
Lawrence Berkeley National Laboratory
Recent Work

Title
AN OVERVIEW OF BDMS: THE BERKELEY DATABASE MANAGEMENT SYSTEM

Permalink
https://escholarship.org/uc/item/3wv0971w

Author
Richards, David R.

Publication Date
1977-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wv0971w
https://escholarship.org
http://www.cdlib.org/


., 

Published in Generalized Data Management 
Systems and Scientific Information, OECD 
Nuclear Energy Agency, Paris, France, 
1978 

AN OVERVIEW OF BIM3: Tiffi 
BERKELEY DATABASE MANAGEMENT SYSTEM 

David R. Richards 

LBL-7201 

c.J-

ARY AND 

October 1977 
usR sc:cnoN 

oocuMENTS ~. 

Prepared for the U. S. Department of Energy 
under Contract W-7405-ENG-48 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Diu is ion, Ext. 6782 

t\ 
• r 

t-< 
t:Jj 
t-< 
I 

---.] 

N 
0 
I-' 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain cotTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. 

.. 

... 

LBL-7201 

AN OVERVIEW OF BDMS: THE BERKELEY DATABASE MANAGE~1E~T SYSTEH* 

David R. Richards 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 

ABSTRACT 

The design and implementation ·of BDMS is outlined with emphasis on 
those features of particular importance to the management of complex 
scientific data having significant numerical content. These include bi­
nary internal representation of integer and single or double precision 
real data element types, ability to handle vector values of numeric data 
elements as well as arbitrary length character and bit strings, and the 
provision of an extensive set of "hooks" for the attachment of user­
supplied processing routines. 

INTRODUCTION 
1 

BDMS, the Berkeley Database Management System , is a hierarchical 
database management system whose design was heavily inf~uenced by the 
requirements of scientific data management. It has its origin in the 
joint development of a Particle Physics Data System (PPDS) 2 ' 3 by the 
Berkeley Particle Data Group (PDG) and the Caltech Data Compilation Group. 

The original conception of the PPDS software called for a separate 
system to manage each of the databases: a document system, a reaction 
data system, a particle properties system, a vocabulary control system, 
etc. In fact, by mid-1973 a prototype of each of these systems had been 
developed. It rapidly became clear, however, that the task of modifying, 
extending, and even maintaining these specialized systems was beyond 
available resources. There was ample reason to expect that the require­
ments for these systems would never stop changing; the nature of particle 
physics data had changed significantly over the past decade as the field 
evolved and was expected to continue changing. 

*This work was done with support from che U. S. Department of Energy . 



2 

Searching for a different approach, we realized that it should be 
possible to use a single database management system that would be general 
enough to manage all the databases and serve as the basis for the special­
ized software that would still be necessary. The broad spectrum of size, 
growth rate, volatility, and complexity encompassed by these databases 
and the complexity of their intended uses demanded capabilities not pro­
vided by any database management sy~tem then in existence that could be 
run on our hardware (CDC 6400, 6600, 7600). Thus, we were led to develop 
our own system. 

We are now painfully aware of the very large commitment of time and 
resources necessary for a project of this magnitude. In fact, our naivete 
at that time was probably a major factor contributing to the eventual 
attainment of our goals, since if we had realized how difficult it would 
be, we might never have embarked on the project, instead simply reducing 
our expectations. 

There is, on the other hand, a clear·advantage in local control of 
system development. When some new capability is needed, it is possible 
to make a decision as to whether it is a general facility that is best 
built into the database system once and for all, or whether it deserves 
only to be put into the application software. With a system supplied 
by a commercial vendor, some very complicated and unattractive kludges 
may be necessary to add a capability, since the only option is building 
it outside the existing system. 

In the rest of this paper, the structure of a BDMS database will 
be defined and the facilities of the system (version 2.1) outlined. 
Some comments will be made concerning those aspects of the implementation 
that might affect its suitability for a proposed application. Finally, 
our plans for future development will be outlined. 

