are returned, the user may add new points for

evaluation, and may also assign different levels of impor-

tance to each point. Once the VI software has been released

to a large community of MCell users and is being used in

a production environment, we will be able to evaluate dif-

ferent scheduling strategies in real steering scenarios that

make use of this user input. However, for the time being we

chose to simulate user behavior.

In order to simulate user behavior, we replace the search

for subjective “interesting” features with an iterative search

for the minimum of the well-known, “hard-to-optimize”,

Griewank function [36, 19]. The Griewank function we use

in this paper, g
�

, is defined as:
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where � is a real that parameterizes the overall shape of the

function. Figure 1 displays the 1-D griewank function for

a few values of � (we use different scales on the x-axis so

that the overall shape of the function is easily visible). In

the rest of the paper we use the 2-D Griewank function for

experiments and simulations.

There is a large number of existing algorithms for per-

forming guided searches [13, 37, 5, 15, 6, 7, 18, 21, 26]. Our

goal is to test scheduling and resource allocation strategies

that will enable user steering, allowing users to reach useful

results more quickly by allocating more compute resources

to promising areas of parameter space. We are not trying to

develop novel search algorithms, since the searches in ques-

tion will ultimately involve subjective user goals and crite-

ria. Based on discussions with MCell researchers, we have

developed a search procedure that is representative of what

a user might do when exploring an MCell parameter space.

We believe that this search procedure, described in the next

section, provides a useful basis for evaluating steering and

scheduling techniques.

2.2 Search Strategy

We present here the overall process for a user-directed

search. The search starts with the evaluation of the objective

function for a number of points uniformly scattered over

the parameter space of interest. These evaluations present

the user with an initial, very sparse, view of the parame-

ter space. Based on judgments of these results, the user

can assign levels of importance to regions on the parame-

ter space. The levels of importance indicate whether some

regions are more promising than others and should there-

fore be explored sooner. The search proceeds by evaluating

the objective functions at several points within regions with

high levels of importance. In effect, this increases the search

resolution within those regions. This process is repeated it-

eratively until the user has found a (small enough) region or

a parameter space point that meets his/her subjective crite-

ria. The search really consists of a hierarchy of sub-searches
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Figure 1. The 1D Griewank function for � = 0:01, � = 1:00, � = 10:00, and � = 100:00.

that progressively prune search regions and refine the search

resolution. This is depicted in Figure 2 for a 2-D parameter

space. We show three levels of search, where points with

high levels of importance are shown in black.

In the instantiation of the search procedure used in

this paper, the search starts with 4 points at coordinates

(100; 100), (100;�100), (�100;�100), and (�100; 100)

in the x-y plane. These 4 points form generation 0 of the

search. Each point is associated with an objective function

value (in our case-study, the Griewank value evaluated at

that point). At each generation, local random searches are

conducted in neighboring regions of points from the previ-

ous generations. These regions are spherical and of decreas-

ing radius at each generation. For the sake of simplicity, we

call the objective function value of the point that has trig-

gered the exploration of a region the parent value of new

tasks in this region. In each region, the local search con-

sists in evaluating 10 random points. At most the 2 points

with the best objective function evaluations are propagated

to the next generation. If such a local search does not re-

turn any point that has a lower objective function value than

the parent value, then the local search is repeated up to a

maximum number of times: maxTrials. If maxTrials is

reached and no improvement has been seen, then we use a

standard random restart mechanism by selecting a new, ran-

dom, parameter space point. A smaller maxTrials leads

to a more random and exploratory search, whereas a larger

maxTrials leads to a more thorough search.

The goal of this work is to investigate whether it is possi-

ble to reach useful results more quickly by allocating more

compute resources to areas of parameter space that the user

judges to be more promising. Since our user simulation is

built to minimize the Griewank function, we assign levels of

importance to points in the parameter space inversely cor-
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Figure 2. Overall Userdirected Search Strategy

related to the parent values. The scheduler will then assign

compute resources to regions of parameter space based on

their importance. The search algorithm presented here com-

bines global and local search strategies, similarly to other

well known search strategies [18, 21, 22]. Our search model

is configurable, allowing us to adjust the accuracy and res-

olution of the search process, using parameter maxTrials.

Moreover the “bumpiness” of the Griewank function is con-

figurable as well: the parameter � controls relative height

between the bottoms of basins of attraction. In the rest of

the paper, we will use the above algorithm with different

values of maxTrials to minimize Griewank functions with

different values of � in order to simulate a range of user

steering behaviors.

2.3 Assumptions

We make a number of important assumptions in this pa-

per. In the search strategy described in the previous section,

we use objective function values to determine the levels of

importance for the search. This assumes that there is some

spatial correlation of the objective function, meaning that

function values and parameter space point locations are in

some way correlated. Without such correlation, the only

viable strategy is a purely random search. For MCell, and

many other applications, the assumption of spatial correla-

tion is valid.

In addition, our scheduling strategy assumes that each

function evaluation, or task, requires the same amount of

computation and that compute resources are homogeneous.

This assumption allows us to test a resource allocation strat-

egy in which the order of task assignments is equivalent to

the order of task completion. It is straightforward to ex-

tend this strategy to account for tasks with various execu-

tion times and resources with various capabilities (see Sec-

tion 4). Note that in this work we currently ignore issues

pertaining to application data movement and location: we

focus solely on the steerability of the application. We have

addressed data location issues in our previous work [11, 12]

and developed a number of scheduling heuristics. We will

integrate this work with those heuristics in future work.

Another assumption implied here, is that the execution

time of all function evaluations is known a-priori. In other

words, given a point in the parameter space, we assume

that we know how much computation is needed for eval-

uating the objective function at that point. This assump-

tion holds for MCell, and is therefore justified for our work

on the VI project. However, for other applications, there

will undoubtedly be some degree of uncertainty. In ad-

dition, prediction errors for task execution times are often

due to dynamic changes in resource load. This is especially

common in Grid environments where resources are distribu-

tively owned and shared among users. These considerations

imply that resource allocation decisions will be based on
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possibly inaccurate predictions for task execution times. A

number of authors, including ourselves, have investigated

the impact of such prediction inaccuracies on scheduling,

and at the moment we leave this issue for future work. Our

assumptions in this work are substantial, but necessary to

gain initial understanding of the principles of resource allo-

cation for steerable parameter search applications.

3 The Virtual Instrument Project

3.1 Overview

The Virtual Instrument (VI) project is a collaborative ef-

fort between the University of California, San Diego, the

Salk Institute, the Pittsburgh Supercomputing Center, the

University of Tennessee, Knoxville, and the University of

California, Santa Barbara. The overall goal of the project is

to provide a Grid execution environment for the MCell ap-

plication. MCell [25, 24, 35, 34] is a computational biology

simulation framework that is currently used by neuroscien-

tists to study diffusion and chemical reactions of molecules

in living organisms. An MCell run typically consists of

multiple repetitions of a simulation at each of a large set

of parameter value combinations. Therefore, MCell fits the

Parameter Sweep model. Even though MCell provides the

basis for running simulations, its capabilities are currently

limited in terms of scale, ease-of-use, and interactivity. The

objective of the VI project is to address those three limita-

tions in order to enable MCell simulations at an unprece-

dented scale. In addition, we wish to enable a new class of

MCell simulations: parameter space searches. Therefore,

the VI software should allow for easy deployment of large-

scale MCell simulations on Grid resources, should enable

interactive user-directed steering, and should use appropri-

ate scheduling strategies to achieve high performance. Fi-

nally, the VI must provide a framework in which MCell

users can build their simulations and mine the simulation

results via a simple graphical user interface.

In our earlier work, we developed a generic environment

for scheduling and deploying Parameter Sweep Applica-

tions: APST [12]. APST is used in production for MCell

and for a number of other applications for medium- to large-

scale parameter sweep runs. Because it is generic, APST

fails to address most of the MCell-specific limitations listed

above. When designing the VI architecture we were able to

learn from and improve on APST’s principles, while taking

into account specific ways in which neuroscientists develop,

run, and analyze MCell simulations.

3.2 VI Software Architecture

The Virtual Instrument software is constructed of three

principle components: a software daemon that coordinates

Grid resource usage; a user interface for users to build, run,

monitor, stop, and analyze the results of MCell simulations;

and a database for bookkeeping. These components can run

on separate machines, while application tasks and data live

on widely distributed Grid resources.

Figure 3 depicts the interactions of the VI Daemon, the

VI Interface, and the VI Database. The VI Daemon inter-

acts with Grid resources and services to start and control re-

mote jobs, move data between distributed storage locations,

and monitor resources. Grid resources are depicted on the

right-hand side of the figure with running MCell processes.