STRUCTURE OF A BDMS DATABASE 

A BDMS database is structured into records, the units in which data 
pass between the system and disk storage. Normally, a record will have 
some significance to the user, e.g. a record in a bibliographic database 
would be a description of a single document, but this is not always 
necessary or desirable. 

The individual data items within a record are called data elements; 
they are the smallest units of data with any meaning to the system, 
although an individual data element might have some internal structure 
known to an application program. A dataelement has a unique name and 
is normally referenced by name (or a synonym). There is essentially no 
limit on the number of data elements that may be defined for a database. 

.. 

, 



.... ~. 

•.. 

3 

A hierarchical structure may be imposed on the information within 
a record when a database is defined~ This means that some data elements 
are declared to be subordinate to other, parent, data elements. Those 
data elements for which no parent is declared are called record-level 
data elements; it is often useful to consider the record itself to be 
their parent. There is essentially no limit on the number of levels 
which may be defined in the record structure. 

Within a given record, each record-level data element may occur 
once, several times, or not at all. Likewise, each occurrence of a data 
element at any level in the hierarchy may have linked to it one, several, 
or no occurrences of each of its subordinate data elements. There is 
essentially no limit on the number of times any data element may occur 
in a single record. 

Data elements are classified into six types according to the values 
they can assume. INTEGER, REAL, DOUBLE, CHAR, BIT, and NODE. Integer 
or real (floating point) data elements may be scalars (single numbers) 
or arbitrary length vectors (i.e. an ordered set of numbers, which are 
the components of the vector). Real data elements may. be single or 
double precision. Character or bit strings may be of any.length with 
no limit beyond that imposed by run-time memory restrictions.' Any of 
the foregoing data element types may occur with a null value. Pure 
node data elements carry no value; they may be used to link together 
subordinate data elements in the record hierarchy or as flags. 

Any data element, regardless of type, may serve as a node in the 
hierarchical record structure. In general, if one of a group of related 
data elements may occur only once in each occurrence of the group, it 
should be made the parent of the rest of the data elements. However, 
if all of the data elements in such a group may occur multiply, they 
all must be linked to a pure node parent, since no single occurrence 
of any one of them can serve as the parent of,the rest. 

Any data element may be declared to be a record key. The system 
will then maintain an index for that data element to allow efficient 
retrieval. In an index, key values have a fixed length that is declared 
in the database definition; data element values are truncated or padded 
as necessary when they are put into an index. 

It is possible to declare a data element to be virtual, which 
means that it will be recognized in input data and appear in the record 
buffer, accessible to user-supplied processing routines, but will be 
discarded when the record is stored in the database. This is useful 
if the input contains data elements that one does not wish to store 
in the database at all. One might also wish to. store some data element 
values only in the indices, where they point to the record, without 
permanently allocating space for them in the record itself. This is 
often the case if a key value is constructed from the values of one or 
more data elements by a user-supplied processing routine (discussed 
below). In this case, a virtual data element is defined and is further 
specified to be a key. It is then used to hold the key values tempo­
rarily; when the record is stored, these values will be indexed before 
the virtual data element is discarded. 



4 

The system assigns a record ID to each record as it is created. 
This guarantees that each record has a unique identifier by which it 
can be selectively retrieved even if none of its data elements is 
defined to be a key so that no indices are maintained. The ID is 
displayed whenever a record is listed by the system. 

BDMS FACILITIES 

BDMS comprises a database definition compiler, a database execu­
tive, and several utility programs. 

The database definition compiler is used to create a new database. 
It accepts a description of the logical record structure expressed in 
a database definition language (DDL) and generates tables describing 
the database. These tables then drive the rest of the system when that 
database is in use. 

The database executive is a self-contained system providing a 
user interface to database maintenance and retrieval facilities through 
a high-level language. It has two major subsystems: an editor and a 
query language processor~ 

The editor permits a user to enter data into a new record or modify 
an existing one by appending, inserting, replacing, or deleting data 
element occurrences by means of free-format editing commands. A string 
substitution. facility is provided for modifying the values of character 
string data elements. Any change to the database made via the executive 
is immediate effective and reflected in the indices. 