The Daemon embeds a scheduler that allocates MCell tasks

to resources; this paper focuses on a resource allocation

strategy that is implemented as part of that scheduler. The

Daemon uses the VI Database to store information such

as the available resources, the user-defined specifications

of running MCell projects, and the status of these running

projects, including their pending tasks. The Database also

stores MCell output that can be visualized and analyzed by

the user and used to steer further simulations. All raw and

intermediate MCell output is left in place in Grid storage, as

depicted on the right-hand side of the figure. The VI Inter-

face allows the user to initiate, run, and steer MCell simula-

tions. In addition, the VI Interface can invoke OpenDX [30]

so that the user can visualize simulation results. All details

on the VI software design are available in [9].

At the moment, the VI software consists of approxi-

mately 20,000 lines of C++ and is heavily multi-threaded.

We opted for MySQL [27] to implement the VI Database

as it is very fast, is well accepted by the Linux community

and provides a standard API. The VI Daemon uses Ssh and

Globus’s GRAM [14] for starting/monitoring remote jobs,

Scp and GridFTP [2] for moving application data onto the

Grid. We have developed similar interfaces to a number of

Grid services as part of the APST project. We will integrate

them in future releases of the VI project. The VI Interface

is about to be completed, and at the moment we provide a

text-only user interface for evaluation purposes. A beta ver-

sion of the VI software was released to a limited number of

MCell users/developers in February 2002 for evaluation and

comments. More information can be found on the project’s

Webpage at [40].

3.3 Initial VI Scheduling Approach

We focus on the parameter space search scenario as de-

fined in Section 2.2, where users assign levels of impor-

tance to regions of the parameter space. As the VI sched-

uler allocates compute resources to each region, it makes

intuitive sense for it to try to complete more promising re-

gions sooner in the hope of finishing the search early. The

simplest way in which this can be achieved is to evaluate

parameter space points in the order of importance of their
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Figure 3. The Virtual Instrument: the three main components are the VI Daemon, the VI Database,

and the VI Interface.

region. When a compute resource becomes available, the

scheduler assigns it the most important available parame-

ter space point for computation. As the search proceeds,

the user or user agent identifies new regions, which are in-

serted into the scheduler’s prioritized list of parameter space

points. This strategy is straightforward to implement; no

sophisticated job control is required, since computations all

run to completion after their launch.

Note that the simple algorithm we just described is only

valid when compute resources are homogeneous, and when

the evaluations of parameter space points all require the

same amount of computation. These are two of the assump-

tions that we use in this paper, as stated in Section 2.3. The

rationale of the algorithm is that tasks complete in order of

their respective importance levels; when resources and tasks

are heterogeneous, it is not always possible to respect such

strict ordering. In that case, it is straightforward to allocate

resources in a way that best approximates that ordering. We

will discuss this issue in an upcoming paper.

3.4 Experimental Evaluation

To evaluate the scheduling strategy described above we

implemented the search algorithm presented in Section 2.2

to simulate a user-directed search. The implementation be-

haves as an agent which interacts with VI software on behalf

of a user. We used the Meteor cluster deployed at the San

Diego Supercomputer Center as part of the NPACI Rocks

project [29]. That cluster consists of 90 dual 733-900MHz

Pentium PCs interconnected via Myrinet. Using several
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subsets of that cluster, we performed the following exper-

iments. We simulated the user-directed search for values of

� ranging from 10

�2 and 10

6, and for maxTrials = 32.

Our choice for the value of maxTrials stems from the fact

that we wanted to simulate a thorough search strategy. The

simulation results that will be presented in Section 4.2 will

justify that choice further. We then performed back-to-back

runs of the VI software with two different resource alloca-

tion strategies: (i) random resource allocation, where tasks

are not sorted in any particular order; (ii) resource allocation

as presented in the previous section, where tasks are sorted.

We compute the time elapsed until the search finds a value

which is within a small threshold of the global minimum

(recall that the global minimum of the Griewank function

is 0). For these experiments we used a threshold value of

0:01.

Overall, our results were inconclusive. It seems that the

naive task ordering performed by the scheduling strategy

described in Section 3.3 does not lead to clear improve-

ments for many values of �. However, we observed a few

interesting features in our results. Those features suggest

that taking into account levels of importance for resource

allocation may be promising. For instance, for large values

of �, we observed marginal to large improvements due to

task ordering in some cases. However, this is not sufficient

to make a good case for our initial resource allocation strat-

egy as we seek to provide improvements across the board.

Therefore, we investigated a more sophisticated resource al-

location strategy that needs to be implemented as part of the

VI scheduler. That strategy is the object of the next section.

4 Priority-based scheduling

4.1 Task Priorities

In the scheduling approach described in section 3.3, the

scheduler sorts new tasks that need to be dispatched accord-

ing to their parent values. Tasks with higher levels of im-

portance are executed earlier and therefore more promising

search regions produce results sooner. However, in addition

to the order in which tasks are dispatched, we claim that an

important factor impacting the performance of the search is

the fraction of resources allocated to search regions. Thus,

we conjecture that a resource allocation strategy that assigns

fractions of compute resources to regions based on their lev-

els of importance may reduce overall search time. One in-

tuitive rationale is that letting several tasks share compute

resources concurrently may lead to a broader exploration of

the search space, in a shorter period time.

To test this conjecture, we developed a model where dif-

ferent fractions of compute resources can be allocated to

tasks. We then used this model to evaluate the effectiveness

of several resource allocation strategies that map regional

levels of importance to resource fractions. We have im-

plemented a simulator that uses the Simgrid toolkit [8, 33]

to simulate the execution of the search procedure of Sec-

tion 2.2 with resources that can be continuously divided

among tasks. We describe this approach in the next section.

4.1.1 Simulation Model

In Section 3.3, our computing platform consisted of a num-

ber of individual compute resources, and each resource was

running only one application task at a time. In this section,

we present results for an ideal platform model that makes

it possible to associate fractions of resources to tasks. The

ideal platform consists of a single, “continuously partition-

able” processor. In other words, it is possible to assign any

fraction of the computing platform to a given task. Larger

resource fractions correspond to more computing power en-

abling a task to complete earlier. As we will see in our re-

sults, this model allows us to gain basic understanding of the

potential of priority-based scheduling for parallel searches.

We make the initial assumption that it is possible to

achieve fine-grain, accurate job control over a distributed

computing platform such as the Grid. Larger fractions of the

compute platform allocated to a task could be interpreted in

practice as:

� more time slices assigned to a task sharing a processor

with other tasks and/or,

� longer time slices and/or,

� task allocated to faster processor and/or,

� task allocated to less loaded processor.

However, our model is ideal in that we ignore the over-

head of such fine-grain job control, which we discuss in

Section 4.3. Therefore, our results provide us with a “best-

case” scenario.

4.1.2 Resource Allocation Strategies

The resource allocation strategies we investigate are

priority-based: tasks within search regions with higher

level of importance are assigned higher priorities. The

higher the task priority, the larger the fraction of resources

that will be allocated to the task. Let us illustrate how

priority-based scheduling could be easily employed for the

user-directed search described in Section 2.2.

The user identifies regions and assigns them levels of im-

portance. For instance, if the user has identified 3 regions

that should be explored and assigned levels of importance

2, 2, and 1, then the first two regions should each get 40%

of the resources, and the last region should get 20%. Our

approach is to assign a priority to each point of the param-

eter space, corresponding to the level of importance of the
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region to which the point belongs. If each of the current n

points being computed has a priority Priority

i

, then point

i should get a fraction of the entire compute resource equal

to Priority

i

=

P

n

j=1

Priority

j

. This allows many tasks to

use the compute resource concurrently, but at different rates.

In our simulated user scenario we seek to minimize the

Griewank function (see Section 2.1). Therefore high task

priorities are associated with low objective function values.

The priority of a task in computed according to its parent

value (recall from Section 2.2 that the search strategy pro-

ceeds in generations – new tasks are offsprings of parame-

ter space evaluations in a previous search generation). We

investigate the relationship between parent values and task

priorities by using a conventional no-priority policy:

Policy 0 – No-priority policy:

Priority

task

= 1,

as a basis for comparison with the following three priority-

based policies:

Policy 1 – Inverse linear policy:

Priority

task

= V alue

�1

parent

,

Policy 2 – Inverse sub-linear policy:

Priority

task

= V alue

�1=2

parent

,

Policy 3 – Inverse super-linear policy:

Priority

task

= V alue

�2

parent

,

where Priority

task

is the priority assigned to a task, and

V alue

parent

is the parent value (in our case it is a Griewank

value).