The BDMS query language permits a user to search a database for 
those records satisfying an arbitrarily complex condition on key (indexed) 
data element values. The condition is constructred as a Boolean combin­
ation of key value specifications, including inequalities and ranges. 
Furthermore, it is possible to search for records having an occurrence 
of a specified data element regardless of value, or for those having an 
occurrence of the data element with a null value. Truncated value spec­
ification for character string keys may be used to search for those 
records having an occurrence of the data element beginning in a particular 
way. A particular record ID or range of record IDs may be included in a 
query explicity. The result of a query is the set of records that 
satisfy it. Any of them may be listed at the user's terminal, printed, 
dumped, modified, or deleted. Existing sets may be combined with other 
sets and still further conditions through the query language. 

The utility programs providefor efficient initial database loading, 
full database dump, data file gq.rbage collection, and rebuilding of 
indices for more efficient query processing and disk space utilization. 

. .. 



. ' 

.. 

5 

Except for the utilities, which are batch programs, the system may 
be used in either batch or interactive mode by simply linking it to the 
proper set of low-level. I/O routines. The user language is identical in 
either mode. BDMS also may be invoked procedurally from a user-written 
FORTRAN program by means of a small and carefully chosen set of sub­
routine calls. 

The database executive incorporates exits to user-supplied proces­
sing routines to allow input data validation, and data transformation 
on input, output, during the creation of index entries, and the proces­
sing of queries. In addition,the user may supply routines that are 
called just before a record is stored or just after it is fetched from 
the disk. The store processor routine may perform more complex data 
validation involving correlation of several data element values and may 
generate additional data element values, e.g., keyed virtual data 
elements as discussed above. The fetch processor routine is primarily 
useful to rematerialize virtual data elements when it is desirable to 
make them visible to a user or application program. 

These "subroutine hooks" provide a powe~ful facility for tailoring 
the database executive fot specific databases and applications without 
requiring the user to write a completely new "front end." They are 
particularly important to the management of scientific databases since 
even input data validation is likely to be too complex to be handled 
by the simple facilities (e.g. within a specified range or explicit 
list of values) typically provided by a commercially-oriented database 
management system. 

IMPLEMENTATION 

A BDMS database is divided into three system disk files: the data 
file, which contains the database definition and data records, the 
directory file, which contains the physical storage addresses of data 
records, and the inversion file, on which reside indices for key data 
elements. 

On the disk, the hierarchical structure of a data record is 
represented by ~nidirectional pointers linking together the data element 
occurrences. There is no storage overhead associated with data elements 
that do not occur at all, either in the record or a particular occurrence 
of their parent. When a record is brought into the record buffer, it is 
restructured to facilitate access--the pointers are made bidirectional 
and relocated relative to the start of the work irea, and entry pointers 
are allocated for all missing data elements to allow insertion .. When 
the record is converted .back into its disk-resident form prior to storage, 
all garbage resulting from updating activity is automatically eliminated. 



6 

If a modified record is no longer than it was prior to modification, 
. it is stored back in its original location on the data file and any unused 
space following it is flagged as deleted for the data file garbage collec­
tion utility. If the modified record is longer than it was, it is written 
at the end of the data file, its directory file entry is updated, and the 
original form of the record is flagged as deleted. 

Numeric data element values are stored in the database in the 
internal binary format of the machine being used. This decision was 
based upon the assumption that much of the use of ascientifically-oriented 
database management system involves access to the data by analysis soft­
ware requiring numeric values in internal binary form. They must be 
converted into this form from their character representation only when 
initially input rather than every time they are read by an analysis 
program, as would be the case if they were stored in character form. 

A single access to the directory file, with an entry address 
calculated from a record ID, provides the disk address and length of 
that record on the data file. This level of indirection was provided 
so that it is not necessary tb update all index entries for a record 
that has been made larger by an update and has to be relocated; the 
only index entries that need to be changed are those for data elements 
whose values were actually modified. Likewise, when records are moved 
by the data file garbage collection utility, only their directory file 
entries need to be changed; all index entries remain correct. 