4.2 Simulation Results

In the simulation results presented here, we assumed that

each function evaluation would require 1 second of compu-

tation if it could run on the entire computing platform by

itself. Therefore, if a task, due to its priority, is assigned 1%

of the compute resources, it takes 100 seconds to complete.

Figure 4 show results comparing the use of the four pri-

ority policies for several values of � and of maxTrials.

The search is run until a Griewank value below some thresh-

old (in this case 0.01) is found. The average time to reach

this threshold is plotted on the y-axis with a logarithmic

scale. We show plots for maxTrials values of 1, 4, 16, 32

and 64. On each plot, � is on the x-axis and we show bars

for the search time for the four priority policies. Since our

search algorithm is randomized, each data point is obtained

as an average over 100 repetitions.

We present speed-up results in Tables 1, 2, and 3. Those

results show the ratios between the overall search time with

no priorities and the overall search time with the linear, sub-

linear, and super-linear priority policies. Therefore values

over 1.0 mean that priority-based resource allocation leads

to a performance improvement. We show those values in

boldface in the tables.

The first observation we can make is that the use of pri-

orities leads to drastic improvements for large � for all three

priority-based policies. Furthermore, the sub-linear policy

(Priority

task

= V alue

�1=2

parent

) appears to be very promis-

ing – if maxTrials > 4, it performs better than the no-

priority policy, even when � is small (see Table 2).

For maxTrials � 4 the local search over a region is less

accurate, since local basins are sampled with lower density

and it is harder to detect local minima. Therefore, biasing

search regions with priorities might not be as effective as

it is when maxTrials is larger. Larger maxTrials pro-

vides more thorough local searches and hence more accu-

rate information about local minima. In this case the biasing

property of priority strategies improves search performance

more effectively.

One curious factor is that for small � the linear and

super-linear priority policies performed much worse than

the no-priority policy (see Tables 1 and 3). We suspect that

these two policies over-bias the search regions. When � is

small the values at the bottom of the local basins of attrac-

tion become similar (see Figure 1), making it more difficult

to use objective function evaluations to interpret how close

the search process is to the global minimum. Therefore we

think that in this context many low objective function results

erroneously indicated a “false” proximity to the global min-

imum. The linear and super-linear policies increase the pri-

ority in the neighborhood of such misleading results more

drastically than the sub-linear policy, thereby wasting a lot

of computational power which could be used for exploring

other (more useful) search regions.

4.3 Discussion

We observed in our experiments that the initial resource

allocation strategy presented in Section 3.3 did not lead to

consistent improvements across the board, a result that we

also verified in simulation (results omitted in this paper).

We then conjectured that a resource allocation approach that

allocates fractions of the compute resources to tasks concur-

rently would be effective. We confirmed this conjecture in

simulation for a sub-linear priority policy when the search

is marginally thorough (i.e. for maxTrials > 4).

However, our simulation results were obtained with an

ideal platform model. Indeed, we assumed fine-grain job

control with no overhead, which allows the allocation of

fractions of resources precisely corresponding to priorities

dictated by the resource allocation strategy. In practice,

such a strategy can be implemented by assigning time slices

of compute resources to tasks. This could be done at the

level of the operating system (e.g. with process priorities).
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maxTrials �

10

�2

10

�1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

1 0.94 0.96 0.93 0.79 1.03 0.51 0.65 1.05 1.68

4 0.69 0.25 0.60 0.13 7.90 9.66 6.74 10.79 22.83

16 0.40 0.56 0.18 0.13 7.38 7.85 6.84 11.46 22.26

32 1.18 0.55 0.26 0.16 7.31 6.71 5.90 10.05 19.01

64 1.36 0.77 0.25 0.17 7.35 6.12 5.64 9.69 18.21

Table 1. Speedup due to prioritybased scheduling where Priority

task

= Feedbak

�1

parent

.

maxTrials �

10

�2

10

�1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

1 0.84 1.03 0.93 0.76 0.91 1.06 0.92 3.43 4.65

4 0.75 0.47 0.36 0.61 4.12 5.77 8.44 13.96 27.34

16 1.53 2.15 1.22 1.71 4.08 5.12 7.83 13.55 24.70

32 1.15 0.97 1.14 1.69 4.05 5.00 7.80 13.73 25.07

64 1.37 1.05 1.25 1.69 4.06 5.00 7.76 13.71 25.03

Table 2. Speedup due to prioritybased scheduling where Priority

task

= Feedbak

�1=2

parent

.

maxTrials �

10

�2

10

�1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

1 0.99 0.95 0.94 0.87 0.98 0.36 0.46 0.72 1.08

4 0.31 0.14 0.10 0.05 3.27 3.95 2.83 5.69 12.76

16 0.20 0.22 0.09 0.06 1.60 3.04 3.37 7.07 14.93

32 0.81 0.21 0.08 0.04 3.49 3.65 3.26 6.88 14.33

64 0.44 0.16 0.08 0.05 3.61 3.66 3.13 6.61 14.03

Table 3. Speedup due to prioritybased scheduling where Priority

task

= Feedbak

�2

parent

.
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Figure 4. Average simulated search times vs. � for the four priority policies and for maxTrials =

1; 4; 16; 32; 64. Both axes are logarithmic scales.
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This is possible if tasks do not consume large amounts of

RAM and the behavior of the operating system scheduler

is well understood, which is debatable with current sys-

tems. Alternatively, the VI could explicitly context-switch

tasks on resources by checkpointing/resuming. This can be

done at various granularity levels. The lower the granular-

ity, the closer the schedule will be to the one evaluated in

our simulation results, at the cost of higher overhead. We

will therefore develop a simple cost model for the context-

switching overheads and perform simulations in order to an-

swer two following questions. What is the best granularity

for explicit context-switching? How does the overall perfor-

mance of the search compare with a simple non-prioritized

resource allocation? In other terms, how much of the im-

provement due to using priorities, as shown in our simula-

tion, will withstand the context-switching overhead?

Note that in order to implement priority-based resource

allocation in a practical setting, it is required that applica-

tion tasks be checkpointed on-demand. MCell provides on-

demand checkpointing already, which will make it possible

for the VI to context-switch MCell tasks during a search.

We will present experimental results obtained with MCell

in a future paper.

5 Related Work

Our work is related to parallel search algorithms [5, 13,

37, 6, 7, 18, 22, 26]. However, our work focuses on the

improvement of the performance of search algorithms from

the perspective of computing resource allocation. Land [21]

and Hart [18] investigate search algorithms that combine

local and global search methodologies. Their search algo-

rithm biases the search in favor of more promising regions

of the parameter space. Our approach is complementary to

their work since we use biasing strategies to determine re-

source allocations.

This work is also related to a number of computational

steering efforts [31, 20, 38, 39, 17]. The VI project itself is

related to projects that provide software for deploying large

scale application onto the Computational Grid. In particu-

lar, it is related to projects that target parameter sweep appli-

cations [12, 1, 41]. The VI software builds on these efforts

in order to enable parameter space searches.

6 Conclusion and Future Work

In this paper we have investigated scheduling approaches

that can improve the performance of user-directed par-

allel parameter space searches on distributed comput-

ing platforms. Our goal was not to develop novel

search/optimization algorithms, but rather to develop tech-

niques to allocate appropriate compute resources to tasks

of a user-directed search. We instantiated a search strat-

egy that is representative of user-directed searches and that

we used to simulate a range of user behaviors. Our fun-

damental idea for resource allocation is that “promising”

regions of the parameter space should be explored more in-

tensively. In our model, promising regions are defined as

ones that have high “levels of importance”. This work was

done in the context of the Virtual Instrument project which

we introduced briefly in Section 3. As part of that project

we implemented and evaluated a simple resource allocation

strategy that sorts application tasks to be completed by their

level of importance and assigns them to available compute

resources in order. We then conjectured that a resource

allocation approach that defines priorities to allocate frac-

tions of compute resources to tasks concurrently should be

more effective. We verified that conjecture in simulation

and thereby made a good case for priority-based resource

allocation.

To further validate our approach we will perform exper-

iments in a broader context: we will evaluate priority-based

resource allocation for several other representative search

strategies over a variety of objective functions. We will in-

vestigate the questions raised in Section 4.3 and develop a

model for the overhead involved for context-switching of

application tasks. We will then re-evaluate our approach

both in simulation and with the VI software using MCell as

a case-study. We will also evaluate the use of priority-based

resource allocation for a number of platform models that are

more realistic than the ones used in this work. Our ultimate

goal is to produce a version of the VI software that improves

the performance of parameter space searches while using a

Computational Grid platform.
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