The BKY operating system, under which BDMS is run at LBL, makes 
no prov1s1on for re-entrant code or updatable shared disk files, so 
BDMS was built as a single user system and does not support updatable 
shared databases. However, BKY does allow shared access to a read-only 
("public") disk file, so multiple users, each with his own copy of the 
database system, can retrieve information from a common disk~resident 
database. 

Likewise, BKY does not support permanent disk files, so elaborate 
crash recovery machinery in BDMS was not deemed necessary. Normally, 
a database is stored on tape, staged to a disk for use, and then staged 
back to another tape if it has been modified. One can then "rGll back" 
to a previous stage of the database provided that a sufficient number 
of tapes is used in the storage cycle. 

The only situation in which a system crash can be a major annoyance 
is when an interactive user has made extensive changes to a database 
immediately before the crash. To save such a user from having to re-key 
all those changes, the system records ·all user input on an audit file. 
If this file is maintained in such a way that it survives the crash 
(tape would be virtually foolproof), it can then be processed as batch 
input against the original version of the database. The audit file can 
also serve as a record of update activity if it is preserved as a part 
of normal operating procedure. 

0 • 



.. 

.. 

7 

Since each user either uses a read-only public file or has his own 
copy of the database, we did not feel it was necessary to design an 
elaborate security mechanism to prevent unauthorized update. We are 
considering the addition of a password scheme, access control at the 
data element level, and possible even selective encryption to ensure 
privacy of sensitive information. 

One of the design goals was easy transportibility. This was 
achieved by a) writing the major part of the system in a relatively 
machine-independent subset of FORTRAN IV, and b) careful modularization 
to isolate machine and operating system dependence in a few low-level 
interface routines that can be recoded easily for another system. 
Versions of BDMS exist now for CDC 6600 and 7600 computer running BKY, 
and IBM 360 series machines. An experimental 7600 version has been run 
under SCOPE and we are currently working on a PDP-11 version for RSX 
and lAS systems. 

FUTURE PLANS 

Further areas for development of BDMS fall into two major areas: 
extension to allow multiple record types ("multi-file databases"), and 
enhancement of the query facility to handle intra-record and non-key 
record types will be the ability to modify easily the definition of an 
existing database. The ability to formulate queries involving intra­
record qualification will allow retrieval conditions to be specified 
in terms of the relative position of data element occurrences in the 
record hierarchy. We are also considering the addition of multidimen­
sional array data element types as well as the access protection 
machinery mentioned in the previous section. 

As BDMS has evolved, many people have contributed ideas and 
assisted with programming. They include Tricia Coffeen, Paul Chan, 
Geoffrey Fox, Marge Hutchinson, Silvia Sorell, Paul Stevens .• Gill 
Ringland, Alan Rittenberg, Deane Merrill, Tom Lasinski, Tom Trippe, 
Vicky White, and George Yost. Over the course of development, 
support has been provided by the National Science Foundation and 
the National Bureau of Standards, in addition to that of the U. S. 
Department of Energy (in its previous incarnations as the U. S. 
Atomic Energy Commission and later the U. S. Energy Research and 
Development Administration). 



1. 

8 

REFERENCES 

Richards, D. R., BDMS User's Manual, LBL-4683 (Revision 1); 
BDMS Programmer's Manual, LBL-4684, BDMS Implementation 
Manual, LBL-4685. 

2. Berkeley Particle Data Group, Particle Physics Data System 
Document File, PDG-3100, Particle Physics Data System 
Reaction-Data File, PDG-3200. 

3. Stevens, P.R., and Rittenberg, A., The Particle Data 
Group: Using a BDMS to Solve Data Handling Problems in 
Particle Physics, CALT-68-622, contribution to this study. 

. . 



' . 
. ' 

This report was done with support from the Department of Energy. 
Any conclusions or opinions expressed in this report represent solely 
those of the author(s) and not necessarily those of The Regents of the 
University of California, the Lawrence Berkeley Laboratory or the 
Department of Energy. 



. 
.... ()> 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

;., 

" 




